Elliptic Flow of Charm and Strange Hadrons in High-Multiplicity p+Pb Collisions at ffiffiffiffiffiffiffiffi sNN p = 8.16 TeV A.M. Sirunyan et al. * (CMS Collaboration) (Received 25 April 2018; revised manuscript received 22 July 2018; published 21 August 2018) The elliptic azimuthal anisotropy coefficient (v2) is measured for charm (D0) and strange (K0 S, Λ, Ξ−, and Ω−) hadrons, using a data sample of pþ Pb collisions collected by the CMS experiment, at a nucleon- nucleon center-of-mass energy of ffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV. A significant positive v2 signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pþ Pb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller v2 than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, also presented. DOI: 10.1103/PhysRevLett.121.082301 There has been long-standing interest in the space-time evolution of the multiparticle production process in high energy collisions of hadrons [1]. The observation of strong collective flow, as inferred from the correlations in azimu- thal angle (ϕ) of particles emitted over a wide pseudor- apidity (η) range in relativistic nucleus-nucleus (AA) collisions, has been one of the key signatures suggesting the formation of a strongly interacting quark-gluon plasma (QGP) between the initial impact of the colliding nuclei and final production of particles. As observed first at the Brookhaven National Laboratory (BNL) Relativistic Heavy Ion Collider (RHIC) [2,2–5] and later at the CERN Large Hadron Collider (LHC) [6–11], the QGP exhibits nearly ideal hydrodynamical behavior [12–14]. In recent years, the observation of similar correlations in events with high final-state particle multiplicity resulting from proton-proton (pp) [15–17] and proton-lead (pþ Pb) [18–21] collisions at the LHC has raised the question whether a fluidlike QGP is also created in these smaller collision systems [22]. The azimuthal correlation structure of emitted particles is typically characterized by its Fourier components [23]. In hydrodynamic models, the second and third Fourier components, known as elliptic (v2) and triangular (v3) flow, respectively, most directly reflect the QGP response to the initial collision geometry and its fluctuations [24–26]. The properties of the long-range correlation associated with light-flavor and strange hadrons in small systems are found to be similar to those observed in AA collisions. This includes, e.g., the particle species dependence [27–29] and multiparticle (or collective) nature [29–32] of the long- range correlation. More recently, such long-range correla- tions have also been observed in lighter systems at RHIC, including dAu [33–35] and 3HeAu [36]. While these measurements are consistent with a hydrodynamic expan- sion, alternative scenarios based on gluon saturation in the initial state also claim to capture the main features of the correlation data (recent reviews are provided in Refs. [37,38]). The large masses of heavy quarks (charm and bottom) lead to their being produced in the early stages of the collision, and they thus probe the properties of the QGP through their interactions with the medium [39]. The elliptic flow results for D mesons in AA collisions measured at RHIC [40] and the LHC [41–43] suggest that charm quarks develop strong collective behavior, similar to the bulk production of light flavor particles from the QGP. In small systems, long-range correlation involving inclusive muons and J=ψ mesons have revealed hints of heavy flavor quark collectivity [44,45]. Observation of D meson v2 in the pþ Pb system, and especially the comparison to the light-flavor and strange particle v2, can impose further constraints on different interpretations related to the origin of the observed long-range collectivity. In particular, such measurements can provide key insights into properties of heavy quark inter- action and thermalization within a hot QGP medium possibly formed at a significantly reduced system size. This Letter presents the first measurements of the elliptic anisotropies of prompt D0 mesons and strange hadrons (K0 S, Λ, Ξ−, and Ω−) in pþ Pb collisions at a nucleon- nucleon center-of-mass energy of ffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV. In all cases, particles and antiparticles are combined in the *Full author list given at the end of the Letter. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 0031-9007=18=121(8)=082301(18) 082301-1 © 2018 CERN, for the CMS Collaboration https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.082301&domain=pdf&date_stamp=2018-08-21 https://doi.org/10.1103/PhysRevLett.121.082301 https://doi.org/10.1103/PhysRevLett.121.082301 https://doi.org/10.1103/PhysRevLett.121.082301 https://doi.org/10.1103/PhysRevLett.121.082301 https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ measurements. The v2 harmonic of all particle species in high-multiplicity pþ Pb events is determined in different intervals of transverse momentum (pT), via long-range two-particle correlations with charged particles. The v2 harmonics for the same strange hadrons are also measured in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV for 30%–50% centrality (defined as the fraction of the total inelastic cross section, with 0% denoting the most central collisions), to compare with the previously published D0 v2 results from these same collisions [43]. The central feature of the CMS apparatus is a super- conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromag- netic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward calorimeters cover the range 2.9 < jηj < 5.2. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The silicon tracker measures charged particles within the range jηj < 2.5. For charged particles with 1 < pT < 10 GeV and jηj < 1.4, the track resolutions are typically 1.5% in pT and 25–90 ð45–150Þ μm in the transverse (longitudinal) impact parameter [46]. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [47]. The pþ Pb data at ffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV used in this analysis were collected by the CMS experiment in 2016, and correspond to an integrated luminosity of 186 nb−1. The beam energies are 6.5 TeV for the protons and 2.56 TeV per nucleon for the lead nuclei. Because of the asymmetric beam conditions, particles selected in this Letter from midrapidity in the laboratory frame (jylabj < 1) correspond to rapidity in the nucleon-nucleon center-of-mass frame of −1.46 < ycm < 0.54, with positive rapidity corresponding to the proton beam direction. The event reconstruction, event selections, and triggers are identical to those described in Refs. [48,49]. A subset of PbPb data at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV for 30%–50% centrality were also used and reprocessed using the same reconstruction algorithm as the pþ Pb data. The pþ Pb data are analyzed for multiplicity ranges of Noffline trk < 35 and 185 ≤ Noffline trk < 250, where Noffline trk is the number of primary tracks [46] with jηj < 2.4 and pT > 0.4 GeV. Events in the multiplicity region of Noffline trk > 250 is not included to avoid effects of multiple interactions in a single event (pileup). These bin boundaries correspond to fractional inelastic cross sections from 100% to 57%, and from 0.33% to 0.01%, respectively. The 30%–50% centrality PbPb data have an average Noffline trk of 919. The reconstruction and selection procedures for strange- hadron candidates in pþ Pb collisions are identical to those in Refs. [28,29,50]. Pairs of oppositely charged particle tracks that are detached from the primary vertex (i.e., having large significance of impact parameters) are selected to determine if they point to a common secondary vertex from the decay of a K0 S, a Λ or a D0 candidate. The reconstruction efficiency for tracks with low momenta and large impact parameters is increased by using all tracks that pass the loose selection of Ref. [46]. The track pair is assumed to originate from πþπ− in K0 S reconstruction, while the assumption of π−pðπþp̄Þ is used in the Λ (Λ̄) reconstruction. To reconstruct Ξ− and Ω− particles, a Λ candidate is combined with an additional particle of the correct sign, assuming the pion or kaon PDG mass [51], to define an additional vertex. The D0 mesons are recon- structed through the hadronic decay channel D0 → K−πþ. In order to suppress the combinatorial background and improve the momentum and mass resolution, high-purity [46] tracks with pT > 0.7 GeV and jηj < 1.5 are used. For each pair of selected tracks, two D0 candidates are considered by assuming one of the tracks has the pion mass while the other track has the kaon mass, and vice versa. Similar swapped-mass candidates are not required for strange hadrons since the two decay products are either the same mass (for K0 S) or so different in mass that momentum-sharing criteria can be used to identify which decay particle is the heavier one (for Λ, Ξ−, and Ω−). Several topological selections are applied to further reduce the combinatorial background. In particular, strange hadron and D0 candidates are selected according to the χ2 proba- bility of their decay vertex, the three-dimensional distance (normalized by its uncertainty) between the primary and decay vertices, and the pointing angle (defined as the angle between the line segment connecting the primary and decay vertices and the momentum vector of the reconstructed particle candidates in the plane transverse to the beam direction). The selection is optimized in each pT bin, separately for different particle species, in order to maximize the statistical significance of the signal. For Ξ− and Ω− reconstruction, these selections are applied to both the initial decay vertex and the subsequent decay vertex of Λ. In the case of the D0 measurement, the selections on the pointing angle also suppress the fraction of nonprompt D0 production (from decays of b hadrons). Simulated event samples of PYTHIA 8.209 [52,53] D0 signal events, embedded into EPOS LHC [54] minimum bias pþ Pb events, are used to estimate the nonprompt D0 contami- nation in data. By fitting the distributions of distance of closest approach of D0 total momentum vector to the primary vertex, using the probability distribution functions (pdf) for prompt and nonprompt D0 derived from simu- lation, the residual nonprompt fraction is found to be decreasing with pT from 7% to 1%. The azimuthal anisotropies of D0 mesons and strange hadrons are extracted from their long-range (jΔηj > 1) PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-2 two-particle azimuthal correlations with charged particles, as described in Refs. [28,29]. Taking the D0 meson as an example, the two-dimensional (2D) correlation function is constructed by pairing each D0 candidate with reference primary charged-particle tracks with 0.3 < pT < 3.0 GeV (denoted “ref” particles), and calculating 1 ND0 d2Npair dΔηdΔϕ ¼ Bð0; 0Þ SðΔη;ΔϕÞ BðΔη;ΔϕÞ ; ð1Þ where Δη and Δϕ are the differences in η and ϕ of each pair. The same-event pair distribution, SðΔη;ΔϕÞ, repre- sents the yield of particle pairs normalized by the number of D0 candidates from the same event. The mixed-event pair yield distribution, BðΔη;ΔϕÞ, is constructed by pairing D0 candidates in each event with the reference primary charged-particle tracks from 20 different randomly selected events, from the same Noffline trk range, and with a primary vertex falling in the same 2 cm wide range of reconstructed z coordinate. The analysis procedure is performed in each D0 candidate pT range by dividing it into intervals of invariant mass. The correction for acceptance and effi- ciency (derived from PYTHIA+EPOS simulations) of the D0 meson yield is found to have negligible effect on the measurements, and thus is not applied. The Δϕ correlation functions averaged over jΔηj > 1 (to remove short-range correlations such as jet fragmentation) is then obtained from the projection of 2D distributions and fitted by the first three terms of a Fourier series (including additional terms has a negligible effect): 1 ND0 dNpair dΔϕ ¼ Nassoc 2π � 1þ X3 n¼1 2VnΔ cosðnΔϕÞ � : ð2Þ Here, VnΔ are the Fourier coefficients and Nassoc represents the total number of pairs per D0 candidate. By assuming VnΔ to be the product of single-particle anisotropies [55], VnΔðD0; refÞ ¼ vnðD0ÞvnðrefÞ, the vn anisotropy harmon- ics for D0 candidates can be extracted as a function of invariant mass, vnðD0Þ ¼ VnΔðD0; refÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi VnΔðref; refÞ p . Because of the limited amount of available data, only the elliptic anisotropy harmonic is measured. The residual contribution of back-to-back dijets to the measured v2 results is corrected by subtracting correlations from low-multiplicity pþ Pb events, following an identical procedure established in Refs. [29,55]. The Fourier coef- ficients, VnΔ, extracted from events with Noffline trk < 35 are subtracted from those extracted from events with 185 ≤ Noffline trk < 250 after accounting for the jet yield ratio of the selected events. The subtraction is not performed for PbPb results as the back-to-back jet correlations are found to be negligible in events with centrality between 30% and 50% [49]. To extract the v2 values of the D0 meson signal (vS2), a simultaneous fit to the invariant mass spectrum of D0 candidates and their v2 as a function of the invariant mass, vSþB 2 ðminvÞ, is performed in each pT interval. The mass spectrum fit function is composed of three components: the sum of two Gaussian functions with the same mean but different widths for the D0 signal, SðminvÞ, an additional Gaussian function to describe the invariant mass shape of D0 candidates with an incorrect mass assignment from the exchange of the pion and kaon designations, SWðminvÞ, and a third-order polynomial to model the combinatorial background, BðminvÞ. The width of SWðminvÞ and the ratio of the yields of SWðminvÞ and SðminvÞ are fixed according to results obtained from PYTHIA+EPOS simulation studies. The vSþB 2 ðminvÞ distribution is fitted with vSþB 2 ðminvÞ ¼ αðminvÞvS2 þ ½1 − αðminvÞ�vB2 ðminvÞ; ð3Þ where αðminvÞ ¼ SðminvÞ þ SWðminvÞ SðminvÞ þ SWðminvÞ þ BðminvÞ : ð4Þ Here vB2 ðminvÞ for the background D0 candidates is modeled as a linear function of the invariant mass, and αðminvÞ is the D0 signal fraction. The K-π swapped component is included in the signal fraction because these candidates are from genuine D0 mesons and should have the same v2 value as that of the nonswapped D0 signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and vSþB 2 ðminvÞ in the pT interval 4.2–5.0 GeV for the multiplicity range 185 ≤ Noffline trk < 250 in pþ Pb E nt rie s / ( 5 M eV ) 10 20 30 40 3 10× Data Fit Signal 0 D+ 0 D swapπK- Combinatorial < 250offline trk N≤185 < 5.0 GeV T 4.2 < p < 0.54 cm -1.46 < y /ndf = 118/492χ pPb 8.16 TeVCMS (GeV)invm 1.7 1.8 1.9 2.0 S + B 2v 0.15 0.20 FIG. 1. Example of the simultaneous fit to the invariant mass spectrum and vSþB 2 ðminvÞ in the pT interval 4.2–5.0 GeV for events with 185 ≤ Noffline trk < 250. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-3 collisions. The v2 values for the strange hadrons are extracted in the same way although no swapped-mass component is required. As the residual contribution from nonprompt D0 mesons is small, no explicit correction is applied and a systematic uncertainty is quoted instead. Based on the prediction for AA collisions that B mesons have a smaller v2 than light-flavor particles, due to the larger mass of the b quark [56–58], the nonprompt D0 v2 values are assumed to lie between 0 and those of strange hadrons. The maximum effect from nonprompt D0 mesons is thus estimated using the extracted nonpromptD0 fraction and the change in vS2 is found to be smaller than 6%. Other sources of systematic uncertainty in the D0 v2 measurement in this analysis include the background mass pdf, the D0 meson yield correction (acceptance and efficiency correction), selection of the D0 candidates, and the background v2 pdf. No systematic effect has been observed while changing the background mass pdf to a second-order polynomial or an exponential function. To evaluate the uncertainties arising from the D0 meson yield correction, the v2 values are extracted from the corrected signal D0 distributions and compared to the uncorrected v2 values, yielding an uncertainty of 2%. The selection criteria for D0 candidates are also varied to tighter and looser values such that theD0 signal fraction, αðminvÞ, changes by 50% and a systematic uncertainty of 14% is evaluated from the variations of v2. The systematic uncertainties from the background v2 pdf (20% for pT < 2.4 GeV and 4% for pT > 2.4 GeV) are evaluated by changing vB2 ðminvÞ to a second-order polynomial function of the invariant mass and a constant value. Systematic uncertainties from trigger bias and effects of pileup are negligible. For K0 S, Λ, and Ξ− particles, the systematic uncertain- ties related to selection of reconstructed candidates (2% for K0 S and Λ particles and 6% for Ξ− particles) are evaluated in the same way as for D0 mesons. To test the procedure of extracting the signal v2, a study using EPOS LHC [54] pþ Pb events is performed and the extracted values are compared to the generator-level values. The agreement is found to be better than 6%. Systematic uncertainties for Ω− particles are quoted to be the same as those of Ξ− particles. Figure 2 shows the results of the v2 measurement of the prompt D0 meson with −1.46 < ycm < 0.54 for high- multiplicity (185 ≤ Noffline trk < 250) pþ Pb collisions. The v2 results for strange hadrons are also shown for compari- son. A clear mass ordering in the elliptic flow is observed in the low-pT region of ≲2.5 GeV, where heavier particle species have a smaller v2 signal at a given pT value. For pT > 2.5 GeV, v2 values forΛ, Ξ−, andΩ− baryons, which are similar to each other, all become larger than those ofD0 and K0 S mesons, a trend which is also observed in 5.02 TeV pþ Pb collisions [28]. The elliptic flow results corrected for residual jet correlations (vsub2 ) are shown in Fig. 3 (upper left) for prompt D0 mesons as well as for strange hadrons as functions of pT for pþ Pb collisions with 185 ≤ Noffline trk < 250. The reduction in the v2 values resulting from the correction is most significant in the high-pT region, with a 30%–40% reduction found for pT > 5 GeV. The prompt D0 vsub2 results show a clear trend of rising and declining with pT. The same ordering in particle mass as seen in Fig. 2 is observed in the vsub2 values in the lower-pT region. This behavior is consistent with the expectation of particle emission from a collective expanding source, which might indicate significant collective behavior of charm quarks in high-multiplicity pþ Pb systems at LHC energies. Previously published v2 data for D0 meson in 30%–50% centrality PbPb collisions [43], together with new results for strange hadrons obtained in this Letter, are shown in Fig. 3 (lower left). A similar mass ordering to that in pþ Pb collisions is seen, although the multiplicity range is much larger. Motivated by the quark coalescence model [59–63], collectivity at the partonic level is investigated by studying the scaling properties of vsub2 divided by the number of constituent quarks, nq, as a function of transverse kinetic energy per constituent quark, KET=nq (where KET ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2 þ p2 T p −m), for all hadronic species and systems measured (Fig. 3, right). In high-multiplicity pþ Pb collisions, the results for strange hadrons tend to follow a universal trend in the region 0.5 < KET=nq < 1.5 GeV, while the elliptic flow for D0 mesons is found to have smaller values. This could suggest that the collective behavior of charm quarks is weaker than that of the light- flavor and strange quarks in high-multiplicity pþ Pb collisions at the LHC. For KET=nq > 1.5 GeV, no clear (GeV) T p 0 2 4 6 8 2v 0.0 0.1 0.2 0.3 pPb 8.16TeVCMS < 250offline trk N≤185 0D S 0K Λ -Ξ -Ω FIG. 2. Results of elliptic flow (v2) forD0 mesons, as well asK0 S, Λ, Ξ−, and Ω− particles, as functions of pT for −1.46 < ycm < 0.54, with 185 ≤ Noffline trk < 250 in pþ Pb collisions atffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV. The error bars correspond to statistical un- certainties, while the shaded areas denote the systematic uncer- tainties. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-4 universal scaling of v2=nq between mesons and baryons is observed. The behavior is qualitatively different in the larger PbPb collision system with centrality between 30% and 50%. The results for all particle species tend to follow a common trend in the KET=nq < 1 GeV region, indicating that D0 mesons develop a strong collective behavior similar to the bulk of the QGP. In summary, the first measurements of elliptic azimuthal anisotropies for prompt D0 mesons, as well as K0 S, Λ, Ξ−, Ω− hadrons, in high-multiplicity pþ Pb collisions atffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV are presented. Significant positive v2 values are observed for D0 mesons with pT > 2 GeV. Comparing to strange-hadron results, the D0 v2 values are found to be smaller at a given pT, or at similar transverse kinetic energy per constituent quark, after normalizing v2 by the number of constituent quarks. The latter effect is not observed in the larger PbPb collision system. A possible interpretation is that, in high multiplicity pþ Pb collisions, in contrast to larger nucleus-nucleus collision systems, the collective behavior of charm quarks is weaker than that of the light-flavor quarks. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). [1] W. Busza, J. E. Elias, D. F. Jacobs, P. A. Swartz, C. C. Young, and M. R. Sogard, Charged Particle Multiplicity in π−-Nucleus Interactions at 100 and 175 GeV=c, Phys. Rev. Lett. 34, 836 (1975). su b 2v 0.0 0.1 0.2 0.3 pPb 8.16TeVCMS < 250offline trk N≤185 0D S 0K Λ -Ξ -Ω (GeV) T p 0 2 4 6 8 2v 0.0 0.1 0.2 0.3 PbPb 5.02TeVCMS Centrality 30-50% = 919)〉offline trk N〈( 0D S 0K Λ -Ξ -Ω q /n su b 2v 0.00 0.05 0.10 pPb 8.16TeVCMS < 250offline trk N≤185 0D S 0K Λ -Ξ -Ω (GeV)q/nTKE 0 1 2 3 q /n 2v 0.00 0.05 0.10 PbPb 5.02TeVCMS Centrality 30-50% = 919)〉offline trk N〈( 0D S 0K Λ -Ξ -Ω FIG. 3. Left: vsub2 results for prompt D0 meson, as well as for strange hadrons, as functions of pT, for −1.46 < ycm < 0.54 in pþ Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 8.16 TeV with 185 ≤ Noffline trk < 250 (upper) and for −1 < ycm < 1 in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV for 30%–50% centrality (lower). Right: nq-scaled vsub2 results. TheD0 v2 data in PbPb are taken from Ref. [43]. The error bars correspond to statistical uncertainties, while the shaded areas denote the systematic uncertainties. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-5 https://doi.org/10.1103/PhysRevLett.34.836 https://doi.org/10.1103/PhysRevLett.34.836 [2] B. Alver et al. (PHOBOS Collaboration), System size dependence of cluster properties from two- particle angular correlations in Cuþ Cu and Auþ Au collisions atffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. C 81, 024904 (2010). [3] J. Adams et al. (STAR Collaboration), Distributions of Charged Hadrons Associated with High Transverse Momentum Particles in pp and Auþ Au Collisions atffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 95, 152301 (2005). [4] B. Abelev et al. (STAR Collaboration), Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C 80, 064912 (2009). [5] B. Alver et al. (PHOBOS Collaboration), High Transverse Momentum Triggered Correlations over a Large Pseudor- apidity Acceptance in Auþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 104, 062301 (2010). [6] CMS Collaboration, Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon- nucleon center of mass energy of 2.76 TeV, J. High Energy Phys. 07 (2011) 076. [7] CMS Collaboration, Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Eur. Phys. J. C 72, 2012 (2012). [8] ALICE Collaboration, Elliptic Flow of Charged Particles in Pb-Pb Collisions at 2.76 TeV, Phys. Rev. Lett. 105, 252302 (2010). [9] ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86, 014907 (2012). [10] CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon- nucleon center-of-mass energy ¼ 2.76 TeV, Phys. Rev. C 87, 014902 (2013). [11] CMS Collaboration, Studies of azimuthal dihadron corre- lations in ultra-central PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, J. High Energy Phys. 02 (2014) 088. [12] J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46, 229 (1992). [13] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). [14] C. Gale, S. Jeon, and B. Schenke, Hydrodynamic modeling of heavy-ion collisions, Int. J. Mod. Phys. A 28, 1340011 (2013). [15] CMS Collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, J. High Energy Phys. 09 (2010) 091. [16] ATLAS Collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in ffiffiffi s p ¼ 13 and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116, 172301 (2016). [17] CMS Collaboration, Measurement of Long-Range Near- Side Two-Particle Angular Correlations in pp Collisions atffiffiffi s p ¼ 13 TeV, Phys. Rev. Lett. 116, 172302 (2016). [18] CMS Collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718, 795 (2013). [19] ALICE Collaboration, Long-range angular correlations on the near and away side in pþ Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Lett. B 719, 29 (2013). [20] ATLAS Collaboration, Observation of Associated Near- Side and Away-Side Long-Range Correlations in ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV Proton-Lead Collisions with the ATLAS Detec- tor, Phys. Rev. Lett. 110, 182302 (2013). [21] LHCb Collaboration, Measurements of long-range near-side angular correlations in ffiffiffiffiffiffiffiffi sNN p ¼ 5 TeV proton-lead colli- sions in the forward region, Phys. Lett. B 762, 473 (2016). [22] R. D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central pþ p, pþ Pb and Pbþ Pb collisions at ffiffiffi s p ¼ 5.02 TeV, Phys. Lett. B 774, 351 (2017). [23] S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle dis- tributions, Z. Phys. C 70, 665 (1996). [24] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82, 034913 (2010). [25] B. Schenke, S. Jeon, and C. Gale, Elliptic and Triangular Flow in Event-by-Event D ¼ 3þ 1 Viscous Hydrodynam- ics, Phys. Rev. Lett. 106, 042301 (2011). [26] Z. Qiu, C. Shen, and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Lett. B 707, 151 (2012). [27] ALICE Collaboration, Long-range angular correlations of pi, K and p in p–Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Lett. B 726, 164 (2013). [28] CMS Collaboration, Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies, Phys. Lett. B 742, 200 (2015). [29] CMS Collaboration, Evidence for collectivity in pp colli- sions at the LHC, Phys. Lett. B 765, 193 (2017). [30] CMS Collaboration, Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115, 012301 (2015). [31] ATLAS Collaboration, Measurement of multi-particle azi- muthal correlations in pp, pþ Pb and low-multiplicity Pbþ Pb collisions with the ATLAS detector, Eur. Phys. J. C 77, 428 (2017). [32] ATLAS Collaboration, Measurement of long-range multi- particle azimuthal correlations with the subevent cumulant method in pp and pþ Pb collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys. Rev. C 97, 024904 (2018). [33] A. Adare et al. (PHENIX Collaboration), Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central dþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 114, 192301 (2015). [34] L. Adamczyk et al. (STAR Collaboration), Long-range pseudorapidity dihadron correlations in dþ Au collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Lett. B 747, 265 (2015). [35] C. Aidala et al. (PHENIX Collaboration), Measurements of Multiparticle Correlations in dþ Au collisions at 200, 62.4, 39, and 19.6 GeV and pþ Au Collisions at 200 GeV and Implications for Collective Behavior, Phys. Rev. Lett. 120, 062302 (2018). PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-6 https://doi.org/10.1103/PhysRevC.81.024904 https://doi.org/10.1103/PhysRevLett.95.152301 https://doi.org/10.1103/PhysRevC.80.064912 https://doi.org/10.1103/PhysRevLett.104.062301 https://doi.org/10.1007/JHEP07(2011)076 https://doi.org/10.1007/JHEP07(2011)076 https://doi.org/10.1140/epjc/s10052-012-2012-3 https://doi.org/10.1140/epjc/s10052-012-2012-3 https://doi.org/10.1103/PhysRevLett.105.252302 https://doi.org/10.1103/PhysRevLett.105.252302 https://doi.org/10.1103/PhysRevC.86.014907 https://doi.org/10.1103/PhysRevC.87.014902 https://doi.org/10.1103/PhysRevC.87.014902 https://doi.org/10.1007/JHEP02(2014)088 https://doi.org/10.1103/PhysRevD.46.229 https://doi.org/10.1146/annurev-nucl-102212-170540 https://doi.org/10.1146/annurev-nucl-102212-170540 https://doi.org/10.1142/S0217751X13400113 https://doi.org/10.1142/S0217751X13400113 https://doi.org/10.1007/JHEP09(2010)091 https://doi.org/10.1103/PhysRevLett.116.172301 https://doi.org/10.1103/PhysRevLett.116.172301 https://doi.org/10.1103/PhysRevLett.116.172302 https://doi.org/10.1016/j.physletb.2012.11.025 https://doi.org/10.1016/j.physletb.2013.01.012 https://doi.org/10.1103/PhysRevLett.110.182302 https://doi.org/10.1016/j.physletb.2016.09.064 https://doi.org/10.1016/j.physletb.2017.09.077 https://doi.org/10.1007/s002880050141 https://doi.org/10.1103/PhysRevC.82.034913 https://doi.org/10.1103/PhysRevLett.106.042301 https://doi.org/10.1016/j.physletb.2011.12.041 https://doi.org/10.1016/j.physletb.2013.08.024 https://doi.org/10.1016/j.physletb.2013.08.024 https://doi.org/10.1016/j.physletb.2015.01.034 https://doi.org/10.1016/j.physletb.2016.12.009 https://doi.org/10.1103/PhysRevLett.115.012301 https://doi.org/10.1103/PhysRevLett.115.012301 https://doi.org/10.1140/epjc/s10052-017-4988-1 https://doi.org/10.1140/epjc/s10052-017-4988-1 https://doi.org/10.1103/PhysRevC.97.024904 https://doi.org/10.1103/PhysRevC.97.024904 https://doi.org/10.1103/PhysRevLett.114.192301 https://doi.org/10.1103/PhysRevLett.114.192301 https://doi.org/10.1016/j.physletb.2015.05.075 https://doi.org/10.1103/PhysRevLett.120.062302 https://doi.org/10.1103/PhysRevLett.120.062302 [36] A. Adare et al. (PHENIX), Measurements of Elliptic and Triangular Flow in High-Multiplicity 3Heþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 115, 142301 (2015). [37] K. Dusling, W. Li, and B. Schenke, Novel collective phenomena in high-energy proton–proton and proton– nucleus collisions, Int. J. Mod. Phys. E 25, 1630002 (2016). [38] J. L. Nagle and W. A. Zajc, Small system collectivity in relativistic hadron and nuclear collisions, arXiv: 1801.03477. [39] P. Braun-Munzinger, Quarkonium production in ultra- relativistic nuclear collisions: Suppression versus enhance- ment, J. Phys. G 34, S471 (2007). [40] L. Adamczyk et al. (STAR Collaboration), Measurement of D0 Azimuthal Anisotropy at Midrapidity in Auþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 118, 212301 (2017). [41] ALICE Collaboration, Azimuthal anisotropy of D meson production in Pb-Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Rev. C 90, 034904 (2014). [42] ALICE Collaboration, D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Rev. Lett. 120, 102301 (2018). [43] CMS Collaboration, Measurement of Prompt D0 Meson Azimuthal Anisotropy in PbPb Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Rev. Lett. 120, 202301 (2018). [44] ALICE Collaboration, Forward-central two-particle corre- lations in p-Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Lett. B 753, 126 (2016). [45] ALICE Collaboration, Search for collectivity with azimu- thal J=ψ-hadron correlations in high multiplicity p-Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 and 8.16 TeV, Phys. Lett. B 780, 7 (2018). [46] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014). [47] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008). [48] CMS Collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC, Phys. Rev. C 97, 044912 (2018). [49] CMS Collaboration, Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in pp and pþ Pb collisions at the LHC, Phys. Rev. Lett. 120, 092301 (2018). [50] CMS Collaboration, Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb colli- sions at the LHC, Phys. Lett. B 768, 103 (2017). [51] C. Patrignani et al., Particle Data Group, Review of particle physics, Chin. Phys. C 40, 100001 (2016). [52] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008). [53] V. Khachatryan et al. (CMS Collaboration), Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016). [54] T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92, 034906 (2015). [55] S. Chatrchyan et al. (CMS Collaboration), Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724, 213 (2013). [56] M. Nahrgang, J. Aichelin, S. Bass, P. B. Gossiaux, and K. Werner, Elliptic and triangular flow of heavy flavor in heavy-ion collisions, Phys. Rev. C 91, 014904 (2015). [57] M. He, R. J. Fries, and R. Rapp, Heavy flavor at the Large Hadron Collider in a strong coupling approach, Phys. Lett. B 735, 445 (2014). [58] J. Xu, J. Liao, and M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0, J. High Energy Phys. 02 (2016) 169. [59] D. Molnar and S. A. Voloshin, Elliptic Flow at Large Transverse Momenta from Quark Coalescence, Phys. Rev. Lett. 91, 092301 (2003). [60] V. Greco, C. M. Ko, and P. Levai, Parton Coalescence and Antiproton/Pion Anomaly at RHIC, Phys. Rev. Lett. 90, 202302 (2003). [61] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Hadroni- zation in Heavy Ion Collisions: Recombination and Frag- mentation of Partons, Phys. Rev. Lett. 90, 202303 (2003). [62] B. Abelev et al. (STAR), Mass, quark-number, and ffiffiffiffiffiffiffiffi sNN p dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions, Phys. Rev. C 75, 054906 (2007). [63] A. Adare et al. (PHENIX Collaboration), Scaling Properties of Azimuthal Anisotropy in Auþ Au and Cuþ Cu Colli- sions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 98, 162301 (2007). A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 E. Brondolin,2 M. Dragicevic,2 J. Erö,2 A. Escalante Del Valle,2 M. Flechl,2 R. Frühwirth,2,b V. M. Ghete,2 J. Hrubec,2 M. Jeitler,2,b N. Krammer,2 I. Krätschmer,2 D. Liko,2 T. Madlener,2 I. Mikulec,2 N. Rad,2 H. Rohringer,2 J. Schieck,2,b R. Schöfbeck,2 M. Spanring,2 D. Spitzbart,2 A. Taurok,2 W. Waltenberger,2 J. Wittmann,2 C.-E. Wulz,2,b M. Zarucki,2 V. Chekhovsky,3 V. Mossolov,3 J. Suarez Gonzalez,3 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4 J. Lauwers,4 M. Pieters,4 M. Van De Klundert,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 S. Abu Zeid,5 F. Blekman,5 J. D’Hondt,5 I. De Bruyn,5 J. De Clercq,5 K. Deroover,5 G. Flouris,5 D. Lontkovskyi,5 S. Lowette,5 I. Marchesini,5 S. Moortgat,5 L. Moreels,5 Q. Python,5 K. Skovpen,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 I. Van Parijs,5 D. Beghin,6 B. Bilin,6 H. Brun,6 B. Clerbaux,6 G. De Lentdecker,6 H. Delannoy,6 B. Dorney,6 G. Fasanella,6 L. Favart,6 R. Goldouzian,6 A. Grebenyuk,6 A. K. Kalsi,6 T. Lenzi,6 J. Luetic,6 N. Postiau,6 E. Starling,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-7 https://doi.org/10.1103/PhysRevLett.115.142301 https://doi.org/10.1142/S0218301316300022 http://arXiv.org/abs/1801.03477 http://arXiv.org/abs/1801.03477 https://doi.org/10.1088/0954-3899/34/8/S36 https://doi.org/10.1103/PhysRevLett.118.212301 https://doi.org/10.1103/PhysRevLett.118.212301 https://doi.org/10.1103/PhysRevC.90.034904 https://doi.org/10.1103/PhysRevC.90.034904 https://doi.org/10.1103/PhysRevLett.120.102301 https://doi.org/10.1103/PhysRevLett.120.102301 https://doi.org/10.1103/PhysRevLett.120.202301 https://doi.org/10.1016/j.physletb.2015.12.010 https://doi.org/10.1016/j.physletb.2015.12.010 https://doi.org/10.1016/j.physletb.2018.02.039 https://doi.org/10.1016/j.physletb.2018.02.039 https://doi.org/10.1088/1748-0221/9/10/P10009 https://doi.org/10.1088/1748-0221/9/10/P10009 https://doi.org/10.1088/1748-0221/3/08/S08004 https://doi.org/10.1103/PhysRevC.97.044912 https://doi.org/10.1103/PhysRevC.97.044912 https://doi.org/10.1103/PhysRevLett.120.092301 https://doi.org/10.1016/j.physletb.2017.01.075 https://doi.org/10.1088/1674-1137/40/10/100001 https://doi.org/10.1016/j.cpc.2008.01.036 https://doi.org/10.1140/epjc/s10052-016-3988-x https://doi.org/10.1103/PhysRevC.92.034906 https://doi.org/10.1103/PhysRevC.92.034906 https://doi.org/10.1016/j.physletb.2013.06.028 https://doi.org/10.1016/j.physletb.2013.06.028 https://doi.org/10.1103/PhysRevC.91.014904 https://doi.org/10.1016/j.physletb.2014.05.050 https://doi.org/10.1016/j.physletb.2014.05.050 https://doi.org/10.1007/JHEP02(2016)169 https://doi.org/10.1007/JHEP02(2016)169 https://doi.org/10.1103/PhysRevLett.91.092301 https://doi.org/10.1103/PhysRevLett.91.092301 https://doi.org/10.1103/PhysRevLett.90.202302 https://doi.org/10.1103/PhysRevLett.90.202302 https://doi.org/10.1103/PhysRevLett.90.202303 https://doi.org/10.1103/PhysRevC.75.054906 https://doi.org/10.1103/PhysRevC.75.054906 https://doi.org/10.1103/PhysRevLett.98.162301 https://doi.org/10.1103/PhysRevLett.98.162301 D. Vannerom,6 Q. Wang,6 T. Cornelis,7 D. Dobur,7 A. Fagot,7 M. Gul,7 I. Khvastunov,7,c D. Poyraz,7 C. Roskas,7 D. Trocino,7 M. Tytgat,7 W. Verbeke,7 B. Vermassen,7 M. Vit,7 N. Zaganidis,7 H. Bakhshiansohi,8 O. Bondu,8 S. Brochet,8 G. Bruno,8 C. Caputo,8 P. David,8 C. Delaere,8 M. Delcourt,8 B. Francois,8 A. Giammanco,8 G. Krintiras,8 V. Lemaitre,8 A. Magitteri,8 A. Mertens,8 M. Musich,8 K. Piotrzkowski,8 A. Saggio,8 M. Vidal Marono,8 S. Wertz,8 J. Zobec,8 F. L. Alves,9 G. A. Alves,9 L. Brito,9 G. Correia Silva,9 C. Hensel,9 A. Moraes,9 M. E. Pol,9 P. Rebello Teles,9 E. Belchior Batista Das Chagas,10 W. Carvalho,10 J. Chinellato,10,d E. Coelho,10 E. M. Da Costa,10 G. G. Da Silveira,10,e D. De Jesus Damiao,10 C. De Oliveira Martins,10 S. Fonseca De Souza,10 H. Malbouisson,10 D. Matos Figueiredo,10 M. Melo De Almeida,10 C. Mora Herrera,10 L. Mundim,10 H. Nogima,10 W. L. Prado Da Silva,10 L. J. Sanchez Rosas,10 A. Santoro,10 A. Sznajder,10 M. Thiel,10 E. J. Tonelli Manganote,10,d F. Torres Da Silva De Araujo,10 A. Vilela Pereira,10 S. Ahuja,11a C. A. Bernardes,11a L. Calligaris,11a T. R. Fernandez Perez Tomei,11a E. M. Gregores,11a,11b P. G. Mercadante,11a,11b S. F. Novaes,11a Sandra S. Padula,11a D. Romero Abad,11a,11b A. Aleksandrov,12 R. Hadjiiska,12 P. Iaydjiev,12 A. Marinov,12 M. Misheva,12 M. Rodozov,12 M. Shopova,12 G. Sultanov,12 A. Dimitrov,13 L. Litov,13 B. Pavlov,13 P. Petkov,13 W. Fang,14,f X. Gao,14,f L. Yuan,14 M. Ahmad,15 J. G. Bian,15 G. M. Chen,15 H. S. Chen,15 M. Chen,15 Y. Chen,15 C. H. Jiang,15 D. Leggat,15 H. Liao,15 Z. Liu,15 F. Romeo,15 S. M. Shaheen,15 A. Spiezia,15 J. Tao,15 C. Wang,15 Z. Wang,15 E. Yazgan,15 H. Zhang,15 J. Zhao,15 Y. Ban,16 G. Chen,16 J. Li,16 L. Li,16 Q. Li,16 Y. Mao,16 S. J. Qian,16 D. Wang,16 Z. Xu,16 Y. Wang,17 C. Avila,18 A. Cabrera,18 C. A. Carrillo Montoya,18 L. F. Chaparro Sierra,18 C. Florez,18 C. F. González Hernández,18 M. A. Segura Delgado,18 B. Courbon,19 N. Godinovic,19 D. Lelas,19 I. Puljak,19 T. Sculac,19 Z. Antunovic,20 M. Kovac,20 V. Brigljevic,21 D. Ferencek,21 K. Kadija,21 B. Mesic,21 A. Starodumov,21,g T. Susa,21 M.W. Ather,22 A. Attikis,22 G. Mavromanolakis,22 J. Mousa,22 C. Nicolaou,22 F. Ptochos,22 P. A. Razis,22 H. Rykaczewski,22 M. Finger,23,h M. Finger Jr.,23,h E. Ayala,24 E. Carrera Jarrin,25 M. A. Mahmoud,26,i,j Y. Mohammed,26,j E. Salama,26,k,i S. Bhowmik,27 A. Carvalho Antunes De Oliveira,27 R. K. Dewanjee,27 K. Ehataht,27 M. Kadastik,27 M. Raidal,27 C. Veelken,27 P. Eerola,28 H. Kirschenmann,28 J. Pekkanen,28 M. Voutilainen,28 J. Havukainen,29 J. K. Heikkilä,29 T. Järvinen,29 V. Karimäki,29 R. Kinnunen,29 T. Lampén,29 K. Lassila-Perini,29 S. Laurila,29 S. Lehti,29 T. Lindén,29 P. Luukka,29 T. Mäenpää,29 H. Siikonen,29 E. Tuominen,29 J. Tuominiemi,29 T. Tuuva,30 M. Besancon,31 F. Couderc,31 M. Dejardin,31 D. Denegri,31 J. L. Faure,31 F. Ferri,31 S. Ganjour,31 A. Givernaud,31 P. Gras,31 G. Hamel de Monchenault,31 P. Jarry,31 C. Leloup,31 E. Locci,31 J. Malcles,31 G. Negro,31 J. Rander,31 A. Rosowsky,31 M. Ö. Sahin,31 M. Titov,31 A. Abdulsalam,32,l C. Amendola,32 I. Antropov,32 F. Beaudette,32 P. Busson,32 C. Charlot,32 R. Granier de Cassagnac,32 I. Kucher,32 S. Lisniak,32 A. Lobanov,32 J. Martin Blanco,32 M. Nguyen,32 C. Ochando,32 G. Ortona,32 P. Pigard,32 R. Salerno,32 J. B. Sauvan,32 Y. Sirois,32 A. G. Stahl Leiton,32 A. Zabi,32 A. Zghiche,32 J.-L. Agram,33,m J. Andrea,33 D. Bloch,33 J.-M. Brom,33 E. C. Chabert,33 V. Cherepanov,33 C. Collard,33 E. Conte,33,m J.-C. Fontaine,33,m D. Gelé,33 U. Goerlach,33 M. Jansová,33 A.-C. Le Bihan,33 N. Tonon,33 P. Van Hove,33 S. Gadrat,34 S. Beauceron,35 C. Bernet,35 G. Boudoul,35 N. Chanon,35 R. Chierici,35 D. Contardo,35 P. Depasse,35 H. El Mamouni,35 J. Fay,35 L. Finco,35 S. Gascon,35 M. Gouzevitch,35 G. Grenier,35 B. Ille,35 F. Lagarde,35 I. B. Laktineh,35 H. Lattaud,35 M. Lethuillier,35 L. Mirabito,35 A. L. Pequegnot,35 S. Perries,35 A. Popov,35,n V. Sordini,35 M. Vander Donckt,35 S. Viret,35 S. Zhang,35 T. Toriashvili,36,o Z. Tsamalaidze,37,h C. Autermann,38 L. Feld,38 M. K. Kiesel,38 K. Klein,38 M. Lipinski,38 M. Preuten,38 M. P. Rauch,38 C. Schomakers,38 J. Schulz,38 M. Teroerde,38 B. Wittmer,38 V. Zhukov,38,n A. Albert,39 D. Duchardt,39 M. Endres,39 M. Erdmann,39 T. Esch,39 R. Fischer,39 S. Ghosh,39 A. Güth,39 T. Hebbeker,39 C. Heidemann,39 K. Hoepfner,39 H. Keller,39 S. Knutzen,39 L. Mastrolorenzo,39 M. Merschmeyer,39 A. Meyer,39 P. Millet,39 S. Mukherjee,39 T. Pook,39 M. Radziej,39 H. Reithler,39 M. Rieger,39 F. Scheuch,39 A. Schmidt,39 D. Teyssier,39 G. Flügge,40 O. Hlushchenko,40 B. Kargoll,40 T. Kress,40 A. Künsken,40 T. Müller,40 A. Nehrkorn,40 A. Nowack,40 C. Pistone,40 O. Pooth,40 H. Sert,40 A. Stahl,40,p M. Aldaya Martin,41 T. Arndt,41 C. Asawatangtrakuldee,41 I. Babounikau,41 K. Beernaert,41 O. Behnke,41 U. Behrens,41 A. Bermúdez Martínez,41 D. Bertsche,41 A. A. Bin Anuar,41 K. Borras,41,q V. Botta,41 A. Campbell,41 P. Connor,41 C. Contreras-Campana,41 F. Costanza,41 V. Danilov,41 A. De Wit,41 M.M. Defranchis,41 C. Diez Pardos,41 D. Domínguez Damiani,41 G. Eckerlin,41 T. Eichhorn,41 A. Elwood,41 E. Eren,41 E. Gallo,41,r A. Geiser,41 J. M. Grados Luyando,41 A. Grohsjean,41 P. Gunnellini,41 M. Guthoff,41 M. Haranko,41 A. Harb,41 J. Hauk,41 H. Jung,41 M. Kasemann,41 J. Keaveney,41 C. Kleinwort,41 J. Knolle,41 D. Krücker,41 W. Lange,41 A. Lelek,41 T. Lenz,41 K. Lipka,41 W. Lohmann,41,s R. Mankel,41 I.-A. Melzer-Pellmann,41 A. B. Meyer,41 M. Meyer,41 M. Missiroli,41 G. Mittag,41 J. Mnich,41 V. Myronenko,41 S. K. Pflitsch,41 D. Pitzl,41 A. Raspereza,41 M. Savitskyi,41 P. Saxena,41 P. Schütze,41 C. Schwanenberger,41 R. Shevchenko,41 A. Singh,41 N. Stefaniuk,41 H. Tholen,41 A. Vagnerini,41 PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-8 G. P. Van Onsem,41 R. Walsh,41 Y. Wen,41 K. Wichmann,41 C. Wissing,41 O. Zenaiev,41 R. Aggleton,42 S. Bein,42 A. Benecke,42 V. Blobel,42 M. Centis Vignali,42 T. Dreyer,42 E. Garutti,42 D. Gonzalez,42 J. Haller,42 A. Hinzmann,42 M. Hoffmann,42 A. Karavdina,42 G. Kasieczka,42 R. Klanner,42 R. Kogler,42 N. Kovalchuk,42 S. Kurz,42 V. Kutzner,42 J. Lange,42 D. Marconi,42 J. Multhaup,42 M. Niedziela,42 D. Nowatschin,42 A. Perieanu,42 A. Reimers,42 O. Rieger,42 C. Scharf,42 P. Schleper,42 S. Schumann,42 J. Schwandt,42 J. Sonneveld,42 H. Stadie,42 G. Steinbrück,42 F. M. Stober,42 M. Stöver,42 D. Troendle,42 E. Usai,42 A. Vanhoefer,42 B. Vormwald,42 M. Akbiyik,43 C. Barth,43 M. Baselga,43 S. Baur,43 E. Butz,43 R. Caspart,43 T. Chwalek,43 F. Colombo,43 W. De Boer,43 A. Dierlamm,43 N. Faltermann,43 B. Freund,43 M. Giffels,43 M. A. Harrendorf,43 F. Hartmann,43,p S. M. Heindl,43 U. Husemann,43 F. Kassel,43,p I. Katkov,43,n S. Kudella,43 H. Mildner,43 S. Mitra,43 M. U. Mozer,43 Th. Müller,43 M. Plagge,43 G. Quast,43 K. Rabbertz,43 M. Schröder,43 I. Shvetsov,43 G. Sieber,43 H. J. Simonis,43 R. Ulrich,43 S. Wayand,43 M.Weber,43 T. Weiler,43 S. Williamson,43 C. Wöhrmann,43 R. Wolf,43 G. Anagnostou,44 G. Daskalakis,44 T. Geralis,44 A. Kyriakis,44 D. Loukas,44 G. Paspalaki,44 I. Topsis-Giotis,44 G. Karathanasis,45 S. Kesisoglou,45 P. Kontaxakis,45 A. Panagiotou,45 N. Saoulidou,45 E. Tziaferi,45 K. Vellidis,45 K. Kousouris,46 I. Papakrivopoulos,46 G. Tsipolitis,46 I. Evangelou,47 C. Foudas,47 P. Gianneios,47 P. Katsoulis,47 P. Kokkas,47 S. Mallios,47 N. Manthos,47 I. Papadopoulos,47 E. Paradas,47 J. Strologas,47 F. A. Triantis,47 D. Tsitsonis,47 M. Csanad,48 N. Filipovic,48 P. Major,48 M. I. Nagy,48 G. Pasztor,48 O. Surányi,48 G. I. Veres,48 G. Bencze,49 C. Hajdu,49 D. Horvath,49,t Á. Hunyadi,49 F. Sikler,49 T. Á. Vámi,49 V. Veszpremi,49 G. Vesztergombi,49,a,u N. Beni,50 S. Czellar,50 J. Karancsi,50,v A. Makovec,50 J. Molnar,50 Z. Szillasi,50 M. Bartók,51,u P. Raics,51 Z. L. Trocsanyi,51 B. Ujvari,51 S. Choudhury,52 J. R. Komaragiri,52 P. C. Tiwari,52 S. Bahinipati,53,w P. Mal,53 K. Mandal,53 A. Nayak,53,x D. K. Sahoo,53,w S. K. Swain,53 S. Bansal,54 S. B. Beri,54 V. Bhatnagar,54 S. Chauhan,54 R. Chawla,54 N. Dhingra,54 R. Gupta,54 A. Kaur,54 A. Kaur,54 M. Kaur,54 S. Kaur,54 R. Kumar,54 P. Kumari,54 M. Lohan,54 A. Mehta,54 K. Sandeep,54 S. Sharma,54 J. B. Singh,54 G. Walia,54 A. Bhardwaj,55 B. C. Choudhary,55 R. B. Garg,55 M. Gola,55 S. Keshri,55 Ashok Kumar,55 S. Malhotra,55 M. Naimuddin,55 P. Priyanka,55 K. Ranjan,55 Aashaq Shah,55 R. Sharma,55 R. Bhardwaj,56,y M. Bharti,56 R. Bhattacharya,56 S. Bhattacharya,56 U. Bhawandeep,56,y D. Bhowmik,56 S. Dey,56 S. Dutt,56,y S. Dutta,56 S. Ghosh,56 K. Mondal,56 S. Nandan,56 A. Purohit,56 P. K. Rout,56 A. Roy,56 S. Roy Chowdhury,56 S. Sarkar,56 M. Sharan,56 B. Singh,56 S. Thakur,56,y P. K. Behera,57 R. Chudasama,58 D. Dutta,58 V. Jha,58 V. Kumar,58 P. K. Netrakanti,58 L. M. Pant,58 P. Shukla,58 T. Aziz,59 M. A. Bhat,59 S. Dugad,59 G. B. Mohanty,59 N. Sur,59 B. Sutar,59 Ravindra Kumar Verma,59 S. Banerjee,60 S. Bhattacharya,60 S. Chatterjee,60 P. Das,60 M. Guchait,60 Sa. Jain,60 S. Kumar,60 M. Maity,60,z G. Majumder,60 K. Mazumdar,60 N. Sahoo,60 T. Sarkar,60,z S. Chauhan,61 S. Dube,61 V. Hegde,61 A. Kapoor,61 K. Kothekar,61 S. Pandey,61 A. Rane,61 S. Sharma,61 S. Chenarani,62,aa E. Eskandari Tadavani,62 S. M. Etesami,62,aa M. Khakzad,62 M. Mohammadi Najafabadi,62 M. Naseri,62 F. Rezaei Hosseinabadi,62 B. Safarzadeh,62,bb M. Zeinali,62 M. Felcini,63 M. Grunewald,63 M. Abbrescia,64a,64b C. Calabria,64a,64b A. Colaleo,64a D. Creanza,64a,64c L. Cristella,64a,64b N. De Filippis,64a,64c M. De Palma,64a,64b A. Di Florio,64a,64b F. Errico,64a,64b L. Fiore,64a A. Gelmi,64a,64b G. Iaselli,64a,64c S. Lezki,64a,64b G. Maggi,64a,64c M. Maggi,64a G. Miniello,64a,64b S. My,64a,64b S. Nuzzo,64a,64b A. Pompili,64a,64b G. Pugliese,64a,64c R. Radogna,64a A. Ranieri,64a G. Selvaggi,64a,64b A. Sharma,64a L. Silvestris,64a,p R. Venditti,64a P. Verwilligen,64a G. Zito,64a G. Abbiendi,65a C. Battilana,65a,65b D. Bonacorsi,65a,65b L. Borgonovi,65a,65b S. Braibant-Giacomelli,65a,65b L. Brigliadori,65a,65b R. Campanini,65a,65b P. Capiluppi,65a,65b A. Castro,65a,65b F. R. Cavallo,65a S. S. Chhibra,65a,65b G. Codispoti,65a,65b M. Cuffiani,65a,65b G. M. Dallavalle,65a F. Fabbri,65a A. Fanfani,65a,65b P. Giacomelli,65a C. Grandi,65a L. Guiducci,65a,65b S. Marcellini,65a G. Masetti,65a A. Montanari,65a F. L. Navarria,65a,65b A. Perrotta,65a A. M. Rossi,65a,65b T. Rovelli,65a,65b G. P. Siroli,65a,65b N. Tosi,65a S. Albergo,66a,66b A. Di Mattia,66a R. Potenza,66a,66b A. Tricomi,66a,66b C. Tuve,66a,66b G. Barbagli,67a K. Chatterjee,67a,67b V. Ciulli,67a,67b C. Civinini,67a R. D’Alessandro,67a,67b E. Focardi,67a,67b G. Latino,67a P. Lenzi,67a,67b M. Meschini,67a S. Paoletti,67a L. Russo,67a,cc G. Sguazzoni,67a D. Strom,67a L. Viliani,67a L. Benussi,68 S. Bianco,68 F. Fabbri,68 D. Piccolo,68 F. Primavera,68,p F. Ferro,69a F. Ravera,69a,69b E. Robutti,69a S. Tosi,69a,69b A. Benaglia,70a A. Beschi,70a,70b L. Brianza,70a,70b F. Brivio,70a,70b V. Ciriolo,70a,70b,p S. Di Guida,70a,70b,p M. E. Dinardo,70a,70b S. Fiorendi,70a,70b S. Gennai,70a A. Ghezzi,70a,70b P. Govoni,70a,70b M. Malberti,70a,70b S. Malvezzi,70a A. Massironi,70a,70b D. Menasce,70a L. Moroni,70a M. Paganoni,70a,70b D. Pedrini,70a S. Ragazzi,70a,70b T. Tabarelli de Fatis,70a,70b S. Buontempo,71a N. Cavallo,71a,71c A. Di Crescenzo,71a,71b F. Fabozzi,71a,71c F. Fienga,71a,71b G. Galati,71a,71b A. O. M. Iorio,71a,71b W. A. Khan,71a L. Lista,71a S. Meola,71a,71d,p P. Paolucci,71a,p C. Sciacca,71a,71b E. Voevodina,71a,71b P. Azzi,72a N. Bacchetta,72a L. Benato,72a,72b D. Bisello,72a,72b A. Boletti,72a,72b A. Bragagnolo,72a R. Carlin,72a,72b P. Checchia,72a M. Dall’Osso,72a,72b P. De Castro Manzano,72a T. Dorigo,72a U. Dosselli,72a PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-9 F. Gasparini,72a,72b U. Gasparini,72a,72b A. Gozzelino,72a S. Lacaprara,72a P. Lujan,72a M. Margoni,72a,72b A. T. Meneguzzo,72a,72b P. Ronchese,72a,72b R. Rossin,72a,72b F. Simonetto,72a,72b A. Tiko,72a E. Torassa,72a M. Zanetti,72a,72b P. Zotto,72a,72b G. Zumerle,72a,72b A. Braghieri,73a A. Magnani,73a P. Montagna,73a,73b S. P. Ratti,73a,73b V. Re,73a M. Ressegotti,73a,73b C. Riccardi,73a,73b P. Salvini,73a I. Vai,73a,73b P. Vitulo,73a,73b L. Alunni Solestizi,74a,74b M. Biasini,74a,74b G. M. Bilei,74a C. Cecchi,74a,74b D. Ciangottini,74a,74b L. Fanò,74a,74b P. Lariccia,74a,74b E. Manoni,74a G. Mantovani,74a,74b V. Mariani,74a,74b M. Menichelli,74a A. Rossi,74a,74b A. Santocchia,74a,74b D. Spiga,74a K. Androsov,75a P. Azzurri,75a G. Bagliesi,75a L. Bianchini,75a T. Boccali,75a L. Borrello,75a R. Castaldi,75a M. A. Ciocci,75a,75b R. Dell’Orso,75a G. Fedi,75a L. Giannini,75a,75c A. Giassi,75a M. T. Grippo,75a F. Ligabue,75a,75c E. Manca,75a,75c G. Mandorli,75a,75c A. Messineo,75a,75b F. Palla,75a A. Rizzi,75a,75b P. Spagnolo,75a R. Tenchini,75a G. Tonelli,75a,75b A. Venturi,75a P. G. Verdini,75a L. Barone,76a,76b F. Cavallari,76a M. Cipriani,76a,76b N. Daci,76a D. Del Re,76a,76b E. Di Marco,76a,76b M. Diemoz,76a S. Gelli,76a,76b E. Longo,76a,76b B. Marzocchi,76a,76b P. Meridiani,76a G. Organtini,76a,76b F. Pandolfi,76a R. Paramatti,76a,76b F. Preiato,76a,76b S. Rahatlou,76a,76b C. Rovelli,76a F. Santanastasio,76a,76b N. Amapane,77a,77b R. Arcidiacono,77a,77c S. Argiro,77a,77b M. Arneodo,77a,77c N. Bartosik,77a R. Bellan,77a,77b C. Biino,77a N. Cartiglia,77a F. Cenna,77a,77b S. Cometti,77a M. Costa,77a,77b R. Covarelli,77a,77b N. Demaria,77a B. Kiani,77a,77b C. Mariotti,77a S. Maselli,77a E. Migliore,77a,77b V. Monaco,77a,77b E. Monteil,77a,77b M. Monteno,77a M.M. Obertino,77a,77b L. Pacher,77a,77b N. Pastrone,77a M. Pelliccioni,77a G. L. Pinna Angioni,77a,77b A. Romero,77a,77b M. Ruspa,77a,77c R. Sacchi,77a,77b K. Shchelina,77a,77b V. Sola,77a A. Solano,77a,77b D. Soldi,77a A. Staiano,77a S. Belforte,78a V. Candelise,78a,78b M. Casarsa,78a F. Cossutti,78a G. Della Ricca,78a,78b F. Vazzoler,78a,78b A. Zanetti,78a D. H. Kim,79 G. N. Kim,79 M. S. Kim,79 J. Lee,79 S. Lee,79 S. W. Lee,79 C. S. Moon,79 Y. D. Oh,79 S. Sekmen,79 D. C. Son,79 Y. C. Yang,79 H. Kim,80 D. H. Moon,80 G. Oh,80 J. Goh,81 T. J. Kim,81 S. Cho,82 S. Choi,82 Y. Go,82 D. Gyun,82 S. Ha,82 B. Hong,82 Y. Jo,82 K. Lee,82 K. S. Lee,82 S. Lee,82 J. Lim,82 S. K. Park,82 Y. Roh,82 H. S. Kim,83 J. Almond,84 J. Kim,84 J. S. Kim,84 H. Lee,84 K. Lee,84 K. Nam,84 S. B. Oh,84 B. C. Radburn-Smith,84 S. h. Seo,84 U. K. Yang,84 H. D. Yoo,84 G. B. Yu,84 H. Kim,85 J. H. Kim,85 J. S. H. Lee,85 I. C. Park,85 Y. Choi,86 C. Hwang,86 J. Lee,86 I. Yu,86 V. Dudenas,87 A. Juodagalvis,87 J. Vaitkus,87 I. Ahmed,88 Z. A. Ibrahim,88 M. A. B. Md Ali,88,dd F. Mohamad Idris,88,ee W. A. T. Wan Abdullah,88 M. N. Yusli,88 Z. Zolkapli,88 M. C. Duran-Osuna,89 H. Castilla-Valdez,89 E. De La Cruz-Burelo,89 G. Ramirez-Sanchez,89 I. Heredia-De La Cruz,89,ff R. I. Rabadan-Trejo,89 R. Lopez-Fernandez,89 J. Mejia Guisao,89 R Reyes-Almanza,89 A. Sanchez-Hernandez,89 S. Carrillo Moreno,90 C. Oropeza Barrera,90 F. Vazquez Valencia,90 J. Eysermans,91 I. Pedraza,91 H. A. Salazar Ibarguen,91 C. Uribe Estrada,91 A. Morelos Pineda,92 D. Krofcheck,93 S. Bheesette,94 P. H. Butler,94 A. Ahmad,95 M. Ahmad,95 M. I. Asghar,95 Q. Hassan,95 H. R. Hoorani,95 A. Saddique,95 M. A. Shah,95 M. Shoaib,95 M. Waqas,95 H. Bialkowska,96 M. Bluj,96 B. Boimska,96 T. Frueboes,96 M. Górski,96 M. Kazana,96 K. Nawrocki,96 M. Szleper,96 P. Traczyk,96 P. Zalewski,96 K. Bunkowski,97 A. Byszuk,97,gg K. Doroba,97 A. Kalinowski,97 M. Konecki,97 J. Krolikowski,97 M. Misiura,97 M. Olszewski,97 A. Pyskir,97 M. Walczak,97 P. Bargassa,98 C. Beirão Da Cruz E Silva,98 A. Di Francesco,98 P. Faccioli,98 B. Galinhas,98 M. Gallinaro,98 J. Hollar,98 N. Leonardo,98 L. Lloret Iglesias,98 M. V. Nemallapudi,98 J. Seixas,98 G. Strong,98 O. Toldaiev,98 D. Vadruccio,98 J. Varela,98 S. Afanasiev,99 P. Bunin,99 M. Gavrilenko,99 I. Golutvin,99 I. Gorbunov,99 A. Kamenev,99 V. Karjavin,99 A. Lanev,99 A. Malakhov,99 V. Matveev,99,hh,ii P. Moisenz,99 V. Palichik,99 V. Perelygin,99 S. Shmatov,99 S. Shulha,99 N. Skatchkov,99 V. Smirnov,99 N. Voytishin,99 A. Zarubin,99 V. Golovtsov,100 Y. Ivanov,100 V. Kim,100,jj E. Kuznetsova,100,kk P. Levchenko,100 V. Murzin,100 V. Oreshkin,100 I. Smirnov,100 D. Sosnov,100 V. Sulimov,100 L. Uvarov,100 S. Vavilov,100 A. Vorobyev,100 Yu. Andreev,101 A. Dermenev,101 S. Gninenko,101 N. Golubev,101 A. Karneyeu,101 M. Kirsanov,101 N. Krasnikov,101 A. Pashenkov,101 D. Tlisov,101 A. Toropin,101 V. Epshteyn,102 V. Gavrilov,102 N. Lychkovskaya,102 V. Popov,102 I. Pozdnyakov,102 G. Safronov,102 A. Spiridonov,102 A. Stepennov,102 V. Stolin,102 M. Toms,102 E. Vlasov,102 A. Zhokin,102 T. Aushev,103 A. Bylinkin,103,ii R. Chistov,104,ll M. Danilov,104,ll P. Parygin,104 D. Philippov,104 S. Polikarpov,104,ll E. Tarkovskii,104 V. Andreev,105 M. Azarkin,105,ii I. Dremin,105,ii M. Kirakosyan,105,ii S. V. Rusakov,105 A. Terkulov,105 A. Baskakov,106 A. Belyaev,106 E. Boos,106 A. Ershov,106 A. Gribushin,106 A. Kaminskiy,106,mm O. Kodolova,106 V. Korotkikh,106 I. Lokhtin,106 I. Miagkov,106 S. Obraztsov,106 S. Petrushanko,106 V. Savrin,106 A. Snigirev,106 I. Vardanyan,106 V. Blinov,107,nn T. Dimova,107,nn L. Kardapoltsev,107,nn D. Shtol,107,nn Y. Skovpen,107,nn I. Azhgirey,108 I. Bayshev,108 S. Bitioukov,108 D. Elumakhov,108 A. Godizov,108 V. Kachanov,108 A. Kalinin,108 D. Konstantinov,108 P. Mandrik,108 V. Petrov,108 R. Ryutin,108 S. Slabospitskii,108 A. Sobol,108 S. Troshin,108 N. Tyurin,108 A. Uzunian,108 A. Volkov,108 A. Babaev,109 S. Baidali,109 P. Adzic,110,oo P. Cirkovic,110 D. Devetak,110 M. Dordevic,110 J. Milosevic,110 J. Alcaraz Maestre,111 A. Álvarez Fernández,111 I. Bachiller,111 M. Barrio Luna,111 J. A. Brochero Cifuentes,111 PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-10 M. Cerrada,111 N. Colino,111 B. De La Cruz,111 A. Delgado Peris,111 C. Fernandez Bedoya,111 J. P. Fernández Ramos,111 J. Flix,111 M. C. Fouz,111 O. Gonzalez Lopez,111 S. Goy Lopez,111 J. M. Hernandez,111 M. I. Josa,111 D. Moran,111 A. Pérez-Calero Yzquierdo,111 J. Puerta Pelayo,111 I. Redondo,111 L. Romero,111 M. S. Soares,111 A. Triossi,111 C. Albajar,112 J. F. de Trocóniz,112 J. Cuevas,113 C. Erice,113 J. Fernandez Menendez,113 S. Folgueras,113 I. Gonzalez Caballero,113 J. R. González Fernández,113 E. Palencia Cortezon,113 V. Rodríguez Bouza,113 S. Sanchez Cruz,113 P. Vischia,113 J. M. Vizan Garcia,113 I. J. Cabrillo,114 A. Calderon,114 B. Chazin Quero,114 J. Duarte Campderros,114 M. Fernandez,114 P. J. Fernández Manteca,114 A. García Alonso,114 J. Garcia-Ferrero,114 G. Gomez,114 A. Lopez Virto,114 J. Marco,114 C. Martinez Rivero,114 P. Martinez Ruiz del Arbol,114 F. Matorras,114 J. Piedra Gomez,114 C. Prieels,114 T. Rodrigo,114 A. Ruiz-Jimeno,114 L. Scodellaro,114 N. Trevisani,114 I. Vila,114 R. Vilar Cortabitarte,114 D. Abbaneo,115 B. Akgun,115 E. Auffray,115 P. Baillon,115 A. H. Ball,115 D. Barney,115 J. Bendavid,115 M. Bianco,115 A. Bocci,115 C. Botta,115 T. Camporesi,115 M. Cepeda,115 G. Cerminara,115 E. Chapon,115 Y. Chen,115 G. Cucciati,115 D. d’Enterria,115 A. Dabrowski,115 V. Daponte,115 A. David,115 A. De Roeck,115 N. Deelen,115 M. Dobson,115 T. du Pree,115 M. Dünser,115 N. Dupont,115 A. Elliott-Peisert,115 P. Everaerts,115 F. Fallavollita,115,pp D. Fasanella,115 G. Franzoni,115 J. Fulcher,115 W. Funk,115 D. Gigi,115 A. Gilbert,115 K. Gill,115 F. Glege,115 D. Gulhan,115 J. Hegeman,115 V. Innocente,115 A. Jafari,115 P. Janot,115 O. Karacheban,115,s J. Kieseler,115 A. Kornmayer,115 M. Krammer,115,b C. Lange,115 P. Lecoq,115 C. Lourenço,115 L. Malgeri,115 M. Mannelli,115 F. Meijers,115 J. A. Merlin,115 S. Mersi,115 E. Meschi,115 P. Milenovic,115,qq F. Moortgat,115 M. Mulders,115 J. Ngadiuba,115 S. Orfanelli,115 L. Orsini,115 F. Pantaleo,115,p L. Pape,115 E. Perez,115 M. Peruzzi,115 A. Petrilli,115 G. Petrucciani,115 A. Pfeiffer,115 M. Pierini,115 F. M. Pitters,115 D. Rabady,115 A. Racz,115 T. Reis,115 G. Rolandi,115,rr M. Rovere,115 H. Sakulin,115 C. Schäfer,115 C. Schwick,115 M. Seidel,115 M. Selvaggi,115 A. Sharma,115 P. Silva,115 P. Sphicas,115,ss A. Stakia,115 J. Steggemann,115 M. Tosi,115 D. Treille,115 A. Tsirou,115 V. Veckalns,115,tt W. D. Zeuner,115 W. Bertl,116,a L. Caminada,116,uu K. Deiters,116 W. Erdmann,116 R. Horisberger,116 Q. Ingram,116 H. C. Kaestli,116 D. Kotlinski,116 U. Langenegger,116 T. Rohe,116 S. A. Wiederkehr,116 M. Backhaus,117 L. Bäni,117 P. Berger,117 N. Chernyavskaya,117 G. Dissertori,117 M. Dittmar,117 M. Donegà,117 C. Dorfer,117 C. Grab,117 C. Heidegger,117 D. Hits,117 J. Hoss,117 T. Klijnsma,117 W. Lustermann,117 R. A. Manzoni,117 M. Marionneau,117 M. T. Meinhard,117 D. Meister,117 F. Micheli,117 P. Musella,117 F. Nessi-Tedaldi,117 J. Pata,117 F. Pauss,117 G. Perrin,117 L. Perrozzi,117 S. Pigazzini,117 M. Quittnat,117 M. Reichmann,117 D. Ruini,117 D. A. Sanz Becerra,117 M. Schönenberger,117 L. Shchutska,117 V. R. Tavolaro,117 K. Theofilatos,117 M. L. Vesterbacka Olsson,117 R. Wallny,117 D. H. Zhu,117 T. K. Aarrestad,118 C. Amsler,118,vv D. Brzhechko,118 M. F. Canelli,118 A. De Cosa,118 R. Del Burgo,118 S. Donato,118 C. Galloni,118 T. Hreus,118 B. Kilminster,118 I. Neutelings,118 D. Pinna,118 G. Rauco,118 P. Robmann,118 D. Salerno,118 K. Schweiger,118 C. Seitz,118 Y. Takahashi,118 A. Zucchetta,118 Y. H. Chang,119 K. y. Cheng,119 T. H. Doan,119 Sh. Jain,119 R. Khurana,119 C. M. Kuo,119 W. Lin,119 A. Pozdnyakov,119 S. S. Yu,119 P. Chang,120 Y. Chao,120 K. F. Chen,120 P. H. Chen,120 W.-S. Hou,120 Arun Kumar,120 Y. y. Li,120 R.-S. Lu,120 E. Paganis,120 A. Psallidas,120 A. Steen,120 J. f. Tsai,120 B. Asavapibhop,121 N. Srimanobhas,121 N. Suwonjandee,121 A. Bat,122 F. Boran,122 S. Cerci,122,ww S. Damarseckin,122 Z. S. Demiroglu,122 C. Dozen,122 I. Dumanoglu,122 S. Girgis,122 G. Gokbulut,122 Y. Guler,122 E. Gurpinar,122 I. Hos,122,xx E. E. Kangal,122,yy O. Kara,122 A. Kayis Topaksu,122 U. Kiminsu,122 M. Oglakci,122 G. Onengut,122 K. Ozdemir,122,zz S. Ozturk,122,aaa D. Sunar Cerci,122,ww B. Tali,122,ww U. G. Tok,122 S. Turkcapar,122 I. S. Zorbakir,122 C. Zorbilmez,122 B. Isildak,123,bbb G. Karapinar,123,ccc M. Yalvac,123 M. Zeyrek,123 I. O. Atakisi,124 E. Gülmez,124 M. Kaya,124,ddd O. Kaya,124,eee S. Tekten,124 E. A. Yetkin,124,fff M. N. Agaras,125 S. Atay,125 A. Cakir,125 K. Cankocak,125 Y. Komurcu,125 S. Sen,125,ggg B. Grynyov,126 L. Levchuk,127 F. Ball,128 L. Beck,128 J. J. Brooke,128 D. Burns,128 E. Clement,128 D. Cussans,128 O. Davignon,128 H. Flacher,128 J. Goldstein,128 G. P. Heath,128 H. F. Heath,128 L. Kreczko,128 D. M. Newbold,128,hhh S. Paramesvaran,128 B. Penning,128 T. Sakuma,128 D. Smith,128 V. J. Smith,128 J. Taylor,128 A. Titterton,128 A. Belyaev,129,iii C. Brew,129 R. M. Brown,129 D. Cieri,129 D. J. A. Cockerill,129 J. A. Coughlan,129 K. Harder,129 S. Harper,129 J. Linacre,129 E. Olaiya,129 D. Petyt,129 C. H. Shepherd-Themistocleous,129 A. Thea,129 I. R. Tomalin,129 T. Williams,129 W. J. Womersley,129 G. Auzinger,130 R. Bainbridge,130 P. Bloch,130 J. Borg,130 S. Breeze,130 O. Buchmuller,130 A. Bundock,130 S. Casasso,130 D. Colling,130 L. Corpe,130 P. Dauncey,130 G. Davies,130 M. Della Negra,130 R. Di Maria,130 Y. Haddad,130 G. Hall,130 G. Iles,130 T. James,130 M. Komm,130 C. Laner,130 L. Lyons,130 A.-M. Magnan,130 S. Malik,130 A. Martelli,130 J. Nash,130,jjj A. Nikitenko,130,g V. Palladino,130 M. Pesaresi,130 A. Richards,130 A. Rose,130 E. Scott,130 C. Seez,130 A. Shtipliyski,130 T. Strebler,130 S. Summers,130 A. Tapper,130 K. Uchida,130 T. Virdee,130,p N. Wardle,130 D. Winterbottom,130 J. Wright,130 S. C. Zenz,130 J. E. Cole,131 P. R. Hobson,131 A. Khan,131 P. Kyberd,131 C. K. Mackay,131 A. Morton,131 I. D. Reid,131 PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-11 L. Teodorescu,131 S. Zahid,131 K. Call,132 J. Dittmann,132 K. Hatakeyama,132 H. Liu,132 C. Madrid,132 B. Mcmaster,132 N. Pastika,132 C. Smith,132 R. Bartek,133 A. Dominguez,133 A. Buccilli,134 S. I. Cooper,134 C. Henderson,134 P. Rumerio,134 C. West,134 D. Arcaro,135 T. Bose,135 D. Gastler,135 D. Rankin,135 C. Richardson,135 J. Rohlf,135 L. Sulak,135 D. Zou,135 G. Benelli,136 X. Coubez,136 D. Cutts,136 M. Hadley,136 J. Hakala,136 U. Heintz,136 J. M. Hogan,136,kkk K. H.M. Kwok,136 E. Laird,136 G. Landsberg,136 J. Lee,136 Z. Mao,136 M. Narain,136 J. Pazzini,136 S. Piperov,136 S. Sagir,136,lll R. Syarif,136 D. Yu,136 R. Band,137 C. Brainerd,137 R. Breedon,137 D. Burns,137 M. Calderon De La Barca Sanchez,137 M. Chertok,137 J. Conway,137 R. Conway,137 P. T. Cox,137 R. Erbacher,137 C. Flores,137 G. Funk,137 W. Ko,137 O. Kukral,137 R. Lander,137 C. Mclean,137 M. Mulhearn,137 D. Pellett,137 J. Pilot,137 S. Shalhout,137 M. Shi,137 D. Stolp,137 D. Taylor,137 K. Tos,137 M. Tripathi,137 Z. Wang,137 F. Zhang,137 M. Bachtis,138 C. Bravo,138 R. Cousins,138 A. Dasgupta,138 A. Florent,138 J. Hauser,138 M. Ignatenko,138 N. Mccoll,138 S. Regnard,138 D. Saltzberg,138 C. Schnaible,138 V. Valuev,138 E. Bouvier,139 K. Burt,139 R. Clare,139 J. W. Gary,139 S. M. A. Ghiasi Shirazi,139 G. Hanson,139 G. Karapostoli,139 E. Kennedy,139 F. Lacroix,139 O. R. Long,139 M. Olmedo Negrete,139 M. I. Paneva,139 W. Si,139 L. Wang,139 H. Wei,139 S. Wimpenny,139 B. R. Yates,139 J. G. Branson,140 S. Cittolin,140 M. Derdzinski,140 R. Gerosa,140 D. Gilbert,140 B. Hashemi,140 A. Holzner,140 D. Klein,140 G. Kole,140 V. Krutelyov,140 J. Letts,140 M. Masciovecchio,140 D. Olivito,140 S. Padhi,140 M. Pieri,140 M. Sani,140 V. Sharma,140 S. Simon,140 M. Tadel,140 A. Vartak,140 S. Wasserbaech,140,mmm J. Wood,140 F. Würthwein,140 A. Yagil,140 G. Zevi Della Porta,140 N. Amin,141 R. Bhandari,141 J. Bradmiller-Feld,141 C. Campagnari,141 M. Citron,141 A. Dishaw,141 V. Dutta,141 M. Franco Sevilla,141 L. Gouskos,141 R. Heller,141 J. Incandela,141 A. Ovcharova,141 H. Qu,141 J. Richman,141 D. Stuart,141 I. Suarez,141 S. Wang,141 J. Yoo,141 D. Anderson,142 A. Bornheim,142 J. M. Lawhorn,142 H. B. Newman,142 T. Q. Nguyen,142 M. Spiropulu,142 J. R. Vlimant,142 R. Wilkinson,142 S. Xie,142 Z. Zhang,142 R. Y. Zhu,142 M. B. Andrews,143 T. Ferguson,143 T. Mudholkar,143 M. Paulini,143 M. Sun,143 I. Vorobiev,143 M. Weinberg,143 J. P. Cumalat,144 W. T. Ford,144 F. Jensen,144 A. Johnson,144 M. Krohn,144 S. Leontsinis,144 E. MacDonald,144 T. Mulholland,144 K. Stenson,144 K. A. Ulmer,144 S. R. Wagner,144 J. Alexander,145 J. Chaves,145 Y. Cheng,145 J. Chu,145 A. Datta,145 K. Mcdermott,145 N. Mirman,145 J. R. Patterson,145 D. Quach,145 A. Rinkevicius,145 A. Ryd,145 L. Skinnari,145 L. Soffi,145 S. M. Tan,145 Z. Tao,145 J. Thom,145 J. Tucker,145 P. Wittich,145 M. Zientek,145 S. Abdullin,146 M. Albrow,146 M. Alyari,146 G. Apollinari,146 A. Apresyan,146 A. Apyan,146 S. Banerjee,146 L. A. T. Bauerdick,146 A. Beretvas,146 J. Berryhill,146 P. C. Bhat,146 G. Bolla,146,a K. Burkett,146 J. N. Butler,146 A. Canepa,146 G. B. Cerati,146 H.W. K. Cheung,146 F. Chlebana,146 M. Cremonesi,146 J. Duarte,146 V. D. Elvira,146 J. Freeman,146 Z. Gecse,146 E. Gottschalk,146 L. Gray,146 D. Green,146 S. Grünendahl,146 O. Gutsche,146 J. Hanlon,146 R. M. Harris,146 S. Hasegawa,146 J. Hirschauer,146 Z. Hu,146 B. Jayatilaka,146 S. Jindariani,146 M. Johnson,146 U. Joshi,146 B. Klima,146 M. J. Kortelainen,146 B. Kreis,146 S. Lammel,146 D. Lincoln,146 R. Lipton,146 M. Liu,146 T. Liu,146 J. Lykken,146 K. Maeshima,146 J. M. Marraffino,146 D. Mason,146 P. McBride,146 P. Merkel,146 S. Mrenna,146 S. Nahn,146 V. O’Dell,146 K. Pedro,146 O. Prokofyev,146 G. Rakness,146 L. Ristori,146 A. Savoy-Navarro,146,nnn B. Schneider,146 E. Sexton-Kennedy,146 A. Soha,146 W. J. Spalding,146 L. Spiegel,146 S. Stoynev,146 J. Strait,146 N. Strobbe,146 L. Taylor,146 S. Tkaczyk,146 N. V. Tran,146 L. Uplegger,146 E. W. Vaandering,146 C. Vernieri,146 M. Verzocchi,146 R. Vidal,146 M. Wang,146 H. A. Weber,146 A. Whitbeck,146 D. Acosta,147 P. Avery,147 P. Bortignon,147 D. Bourilkov,147 A. Brinkerhoff,147 L. Cadamuro,147 A. Carnes,147 M. Carver,147 D. Curry,147 R. D. Field,147 S. V. Gleyzer,147 B. M. Joshi,147 J. Konigsberg,147 A. Korytov,147 P. Ma,147 K. Matchev,147 H. Mei,147 G. Mitselmakher,147 K. Shi,147 D. Sperka,147 J. Wang,147 S. Wang,147 Y. R. Joshi,148 S. Linn,148 A. Ackert,149 T. Adams,149 A. Askew,149 S. Hagopian,149 V. Hagopian,149 K. F. Johnson,149 T. Kolberg,149 G. Martinez,149 T. Perry,149 H. Prosper,149 A. Saha,149 A. Santra,149 V. Sharma,149 R. Yohay,149 M.M. Baarmand,150 V. Bhopatkar,150 S. Colafranceschi,150 M. Hohlmann,150 D. Noonan,150 M. Rahmani,150 T. Roy,150 F. Yumiceva,150 M. R. Adams,151 L. Apanasevich,151 D. Berry,151 R. R. Betts,151 R. Cavanaugh,151 X. Chen,151 S. Dittmer,151 O. Evdokimov,151 C. E. Gerber,151 D. A. Hangal,151 D. J. Hofman,151 K. Jung,151 J. Kamin,151 C. Mills,151 I. D. Sandoval Gonzalez,151 M. B. Tonjes,151 N. Varelas,151 H. Wang,151 Z. Wu,151 J. Zhang,151 M. Alhusseini,152 B. Bilki,152,ooo W. Clarida,152 K. Dilsiz,152,ppp S. Durgut,152 R. P. Gandrajula,152 M. Haytmyradov,152 V. Khristenko,152 J.-P. Merlo,152 A. Mestvirishvili,152 A. Moeller,152 J. Nachtman,152 H. Ogul,152,qqq Y. Onel,152 F. Ozok,152,rrr A. Penzo,152 C. Snyder,152 E. Tiras,152 J. Wetzel,152 B. Blumenfeld,153 A. Cocoros,153 N. Eminizer,153 D. Fehling,153 L. Feng,153 A. V. Gritsan,153 W. T. Hung,153 P. Maksimovic,153 J. Roskes,153 U. Sarica,153 M. Swartz,153 M. Xiao,153 C. You,153 A. Al-bataineh,154 P. Baringer,154 A. Bean,154 S. Boren,154 J. Bowen,154 J. Castle,154 S. Khalil,154 A. Kropivnitskaya,154 D. Majumder,154 W. Mcbrayer,154 M. Murray,154 C. Rogan,154 S. Sanders,154 E. Schmitz,154 J. D. Tapia Takaki,154 Q. Wang,154 A. Ivanov,155 K. Kaadze,155 D. Kim,155 Y. Maravin,155 D. R. Mendis,155 PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-12 T. Mitchell,155 A. Modak,155 A. Mohammadi,155 L. K. Saini,155 N. Skhirtladze,155 F. Rebassoo,156 D.Wright,156 A. Baden,157 O. Baron,157 A. Belloni,157 S. C. Eno,157 Y. Feng,157 C. Ferraioli,157 N. J. Hadley,157 S. Jabeen,157 G. Y. Jeng,157 R. G. Kellogg,157 J. Kunkle,157 A. C. Mignerey,157 F. Ricci-Tam,157 Y. H. Shin,157 A. Skuja,157 S. C. Tonwar,157 K. Wong,157 D. Abercrombie,158 B. Allen,158 V. Azzolini,158 R. Barbieri,158 A. Baty,158 G. Bauer,158 R. Bi,158 S. Brandt,158 W. Busza,158 I. A. Cali,158 M. D’Alfonso,158 Z. Demiragli,158 G. Gomez Ceballos,158 M. Goncharov,158 P. Harris,158 D. Hsu,158 M. Hu,158 Y. Iiyama,158 G. M. Innocenti,158 M. Klute,158 D. Kovalskyi,158 Y.-J. Lee,158 A. Levin,158 P. D. Luckey,158 B. Maier,158 A. C. Marini,158 C. Mcginn,158 C. Mironov,158 S. Narayanan,158 X. Niu,158 C. Paus,158 C. Roland,158 G. Roland,158 G. S. F. Stephans,158 K. Sumorok,158 K. Tatar,158 D. Velicanu,158 J. Wang,158 T. W. Wang,158 B. Wyslouch,158 S. Zhaozhong,158 A. C. Benvenuti,159 R. M. Chatterjee,159 A. Evans,159 P. Hansen,159 S. Kalafut,159 Y. Kubota,159 Z. Lesko,159 J. Mans,159 S. Nourbakhsh,159 N. Ruckstuhl,159 R. Rusack,159 J. Turkewitz,159 M. A. Wadud,159 J. G. Acosta,160 S. Oliveros,160 E. Avdeeva,161 K. Bloom,161 D. R. Claes,161 C. Fangmeier,161 F. Golf,161 R. Gonzalez Suarez,161 R. Kamalieddin,161 I. Kravchenko,161 J. Monroy,161 J. E. Siado,161 G. R. Snow,161 B. Stieger,161 A. Godshalk,162 C. Harrington,162 I. Iashvili,162 A. Kharchilava,162 D. Nguyen,162 A. Parker,162 S. Rappoccio,162 B. Roozbahani,162 E. Barberis,163 C. Freer,163 A. Hortiangtham,163 D. M. Morse,163 T. Orimoto,163 R. Teixeira De Lima,163 T. Wamorkar,163 B. Wang,163 A. Wisecarver,163 D. Wood,163 S. Bhattacharya,164 O. Charaf,164 K. A. Hahn,164 N. Mucia,164 N. Odell,164 M. H. Schmitt,164 K. Sung,164 M. Trovato,164 M. Velasco,164 R. Bucci,165 N. Dev,165 M. Hildreth,165 K. Hurtado Anampa,165 C. Jessop,165 D. J. Karmgard,165 N. Kellams,165 K. Lannon,165 W. Li,165 N. Loukas,165 N. Marinelli,165 F. Meng,165 C. Mueller,165 Y. Musienko,165,hh M. Planer,165 A. Reinsvold,165 R. Ruchti,165 P. Siddireddy,165 G. Smith,165 S. Taroni,165 M. Wayne,165 A. Wightman,165 M. Wolf,165 A. Woodard,165 J. Alimena,166 L. Antonelli,166 B. Bylsma,166 L. S. Durkin,166 S. Flowers,166 B. Francis,166 A. Hart,166 C. Hill,166 W. Ji,166 T. Y. Ling,166 W. Luo,166 B. L. Winer,166 H.W. Wulsin,166 S. Cooperstein,167 P. Elmer,167 J. Hardenbrook,167 P. Hebda,167 S. Higginbotham,167 A. Kalogeropoulos,167 D. Lange,167 M. T. Lucchini,167 J. Luo,167 D. Marlow,167 K. Mei,167 I. Ojalvo,167 J. Olsen,167 C. Palmer,167 P. Piroué,167 J. Salfeld-Nebgen,167 D. Stickland,167 C. Tully,167 S. Malik,168 S. Norberg,168 A. Barker,169 V. E. Barnes,169 L. Gutay,169 M. Jones,169 A.W. Jung,169 A. Khatiwada,169 B. Mahakud,169 D. H. Miller,169 N. Neumeister,169 C. C. Peng,169 H. Qiu,169 J. F. Schulte,169 J. Sun,169 F. Wang,169 R. Xiao,169 W. Xie,169 T. Cheng,170 J. Dolen,170 N. Parashar,170 Z. Chen,171 K. M. Ecklund,171 S. Freed,171 F. J. M. Geurts,171 M. Guilbaud,171 M. Kilpatrick,171 W. Li,171 B. Michlin,171 B. P. Padley,171 J. Roberts,171 J. Rorie,171 W. Shi,171 B. Tran,171 Z. Tu,171 J. Zabel,171 A. Zhang,171 A. Bodek,172 P. de Barbaro,172 R. Demina,172 Y. t. Duh,172 J. L. Dulemba,172 C. Fallon,172 T. Ferbel,172 M. Galanti,172 A. Garcia-Bellido,172 J. Han,172 O. Hindrichs,172 A. Khukhunaishvili,172 K. H. Lo,172 P. Tan,172 R. Taus,172 M. Verzetti,172 A. Agapitos,173 J. P. Chou,173 Y. Gershtein,173 T. A. Gómez Espinosa,173 E. Halkiadakis,173 M. Heindl,173 E. Hughes,173 S. Kaplan,173 R. Kunnawalkam Elayavalli,173 S. Kyriacou,173 A. Lath,173 R. Montalvo,173 K. Nash,173 M. Osherson,173 H. Saka,173 S. Salur,173 S. Schnetzer,173 D. Sheffield,173 S. Somalwar,173 R. Stone,173 S. Thomas,173 P. Thomassen,173 M. Walker,173 A. G. Delannoy,174 J. Heideman,174 G. Riley,174 K. Rose,174 S. Spanier,174 K. Thapa,174 O. Bouhali,175,sss A. Castaneda Hernandez,175,sss A. Celik,175 M. Dalchenko,175 M. De Mattia,175 A. Delgado,175 S. Dildick,175 R. Eusebi,175 J. Gilmore,175 T. Huang,175 T. Kamon,175,ttt S. Luo,175 R. Mueller,175 Y. Pakhotin,175 R. Patel,175 A. Perloff,175 L. Perniè,175 D. Rathjens,175 A. Safonov,175 A. Tatarinov,175 N. Akchurin,176 J. Damgov,176 F. De Guio,176 P. R. Dudero,176 S. Kunori,176 K. Lamichhane,176 S.W. Lee,176 T. Mengke,176 S. Muthumuni,176 T. Peltola,176 S. Undleeb,176 I. Volobouev,176 Z. Wang,176 S. Greene,177 A. Gurrola,177 R. Janjam,177 W. Johns,177 C. Maguire,177 A. Melo,177 H. Ni,177 K. Padeken,177 J. D. Ruiz Alvarez,177 P. Sheldon,177 S. Tuo,177 J. Velkovska,177 M. Verweij,177 Q. Xu,177 M.W. Arenton,178 P. Barria,178 B. Cox,178 R. Hirosky,178 M. Joyce,178 A. Ledovskoy,178 H. Li,178 C. Neu,178 T. Sinthuprasith,178 Y. Wang,178 E. Wolfe,178 F. Xia,178 R. Harr,179 P. E. Karchin,179 N. Poudyal,179 J. Sturdy,179 P. Thapa,179 S. Zaleski,179 M. Brodski,180 J. Buchanan,180 C. Caillol,180 D. Carlsmith,180 S. Dasu,180 L. Dodd,180 S. Duric,180 B. Gomber,180 M. Grothe,180 M. Herndon,180 A. Hervé,180 U. Hussain,180 P. Klabbers,180 A. Lanaro,180 A. Levine,180 K. Long,180 R. Loveless,180 T. Ruggles,180 A. Savin,180 N. Smith,180 W. H. Smith,180 and N. Woods180 (CMS Collaboration) 1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik, Wien, Austria PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-13 3Institute for Nuclear Problems, Minsk, Belarus 4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 11aUniversidade Estadual Paulista, São Paulo, Brazil 11bUniversidade Federal do ABC, São Paulo, Brazil 12Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria 13University of Sofia, Sofia, Bulgaria 14Beihang University, Beijing, China 15Institute of High Energy Physics, Beijing, China 16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Tsinghua University, Beijing, China 18Universidad de Los Andes, Bogota, Colombia 19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 20University of Split, Faculty of Science, Split, Croatia 21Institute Rudjer Boskovic, Zagreb, Croatia 22University of Cyprus, Nicosia, Cyprus 23Charles University, Prague, Czech Republic 24Escuela Politecnica Nacional, Quito, Ecuador 25Universidad San Francisco de Quito, Quito, Ecuador 26Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt 27National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 28Department of Physics, University of Helsinki, Helsinki, Finland 29Helsinki Institute of Physics, Helsinki, Finland 30Lappeenranta University of Technology, Lappeenranta, Finland 31IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France 32Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France 33Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France 34Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 35Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 36Georgian Technical University, Tbilisi, Georgia 37Tbilisi State University, Tbilisi, Georgia 38RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 39RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 40RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 41Deutsches Elektronen-Synchrotron, Hamburg, Germany 42University of Hamburg, Hamburg, Germany 43Institut für Experimentelle Teilchenphysik, Karlsruhe, Germany 44Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 45National and Kapodistrian University of Athens, Athens, Greece 46National Technical University of Athens, Athens, Greece 47University of Ioánnina, Ioánnina, Greece 48MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary 49Wigner Research Centre for Physics, Budapest, Hungary 50Institute of Nuclear Research ATOMKI, Debrecen, Hungary 51Institute of Physics, University of Debrecen, Debrecen, Hungary 52Indian Institute of Science (IISc), Bangalore, India 53National Institute of Science Education and Research, Bhubaneswar, India 54Panjab University, Chandigarh, India 55University of Delhi, Delhi, India 56Saha Institute of Nuclear Physics, HBNI, Kolkata,India 57Indian Institute of Technology Madras, Madras, India 58Bhabha Atomic Research Centre, Mumbai, India 59Tata Institute of Fundamental Research-A, Mumbai, India 60Tata Institute of Fundamental Research-B, Mumbai, India PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-14 61Indian Institute of Science Education and Research (IISER), Pune, India 62Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 63University College Dublin, Dublin, Ireland 64aINFN Sezione di Bari, Bari, Italy 64bUniversità di Bari, Bari, Italy 64cPolitecnico di Bari, Bari, Italy 65aINFN Sezione di Bologna, Bologna, Italy 65bUniversità di Bologna, Bologna, Italy 66aINFN Sezione di Catania, Catania, Italy 66bUniversità di Catania, Catania, Italy 67aINFN Sezione di Firenze, Firenze, Italy 67bUniversità di Firenze, Firenze, Italy 68INFN Laboratori Nazionali di Frascati, Frascati, Italy 69aINFN Sezione di Genova, Genova, Italy 69bUniversità di Genova, Genova, Italy 70aINFN Sezione di Milano-Bicocca, Milano, Italy 70bUniversità di Milano-Bicocca, Milano, Italy 71aINFN Sezione di Napoli, Napoli, Italy 71bUniversità di Napoli ’Federico II’, Napoli, Italy 71cUniversità della Basilicata, Potenza, Italy 71dUniversità G. Marconi, Roma, Italy 72aINFN Sezione di Padova, Padova, Italy 72bUniversità di Padova, Padova, Italy 72cUniversità di Trento, Trento, Italy 73aINFN Sezione di Pavia, Pavia, Italy 73bUniversità di Pavia 74aINFN Sezione di Perugia, Perugia, Italy 74bUniversità di Perugia, Perugia, Italy 75aINFN Sezione di Pisa, Pisa, Italy 75bUniversità di Pisa, Pisa, Italy 75cScuola Normale Superiore di Pisa, Pisa, Italy 76aINFN Sezione di Roma, Rome, Italy 76bSapienza Università di Roma, Rome, Italy 77aINFN Sezione di Torino, Torino, Italy 77bUniversità di Torino, Torino, Italy 77cUniversità del Piemonte Orientale, Novara, Italy 78aINFN Sezione di Trieste, Trieste, Italy 78bUniversità di Trieste, Trieste, Italy 79Kyungpook National University, Daegu, Korea 80Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 81Hanyang University, Seoul, Korea 82Korea University, Seoul, Korea 83Sejong University, Seoul, Korea 84Seoul National University, Seoul, Korea 85University of Seoul, Seoul, Korea 86Sungkyunkwan University, Suwon, Korea 87Vilnius University, Vilnius, Lithuania 88National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 89Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 90Universidad Iberoamericana, Mexico City, Mexico 91Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 92Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 93University of Auckland, Auckland, New Zealand 94University of Canterbury, Christchurch, New Zealand 95National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 96National Centre for Nuclear Research, Swierk, Poland 97Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 98Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 99Joint Institute for Nuclear Research, Dubna, Russia 100Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-15 101Institute for Nuclear Research, Moscow, Russia 102Institute for Theoretical and Experimental Physics, Moscow, Russia 103Moscow Institute of Physics and Technology, Moscow, Russia 104National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia 105P.N. Lebedev Physical Institute, Moscow, Russia 106Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 107Novosibirsk State University (NSU), Novosibirsk, Russia 108State Research Center of Russian Federation, Institute for High Energy Physics of NRC ’Kurchatov Institute’, Protvino, Russia 109National Research Tomsk Polytechnic University, Tomsk, Russia 110University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 111Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 112Universidad Autónoma de Madrid, Madrid, Spain 113Universidad de Oviedo, Oviedo, Spain 114Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 115CERN, European Organization for Nuclear Research, Geneva, Switzerland 116Paul Scherrer Institut, Villigen, Switzerland 117ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland 118Universität Zürich, Zurich, Switzerland 119National Central University, Chung-Li, Taiwan 120National Taiwan University (NTU), Taipei, Taiwan 121Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 122Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey 123Middle East Technical University, Physics Department, Ankara, Turkey 124Bogazici University, Istanbul, Turkey 125Istanbul Technical University, Istanbul, Turkey 126Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine 127National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 128University of Bristol, Bristol, United Kingdom 129Rutherford Appleton Laboratory, Didcot, United Kingdom 130Imperial College, London, United Kingdom 131Brunel University, Uxbridge, United Kingdom 132Baylor University, Waco, Texas 76798, USA 133Catholic University of America, Washington, DC 20064, USA 134The University of Alabama, Tuscaloosa, Alabama 35487, USA 135Boston University, Boston, Massachusetts 02215, USA 136Brown University, Providence, Rhode Island 02912, USA 137University of California, Davis, California 95616, USA 138University of California, Los Angeles, California 90095, USA 139University of California, Riverside, Riverside, California 92521, USA 140University of California, San Diego, La Jolla, California 92093, USA 141University of California, Santa Barbara—Department of Physics, Santa Barbara, California 93106, USA 142California Institute of Technology, Pasadena, California 91125, USA 143Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 144University of Colorado Boulder, Boulder, Colorado 80309, USA 145Cornell University, Ithaca, New York 14853, USA 146Fermi National Accelerator Laboratory, Batavia, New York 60510, USA 147University of Florida, Gainesville, Florida 32611, USA 148Florida International University, Miami, Florida 33199, USA 149Florida State University, Tallahassee, Florida 32306, USA 150Florida Institute of Technology, Melbourne, Florida 32901, USA 151University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA 152The University of Iowa, Iowa City, Iowa 52242, USA 153Johns Hopkins University, Baltimore, Maryland 21218, USA 154The University of Kansas, Lawrence, Kansas 66045, USA 155Kansas State University, Manhattan, New York 66506, USA 156Lawrence Livermore National Laboratory, Livermore, California 94551, USA 157University of Maryland, College Park, Maryland 20742, USA 158Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 159University of Minnesota, Minneapolis, Minnesota 55455, USA 160University of Mississippi, Oxford, Mississippi 38677, USA PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-16 161University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 162State University of New York at Buffalo, Buffalo, New York 14260, USA 163Northeastern University, Boston, Massachusetts 02115, USA 164Northwestern University, Evanston, Illinois 60208, USA 165University of Notre Dame, Notre Dame, Indiana 46556, USA 166The Ohio State University, Columbus, Ohio 43210, USA 167Princeton University, Princeton, New Jersey 08542, USA 168University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA 169Purdue University, West Lafayette, Indiana 47907, USA 170Purdue University Northwest, Hammond, Indiana 46323, USA 171Rice University, Houston, Texas 77251, USA 172University of Rochester, Rochester, New York 14627, USA 173Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA 174University of Tennessee, Knoxville, Tennessee 37996, USA 175Texas A&M University, College Station, Texas 77843, USA 176Texas Tech University, Lubbock, Texas 79409, USA 177Vanderbilt University, Nashville, Tennessee 37235, USA 178University of Virginia, Charlottesville, Virginia 22904, USA 179Wayne State University, Detroit, Michigan 48202, USA 180University of Wisconsin—Madison, Madison, Wisconsin 53706, USA aDeceased. bAlso at Vienna University of Technology, Vienna, Austria. cAlso at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France. dAlso at Universidade Estadual de Campinas, Campinas, Brazil. eAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil. fAlso at Université Libre de Bruxelles, Bruxelles, Belgium. gAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. hAlso at Joint Institute for Nuclear Research, Dubna, Russia. iAlso at British University in Egypt, Cairo, Egypt. jAlso at Fayoum University, El-Fayoum, Egypt. kAlso at Ain Shams University, Cairo, Egypt. lAlso at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia. mAlso at Université de Haute Alsace, Mulhouse, France. nAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. oAlso at Tbilisi State University, Tbilisi, Georgia. pAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. qAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany. rAlso at University of Hamburg, Hamburg, Germany. sAlso at Brandenburg University of Technology, Cottbus, Germany tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary. vAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary. wAlso at IIT Bhubaneswar, Bhubaneswar, India. xAlso at Institute of Physics, Bhubaneswar, India. yAlso at Shoolini University, Solan, India. zAlso at University of Visva-Bharati, Santiniketan, India. aaAlso at Isfahan University of Technology, Isfahan, Iran. bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Università degli Studi di Siena, Siena, Italy. ddAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia. eeAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia. ffAlso at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico. ggAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland. hhAlso at Institute for Nuclear Research, Moscow, Russia. iiAlso at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia. jjAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia. kkAlso at University of Florida, Gainesville, FL, USA. llAlso at P.N. Lebedev Physical Institute, Moscow, Russia. mmAlso at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-17 nnAlso at Budker Institute of Nuclear Physics, Novosibirsk, Russia. ooAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. ppAlso at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy. qqAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. rrAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. ssAlso at National and Kapodistrian University of Athens, Athens, Greece. ttAlso at Riga Technical University. uuAlso at Universität Zürich, Zurich, Switzerland. vvAlso at Stefan Meyer Institute for Subatomic Physics. wwAlso at Adiyaman University, Adiyaman, Turkey. xxAlso at Istanbul Aydin University, Istanbul, Turkey. yyAlso at Mersin University, Mersin, Turkey. zzAlso at Piri Reis University, Istanbul, Turkey. aaaAlso at Gaziosmanpasa University, Tokat, Turkey. bbbAlso at Ozyegin University, Istanbul, Turkey. cccAlso at Izmir Institute of Technology, Izmir, Turkey. dddAlso at Marmara University, Istanbul, Turkey. eeeAlso at Kafkas University, Kars, Turkey. fffAlso at Istanbul Bilgi University, Istanbul, Turkey. gggAlso at Hacettepe University, Ankara, Turkey. hhhAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. iiiAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. jjjAlso at Monash University, Faculty of Science, Clayton, Australia. kkkAlso at Bethel University. lllAlso at Karamanoğlu Mehmetbey University, Karaman, Turkey. mmmAlso at Utah Valley University, Orem, USA. nnnAlso at Purdue University, West Lafayette, IN, USA. oooAlso at Beykent University. pppAlso at Bingol University, Bingol, Turkey. qqqAlso at Sinop University, Sinop, Turkey. rrrAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. sssAlso at Texas A&M University at Qatar, Doha, Qatar. tttAlso at Kyungpook National University. PHYSICAL REVIEW LETTERS 121, 082301 (2018) 082301-18