T s J A a b c a A R R A A K S G S W P 1 i p t p 2 u P h 0 Industrial Crops and Products 80 (2016) 93–100 Contents lists available at ScienceDirect Industrial Crops and Products jo ur nal home p age: www.elsev ier .com/ locate / indcrop he green generation of sunscreens: Using coffee industrial ub-products . Martoa, L.F. Gouveiaa, B.G. Chiarib, A. Paivac, V. Isaacb, P. Pintoa, P. Simõesc, .J. Almeidaa, H.M. Ribeiroa,∗ Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Portugal Faculdade de Ciências Farmacêuticas, UNESP – Univ Estadual Paulista, DFM – Laboratório de Cosmetologia – LaCos, São Paulo, Brazil LAQV-REQUIMTE, Departamento de Química,Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal r t i c l e i n f o rticle history: eceived 6 July 2015 eceived in revised form 4 November 2015 ccepted 9 November 2015 vailable online 6 December 2015 eywords: pent coffee oil reen coffee oil upercritical fluid extraction ater resistant ickering emulsion sunscreen a b s t r a c t Spent coffee grounds and green coffee defective beans, which are industrial sub-products of coffee pro- cessing, have a potential use for cosmetic applications, due to their safety and high content in lipids that present interesting physicochemical properties. Sunscreen formulations in the form of water-in-oil emul- sions might be a suitable application for these sub-products because providing a higher sun protection factor (SPF) for the same concentration of sunscreen activities than oil-in-water emulsions. The purpose of this work was to assess the biological effects of using the oil fraction of spent coffee grounds extracted with supercritical CO2 and green coffee oil in the development of new generation of sunscreens with improved sun protection performance. The oil fractions were used to prepare w/o sun- screens involving a cold emulsification process, with purified water as disperse aqueous phase and TiO2 and ZnO particles as stabilizers. The sunscreens were characterized in terms of mechanical, rheological and skin adhesion properties. In addition, the in vitro and in vivo biological properties of the formulations were evaluated, including safety and sunscreen water resistance tests. The use of two types of solid particles proved to be useful in the developed formulations, ensuring a high SPF with UVB/A protection, conferred by TiO2 and ZnO, respectively. Moreover, the emulsion containing 35% w/w of the spent coffee grounds oil fraction presented promising characteristics in the improvement of water performance with a broad spectrum sun protection when compared to an emulsion containing 35% w/w of green coffee oil which improved the SPF in physical sunscreens. The formulations are industrial-scalable and suitable for topical use according to the rheological, mechanical and safety assessment. The use of spent coffee oil in cosmetic industry seems to be a suitable approach for the valorisation of waste from the coffee industry and presents promising characteristics in the improvement of sunscreen performance. © 2015 Elsevier B.V. All rights reserved. . Introduction The efficacy of sunscreen products has been recognized as an mportant public health issue and is usually expressed by the sun rotection factor (SPF), which is calculated as the ratio between he UV energy required to produce a minimal erythema dose of rotected and unprotected skin (Dutra et al., 2004; Ribeiro et al., 013). ∗ Corresponding author at: Research Institute for Medicines (iMed.ULisboa), Fac- lty of Pharmacy, Universidade de Lisboa Av. Professor Gama Pinto, 1649-003 Lisboa, ortugal. Fax: +351 217946470. E-mail address: hribeiro@campus.ul.pt (H.M. Ribeiro). ttp://dx.doi.org/10.1016/j.indcrop.2015.11.033 926-6690/© 2015 Elsevier B.V. All rights reserved. Avoiding sun exposure, covering the skin or applying sunscreens with a high SPF are the main strategies strongly recommended to prevent UV-induced cell damage. The UV filters can be divided in two groups: (a) chemical filters which absorb UV radiation (UVR); and (b) physical filters, such as, titanium dioxide (TiO2) which reflect UVR (Ascenso et al., 2014). Sunscreens are normally based on synthetic chemicals with high capacity to absorb sun light at the region of UVB (320–290 nm) and UVA (400–320 nm) spectrum. Several synthetic UV filter molecules (e.g. benzophenones, anthranilates, PABA derivatives, salicylates, cinnamates and camphor derivatives) are available as photopro- tective agents, but due to their harmful effects they are becoming less popular. The main problem of the chemical sunscreen agents dx.doi.org/10.1016/j.indcrop.2015.11.033 http://www.sciencedirect.com/science/journal/09266690 http://www.elsevier.com/locate/indcrop http://crossmark.crossref.org/dialog/?doi=10.1016/j.indcrop.2015.11.033&domain=pdf mailto:hribeiro@campus.ul.pt dx.doi.org/10.1016/j.indcrop.2015.11.033 9 ps and a t s ( n o w i u 2 n r I a s ( f s d a a e i g o c p t a b e o c h p ( t t m w g U b 2 t h a c p i s s s t b a a s t i a 4 J. Marto et al. / Industrial Cro re the photoirritation, photosensitization and contact dermati- is. Reducing the concentration of such chemicals in cosmetics is a trategy to improve their quality, without affecting their properties Serpone et al., 2007). In recent years, the use of natural agents has been attracting sig- ificant attention, due to their safety, multiple biological actions n the skin and cost effectiveness. Consequently, an oily vehicle ith antioxidant activity could be an excellent approach for its mportant role on the product efficacy by improving the prod- cts’ photoprotective activity (Calixto et al., 2011; Couto et al., 009). In addition to bioactivity, natural products are, in general, ot harmful for humans, not expensive, suitable to be used in a wide ange of applications, and are obtained from renewable sources. n this context, green coffee oil and spent coffee grounds oil have risen as potential candidates to replace synthetic chemicals in sun- creens since they are a rich source of antioxidants and polyphenols Ribeiro et al., 2013). Phenolic compounds are excellent candidates or the prevention of the harmful effects of UV radiation on the kin. More specifically, flavonoids have photoprotection potential ue to their UV absorbing capacity, ability to act as antioxidants nd anti-inflammatory, and immunomodulatory agents (Saewan nd Jimtaisong, 2013). Coffee consumption is growing worldwide, being extremely mbedded in the cultural habits of many countries, so the total mport and export of coffee has been increasing. Spent coffee rounds (SCG), which are the residue obtained after the treatment f coffee with hot water or steam for extracting flavour substances, an be used for industrial applications such as high quality biodiesel roduction (Couto et al., 2009). Nevertheless, due to their high con- ent in lipids, particularly fatty acids, SCG might also find a suitable pplication in cosmetic products where these lipid compounds can e used as valuable excipients. Therefore, the lipid fraction of SCG xtracted with supercritical CO2 can be used in the development f new, improved sunscreens. On average, a fifth of the Brazilian offee production consists of defective beans, and several studies ave been developed in order to find an alternative use for sub- roduct, including the cosmetic application of the extracted oil Preedy, 2014; Ribeiro et al., 2013). Titanium dioxide has been incorporated in sunscreen formula- ions for more than 25 years, being regarded as safe and effective, hus bringing together two of the most desirable features in cos- etic market (Renner, 2009). It is especially preferred by people ith a high propensity for skin irritation, such as patients under- oing oncological chemotherapy. Moreover, TiO2 particles are a V-B filter, suitable for developing physical sunscreens combining oth increasing stability and high SPF properties (Wang and Tooley, 011). The introduction of ZnO ensures an adequate protection in he range of UVA. Due to its multifunctional nature, ZnO particles ave been shown to be effective as antibacterial and antifungal gent (Singh et al., 2012; Smijs and Pavel, 2011). On the other hand, TiO2 particles can be also used as solid parti- les for stabilization of surfactant-free emulsions stabilized by solid articles (i.e. Pickering emulsions). This type of emulsions have mportant advantages over the classical surfactant-based emul- ions, such as higher resistance to coalescence due to an improved tability, and a higher tolerability (Laredj-Bourezg et al., 2012). The tabilization of emulsion droplets takes place by means of adsorp- ion of solid particles at the surface of emulsion droplets. It can e assumed that a stable water-in-oil (w/o) Pickering emulsion is function of particles concentration, pH and ionic strength. This dsorption mechanism is quite different compared to surfactants ince partial wetting of the solid particles surface by water and oil is he reason of the strong anchoring of these particles at the water–oil nterface. Few fully natural and biocompatible materials are avail- ble for the effective stabilization of these emulsions since severe Products 80 (2016) 93–100 requirements must be simultaneously met, including insolubility in both fluid phases and intermediate wettability (Folter et al., 2012). The purpose of this work was to develop and characterize a w/o emulsion stabilized by physical sunscreens containing 35% of the lipid fraction of spent coffee grounds extracted with supercriti- cal CO2 and green coffee oil obtained from defective beans with improved sunscreen performance. Sunscreen formulations might be a suitable application for these types of sub-products because w/o emulsions are water resistant and provide greater efficacy (a higher SPF) for the same concentration of sunscreen actives than their o/w counterparts (Couteau et al., 2012). 2. Material and methods 2.1. Materials Spent coffee grounds oil (SCO) was supplied by LAQV- REQUIMTE – Departamento de Química, Faculdade de Ciências e Tecnologia (Caparica, Portugal). Green coffee oil (GCO) was sup- plied by Cooxupé – Cooperativa de Cafeicultores de Gauxupé, (Minas Gerais, Brazil). Triethoxycaprylylsilane titanium dioxide (mTiO2) (Unipure White LC 987) was a gift from Sensient (Milwau- kee, USA). The starch used was aluminum starch octenylsuccinate (ASt) (DryFlo® Plus) obtained from AkzoNobel (Amsterdam, Netherlands). Zinc oxide (ZnO) (Tego® Sun Z 500) was obtained from Evonik Industries AG (Essen, Germany). Purified water was obtained by inverse osmosis (Millipore, Elix® 3). 2.2. Methods 2.2.1. Characterisation of the formulation ingredients 2.2.1.1. Wettability measurements. Contact angles of water, green coffee oil and spent coffee oil on ZnO, mTiO2 and ASt in air atmo- sphere were measured at room temperature by using ConAnXL—a Microsoft Excel based workbook and add-in software (freely avail- able upon request) as described in detail elsewhere (Marto et al., 2015). All measurements were performed in triplicate. 2.2.1.2. Particle size distribution. Particle size distribution was determined using a Malvern Mastersizer 2000 (Malvern Instru- ments, UK), coupled with a Hydro S accessory. Data were expressed in terms of relative distribution of volume of particles in the range of size classes, and given as diameter values corresponding to per- centiles of 10, 50 and 90. The Span value is a useful parameter to characterize the particle size distribution broadness. 2.2.1.3. Natural oils. 2.2.1.3.1. Oil extraction. SCG oil was obtained by supercriti- cal CO2 extraction as described elsewhere (Ribeiro et al., 2013). Supercritical fluid extraction can be an environmentally friendly alternative to traditional organic solvent extraction processes whereby extraction/separate recovery of oil and bioactive com- pounds from agro-industrial residues can be done without their degradation (Brunner, 2013). Mass transport is highly facilitated owing to favourable transport properties (high mass and thermal diffusivities coupled with low viscosities) and the solvation capac- ity of the supercritical fluid is tuneable by changing the operating conditions of pressure and temperature. The most commonly used supercritical fluid, carbon dioxide, is non-toxic, non-flammable, non-corrosive, relatively inert from a chemical point of view and environmentally friendly. Its relatively low critical temperature (304.3 K) allows extraction of thermolabile substances without degradation. The supercritical CO2 extraction of SCG oil was done in a high pressure extraction pilot unit. SCG were first dried in an oven at J. Marto et al. / Industrial Crops and Table 1 Qualitative and quantitative composition of the sunscreen formulations. Ingredients Quantitative composition (%, w/w) GCO sunscreen SCO sunscreen Phase A Green coffee oil 35 – Spent coffee oil – 35 Phase B Triethoxycaprylylsilane titanium dioxide 20 20 Zinc oxide 15 15 Aluminum starch octenylsuccinate 5 5 3 c 0 f f f w f a o 1 f S w i C E 2 s m d t Z a ( p 2 2 1 C d E d 2 m e W C v i p c f Phase C Purified water 25 25 78 K with air circulation until a moisture value of about 1%. Super- ritical CO2 extractions were carried out at 55 ◦C and 250 bar using .5 kg of dry SCG per batch with an average CO2 flowrate of 15 kg/h or ca. 1 h of extraction. GCO was obtained by cold pressed extraction. Briefly, green cof- ee beans were pressed and come back to be pressed again for a urther three times and then the oil is bottled with nitrogen. 2.2.1.3.2. SPF measurement. GCO and SCO were accurately eighed (0.25 g), diluted with ethanol, followed by ultrasonication or 5 min and filtered through filter paper (WhatmanTM 42). The bsorption spectra of samples solution were obtained in the range f 290–320 nm (Hitachi U-2001, USA) every 5 nm, using a standard cm quartz cell, and ethanol as the blank. Triplicates were made, ollowed by the application of the Mansur equation (Eq. (1)). PFspectrophotometric = CF × �320 290EE (�) × I(�) × Abs(�) (1) here EE (�) is the erythemal effect spectrum; I (�) is the solar ntensity spectrum; Abs (�) is the absorbance of sunscreen product; F is the correction factor (=10) (Mansur et al., 1986). The values of E × I are constants determined by Sayre et al. (1979). .2.2. Sunscreen formulations—green coffee oil sunscreen (GCO unscreen) and spent coffee oil sunscreen (SCO sunscreen) Two formulations were developed (Table 1) based on their acroscopic appearance, physical stability and SPF value. The isperse aqueous phase was composed of purified water, the con- inuous oil phase consisted of GCO or SCO. Solid particles (mTiO2, nO and ASt) were firstly dispersed in the oil phase. The oil and queous phases were then mixed using a high-speed homogenizer UltraTurrax®, IKA-Werke GmbH & Co., KG, Germany) at room tem- erature (cold process). .2.3. Characterization of the sunscreen formulations .2.3.1. Droplet size distribution. The emulsions were examined day after preparation, using an optical microscope (Olympus X40, Japan) equipped with a video camera. The droplet size was etermined using the image analysis software Olympus Stream ssentials®. The size data was expressed in terms of relative size istribution of particles (BS, 1993). .2.3.2. Structural analysis of the sunscreen formulations. 2.2.3.2.1. Rheology studies. Shear rate vs shear stress measure- ents were performed at 25 ◦C using a HAAKE RS-1 Rheometer, quipped with automatic gap setting (Thermo ScientificTM, altham, USA). Rotational viscosity was determined using a 35 mm cone geometry, with an angle of 2◦. Dynamic or shear iscosity measurements were carried out by rotational shear exper- ments, between 1 and 1000 Pa. Oscillation sweep tests were erformed at frequencies ranging between 0.1 and 100 Hz. The reep and recovery test was carried out with a shear stress of 1 Pa or emulsions, allowing 360 s for creep and 360 s for relaxation. All Products 80 (2016) 93–100 95 tests were performed on samples of about 1 g, at 25 ± 0.5 ◦C. All experiments were performed in triplicate using new samples for each measurement. 2.2.3.2.2. Texture profile analysis (TPA). A Texture Analyzer TA.XT Plus with Exponent 3.0.5.0 software (Stable Micro Systems Ltd., Godalming, UK) was used to examine hardness, elasticity, compressibility, adhesiveness and cohesiveness of the emulsion. A probe (P/10, 10 mm Delrin), which was twice depressed into the sample at a defined rate (5 mm/s) to a desired depth (15 mm), allowing 15 s of delay between consecutive compressions. Six repli- cates were performed at 25 ◦C for each formulation. 2.2.3.3. In vitro SPF. The SPF was assessed using the Optometrics SPF-290S Analyzer (Optometrics Corporation, Essex, UK). The sam- ples were prepared by spreading 110 mg of each formulation over a Transpore® tape (70.7 × 70.7 mm) to obtain a film of 2 mg/cm2, as specified by the European Regulation (EC, 2009). Each sample was exposed to a xenon arc solar simulator, and the analyser per- formed scans in 6 different spots on the Transpore® tape substrate. Each scan takes a transmittance (T) measurement every 2 nm from a wavelength ranging from 290 to 400 nm. The Monochromatic Pro- tection Factor (MPF) was determined for the selected wavelengths using Eq. (2). The SPF value was calculated using Eq. (3). MPF = 1 T (2) SPF = ∑400 290E�.B� ∑400 290 E�.B� MPF� (3) where (E) is the spectral irradiance of terrestrial sunlight under controlled conditions and (B) is the erythema effectiveness (Kale et al., 2010). 2.2.3.4. In vitro sun product water resistance. The water resistance of developed sunscreens was measured using an improved in vitro bath system. An amount of 2 mg/cm2 of sunscreen formulation was dispensed onto the plate, and carefully applied with a rubber- gloved finger. After drying for 15 min, the SPF of each sample was determined using the SPF 290 analyzer (Optometrics SPF-290S Ana- lyzer). The samples were immersed in the in vitro bath system (29 ± 2 ◦C) and washed away by the water flow (150 rpm) during 20 min. The samples were allowed to air dry for 15 min and SPF was measured again. The samples were immersed once more and washed during 20 min. The samples were allowed to air dry for 15 min and SPF was measured to calculate the water resistance retention (%WRR) of the sunscreens, as defined by Eq. (4). %WRR = SPFwet SPFdry × 100 (4) where SPFdry and SPFwet are the SPFs before and after water immer- sion, respectively (Ahn et al., 2008; COLIPA, 2005). 2.2.3.5. Skin adhesion properties. Skin adhesion measurements were performed using Texture Analyzer TA.XT Plus (Stable Micro Systems Ltd., Surrey, UK) equipped with a load cell of 5 kg, cylin- der probe of 10 mm (P/10, 10 mm Delrin) and a measuring system A/MUC (skin adhesion test rig), which holds the human skin. An amount of 2 mg/cm2 of each sample was applied onto the skin. The probe was immersed in an in vitro bath system (29 ± 2 ◦C) and washed away by the flow of water (150 rpm) during 40 min, in order to simulate the water resistance method for sun protection products (COLIPA, 2005). The area under the curve (AUC) was calcu- lated from the force–distance plot as the work of skin adhesion per square centimetre. The formulation given below was used to calcu- 9 ps and Products 80 (2016) 93–100 l ( W w w 2 t M o w ( R C A t p a r p d i 2 s e t i t w b l a ( t c S w ( % 2 t w T w b 3 3 3 w w t Table 2 Contact angle of water, GCO and SCO on mTiO2, ZnO and ASt (mean ± SD, n = 3). Contact angle (◦) Samples Water Green coffee oil Spent coffee oil 3.2.1. Droplet size distribution The use of a surfactant-free emulsion might be a strategy to avoid skin irritations associated to this type of excipients (Marku et al., 2012). In Pickering emulsions the droplet is stabilized by a Table 3 Particle size distribution of the different solid particles proposed (mean ± SD, n = 6). Solid Particles Particle size distribution (�m) 6 J. Marto et al. / Industrial Cro ate the work of skin adhesion per square centimetre (mJ/cm2—Eq. 7)). Each experiment was carried out in triplicate. orkofskinadhesion ( mJ/cm2 ) = AUC �r2 (7) hereby �r2 is the surface area of the human skin that is in contact ith the sunscreen formulations. .2.3.6. Human repeat insult patch test (HRIPT). A safety evalua- ion study was performed on emulsions, using the Marzulli and aibach (1976) HRIPT protocol. In brief, the product was applied n the back of 51 healthy volunteers that gave their prior informed ritten consent. For the induction period, a series of nine patches Finn Chamber standard) were performed over a period of 3 weeks. eactions after patching were scored according to International ontact Dermatitis Research Group (Fregert and Bandmann, 1975). 2 weeks rest period was maintained without application of the est material. During the challenge period, new patches were pre- ared and fixed in the same manner as in the induction period, but lso on the right side of the back (i.e. a virgin site). The protocol was approved by the local Ethical Committee and espected the Helsinki Declaration and the AFSSAPS regulations on erformed HRIPT studies on cosmetic products. The study was con- ucted under the supervision of a dermatologist who participated n the evaluation of irritation/allergic reactions to the emulsions. .2.3.7. In vivo sun product water resistance. The water resistance of unscreens was tested on 3 subjects (Fitzpatrick skin type II). Pan- llists cleanse their forearms using a mild cleanser and leave them o air dry for 30 min before starting the test. Initial cross-polarized mages were taken after the sunscreens application (2 mg/cm2) on he inner forearm (4 cm2). The amount of each sunscreen formulation left before and after ater bath immersion was quantified via cross polarized imaging y means of the Visia® CA (Canfield Scientific, Faitfield, NJ). Panel- ists immerse their forearms into a water bath system (29 ± 2 ◦C) nd washed away by the flow of water (150 rpm) during 40 min Ahn et al., 2008). The RGB colour space of the raw bitmap images was converted o relative luminance using ImageJ®. From these images, average L hanges for each sunscreen area were obtained from histograms. kin whiteness was defined as the change in L value before and after ater immersion, and the percentage of water resistance retention %WRR) of the sunscreens was determined according to Eq. (8). WRR = Lwashedprotector − Lskin Lprotector − Lskin (8) .2.4. Statistical analysis The data are expressed as mean and standard devia- ion (mean ± SD) of experiments. Statistical evaluation of data as performed using one-way analysis of variance (ANOVA). ukey–Kramer multiple comparison test (GraphPad PRISM 5 soft- are, USA) was used to assess the significance of the difference etween the groups (p < 0.05). . Results and discussion .1. Characterisation of the formulation ingredients .1.1. Wettability measurements In the surfactant-free system stabilized by solid particles, these ill be preferentially wet by one of the liquids, with the more poorly etting liquid becoming the disperse phase. Particle wettability at he oil–water interface is quantified by the contact angle, �, that mTiO2 106.5 ± 0.7 60.1 ± 1.9 9.7 ± 3.3 ZnO 100.2 ± 2.6 23.4 ± 0.1 13.1 ± 2.5 ASt 109.0 ± 0.4 10.6 ± 2.3 13.3 ± 4.0 the particle makes with it, which will determine the type of emul- sion. Generally, if the water contact angle is <90◦, the solid surface is considered hydrophilic and if the water contact angle is >90◦, the solid surface is considered hydrophobic. Concerning the emulsions stabilized by solid particles, if the contact angle, measured through the aqueous phase, is <90◦ the emulsion will be o/w and, by con- trast, if the contact angle is >90◦ the emulsion will be w/o (Marku et al., 2012). In this study, mTiO2, ZnO and ASt will stabilized more effectively w/o emulsions. All solid particles have a contact angle with water >90◦, due to hydrophobic coatings, and simultaneously, a contact angle with Green coffee oil (GCO) and Spent coffee oil (SCO) <90◦ (Table 2). Thus, by combining these three particles it is possible to obtain a stable w/o emulsion. 3.1.2. Particle size distribution Particle size distributions of mTiO2, ZnO and ASt showed that all particles were larger than 100 nm (Table 3), thus complying with the international “green” standards, whereby nanomaterials must be avoided (COSMOS, 2013). 3.1.3. Natural oils 3.1.3.1. SPF measurement. Several studies have been developed in order to find an alternative use for these defective coffee beans or spent coffee ground, involving the characterization of their lipid fractions. The GCO was extracted using mechanical pressing, whereas the lipid fraction of SCG was extracted with supercritical CO2, an environmentally friendly solvent that allows the extraction and recovery of the oil at such conditions that no degradation of the lipid composition oil occurs while avoiding the use of hazardous organic solvents (Ribeiro et al., 2013). The GCO and SCO have potential application in health care products, including sunscreen formulations (Chiari et al., 2014). In particular, due to the richness of polyphenols and flavonoids, the pure GCO shows a SPF higher than 5, improving SPF and, consequently, decreasing the concentration of chemical and/or physical sunscreens in such formulations (Wagemaker et al., 2011). In this study, GCO presented an SPF value of 5.03 ± 0.23 while SCO presented only 1.57 ± 0.07, which is in line with the fact that the coffee roasting process diminishes the content of polypheno- lic compounds (Dai and Mumper, 2010; Speer and Kölling-Speer, 2006). 3.2. Characterization of the sunscreen formulations Span d (0.1) d (0.5) d (0.9) mTiO2 37.36 ± 1.38 0.14 ± 0.01 0.19 ± 0.01 7.12 ± 0.30 ZnO 19.51 ± 5.53 0.16 ± 0.01 0.57 ± 0.03 11.38 ± 3.74 ASt 1.00 ± 0.01 7.28 ± 0.01 13.52 ± 0.01 20.82 ± 0.01 J. Marto et al. / Industrial Crops and Products 80 (2016) 93–100 97 Table 4 Droplet size distribution of GCO and SCO sunscreen (mean ± SD, n = 625). Formulation Droplet size distribution (�m) Span d (0.1) d (0.5) d (0.9) r p i I o o s t e P s a t e c a i a 3 3 t T i s ( t s r s s n c m t G s m m o p d a f t i a s ( 3 a w t Table 5 Mechanical properties of the sunscreens extracted from the TPA mode (mean ± SD, n = 3). Formulations Hardness g Adhesiveness (|g s|) Cohesiveness Compressibility (g s) GCO sunscreen 1.17 ± 0.02 3.01 ± 0.11 5.54 ± 0.28 9.49 ± 0.55 SCO sunscreen 0.90 ± 0.03 5.72 ± 0.10 8.87 ± 0.13 13.71 ± 0.34 eduction of the bare oil-water interface by adsorption of small articles. The parameter to describe Pickering emulsions stability s the contact angle of the adsorbed particles, as explained above. nitially, a contact angle greater than 90◦ is required in order to btain a w/o emulsion. In this assay we evaluated the influence f the oil on Pickering emulsions droplet size distribution. Both unscreen formulations showed a narrow droplet size distribu- ion with a span value in the range of 0.9–1.2. The GCO sunscreen xhibited lower mean droplet size than SCO sunscreen (Table 4). revious studies demonstrated that coffee extracts have extremely trong antioxidant properties than many other food products. This pplies to both roasted and green coffee, although, the latter con- ains even ten times higher concentration of polyphenols (Budryn t al., 2013). Other study demonstrated that several polyphenols, ould be adsorbed into the oil–water interface, present as water- nd oil-insoluble particles and decrease the surface tension, provid- ng very good stabilization of emulsions and, consequently, leading decrease in droplet size (Luo et al., 2011; Wagemaker et al., 2011). .2.2. Structural analysis of the sunscreen formulations .2.2.1. Rheology studies. The flow curves (Fig. 1(a)) showed that he emulsions presented a shear-thinning and rheopetic behaviour. his behaviour could influence the sunscreen performance, creat- ng a uniform, impenetrable and protective semi-solid film over the kin surface that is required to obtain an effective sunscreen. In the range of 0–5 Pa, both emulsions were not disrupted Fig. 1(b and c). Thus, the values of G’ and G” remained linear within his region of linear viscoelasticity, which can therefore indicate the uitable shear stress to be used in frequency sweep and creep and ecovery tests. The GCO sunscreen exhibited higher G’ and G” values than SCO unscreen. The frequency sweep curves of GCO sunscreen (Fig. 1(b)) howed that in the range tested (0.1–100 Hz) there was practically o variation in the elastic and viscous moduli. Furthermore, vis- oelastic behaviour was seen over the whole range, since G’ (elastic odulus) was higher than G” (viscous modulus). The same rela- ion is observed for SCO sunscreen, but the G’ and G” values for CO sunscreen are higher than for SCO sunscreen, exhibiting high tability. In the creep and recovery test, both sunscreens suffered defor- ation, shown by the compliance value (J), but SCO sunscreen was uch more susceptible to this force (Fig. 1(c). In the recovery part f this assay, when the shear stress was removed and the sam- les could recover their former structure, the elastic part of the eformation, was reversed. In summary, the addition of GCO promoted an increase in the pparent viscosity and the elastic modulus, when compared to the ormulation prepared with SCO. Considering the results of the par- icle size distribution (Table 4), the reduction in droplet size results n an increase in the viscosity and storage modulus of the emulsions nd the shear-thinning behaviour becomes even stronger, which uggested an enhancement in emulsion stability and performance Pal, 1996). .2.2.2. TPA. The results of the calculations of textural parameters re collected in Table 5. The adhesiveness is the only parameter, hich differs between the two formulations (p < 0.05). Concerning he emulsions adhesiveness, which is more a surface characteristic GCO sunscreen 23.62 ± 1.76 39.76 ± 0.27 0.82 ± 0.04 29.87 ± 1.91 SCO sunscreen 25.23 ± 2.26 48.65 ± 0.53 0.83 ± 0.01 31.09 ± 1.86 and depends on a combined effect of adhesive and cohesive forces, the presence of SCO caused an increase in this parameter. According to Alves et al. (2003), during coffee roasting process there are changes in the fatty acid composition, increasing the trans-fatty acid levels, which increase the hydrophobic character of the final formulation and, consequently enhance the adhesive forces and water repellent performance (Shyr and Ou-Yang, 2015). Other authors proved that spent coffee oil also contains more hydrophobic compounds, such as fatty acids, fatty acid esters, medium-chain paraffins and olefins than green coffee oil or other vegetable oils (Kelkar et al., 2015). Considering the hardness, cohesiveness and compressibility results, the lipid type did not influence these parameters. The fatty acid tails are hydrophobic because they are non polar and the heads are hydrophobic because they are polar. 3.2.3. In vitro SPF Both emulsions showed high values of SPF with a suitable UVA/UVB ratio (Table 6). For GCO there was a synergistic increase of SPF value (around 1.6 fold) when combined with physical fil- ters as mTiO2 in GCO sunscreen. According to Wagemaker et al. (2011) the oil extracted from unroasted beans is used by the cos- metics industry due to its excellent properties for the human skin, particularly maintaining skin-moisture due to its fatty acid com- position. In addition, its ability to absorb UV radiation in the UVB range allows its use in sunscreens as a SPF enhancer, allowing to reduce the amount of physical and chemical filters (Chiari et al., 2014). 3.2.4. In vitro sun product water resistance The in vitro method measures the SPF following a defined water immersion procedure. For a product to be considered water resis- tant, the value for the lower 90% one-sided confidence limit has to be greater than or equal to 50%. A ‘waterproof’ product should have a %WRR exceeding 80% after two immersions, while the %WRR of a ‘water resistant’ product should be more than 50% (COLIPA, 2005). After the first immersion, the GCO sunscreen presented a %WRR of 62.6, which decreased in the second immersion to 50.7%. In turn, SCO sunscreen showed a value of 83.1% at first immersion and a value of 80.8% of WRR after the second immersion. Based on this %WRR, it is possible to ensure the ‘water resistance’ mark for GCO sunscreen and the ‘waterproof’ claim for SCO sunscreen. As men- tioned previously, during the coffee roasting process the fatty acid levels increase, enhancing the hydrophobicity of the SCO sunscreen and, consequently, improving the effectiveness of water resistance performance (Kelkar et al., 2015). Additionally, hydrophobic sun- screen formulations can also serve as additional water barriers to help mitigate the disruption in stratum corneum caused by constant exposure to water (Shyr and Ou-Yang, 2015). In water resistant products typically more polar lipophilic ingredients can be found. Conversely, waterproofing sunscreens should contain more non- polar ingredients, which is the case of SCO (Couteau et al., 2012). 3.2.5. Skin adhesion properties Table 7 shows the skin adhesion properties of the formulations. The force necessary to detach the GCO and SCO sunscreen samples from the skin was statistically higher than the one needed to detach 98 J. Marto et al. / Industrial Crops and Products 80 (2016) 93–100 eep an t a T Fig. 1. (a) Flow curves, (b) frequency sweeps and (c) cr he blank. In our study, when the SCO was used, the work of skin dhesion ability after water immersion was also increased (Table 7). he type of lipid used in the preparation of water in oil emulsions d recovery plots of GCO sunscreen and SCO sunscreen. sunscreens influenced the skin adhesion ability of emulsions and, consequently the water resistant performance. According to the lit- erature (Draelos, 2011), the lipid material used in the preparation J. Marto et al. / Industrial Crops and Products 80 (2016) 93–100 99 Table 6 In vitro and in vivo efficacy tests of the GCO and SCO sunscreen. Formulations In vitrosun protection factor (SPF)–optometrics SPF-290S Analyzer In vitro sun product water resistance In vivosun product water resistance SPF Rating UVA/UVB UVA SPF after 1st immersion SPF after 2nd immersion %WRRa after 1st immersion %WRRaafter 2nd immersion %WRRa GCO sunscreen 82.3 ± 10.350+ 0.9 ± 0.1 71.1 ± 10.1 52.0 ± 14.2 42.1 ± 13.4 62.6 50.7 70.0 ± 2.2 SCO sunscreen 51.9 ± 5.550 0.9 ± 0.1 44.2 ± 5.2 43.18 ± 6.88 41.95 ± 5.94 83.1 80.8 80.0 ± 3.6 a Water resistance retention. Table 7 Skin adhesive properties of the formulations on dry skin and after 40 min of water immersion (mean ± SD, n = 6). Samples Work of skin adhesion (mJ/cm2) � of skin adhesion (mJ/cm2)a GCO sunscreen on dry skin 0.05 ± 0.01 – SCO sunscreen on dry skin 0.05 ± 0.01 – GCO sunscreen after water immersion 0.01 ± 0.01 0.04 SCO sunscreen after water immersion 0.04 ± 0.01 0.01 a Work of skin adhesion between sunscreens on dry skin and after water immersion. F and c D light o e T t d ( e w t i s ig. 2. Histograms of skin whiteness resulting from sunscreens applied on dry skin ark grey–bare skin; grey–fresh sunscreen applications with 30 min air drying; and f w/o emulsions sunscreens influence the skin adhesion ability of mulsions and consequently their water resistance performance. he SCO extracted from roasted coffee is a brown viscous liquid due o the presence of liposoluble Maillard reaction products separated uring the oil extraction, enhancing its lipophilic characteristics Speer and Kölling-Speer, 2006). Concerning the skin surface prop- rties, it was demonstrated that dry skin is mostly lipophilic and et skin is more hydrophilic, having higher surface energy. Thus, he surface energy values of dry skin reflect its dominant lipophilic- ty and more apolar materials, such as SCO, may also adhere to kin. ross-polarized images of two sunscreens applied to the volar forearm of a subject: grey - sunscreen after 40 min water immersion. 3.2.6. HRIPT Under the experimental conditions adopted, the repeated appli- cations of the sunscreens under occlusive patch induced no irritative reaction and the product has very good skin compatibility. Moreover, the repeated applications induced no allergic reaction. 3.2.7. In vivo sun product water resistance Human testing is considered to be the most acceptable method for claiming water resistance. This method is a new in vivo screening approach to measure WRR using cross-polarized imaging. Although it does not allow determining the exact SPF before and after the 1 ps and i t f e a a 4 t i G h b u 4 b t p A p a b w t i u d p p m b t i t A n S a R A A A B B B 00 J. Marto et al. / Industrial Cro mmersion, it allows evaluating the amount of sunscreen lost due o the action of water. Skin whiteness results showed a similar behaviour as obtained or water resistance results (Fig. 2). After water immersion, both mulsions presented a range between 50 and 80% of whiteness with mean peak around 70% and 75% of whiteness for GCO sunscreen nd SCO sunscreen, respectively. GCO sunscreen and SCO sunscreen, when exposed to water for 0 min, revealed 70.0 ± 2.2% and 80.0 ± 3.6% of whiteness, respec- ively (Table 6). In vivo WRR values confirmed the results obtained n in vitro assay, thus supporting the “water resistant” claim of the CO and SCO sunscreens. Furthermore, these in vivo values were igher than those obtained in vitro, which may be explained by a etter adhesion to human skin compared with the adhesive tape sed for the in vitro assay. . Conclusions A novel sunscreen formulation with a high UVB/A protection, iological activity and better tolerability was developed based on he Pickering emulsions concept. The successful formulation was ossible by combining natural and multifunctional compounds. dditionally, the coffee oils studied in this work possess all of the roperties required for sunscreens and may be considered desirable nd suitable ingredients for industrial applications. In addition to eing a green product, it contains a series of lipophilic substances ith important antioxidant characteristics, such as tocopherols, hat protect the skin against UVB radiation. When high oil contents are combined with a composition rich n unsaturated acids, and compounds with high SPF value and high nsaponifiable material content, the result is a product or ingre- ient that is ideally suited for formulating high quality cosmetic roducts able to promote moisture retention and simultaneously rovide sun protection. All results revealed an excellent compro- ise between stability, UV protection, rheological and mechanical ehaviour, efficacy, safety and cosmeticity. The use of spent and green coffee oil in cosmetic industry seems o be a suitable approach to recycle and valorise wastes from coffee ndustry. Moreover the coffee oil presented promising characteris- ics in the improvement of sunscreen performance. cknowledgments This work was supported by the Fundaç ão para a Ciência e a Tec- ologia, Portugal (UID/DTP/04138/2013 to iMed.ULisboa and grant FRH/BDE/51599/2011), the strategic project UID/QUI/50006/2013 nd Laboratórios Atral S.A., Portugal. eferences hn, S., Yang, H., Lee, H., Moon, S., Chang, I., 2008. Alternative evaluation method in vitro for the water-resistant effect of sunscreen products. Skin Res. Technol. 14, 187–191. lves, R., Casal, S., Oliveira, M., Ferreira, M., 2003. Contribution of FA profile obtained by high-resolution GC/chemometric techniques to the authenticity of green and roasted coffee varieties. J. Amer. Oil Chem. Soc. 80, 511–517. scenso, A., Ribeiro, H., Marques, H.C., Oliveira, H., Santos, C., Simões, S., 2014. Tretinoin still as a key agent for uv photoaging management. Mini Rev. Med. Chem. 14, 629–641. runner, G., 2013. Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Springer Science & Business Media. S, 1993. Methods for Determination of Particle Size Distribution. Part 4, Guide to Microscope and Image Analysis Methods. British Standards, pp. 36, 3406-4. udryn, G., Nebesny, E., Rachwał-Rosiak, D., 2013. Stability of hydroxycinnamic acids and caffeine from green coffee extracts after heating in food model systems. Eur. Food Res. Technol. 236, 969–978. Products 80 (2016) 93–100 Calixto, F., Fernandes, J., Couto, R., Hernandez, E.J., Najdanovic-Visak, V., Simoes, P.C., 2011. Synthesis of fatty acid methyl estersvia direct transesterification with methanol/carbon dioxide mixtures from spent coffee grounds feedstock. Green Chem. 13, 1196–1202. Chiari, B.G., Trovattib, E., Pecorarob, E., Corrêaa, M.A., Cicarellia, R.M., Ribeiro, S., Isaac, V., 2014. Synergistic effect of green coffee oil and synthetic sunscreen forhealth care application. Ind. Crops Prod. 52, 389–393. COLIPA, 2005. Guidelines For Evaluating Sun Product Water Resistance. COSMOS, 2013. Cosmetics organic and natural standard. COSMOS-standard AISBL, Brussels, pp. 1–30. Couteau, C., Deme, A., Cheignon, C., Coiffard, L.J., 2012. Influence of the hydrophilic–lipophilic balance of sunscreen emulsions on their water resistance property. Drug Dev. Ind. Pharm. 38, 1405–1407. Couto, R., Fernandes, J., Silva, M., Simões, P., 2009. Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit. Fluids 51, 159–166. Dai, J., Mumper, R., 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland) 15, 7313–7352. Draelos, Z.D., 2011. Cosmetic Dermatology: Products and Procedures. Wiley. Dutra, E., Oliveira, D., Kedor-Hackmann, E., Santoro, M., 2004. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz. J. Pharm. Sci. 40, 381–385. EC, 2009. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products, in: EC (Ed.). Official Journal of the European Union. Folter, J.W., Ruijven, M.W., Velikov, K.P., 2012. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 8, 6807–6815. Fregert, S., Bandmann, H.J., 1975. International Contact Dermatitis Research Group patch testing. Springer-Verlag, New York, pp. 8–10. Kale, S., Ghoge, P.P., Ansari, A., Waje, A., Sonawane, A., 2010. Formulation and in-vitro determination of sun protection factor of Nigella sativa Linn. Seed oil sunscreen cream. Int. J. Pharm. Technol. Res. 2. Kelkar, S., Saffron, C.M., Chai, L., Bovee, J., Stuecken, T.R., Garedew, M., Li, Z., Kriegel, R.M., 2015. Pyrolysis of spent coffee grounds using a screw-conveyor reactor. Fuel Process. Technol. 137, 170–178. Laredj-Bourezg, F., Chevalier, Y., Boyron, O., Bolzinger, M.A., 2012. Emulsions stabilized with organic solid particles. Colloids Surf. A 413, 252–259. Luo, Z., Murray, B., Yusoff, A., Morgan, M., Povey, M., Day, A., 2011. Particle-stabilizing effects of flavonoids at the oil–water interface. J. Agric. Food Chem. 59, 2636–2645. Mansur, J.S., Breder, M.N.R., Mansur, M.C.A., Azulay, R.D., 1986. Determinaç ão do fator de proteç ão solar por espectrofotometria. Anais Brasileiros de Dermatologia 61, 167–172. Marku, D., Wahlgren, M., Rayner, M., Sjöö, M., Timgren, A., 2012. Characterization of starch Pickering emulsions for potential applications in topical formulations. Int. J. Pharm. 428, 1–7. Marto, J., Gouveia, L., Jorge, I.M., Duarte, A., Gonç alves, L.M., Silva, S.M.C., Antunes, F., Pais, A.A.C.C., Oliveira, E., Almeida, A.J., Ribeiro, H.M., 2015. Starch-based Pickering emulsions for topical drug delivery: a QbD approach. Colloids Surf. B: Biointerfaces 135, 183–192. Marzulli, F.N., Maibach, H.I., 1976. Contact allergy: predictive testing in man. Contact Derm. 2, 1–17. Pal, R., 1996. Effect of droplet size on the rheology of emulsions. AIChE J. 42, 3181–3190. Preedy, V.R., 2014. Coffee in Health and Disease Prevention. Academic Press. Renner, G., Nano-Titanium Dioxide in Sunscreens, in: COLIPA (Ed.) Brussels 2009. Ribeiro, H., Marto, J., Raposo, S., Agapito, M., Isaac, V., Chiari, B., Lisboa, P., Paiva, A., Barreiros, S., Simões, P., 2013. From coffee industry waste materials to skin-friendly products with improved skin fat levels. Eur. J. Lipid Sci. Technol. 115, 330–336. Saewan, N., Jimtaisong, A., 2013. Photoprotection of natural flavonoids. J. Appl. Pharm. Sci. 3, 129–141. Sayre, R.M., Agin, P.P., Levee, G.J., Marlowe, E., 1979. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 29, 559–566. Serpone, N., Dondi, D., Albini, A., 2007. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg. Chim. Acta 360, 794–802. Shyr, T., Ou-Yang, H., 2015. Sunscreen formulations may serve as additional water barrier on skin surface: a clinical assessment. Int. J. Cosmet. Sci. Singh, G., Joyce, E.M., Beddow, J., Mason, T.J., 2012. Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci. 2, 106–120. Smijs, T.G., Pavel, S., 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 12, 95–112. Speer, K., Kölling-Speer, I., 2006. The lipid fraction of the coffee bean. Braz. J. Plant Physiol. 18, 201–216. Wagemaker, T., Carvalho, C., Maia, N., Baggio, S., Guerreiro, O., 2011. Sun protection factor, content and composition of lipid fraction of green coffee beans. Ind. Crops Prod. 33, 469–473. Wang, S.Q., Tooley, R., 2011. Photoprotection in the era of nanotechnology. Semin. Cutan. Med. Surg. J. 30, 210–213. http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0005 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0010 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0015 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0020 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0025 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0030 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0035 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0040 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0055 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0060 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0065 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0070 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0075 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0085 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0090 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0095 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0100 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0105 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0110 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0115 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0120 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0125 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0130 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0135 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0140 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0150 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0155 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0160 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0165 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0170 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0175 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0180 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0185 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0190 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 http://refhub.elsevier.com/S0926-6690(15)30532-X/sbref0195 The green generation of sunscreens: Using coffee industrial sub-products 1 Introduction 2 Material and methods 2.1 Materials 2.2 Methods 2.2.1 Characterisation of the formulation ingredients 2.2.1.1 Wettability measurements 2.2.1.2 Particle size distribution 2.2.1.3 Natural oils 2.2.1.3.1 Oil extraction 2.2.1.3.2 SPF measurement 2.2.2 Sunscreen formulations—green coffee oil sunscreen (GCO sunscreen) and spent coffee oil sunscreen (SCO sunscreen) 2.2.3 Characterization of the sunscreen formulations 2.2.3.1 Droplet size distribution 2.2.3.2 Structural analysis of the sunscreen formulations 2.2.3.2.1 Rheology studies 2.2.3.2.2 Texture profile analysis (TPA) 2.2.3.3 In vitro SPF 2.2.3.4 In vitro sun product water resistance 2.2.3.5 Skin adhesion properties 2.2.3.6 Human repeat insult patch test (HRIPT) 2.2.3.7 In vivo sun product water resistance 2.2.4 Statistical analysis 3 Results and discussion 3.1 Characterisation of the formulation ingredients 3.1.1 Wettability measurements 3.1.2 Particle size distribution 3.1.3 Natural oils 3.1.3.1 SPF measurement 3.2 Characterization of the sunscreen formulations 3.2.1 Droplet size distribution 3.2.2 Structural analysis of the sunscreen formulations 3.2.2.1 Rheology studies 3.2.2.2 TPA 3.2.3 In vitro SPF 3.2.4 In vitro sun product water resistance 3.2.5 Skin adhesion properties 3.2.6 HRIPT 3.2.7 In vivo sun product water resistance 4 Conclusions Acknowledgments References