S r R F a b a A R R A A K C C r 1 p s p t g a t R P [ r p v a f s h 0 International Journal of Biological Macromolecules 92 (2016) 1288–1297 Contents lists available at ScienceDirect International Journal of Biological Macromolecules j ourna l ho me pa g e: www.elsev ier .com/ locate / i jb iomac tructural and thermodynamic studies of the tobacco calmodulin-like gs-CaM protein odrigo K. Makiyamaa,1, Carlos A.H. Fernandesb,1, Thiago R. Dreyerb, Bruno S. Modaa, abio F. Matiolib, Marcos R.M. Fontesb, Ivan G. Maiaa,∗ Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Genética, Botucatu, SP, Brazil Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Física e Biofísica, Botucatu, SP, Brazil r t i c l e i n f o rticle history: eceived 25 January 2016 eceived in revised form 8 July 2016 ccepted 7 August 2016 vailable online 8 August 2016 eywords: a b s t r a c t The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca2+-binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca2+ a2+-binding protein almodulin-like protein gs-CaM binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the kd values obtained for Ca2+ binding to the three functional sites are not within the affinity range of a typical Ca2+ sensor. © 2016 Elsevier B.V. All rights reserved. . Introduction RNA silencing is a potent host defense mechanism against lant viruses that is counteracted by viral proteins possessing RNA ilencing suppression activities [1]. Host proteins acting as sup- ressors of RNA silencing have also been identified and a Nicotiana abacum calmodulin-like protein called rgs-CaM (for regulator of ene silencing camodulin-like) was the first whose suppression ctivity was demonstrated [2]. The tobacco rgs-CaM was shown o interact with the helper-component proteinase (HC-Pro), a viral NA silencing suppressor, and was postulated to be required for HC- ro-mediated silencing suppression. Consistent with this, Li et al. 3] demonstrated that an rgs-CaM homolog of N. benthamiana is equired for the RNA silencing suppression activity of �C1, a sup- ressor encoded by the satellite DNA of Tomato yellow leaf curl China irus. Contradictory findings, however, have shown that the inter- ction of rgs-CaM with different viral suppressors has an antiviral unction [4]. In this case, rgs-CaM is supposed to counteract viral uppressors by binding to their double-stranded RNA (dsRNA)- ∗ Corresponding author. E-mail addresses: igmaia@ibb.unesp.br, igmaia1@gmail.com (I.G. Maia). 1 These authors contributed equally to this work ttp://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 141-8130/© 2016 Elsevier B.V. All rights reserved. binding domains and targeting them for autophagic degradation. Moreover, the proposed mechanism requires self-sacrifice of the rgs-CaM protein. Evolving knowledge indicates that rgs-CaM is an early-inducible gene implicated in the initial steps of viral infection [5]. Despite sharing similarity with calmodulins (CaM) and Calmodulin-like proteins (CML), little is known about the struc- tural features of rgs-CaM. Such structural studies are important to shed light on the function of rgs-CaM and also to elucidate its inter- action with target viral suppressors. As mentioned above, rgs-CaM was shown to interact with viral suppressors via their positively charged dsRNA-binding domains [4]. This interaction was reported to be mediated by electrostatic interactions [4], a distinctive fea- ture compared to classical CaMs that usually bind to their target proteins through hydrophobic interactions [6,7]. In this regard, the crucial roles of electrostatic interactions in the cooperativity of cal- cium binding and in protein aggregation have been highlighted by several studies [8–11]. This peculiar characteristic of rgs-CaM in comparison to other CaMs suggests that rgs-CaM may exhibit unique structural propri- eties. In addition, as highlighted by Tadamura et al. [5], rgs-CaM is the only known CML protein able to bind to exogenous targets. In contrast, classical CaMs interact with endogenous targets using canonical helix-loop-helix EF-hand motifs for Ca2+ binding [12]. dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://www.sciencedirect.com/science/journal/01418130 http://www.elsevier.com/locate/ijbiomac http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijbiomac.2016.08.016&domain=pdf mailto:igmaia@ibb.unesp.br mailto:igmaia1@gmail.com dx.doi.org/10.1016/j.ijbiomac.2016.08.016 f Biolo T t N [ b u f 3 C t S c w a m 2 2 r u g f 5 T N r E 2 r L 5 s a i l 2 ( i c b 1 A p p a r a w m u e l P u b w a R.K. Makiyama et al. / International Journal o hese EF-hands frequently occur in pairs and most CaMs possess wo, four or six EF-hands [12]. The structure of CaMs is generally well conserved and presents - and C-terminal globular lobes linked by a central alpha helix 13]. Each lobe possesses two EF-hand motifs containing a Ca2+- inding loop composed of a cluster of 12 amino acid residues that sually starts with an Asp and ends with a Glu. Residues essential or Ca2+ binding coordination within this cluster are in positions 1, , 5, 7, 9 and 12, respectively [12,14]. In this study, we examined the Ca2+ binding properties of rgs- aM in order to learn more about its functionality. For this, the obacco rgs-CaM was expressed in Escherichia coli and purified. ubsequently, the binding affinities and possible conformational hanges associated with Ca2+ binding to recombinant rgs-CaM ere investigated using different biophysical and computational pproaches (circular dichroism, isothermal titration calorimetry, olecular modeling and molecular dynamics simulations). . Materials and methods .1. Construction of the rgs-CaM expression vector The cDNA encompassing the open reading frame of tobacco gs-CaM (accession number AF329729) was amplified by RT-PCR sing total RNA extracted from leaves of N. tabacum SR1 and ene-specific primers supplemented with the restriction sites or NdeI and XhoI (5′-GGCCATATGTGCATGGAATCAGTTTC-3′ and ′-CTACTCGAGACTTGTCATCATAGCTTTGAAC-3′; sites underlined). he amplified fragment was gel-purified and cloned into the deI- and XhoI-digested expression vector pET-28a (Novagen). The esulting construct was sequenced and subsequently inserted into . coli BL21(DE3)-CodonPlus-pRIL cells (Stratagene) for expression. .2. Expression and purification of recombinant his-tagged gs-CaM Transformed E. coli cells were grown overnight at 37 ◦C in uria–Bertani medium supplemented with 100 mg/l kanamicin and 0 mg/l chloramphenicol. The culture was diluted (1:100) in the ame medium and grown at 37 ◦C to an OD600 of 0.7, followed by ddition of 1 mM isopropyl-�-d-thiogalactopyranoside (IPTG) and nduction for 4 h at 28◦C. The harvested cells were resuspended in ysis buffer (50 mM Tris–HCl, pH 7.5, 50 mM NaCl, 0.25% Tween 0, 1 mM EDTA and 1 mM PMSF) supplemented with lysozyme 1 mg/ml), RNAse A (1 �g/ml) and DNAse I (10 u/ml). After break- ng the genomic DNA by sonication (6 × 30 s), the suspension was entrifuged (20.000 × g for 30 min at 4◦C). The pellets of inclusion odies were washed twice in buffer A (50 mM Tris–HCl, pH 8.0, and 00 mM NaCl), and solubilized (30 min at 4◦C) by addition of buffer containing 1% sodium dodecyl sulfate (SDS). The recombinant rotein was then refolded in the presence of 2 M 2-methyl-2,4- entanediol (MPD) [15,16]. For this, the samples were incubated t 4◦C for 24 h under gentle agitation. Subsequent purification of ecombinant His-tagged rgs-CaM (rgs-CaM:His) was performed by ffinity chromatography using Ni-NTA columns pre-equilibrated ith buffer A (plus 1% SDS and 2 M MPD) as recommended by the anufacturer (Qiagen), followed by size exclusion chromatography sing Superdex 75 10/300 GL columns (GE Healthcare) that were quilibrated with buffer A containing 2 M MPD. All columns were inked to a high-performance liquid chromatography system (AKTA urifier 900; GE Healthcare) and a flow rate of 0.5 ml/min was sed. Fractions containing recombinant rgs-CaM:His were checked y standard SDS-PAGE (0.1% SDS, 12% polyacrylamide), stained ith Coomassie blue, and also by western blot using a monoclonal nti-polyHistidine antibody (Sigma) and the ECL Western Blot- gical Macromolecules 92 (2016) 1288–1297 1289 ting Analysis System as recommended by the manufacturer (GE Healthcare). Protein concentration was determined by absorbance at 280 nm in a NanoDrop 2000C spectrophotometer (Thermo Scientific), using theoretical molecular weights and extinction coef- ficients provided by the in silico ProtParam tool available on the ExPASy web server (http://web.expasy.org/protparam) [17]. 2.3. Semi-denaturing mobility-shift assays The semi-denaturing mobility-shift assay was performed essen- tially as described [18] using 3 �g of recombinant rgs-CaM in buffer A (containing 2 M MPD) supplemented with either 5 mM CaCl2 or 5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N’-tetraacetic acid (EGTA). The samples were incubated at 4◦C for 30 min and sus- pended without boiling in sample buffer (62.5 mM Tris–HCl, pH 6.8, 1% SDS, 10% glycerol) devoid of �-mercaptoethanol. Each protein sample was subsequently electrophoresed on a precast 16% poly- acrylamide gel containing no SDS (ECL Precast Gel; GE Healthcare). The gel was stained with Coomassie blue. 2.4. Circular dichroism (CD) spectroscopy CD measurements were obtained over the spectral range of 200–260 nm using a JASCO J-815 spectropolarimeter (JASCO Spec- troscopic Co. Ltd., Japan) equipped with a Peltier thermo-controller. The assays were carried out at 293 K using an optical path length of 0.5 nm, a scanning speed of 100 nm/min, response time of 1 s, band width of 2 nm and data pitch of 0.5 nm. Twenty spectra were acquired, averaged and corrected for the buffer solution (baseline) and then normalized to residual molar ellipticity [�]. Previously to CD measurements, rgs-CaM was treated with excess of EGTA to remove possible residual Ca2+ bound to its structure, and the solu- tion was subsequently dialyzed against buffer A (containing 2 M MPD). The effect of Ca2+ in CD spectra was also evaluated by the addition of 5 mM CaCl2 to the protein sample, in the absence or presence of 5 mM EGTA. Buffer A plus MPD, CaCl2 and EGTA gave negligible signals at the concentrations tested and were included in baseline measurements. 2.5. Isothermal titration calorimetry (ITC) The thermodynamic parameters of the interaction between rgs- CaM and calcium ions were determined at 25◦C in buffer A, using an isothermal titration calorimeter (MicroCal ITC200, GE Health- care). Prior to the ITC assays, rgs-CaM was treated with excess EGTA to remove possible residual Ca2+ bound to its structure, and the solution was subsequently dialyzed against the buffer used in the titration to remove EGTA from the final solution. For a typical Ca2+ titration, 0.2 mM of recombinant rgs-CaM was placed in the reac- tion cell (200 �l) and a 10 mM Ca2+ solution was loaded into the ITC syringe. Each 2.5 min, 2 �l of Ca2+ solution was injected into the reaction cell. Ca2+ heat of dilution/mixing were determined in separate control assays and were subtracted from the correspond- ing titrations. For the stoichiometry (N), dissociation constants (Kd), enthalpy (�H), and binding-type input parameters were adjusted to obtain the best fitting model. The values of Kd and �H were used to calculate the change in free energy (�G) and entropy (�S) of Ca2+ binding. 2.6. Modeling and molecular dynamics (MD) simulations According to the data obtained from the based-threading method program HHPred (http://toolkit.tuebingen.mpg.de/ hhpred) [19] (score: 169.12; e-value: 2.1e-32; identity: 33%), the crystal structure at 1.0 Å resolution of a CaM from Paramecium tetraurelia [Protein Data Bank (PDB) ID: 1EXR] was selected as http://web.expasy.org/protparam http://web.expasy.org/protparam http://web.expasy.org/protparam http://web.expasy.org/protparam http://web.expasy.org/protparam http://toolkit.tuebingen.mpg.de/hhpred http://toolkit.tuebingen.mpg.de/hhpred http://toolkit.tuebingen.mpg.de/hhpred http://toolkit.tuebingen.mpg.de/hhpred http://toolkit.tuebingen.mpg.de/hhpred http://toolkit.tuebingen.mpg.de/hhpred 1 f Biolo t B r K ( w s s 2 e 4 a t b ( u C m t t M p i ( p u c e p A a t d s i f c o w s fl w v t T e c v 7 [ a 3 3 p w A n S o 290 R.K. Makiyama et al. / International Journal o he best template for initial in silico rgs-CaM structural modeling. esides, the crystallographic structures of CaMs from Saccha- omyces cerevisae, Physarum polycephalum, Entamoeba histolytica, luyveromyces lactis, Chalamydonas reinhardtii and Homo sapiens PDB IDs, respectively, 3FWD, 2B10, 4OCI, 4DS7, 3QRX and 2OBH) ere also identified as putative templates. However, their crystal tructures presented lower resolution values and shared limited equence identity with the rgs-CaM primary sequence (lower than 8%). The initial in silico model of the rgs-CaM structure was gen- rated using the program MODELLER v.9.10 [20]. Since the first 7 N-terminal residues of rgs-CaM possess no homology with ny CaM structure deposited in PDB, they were not included in he model. Calcium ions were modeled at the four putative Ca2+- inding loops of the rgs-CaM structure and the generated model called rgs-CaM + Ca-A-B-C-D) was submitted to MD simulations sing the program package GROMACS (Groningen Machine for hemical Simulation) v.4.5.3 [21] in the presence of explicit water olecules. Protonation states of charged groups were set according o pH 7.0. Counter ions were added to neutralize the system and he GROMOS 96 53a6 force field [22] was chosen to perform the D simulations. The minimum distance between any atom of the rotein and the box wall was 1.0 nm. In the next step, four additional models were generated remov- ng one (rgs-CaM-Ca-A-B-D model), two (rgs-CaM+Ca-A-D), three rgs-CaM+Ca-C) and four (apo-rgs-CaM) calcium ions from the four utative Ca2+-binding loops as found in the CaM of P. tetraurelia sed as model. The letters A, B, C and D denote the presence of alcium in the corresponding Ca2+-binding loops. For all models, nergy minimization (EM) using steepest descent algorithm was erformed to generate the starting configuration of the system. fter this step, 200 ps of MD simulation with position restraints pplied to the protein (PRMD) was executed to gently relax the sys- em. All the MD simulations were carried out in a periodic truncated odecahedron box under constant temperature (298 K) and pres- ure (1.0 bar) maintained by the coupling to an external heat and an sotropic. Then, 200 ns for the rgs-CaM+Ca-A-B-D model and 100 ns or the remaining models of unrestrained MD simulations were cal- ulated to evaluate the stability of all the structures generated. The verall quality of all in silico models obtained after MD simulation as checked using RAMPAGE [23] and ProSA-web (https://prosa. ervices.came.sbg.ac.at/prosa.php). The average root mean square uctuations (RMSF) of the backbone atoms from the final models ere calculated and converted to B-factor values using GROMACS .4.5.3 [21] (Suppl. Fig. 1). The same program was used to calculate he radius of gyration (Rg) of each model during MD simulation. he electrostatic potential surfaces of the in silico models were gen- rated by APBS (Adaptive Poisson-Boltzmann Solver) electrostatic alculations at 150 mM NaCl with a probe size of 1.4 Å on Chimera .1.9 [24], after the conversion of the PDB file into a PQR file (pH .0) using the online server PDB2PQR with the PARSE force field 25]. All structural figures were generated using Chimera v.19 [24] nd PyMOL v.1.3 [26]. . Results .1. Expression and purification of soluble rgs-CaM Expression of the His-tagged rgs-CaM in E. coli resulted in a olypeptide with an apparent molecular mass of 21 kDa (Fig. 1A), hich was present in the insoluble inclusion body fraction (Fig. 1B). fter several unsuccessful attempts of solubilization in nonde- aturing conditions, the inclusion bodies were solubilized using DS and the recombinant protein was refolded in the presence f the amphipathic solvent MPD. MPD has been successfully used gical Macromolecules 92 (2016) 1288–1297 in the refolding of SDS-denatured proteins avoiding disruption of the protein structure [15,16]. After refolding, the recombinant rgs- CaM was further purified using a combination of metal affinity chromatography on a Ni-NTA column and size exclusion chro- matography (Fig. 1C). Purification resulted in a single band of 22 kDa, visible on SDS-PAGE, which is close to the estimated molec- ular mass of native rgs-CaM (21 kDa). Purified rgs-CaM was further recognized by a His-tag monoclonal antibody in western blot anal- ysis, thus confirming correct fusion. It should be noted that the His-tag was not removed from purified rgs-CaM for subsequent analyses. 3.2. Secondary structural predictions using CD spectroscopy The structural integrity of the refolded rgs-CaM was checked using CD spectroscopy. The resulting CD spectrum displayed min- imum values around 208 and 222 nm, indicating a structured conformation (Fig. 2A). These two minima are typically observed in proteins with significant alpha-helical content, which is the case of plant CaMs [27]. To characterize a possible conformational change of rgs-CaM upon Ca2+ binding, CD spectra were further recorded in the presence of 5 mM CaCl2 and after the addition of 5 mM EGTA. As shown in Fig. 2B, the addition of Ca2+ to rgs-CaM promoted a slight increase in molar ellipticity at 222 nm. In contrast, no spec- tral changes were detected in the presence of EGTA as compared to purified rgs-CaM (apo-rgs-CaM). A modest effect on the CD spec- trum after Ca2+ addition was also observed for two CMLs from Arabidopsis thaliana (designated CML42 and CML43) [28,29]. How- ever, for both proteins, the observed effect was attributed to a helix reorientation rather than to an increase in alpha helix content after Ca2+ binding [28,29]. 3.3. Calcium promotes a shift in rgs-CaM mobility Calcium ions have been reported to alter the electrophoretic mobility of Ca2+-binding proteins by promoting faster migration compared to proteins maintained in a Ca2+-free state [30,31]. We therefore tested the effect of Ca2+ on the migration of recombinant rgs-CaM using a semi-denaturing mobility-shift assay. When CaCl2 was added to rgs-CaM just before electrophoresis, a faster migra- tion of CaCl2-treated rgs-CaM as compared to purified rgs-CaM was noted (Fig. 3). In contrast, no shift was observed when EGTA was added to the protein sample containing 5 mM CaCl2. In this case, the EGTA-treated rgs-CaM migrated similarly to purified rgs-CaM. 3.4. ITC results indicate the presence of three Ca2+-binding sites in rgs-CaM A typical set of ITC data for Ca2+ interaction with rgs-CaM is shown in Fig. 4. Higher and lower panels show the raw calorimetric data for the Ca2+-into-rgs-CaM titration and the binding isotherm, respectively. Based on primary sequence analyses (Fig. 5), a sequen- tial four-binding site model was used to fit ITC data as previously described [29,32,33]. In this regard, the resulting calorimetry data was best fitted by the three Ca2+-binding site model (Table 1 and Fig. 4), which presented the lower chi-square value (128.8) com- pared to the two- and four-binding site models (162.0 and 198.8, respectively). This is in line with a previous assumption suggest- ing the existence of only three Ca2+-binding sites in rgs-CaM [2]. It should also be emphasized that the interaction of rgs-CaM with Ca2+ displayed a negative enthalpy change, indicative of an exother- mic binding event (Table 1). http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php http://https://prosa.services.came.sbg.ac.at/prosa.php R.K. Makiyama et al. / International Journal of Biological Macromolecules 92 (2016) 1288–1297 1291 Fig. 1. Expression in E. coli and purification of recombinant tobacco rgs-CaM. A) Total cell extracts of non-induced (lanes NI) or IPTG-induced (lanes I) bacteria expressing r rgs-Ca c on ch s with 3 h H ( I r o C E gs-CaM (different clones are shown). B) Analysis of the solubility of recombinant entrifugation of sonicated cells. C) Purified His-tagged rgs-CaM after size exclusi tandard in kDa (PageRuler Plus Ladder 10–250 kDa; Fermentas). Gels were stained .5. Primary sequence comparisons and homology modeling ighlights the presence of three Ca2+-binding sites in rgs-CaM A search for proteins structurally related to rgs-CaM using the Hpred server revealed structural similarity to CaMs from K. lactis PDB ID: 4DS7), P. tetraurelia (PDB ID: 1EXR) and H. sapiens (PDB D: 3OX6). Inspection of the primary structure alignment (Fig. 5A) evealed that only three out of the four putative Ca2+-binding loops f rgs-CaM (indicated as A, B and D) have a canonical 12-residue a2+-binding loop sequence signature [D-X-Y-X-Y-G-X-�-X-X-X- , where Y indicates either D or N residues, and � indicates a M. Ins and Sol denote insoluble and soluble fractions, respectively, resulting from romatography. All samples were subjected to 12% SDS-PAGE. M- Molecular mass Coomassie Brilliant Blue. hydrophobic residue] [12]. On the other hand, loop C showed no conservation of D/N residues at positions 1, 3 and 5, and of E at posi- tion 12, therefore suggesting possible non-functionality (Fig. 5A). Further comparative information about these loops is provided by the alignment (Fig. 5B) of rgs-CaM with CML42 and CML43 from A. thaliana that also possess only three Ca2+-binding sites [28,29]. To obtain further structural insights into the Ca2+ coordina- tion of rgs-CaM, we generated in silico models for apo-rgs-CaM and for rgs-CaM loaded with four (rgs-CaM+Ca-A-B-C-D), three (rgs-CaM+Ca-A-B-D model), two (rgs-CaM+Ca-A-D model) and one (rgs-CaM+Ca-C model) Ca2+ ions (Table 2; Fig. 6A and B). The in sil- 1292 R.K. Makiyama et al. / International Journal of Biological Macromolecules 92 (2016) 1288–1297 Fig. 2. Far-UV circular dichroism spectra of recombinant rgs-CaM in apo state (black), in the presence of 5 mM CaCl2 (red) and after subsequent addition of 5 mM EGTA (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Fig. 3. Effects of Ca2+ on the electrophoretic mobility of recombinant rgs-CaM. The protein samples analyzed by CD (as described in the legend of Fig. 2) were subjected to PAGE (16%) under semi-denaturing conditions. A faster migration of rgs-CaM in the presence of CaCl2 (5 mM) was observed. M: Molecular mass stan- dard in kDa (PageRuler Plus Ladder 10–250 kDa; Fermentas). The gel was stained with Coomassie Brilliant Blue. Fig. 4. Isothermal calorimetric data of Ca2+ binding to rgs-CaM. The top panel shows the raw power output (�cal/s) per unit time (min). Bottom panel shows the inte- grated data (kcal/mol of injectant versus molar ratio of Ca2+ to rgs-CaM). These data were obtained from the raw power output as the area underneath each peak, which is then corrected for baseline heat injections and Ca2+ dilution heat and mixing. The solid line represents the best fit of the data to the sequential 3 binding site model. Table 1 Thermodynamic parameters of Ca2+-binding to rgs-CaM obtained from ITC analysis. Binding Site Kd (M) �H (kcal/mol) �S (cal/mol/deg) 1 (1.27 ± 0.07) x 10−4 −2.10 ± 0.07 10.8 −5 2 (7.87 ± 0.42) x 10 0.32 ± 0.09 19.8 3 (1.02 ± 0.05) x 10−2 −31.61 ± 1.31 −96.9 ico models confirmed that rgs-CaM, as classical CaMs, has N- and C-terminal globular lobes (with two putative Ca2+-binding loops each) separated by a central helix of 26 residues (Fig. 6). More- over, all models showed an overall good quality, as evaluated by the distribution of residues in favored and allowed regions of the Ramachandran plot and by Z-score of ProSA-web [34] (Table 2). These models were deposited in the ModelArchive public database [35], and their Digital Object Identifier (DOI) are available in Table 2. Interestingly, along the MD simulations of the rgs-CaM+Ca-A-B- C-D model, all Ca2+ ions remained coordinated in their loops, with the exception of the one present in loop C (Fig. 6A). The same feature was observed when Ca2+ was loaded only on loop C (rgs-CaM+Ca-C model), suggesting that this loop is unable to coordinate Ca2+. These results are consistent with the aforementioned sequence alignment predictions and ITC data, thus indicating that rgs-CaM, unlike clas- sical CaMs, has only three sites of Ca2+ coordination, namely loops A, B and D. R.K. Makiyama et al. / International Journal of Biological Macromolecules 92 (2016) 1288–1297 1293 Table 2 Overall quality, radius of gyration (Rg) and Digital Object Identifiers of rgs-CaM in silico models deposited on ModelArchive public database. Model Z-scorea Residues in allowed and favored regions (%)b Rg (nm)c DOId apo-rgs-CaM −7.4 100 1.7 ma-asrjx rgs-CaM+Ca-A-B-C-D −5.6 98.6 2.3 ma-a9cbt rgs-CaM+Ca-A-B-D −5.4 96.4 2.3 ma-awfwa rgs-CaM+Ca-A-D −6.1 98.9 2.2 ma-a2nix rgs-CaM+Ca-C −4.7 99.3 1.8 ma-aborg a Calculated by ProSa-web [27]. b According to Ramachandra plot calculated by RAMPAGE [17]. c Calculated by GROMACS v.4.5.3 [15]. d Digital object identifier (DOI) of the in silico structure deposited on ModelArchive [33] public database. Fig. 5. Multiple amino acid sequence alignments. (A) Alignment of rgs-CaM with homologous structures identified by the HHpred server. K lac CaM: Calmodulin from K. lactis NRRL Y-1140 (PDB ID 4DS7); P tet CaM: Calmodulin from P. tetraurelia (PDB ID 1EXR) and H sap CaM: Human calmodulin (PDB ID 3OX6); (B) Alignment of rgs-CaM with CML42 (GI: 75337714) and CML43 (GI: 75333888) from A. thaliana. The putative Ca2+ binding-loops are designated A, B, C and D. Red boxes highlight the amino acids of the canonical 12-residue Ca2+-binding loops seen in CaM [D-X-Y-X-Y-G-X-�-X-X-X-E, where Y indicates D/N residues, and � indicates a hydrophobic residue]. The green box h . Supe i the re t 3 e n a [ i ighlights the flexible region of the central helix observed in Ca2+-bound structures n loops A and D of rgs-CaM in relation to the CML sequences. (For interpretation of his article.) .6. In silico models of Ca2+-bound rgs-CaM detected an xpansion on its tertiary structure with exposition of a large egatively charged surface It has been previously reported that Ca2+-bound CaMs have more expanded tertiary structure than their apo counterparts 13,36]. In this regard, we found that the removal of all Ca2+ resulted n a more compact rgs-CaM model compared to the one loaded rior arrows in panel B indicate the hydrophobic amino acid substitutions observed ferences to colour in this figure legend, the reader is referred to the web version of with three Ca2+. This observation was well correlated with the Rg values of both apo and four calcium-containing rgs-CaM mod- els (1.7 nm versus 2.3 nm; Table 2). Thus, the loading of Ca2+ into loops A, B and D promoted an expansion of the tertiary structure of rgs-CaM, as already reported for CaMs [37]. C� superposition of the central helix of the rgs-CaM+Ca-A-B-C model over the central helix of the apo-rgs-CaM model clearly illustrates this expan- sion. In this case, a different reorientation of the EF-hand helices 1294 R.K. Makiyama et al. / International Journal of Biological Macromolecules 92 (2016) 1288–1297 Fig. 6. In silico modeling of rgs-CaM. (A) Cartoon representation of the final rgs-CaM model with Ca2+ modeled in the four predicted Ca2+-binding loops (rgs-CaM+Ca-A-B-C-D model). The residues predicted to coordinate Ca2+ in rgs-CaM are represented by sticks. Along the MD simulations, the Ca2+ in loop C escaped from the loop whereas the other ions remained coordinated in the other loops. The flexible region near the middle of the central helix (E120-E125) is also highlighted. (B) Cartoon representation of C� superposition of the central helix of rgs-CaM+Ca-A-B-D (green) over apo-rgs-CaM (yellow) showing the expansion of rgs-CaM tertiary structure and the different reorientations of the helices within the EF-hands upon Ca2+ binding. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Fig. 7. Electrostatic potential surfaces of the in silico models. (A) apo-rgs-CaM and (B) rgs-CaM+Ca-A-B-D. Both structures are shown in the same orientation after C� superposition. The electrostatic potential surfaces were generated by APBS (Adaptive Poisson-Boltzmann Solver). Red and blue colored regions denote negative and positive charges, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) R.K. Makiyama et al. / International Journal of Biological Macromolecules 92 (2016) 1288–1297 1295 Fig. 8. Structural comparisons between the P. tetraurelia CaM (PDB ID 1EXR) and the rgs-CaM + Ca-A-B-D model. (A) Cartoon representation of crystallographic structure of P. tetraurelia CaM with hydrophobic residues (Ala, Ile, Leu, Phe, Pro and Val) exposed to the solvent after Ca2+-binding (highlighted as yellow sticks). (B) Cartoon representation of the rgs-CaM+Ca-A-B-D model with hydrophobic residues exposed to solvent after Ca2+-binding (highlighted as yellow sticks). The hydrophobic residues buried into the N ntatio a ). The t le.) b ( b t ( l C ( i t t c s i d a o a o n t h I -terminal globular lobe are highlighted as green olive sticks. (C) Cartoon represe nd Thr) exposed to the solvent after Ca2+-binding (highlighted as light green sticks o colour in this figure legend, the reader is referred to the web version of this artic etween apo- and calcium-containing models could be observed Fig. 6B). Interestingly, when Ca2+ was loaded into loops A and D ut not B (rgs-CaM-A-D model), rgs-CaM adopted an expanded ter- iary structure conformation showing an Rg value around 2.3 nm Table 2). Along the MD simulations of the rgs-CaM models with Ca2+ oaded into, at least, loops A and D (rgs-CaM+Ca-A-B-D and rgs- aM+Ca-A-D models), a region near the middle of the central helix E120 through E125 as denoted in Fig. 5A) presented great mobil- ty, adopting even a disordered secondary structure at the end of he majority of the simulations (Fig. 6A). This flexibility confers o the central helix a bendable joint on its center that probably ontributes to the reorientation of the EF-hands to become more olvent-exposed in the Ca2+-bound models (Fig. 6B). In contrast, n MD simulations of apo-rgs-CaM, this region remained stable uring all 100 ns simulations. The deduced amino acid sequence lignments revealed that the E120-E125 region of rgs-CaM is anal- gous to the K77-S81 region of classical CaMs (Fig. 5A), which is lso located in the middle of the central helix and has a high degree f mobility as previously shown by NMR assays [37]. Another typical feature of classical CaM is the exposure of a sig- ificant amount of non-polar surface area upon expansion of its ertiary structure [37,38]. This solvent-exposed area results in a ydrophobic pocket that serves as a target interaction site [32]. n this context, Nakahara et al. [4] reported previously that rgs- n of the rgs-CaM+Ca-A-B-D model with negatively charged residues (Asp, Glu, Ser figure was generated using PyMOL v.1.3 [22]. (For interpretation of the references CaM can interact with the 2b suppressor of Tomato aspermy virus by electrostatic interactions, thus contrasting with classical CaMs that usually use hydrophobic patches to interact with their targets [6,7]. In fact, a comparative analysis of the electrostatic potential surfaces of the apo-rgs-CaM and rgs-CaM+Ca-A-B-D models in the same orientation revealed that the Ca2+-induced conformational expansion leads to the exposure of a negatively charged region (Fig. 7). This anionic area is located mainly on the N-terminal globu- lar lobe and is complemented by some portions of the central helix and C-terminal lobe, thus forming a large and negatively charged pocket. A careful comparison between the crystallographic struc- ture of the Ca2+-bound CaM from P. tetraurelia (PDB ID: 1EXR) and the rgs-CaM+Ca-A-B-D model reveals a different distribution of the conserved hydrophobic residues on these structures (Fig. 8). In the CaM from P. tetraurelia, the surface-exposed hydrophobic residues are located mainly on the N-terminal globular lobe and in some portions of the central helix and C-terminal lobe (Fig. 8A). In contrast, the corresponding regions of the rgs-CaM+Ca-A-B-D model have fewer solvent-exposed hydrophobic residues and con- tain several negatively charged residues (Fig. 8C). This is especially true for the N-terminal lobe in which the majority of the residues are buried into the EF-hand structure (Fig. 8B). These negative residues comprise the anionic pocket that could be responsible for the interaction of rgs-CaM with the dsRNA-binding domains of viral suppressors. 1 f Biolo 4 p g a t s h t b s o u t g b u a m r l i C i m f C g o i t r C w C t r i r t i s 1 C C h a s t a p b n m 2 b c t c e t i 296 R.K. Makiyama et al. / International Journal o . Discussion Rgs-CaM is a CaM-related protein involved in the dynamic inter- lay between viruses and plants. Conflicting results from different roups suggest that rgs-CaM could target viral suppressors for utophagic degradation [4] or interact with them having a posi- ive effect on suppressor activity [3]. Earlier homology modeling tudies demonstrated that rgs-CaM possesses two predicted EF- and motifs separated by a negatively charged cleft [4]. Despite he presence of these predicted EF-hands, the ability of rgs-CaM to ind Ca2+ and its effective role as a Ca2+ sensor remain elusive. In this regard, our CD spectral data revealed that rgs-CaM is ensitive to Ca2+ binding, but only modest effects on its overall sec- ndary structure are detected upon binding (Fig. 2). Our results sing EGTA in CD measurements and mobility shift assays showed hat Ca2+ binding to rgs-CaM is a reversible process. Moreover, by enerating structural in silico models for calcium-free and calcium- ound rgs-CaM (Fig. 6B; Table 2), we found that rgs-CaM structure ndergoes a calcium-induced expansion and reorientation of the lpha-helices within the EF-hands (Fig. 6B; Table 2). This confor- ational change is commonly observed in classical CaMs [37]. The eorientation of the helices leads to exposure to the solvent of a arge EF-hand area that could be responsible for the slight increase n molar ellipticity at 222 nm detected upon Ca2+ addition to rgs- aM (Fig. 2), as previously observed for CML43 [28]. Additionally, n our Ca2+-bound rgs-CaM models, a higher flexibility near the iddle of the central helix along the MD simulations was noted, a eature that probably contributes to the EF-hand rearrangements. Our ITC data indicate that rgs-CaM has only three functional a2+-binding sites. This was further supported by the information leaned from amino acid sequence predictions and by inspection f the rgs-CaM models generated in silico. Collectively, our results ndicate that loop C in the C-terminal EF-hand of rgs-CaM is unable o bind calcium. Remarkably, this loop shows no conservation of the esidues typically found in canonical Ca2+-binding loops of classical aMs (Fig. 5A). Bender et al. [28] reported that A. thaliana CML43, hich acts as a Ca2+ sensor, also possesses only three functional a2+-binding loops. One of them has high Ca2+ affinity [dissocia- ion constants (kd) of 8.16 nM] and is supposed to play a structural ole, whereas the two remaining loops have moderate Ca2+ affin- ty (kd = 4.85 �M) and are supposed to be regulatory. In contrast to gs-CaM, the non-functional loop of CML43 (loop B) is located in he N-terminal EF-hand and shows no conservation of the residues nvolved in Ca2+ coordination (Fig. 5B). According to the ITC results, rgs-CaM has two Ca2+-binding ites (sites A and D) with moderate Ca2+ affinity (kd = 78.7 �M and 27 �M, sites 1 and 2 in Table 1), and a third one (B) with low a2+ affinity (kd = 10.2 mM; site 3 in Table 1). This moderate/low a2+ affinity may be attributed to the substitution of conserved ydrophobic residues within the EF-hands, especially in loops A nd D (Fig. 5B). Surprisingly, despite the fact that rgs-CaM possesses everal features of a Ca2+ sensor, as indicated by our structural data, he kd values determined by ITC are not within the affinity range of typical Ca2+ sensor (1–0.1 �M) [12]. This fact, however, does not reclude the role of rgs-CaM as a sensor since its Ca2+ affinity may e increased in the presence of its target viral suppressor. This phe- omenon has already been reported for other known CaMs [12]. In ammals, for example, the affinity of CaM for Ca2+ was increased 5-fold in the presence of its interacting protein [38]. Interestingly, asal cytosolic levels of Ca2+ (about 100 nM) [12,39] were insuffi- ient to induce important structural changes in rgs-CaM. It seems herefore likely that the observed expansion in rgs-CaM structure ould be triggered by transitory increases in cytosolic Ca2+ lev- ls as would be expected during pathogen attack. Consistent with his, previous studies have shown that rgs-CaM is widely expressed mmediately after wounding [5], a stress that occurs simultane- gical Macromolecules 92 (2016) 1288–1297 ously to virus invasion and is also reported to alter Ca2+ homeostasis [40]. Of note, the thermodynamic results relative to sites A and D (sites 1 and 2 in Table 1), revealing small enthalpy and large positive entropy changes, corroborate the observed Ca2+-dependent con- formational modification [12]. Concerning site B (site 3 in Table 1), despite its low Ca2+ affinity, this site showed a large and exother- mic enthalpy and an unfavorable binding entropy in calorimetric studies. This is consistent with the large and exothermic enthalpy observed for Ca2+-binding of calbindin D9k due to the dehydration of the EF-hands [11]. Most noteworthy is the fact that the absence of Ca2+ in site B has no impact on the expansion of the rgs-CaM ter- tiary structure. Accordingly, rgs-CaM adopted the same expanded conformation when Ca2+ was loaded into sites A and D or into the three predicted Ca2+-binding sites. Despite corroborating previous findings suggesting that rgs- CaM interacts with its targets by electrostatic interactions [4], our results provide additional information about peculiar aspects of this protein. Most importantly, we observed that the binding of two Ca2+ to rgs-CaM is sufficient to promote surface exposure of a large negatively charged pocket, which might be responsible for its interaction with the dsRNA-binding domains of viral suppressors. 5. Conclusions The results obtained indicate that rgs-CaM has three puta- tive Ca2+-binding sites. However, Ca2+ binding to the two sites possessing higher Ca2+ affinity is sufficient to trigger a conforma- tional change in an expanded structure with reorientation of the helices within the EF-hands. In addition, our structural data support the idea that rgs-CaM interacts with its targets through electro- static interactions, thus contrasting classical CaMs that usually use hydrophobic patches [6,7]. It seems plausible that these negatively charged residues comprised within an anionic pocket might be responsible for the interaction of rgs-CaM with the dsRNA-binding domains of viral suppressors. Author contributions Conceived and designed the work: RKM, CAHF, MRMF and IGM. Performed the experiments: RKM, CAHF, TRD, BSM and FFM. Wrote the manuscript: MRMF and IGM with feedback from CAHF. Acknowledgments R. K. Makiyama was recipient of a PhD fellowship from FAPESP (2010/03001-0). C. A. H. Fernandes is recipient of a post-doctoral fellowship from FAPESP (2013/17864-8). I. G. Maia and M. R. M. Fontes are recipients of research fellowships from CNPq. Com- putational resources were supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ijbiomac.2016. 08.016. References [1] S.W. Ding, O. Voinnet, Antiviral immunity directed by small RNA, Cell 130 (2007) 413–426. [2] R. Anandalakshmi, R. Marathe, X. Ge, J.M. Herr, C. Mau, A. Mallory, G. Pruss, L. Bowman, V.B. Vance, A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants, Science 290 (2000) 142–144. http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://dx.doi.org/10.1016/j.ijbiomac.2016.08.016 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0005 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0010 f Biolo [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ R.K. Makiyama et al. / International Journal o [3] F. Li, C. Huang, Z. Li, X. Zhou, Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression, PLoS Pathog. 10 (2014) e1003921. [4] K.S. Nakahara, C. Masuta, S. Yamada, H. Shimura, Y. Kashihara, T.S. Wada, A. Meguro, K. Goto, K. Tadamura, K. Sueda, T. Sekiguchi, J. Shao, N. Itchoda, T. Matsumura, M. Igarashi, K. Ito, R.W. Carthew, I. Uyeda, Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 10113–10118. [5] K. Tadamura, K.S. Nakahara, C. Masuta, I. Uyeda, Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection, Plant Signal. Behav. 7 (2012) 1548–1551. [6] W.A. Snedden, H. Fromm, Calmodulin, calmodulin-related proteins and plant responses to the environment, Trends Plant Sci. 3 (1998) 299–304. [7] C. Yang, G.S. Jas, K. Kuczera, Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin, Biochim. Biophys. Acta 1697 (2004) 289–300. [8] J.M. Khan, A. Qadeer, S.K. Chaturvedi, E. Ahmad, S.A. Rehman, S. Gourinath, R.H. Khan, SDS can be utilized as an amyloid inducer: a case study on diverse proteins, PLoS One 7 (2012) e29694. [9] J.M. Khan, S.A. Abdulrehman, F.K. Zaidi, S. Gourinath, R.H. Khan, Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins, Phys. Chem. Chem. Phys. 16 (2014) 5150–5161. 10] J.M. Khan, S.K. Chaturvedi, S.K. Rahman, M. Ishtikhar, A. Qadeer, E. Ahmad, R.H. Khan, Protonation favors aggregation of lysozyme with SDS, Soft Matter 10 (2014) 2591–2599. 11] D. Dell’Orco, W.F. Xue, E. Thulin, S. Linse, Electrostatic contributions to the kinetics and thermodynamics of protein assembly, Biophys. J. 88 (2005) 1991–2002. 12] J.L. Gifford, M.P. Walsh, H.J. Vogel, Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs, Biochem. J. 405 (2007) 199–221. 13] M.A. Wilson, A.T. Brunger, The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity, J. Mol. Biol. 301 (2000) 1237–1256. 14] Z. Grabarek, Structural basis for diversity of the EF-hand calcium-binding proteins, J. Mol. Biol. 359 (2006) 509–525. 15] C. Michaux, N.C. Pomroy, G.G. Privé, Refolding SDS-denatured proteins by the addition of amphipathic cosolvents, J. Mol. Biol. 375 (2008) 1477–1488. 16] C. Michaux, J. Pouyez, J. Wouters, G.G. Privé, Protecting role of cosolvents in protein denaturation by SDS: a structural study, BMC Struct. Biol. 8 (2008) 29. 17] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel, A. Bairoch, Protein identification and analysis tools on the ExPASy Server, in: J.M. Walker (Ed.), The Proteomics Protocols Handbook, Humana Press, 2005, pp. 571–607. 18] D. Chiasson, S.K. Ekengren, G.B. Martin, S.L. Dobney, W.A. Snedden, Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato, Plant Mol. Biol. 58 (2005) 887–897. 19] J. Söding, A. Biegert, A.N. Lupas, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res. 33 (2005) 244–248. 20] M.A. Martin-Renom, A.C. Stuart, A. Fiser, R. Sánchez, F. Melo, A. Sali, Comparative protein structure modelling of genes and genomes, Annu. Rev. Biophys. Biomol. Struct. 29 (2000) 291–325. 21] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. 26 (2005) 1701–1718. [ [ gical Macromolecules 92 (2016) 1288–1297 1297 22] M. Christen, P.H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D.P. Geerke, T.N. Heinz, M.A. Kastenholz, V. Kräutler, C. Oostenbrink, C. Peter, D. Trzesniak, W.F. van Gunsteren, The GROMOS software for biomolecular simulation: GROMOS05, J. Comput. Chem. 26 (2005) 1719–1751. 23] S.C. Lovell, I.W. Davis, W.B. Arendall 3rd, P.I. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson, D.C. Richardson, Structure validation by Calpha geometry: phi, psi and Cbeta deviation, Proteins 50 (2003) 437–450. 24] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera − a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612. 25] T.J. Dolinsky, J.E. Nielsen, J.A. McCammon, N.A. Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res. 32 (2004) W665–W667. 26] W.S. Delano, The PyMOL molecular graphics system. Palo Alto, DeLano Scientific (2002). 27] S. Dash, W. Niemaczura, H.M. Harrington, Characterization of the basic amphiphilic �–helix calmodulin-binding domain of a 61. 5 kDa tobacco calmodulin-binding protein, Biochemistry 36 (1997) 2025–2029. 28] K.W. Bender, S. Dobney, A. Ogunrinde, D. Chiasson, R.T. Mullen, H.J. Teresinski, P. Singh, K. Munro, S.P. Smith, W.A. Snedden, The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis, Biochem. J. 457 (2014) 127–136. 29] S. Dobney, D. Chiasson, P. Lam, S.P. Smith, W.A. Snedden, The calmodulin-related calcium sensor CML42 plays a role in trichome branching, J. Biol. Chem. 284 (2009) 31647–31657. 30] M. Garrigos, S. Deschamps, A. Viel, S. Lund, P. Champeil, J.V. Moller, M. le Maire, Detection of Ca2+-binding proteins by electrophoretic migration in the presence of Ca2+ combined with 45Ca2+ overlay of protein blots, Anal. Biochem. 194 (1991) 82–88. 31] B. Vanderbeld, W.A. Snedden, Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39, Plant Mol. Biol. 64 (2007) 683–697. 32] R. Gilli, D. Lafitte, C. Lopez, M.-C. Kilhoffer, A. Makarov, C. Briand, J. Haiech, Thermodynamic analysis of calcium and magnesium binding to calmodulin, Biochemistry 37 (1998) 5450–5456. 33] G. Wu, Z. Gao, A. Dong, S. Yu, Calcium-induced changes in calmodulin structural dynamics and thermodynamics, Int. J. Biol. Macromol. 50 (2012) 1011–1017. 34] M. Wiederstein, M.J. Sippl, Prosa-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res. 35 (2007) W407–W410. 35] J. Haas, S. Roth, K. Arnold, F. Kiefer, T. Schmidt, L. Bordoli, T. Schwede, The Protein Model Portal − a comprehensive resource for protein structure and model information, Database 2013 (2013), bat031. 36] M. Zhang, T. Tanaka, M. Ikura, Calcium induced conformational transition revealed by the solution structure of apo calmodulin, Nat. Struct. Biol. 2 (1995) 758–767. 37] G. Barbato, M. Ikura, L.E. Kay, R.W. Pastor, A. Bax, Backbone dynamics of calmodulin studied by N-15 relaxation using inverse detected 2-dimensional NMR-spectroscopy − The central helix is flexible, Biochemistry 31 (1992) 5269–5278. 38] B.B. Olwin, D.R. Storm, Calcium binding to complexes of calmodulin and calmodulin binding proteins, Biochemistry 24 (1985) 8081–8086. 39] S.J. Swanson, W.-G. Choi, A. Chanoca, S. Gilroy, In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants, Annu. Rev Plant Biol. 62 (2011) 273–297. 40] T. Suntio, K. Mäkinen, Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana, Mol. Plant Pathol. 13 (2012) 775–784. http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0015 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0020 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0025 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0030 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0035 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0040 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0045 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0050 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0055 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0060 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0065 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0070 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0075 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0080 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0085 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0090 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0095 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0100 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0105 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0110 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0115 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0120 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0125 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0130 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0135 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0140 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0145 http://refhub.elsevier.com/S0141-8130(16)31143-6/sbref0