
PHYSICAL REVIEW B 90, 075138 (2014)

Competing orders, competing anisotropies, and multicriticality: The case of Co-doped YbRh2Si2
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Motivated by the unusual evolution of magnetic phases in stoichiometric and Co-doped YbRh2Si2, we study
Heisenberg models with competing ferromagnetic and antiferromagnetic ordering combined with competing
anisotropies in exchange interactions and g factors. Utilizing large-scale classical Monte Carlo simulations, we
analyze the ingredients required to obtain the characteristic crossing point of uniform susceptibilities observed
experimentally near the ferromagnetic ordering of Yb(Rh0.73Co0.27)2Si2. The models possess multicritical points,
which we speculate to be relevant for the behavior of clean as well as doped YbRh2Si2. We also make contact
with experimental data on YbNi4P2, where a similar susceptibility crossing has been observed.

DOI: 10.1103/PhysRevB.90.075138 PACS number(s): 64.60.Kw, 71.27.+a, 75.10.Hk, 75.30.Gw

I. INTRODUCTION

Magnetic quantum phase transitions (QPTs) in solids are an
active area of research, with many unsolved problems present
particularly for metallic systems [1,2]. While the simplest
theoretical models assume a single type of ordering instability
and SU(2) spin rotation symmetry, real materials often possess
additional ingredients which complicate the interpretation of
experimental data: (i) a competition of multiple ordered states,
e.g., with different ordering wave vectors and/or different
spin structures that may result from geometric frustration or
multiple nesting conditions, and (ii) magnetic anisotropies that
can modify ordered states and induce additional crossover
energy scales.

The tetragonal heavy-fermion metal YbRh2Si2 is a promi-
nent example for anisotropic and competing magnetic orders.
Its uniform magnetic susceptibility is an order of magnitude
larger for fields Bab applied in the basal plane as compared to
fields Bc along the c axis. Stoichiometric YbRh2Si2 displays
an ordered phase below TN = 70 mK, believed to be an
antiferromagnet with moments oriented in the basal plane.
This order is destroyed at a field-driven QPT at Bcrit

ab = 60 mT;
the corresponding c -axis critical field is Bcrit

c = 0.66 T [3,4].
Upon applying hydrostatic pressure or doping with Co,

both TN and Bcrit increase which is primarily caused by a
reduction of Kondo screening. Moreover, a second phase
transition at TL < TN occurs at small fields, Fig. 1(a), with
the precise nature of the phase for T < TL being unknown
[5,6]. Interestingly, an almost divergent uniform susceptibility
was reported for stoichiometric YbRh2Si2, hinting at the
presence of ferromagnetic correlations [7]. However, in-plane
ferromagnetic order could be detected neither under pressure
nor with doping.

Given this state of affairs, it came as a surprise that
Yb(Rh0.73Co0.27)2Si2 was recently found [8] to develop fer-
romagnetic order below TC = 1.3 K with moments oriented
along the c axis, which was identified as the hard mag-
netic axis from all previous measurements. This “switch”
of response anisotropies in Yb(Rh0.73Co0.27)2Si2 is reflected
in the susceptibilities, where χab(T ) and χc(T ) display
a characteristic crossing point at TX slightly above TC

[Fig. 1(b)]. Furthermore, the evolution of TL with doping in

Yb(Rh1−xCox)2Si2 [Fig. 1(a)] suggests that the transition at TL

involves a ferromagnetic ordering component for x < 0.27.
Parenthetically, we note that antiferromagnetism takes over
again for x � 0.6, with YbCo2Si2 displaying a Néel transition
at TN = 1.65 K and a large in-plane ordered moment of
1.4 μB [6,9].

Taken together, the data show that the magnetism of
Yb(Rh1−xCox)2Si2 is determined by competing antiferromag-
netic (AFM) and ferromagnetic (FM) orders, which, moreover,
are characterized by competing anisotropies.

In this paper we propose that Heisenberg models of local
moments can account for many of the unusual magnetic prop-
erties of Yb(Rh1−xCox)2Si2 by invoking multiple magnetic
interactions and a competition between anisotropic exchange
and anisotropic g factors. We primarily focus on the behavior
of Yb(Rh0.73Co0.27)2Si2 in the vicinity of its finite-temperature
phase transition which can be modeled classically. For the
simplest models, we investigate thermodynamic properties us-
ing large-scale Monte Carlo (MC) simulations and provide an
explicit comparison to experimental susceptibility data. Based
on our results, we propose that multicritical points, naturally
present in our modeling, are of relevance for understanding
the unusual quantum criticality in stoichiometric YbRh2Si2.
Finally, we also discuss the behavior of the heavy-fermion
ferromagnet YbNi4P2, which displays a similar “switch” of
magnetic response anisotropy [10,11].

The body of the paper is organized as follows: In Sec. II
we describe the family of anisotropic Heisenberg models to
be studied, together with methodological aspects of the MC
simulations. Section III is devoted to a detailed modeling of
Yb(Rh0.73Co0.27)2Si2. It starts with a discussion of competing
magnetic anisotropies and then introduces competing FM and
AFM ordering tendencies, in order to match experimental
observations. In Sec. IV we then discuss the presence of
multicritical points in the phase diagrams of our models and
speculate on the role of quantum bicriticality in the phase
diagram of YbRh2Si2. Finally, in Sec. V we briefly discuss the
case of YbNi4P2. A short summary concludes the paper. In the
Appendix we illustrate the effects of an additional single-ion
anisotropy, not present in the spin-1/2 models discussed in the
bulk of the paper.
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FIG. 1. (Color online) (a) Temperature-composition phase dia-
gram of YbRh2Si2 showing the two magnetic transitions at TN and
TL. Pressure (lower axis) has an effect similar to Co doping (upper
axis). (We note that ongoing studies suggest an even more complex
phase diagram with canted AFM order below TL for x < 0.2.) (b)
Susceptibility data from Yb(Rh0.73Co0.27)2Si2 showing the switch of
the anisotropy of the magnetic response as function of temperature.
Figure reproduced from Ref. [8].

II. MODEL AND SIMULATIONS

A. Model and magnetic anisotropies

The Yb3+ ions in YbRh2Si2 are in a 4f 13 configuration
in a tetragonal crystal field. The ionic ground state is a
�7 Kramers doublet [12], which can be represented by an
effective (pseudo)spin-1/2 moment, which further couples to
conduction electrons via a Kondo exchange coupling. Due to
strong spin-orbital coupling, SU(2) spin symmetry is broken
and magnetic anisotropies appear: (i) The (pseudo)spins
couple to an external Zeeman field in an anisotropic fashion,
leading to an anisotropic g tensor. (ii) Magnetic interactions
between the moments will be anisotropic in spin space,
which applies to both direct exchange and Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions. A single-ion anisotropy
is forbidden for elementary spin-1/2; for completeness we
discuss its effects in models of spins S � 1 in the Appendix.

In this paper, we consider spin-only models of Yb moments
in YbRh2Si2. These models will be of Heisenberg type; to
account for competing phases, we will include longer-range

exchange interactions. For simplicity, we place the moments
on a cubic lattice and consider models of the form

H = −
∑

〈i,j〉α
J α

1 Sα
i Sα

j −
∑

〈〈i,j〉〉α
J α

2 Sα
i Sα

j −
∑

iα

gαhαSα
i , (1)

where J1 and J2 denote couplings to first and second neighbors.
Sα

i is the α = x,y,z component of the moment at site i, hα

represents the external magnetic field, and gα are the (diagonal)
components of the g tensor. Because the Yb moments are in a
tetragonal crystal field, we have gx = gy ≡ gab and gz ≡ gc.
Analogously, the exchange interaction between the Yb3+ ions
can be parameterized as J x

1 = J
y

1 = J1(1 + �1) and J z
1 ≡

J1. For simplicity, we consider isotropic second-neighbor
couplings, with J α

2 = J2. Being interested in the behavior near
the finite-temperature phase transition, we approximate the
quantum spins as classical vectors with | �Si | = 1.

B. Monte Carlo simulations

To access the finite-temperature behavior of Eq. (1) we
perform equilibrium MC simulations on cubic lattices of
size N = L × L × L, with L � 32 and periodic boundary
conditions. We employ the single-site Metropolis algorithm
combined with microcanonical steps to improve the sampling
at lower temperatures. Typically, we run 106 MC steps
(MCS) as initial thermalization followed by 106 MCS to
obtain thermal averages, which are calculated by dividing the
measurement steps into 10 bins. Here one MCS corresponds to
one attempted spin flip per site. We consider the same number
of Metropolis and microcanonical steps. In all our results we
set kB = 1 and a = 1, where kB is the Boltzmann constant and
a is the lattice spacing and use J1 as our energy scale.

From the MC data, we calculate thermodynamic ob-
servables as the specific heat C and the uniform magnetic
susceptibilities, both along the c axis,

χc(T ) = g2
c

N

T

(〈
m2

c

〉 − 〈mc〉2
)
, (2)

and in the ab plane,

χab(T ) = 1

2
g2

ab

N

T

〈
m2

ab

〉
, (3)

where 〈· · · 〉 denotes the MC average, mc = Mz, and mab =
(M2

x + M2
y )1/2 with Mα = N−1 ∑

i S
α
i . Due to its definition,

mab incorporates the fact that the x and y components of �S
are equivalent. In χab no subtraction of expectation values is
necessary, as we will only consider ferromagnetic states with
order along the c axis. In the linear-response limit, g factors do
not enter the MC simulations directly but appear as prefactors
in Eqs. (2) and (3) only.

Further, we analyze phase transitions via the Binder
cumulant [13] and we characterize ordered states by the static
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FIG. 2. (Color online) Anisotropic susceptibilities χab (green) and χc (blue) on a log-log scale for FM (J x,y > 0) spin exchange in the
ab plane, J2 = 0, gab = gc, and L = 16: (a) � = −0.05; (b) � = −0.10; and (c) � = −0.50. Finite-size effects are negligible except for
temperatures within 0.2% of TC.

spin structure factors:

Sc(�q) = 1

N

∑

i,j

e−i �q·�rij
〈
Sz

i S
z
j

〉
, (4)

Sab(�q) = 1

N

∑

i,j

e−i �q·�rij
〈
Sx

i Sx
j + S

y

i S
y

j

〉
. (5)

In a long-range ordered phase Sc(ab)(�q)/N → m2
c(ab)δ�q, �Q,

where δ is the Kronecker delta and �Q is the ordering
wave vector. Note that mc(ab) → 1 as T → 0, because the
classical ground state is fluctuationless. The behavior of
Sc(ab)(�q) near �Q allows one to extract the correlation length
ξc(ab)(T ) characterizing the magnetic order. In our finite-size
simulations, the ordering temperature for the second-order
phase transition TC is efficiently extracted from the crossing
points of ξ (T )/L data for different L, according to the scaling
law ξ (T )/L = f [L1/ν(T − TC)], where f (x) is a scaling
function and ν is the correlation length exponent.

III. MODELING OF Yb(Rh0.73Co0.27)2Si2

In this section, we describe a stepwise modeling of mag-
netism in Yb(Rh0.73Co0.27)2Si2 using spin models of the form
(1), with the goal of reproducing the temperature dependence
of χ (T ) in Fig. 1(b). Conduction electrons are not part of this
modeling, i.e., we assume that the magnetic properties can
be described in terms of (effective) local-moment models.
We note that this assumption is not in contradiction with
possible Kondo screening of the Yb 4f moments: First, in
Kondo-lattice systems the local-moment contributions to the
magnetic response are typically much larger than those of
the conduction electrons. Second, universality dictates that,
even in cases where magnetism is fully itinerant, local-moment
models successfully describe many long-wavelength magnetic
properties [14].

A. Competing anisotropies and bicriticality

A central observation in the phase diagram [6,8] of
Yb(Rh1−xCox)2Si2 [Fig. 1(a)] is that the two thermal phase
transitions at TN and TL, existing for small x, merge close to
x = 0.27. Combining the facts that TN marks a transition into
an in-plane antiferromagnet and the state below TC at x = 0.27
is a c-axis ferromagnet suggests the competition of these two
instabilities, with a proximate bicritical (or, more generally,
multicritical) point.

We start by focusing on the competition between in-plane
and c-axis order, which can be captured, in a spin-1/2
model as in Eq. (1), by anisotropic exchange couplings,
with |J x,y

1 | = |J z
1 |(1 + �1). Degeneracy of the two orders

is trivially reached at the Heisenberg point �1 = 0, where
the transition corresponds to a bicritical point. A transition
to c-axis order as in Yb(Rh0.73Co0.27)2Si2 requires �1 < 0.
Sample susceptibilities results assuming FM (J x,y > 0) spin
exchange in the ab plane are shown in Fig. 2, where we see that
while χc(T ) is essentially independent of the anisotropy �1,
χab(T ) is considerably enhanced as we approach the bicritical
point, due to the increase in the in-plane fluctuations. The
behavior of the magnetic susceptibilities in the vicinity of a
bicritical point is further explored in Appendix A.

The fact that, experimentally, χc � χab for a large range
of temperatures above the transition (essentially from TC up to
100 K) implies gc < gab, i.e., the g-factor anisotropy is oppo-
site to the exchange anisotropy. Indeed, for undoped YbRh2Si2
a strong g-factor anisotropy of gab/gc ≈ 20 has been deduced
from electron-spin-resonance (ESR) experiments [12]. For
Yb(Rh0.73Co0.27)2Si2 we have [8] gab/gc = 6.4, and we note
that the end member of the doping series, YbCo2Si2, has a
smaller anisotropy, gab/gc ≈ 2.5, indicating a considerable
variation of the g-factor anisotropy ratio throughout the series,
even though no change in the symmetry of the ground-state
doublet is observed [9,15].

In a modeling of the susceptibility data of
Yb(Rh0.73Co0.27)2Si2 under the assumption of exclusively
nearest-neighbor ferromagnetic coupling J α

1 > 0 (this
assumption will be relaxed in Sec. III B below) we are left
with the following free parameters: the overall energy scale
J1 which determines TC, the exchange anisotropy �, and the
g-factor anisotropy gab/gc. (The absolute value of χ , or g, is
simply adjusted to the data by matching the low-T value of
χab.) To determine � and gab/gc different strategies appear
possible; we found the following useful: First, � is chosen
to match the temperature dependence of the nondivergent
χab(T ) near TC (where χc diverges). In general, small �

should be chosen to ensure proximity to bicriticality. Second,
with � fixed, the crossing temperature TX of χab and χc can
be used to determine the g-factor anisotropy by demanding
that experiment and theory yield the same TX/TC ratio;
experimentally this number is TX/TC = 1.016. After this
procedure is implemented, we add a constant susceptibility
χv to mimic the Van Vleck contribution arising from higher
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FIG. 3. (Color online) Comparison between the numerical and
experimental susceptibilities χ (T ) as a function of T/TC on a log-log
scale. The continuous curves show the simulation results, χab in green
and χc in blue, obtained for � = −0.05 and L = 32 in Eq. (1), with
different exchange parameters in panels (a)–(c). The dashed lines with
symbols represent the corresponding experimental susceptibilities
reported in Ref. [8] in units of 10−6 m3/mol, with TC = 1.30 K.
(a) FM (J x,y > 0) spin exchange in the ab plane, with gab/gc =
2.5 and J1 = 0.87 K. (b) Same as (a), but for AFM (J x,y < 0) spin
exchange in the ab plane and gab/gc = 16.4. (c) Same as (b), with
additional isotropic next-nearest-neighbor FM coupling J2, with J2 =
J1, J1 = 0.25 K, and gab/gc = 7.3. In all simulation results, we have
added a constant Van Vleck background χv = 0.20 × 10−6 m3/mol,
as is seen in Yb(Rh0.73Co0.27)2Si2 [8].

crystal-electric-field levels which are not part of our model.
The value chosen is χv = 0.20 × 10−6 m3/mol, which is
close to the value of 0.172 × 10−6 m3/mol deduced for
Yb(Rh0.73Co0.27)2Si2 [8].

For exclusively nearest-neighbor ferromagnetic coupling,
the first step cannot be satisfactorily followed: The temperature
variation of χab is too large compared to experiment. A sample
set of data is presented in Fig. 3(a). Here � = −0.05 has
been chosen as a compromise; fixing TX/TC then yields
gab/gc = 2.5. The poor agreement with experiment will be
cured upon considering dominant in-plane antiferromagnetic
correlations below.

B. Competing ferromagnetism and antiferromagnetism

While the significant increase of χab towards low tem-
peratures in both Co-doped and undoped YbRh2Si2 re-
flects the presence of ferromagnetic exchange, the tendency

towards antiferromagnetism cannot be ignored. Since un-
doped YbRh2Si2 is believed (and YbCo2Si2 was proved)
to display low-temperature antiferromagnetic order, it is
very likely that strong in-plane antiferromagnetism exist in
Yb(Rh0.73Co0.27)2Si2 as well.

First we repeat the analysis described in Sec. III A
with purely AFM in-plane exchange, i.e., we consider the
model (1) with J

x,y

1 = −J1(1 + �1) < 0 and J z
1 = J1 > 0.

Corresponding results are presented in Fig. 3(b). Since the
coupling of the spins’ z components remains FM, χc does not
change as compared to Fig. 3(a). In contrast, χab is not only
strongly suppressed but also shows much less temperature
variation, as expected for an antiferromagnet. For T > TC

the susceptibility follows roughly χab ∝ 1/(T − 	ab) with a
Curie-Weiss temperature 	ab ∼ J x,y < 0, which results in a
flattening towards low temperature. To restore the χ crossing at
the experimental value of TX/TC, we now need to assume a g-
factor ratio of gab/gc = 16.4. The behavior of χab for T < TC

is now much closer to that observed in Yb(Rh0.73Co0.27)2Si2.
However, its very slow decay upon heating above TC still
indicates a rather poor match with the experiment.

The natural conclusion is that both FM and AFM tendencies
are present for the in-plane order, a qualitative conclusion
reached earlier on the basis of experimental data [7]. There
are various ways to implement the competition of FM and
AFM order in a microscopic spin model. Here we choose
a simple and frustration-free way. We employ an isotropic
ferromagnetic second-neighbor coupling J2. For J

xy

1 = 0 and
J2 �= 0, we have two decoupled sublattices which indepen-
dently order ferromagnetically. As first discussed in Ref. [16],
thermal fluctuations select collinear states such that the wave
vectors �Q = (0,0,0) (sublattices parallel) and �Q = (π,π,π )
(sublattices antiparallel) are degenerated. A finite J

xy

1 ≷ 0
can then be used to tip the balance between dominant
ferromagnetic and antiferromagnetic in-plane correlations.

Results with J2 included are presented in Fig. 3(c). As
anticipated, J

xy

2 > 0 enhances the FM fluctuations in the ab

plane, which has two immediate effects: (i) The gab/gc ratio
required to fit TX/TC decreases with increasing J2 and (ii)
the behavior of χab for T > TC also approaches the one from
χ

exp
ab as we increase J2, indicating that the effects of this extra

exchange term are considerably felt for T � TC. [For J2 >

0.5J1(1 + �) we have a Curie-Weiss temperature 	ab > 0.]
Whereas for FM in-plane correlation χab(T ) shows a

distinct dependence on the anisotropy �1 (Fig. 2), this effect
is considerably weaker for AFM correlations since in this case
χab is itself strongly suppressed. Therefore, we obtain similar
results, as in Fig. 3(c), for �1 = −0.10 and even �1 = −0.50.
While this diminishes our predictive power with respect to
the precise value of the anisotropy, we recall that Fig. 1(b)
suggests proximity to the bicritical point, which constrains �1

to be small.
The good match of theoretical and experimental suscep-

tibilities in Fig. 3(c) suggests that our classical anisotropic
Heisenberg model captures the essentials of the ferromagnetic
ordering process in Yb(Rh0.73Co0.27)2Si2.

We note that the scenario of different competing
kinds of in-plane exchange interactions is also (indirectly)
supported by the complicated propagation vectors ob-
served in pure YbCo2Si2, where �Q = 2π (1/4,0.08,1) and
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�Q = 2π (1/4,1/4,1) for the high-T and low-T phases, respec-
tively. While such �Q might also result from competition of
purely AFM exchanges, our analysis of the T dependence of
χab for T > TC gives a very strong hint that some of these
in-plane exchanges have to be ferromagnetic.

IV. MULTICRITICALITY: CLASSICAL AND QUANTUM

The modeling of Yb(Rh0.73Co0.27)2Si2 presented so far
suggests the relevance of bicritical behavior, arising from
the competition of in-plane antiferromagnetism and out-of-
plane ferromagnetism. Indeed, the temperature-doping phase
diagram of YbRh2Si2 (Fig. 1) indicates the presence of a finite-
temperature bicritical point at a doping level of x ≈ 25%. In
the simplest scenario, the lower-temperature phase transition
line emerging from this point, labeled TL, would then cor-
respond to a first-order transition between antiferromagnetic
and ferromagnetic phases, but more complicated structures
with mixed (e.g., canted) orders are possible as well (those are
not described by the simple Heisenberg models of Sec. II).

A remarkable feature of the TN and TL lines in Fig. 1 is that
TL, although more strongly suppressed with decreasing x as
compared to TN, appears to be finite almost down to x = 0.
Given that TN is almost vanishing there as well, this invites
speculations about (approximate) quantum bicriticality near
x = 0. This scenario would involve simultaneous quantum
criticality of both itinerant in-plane antiferromagnetism and
c-axis ferromagnetism. In fact, some observations in stoichio-
metric (or slightly Ge-doped) YbRh2Si2 have been suggested
to be compatible with ferromagnetic quantum criticality. This
includes the T −0.7 dependence of the Grüneisen parameter
� and the T −0.3 dependence of the specific heat C/T at low
temperatures above TN (see Ref. [2]). However, this agreement
has mainly been considered fortuitous, as the ordered phase
of stoichiometric YbRh2Si2 is not ferromagnetic. Quantum bi-
criticality would thus provide a new angle on the observations.

On the theoretical side, we note that bicriticality involving
in-plane and c-axis order by itself is not exotic but simply
corresponds to a point with an emergent higher symmetry,
here O(3). What is, however, interesting and potentially exotic
is quantum bicriticality involving itinerant antiferromagnetism
and ferromagnetism, which has not been studied theoretically.
Within the Landau-Ginzburg-Wilson description, pioneered
by Hertz [17], these two transitions have different dynamical
exponents, z = 2 and 3, respectively, such that one can
expect rich and nontrivial crossover phenomena, even if both
transitions are above their respective upper-critical dimension
[18]. This defines a fascinating field for future theoretical
studies [19].

We note that another possible candidate for such a quantum
bicriticality scenario in an itinerant system is the Laves-phase
NbFe2, where competing AFM and FM orders have been
observed near the quantum critical point [20].

V. COMPARISON TO YbNi4P2

Our success in modeling the finite-temperature suscepti-
bilities of Yb(Rh0.73Co0.27)2Si2 suggests we should look at
other materials with similar phenomenology. Remarkably, the
heavy-fermion ferromagnet YbNi4P2 has been recently found

[10,11] to display a switch of magnetic response anisotropy
similar to Yb(Rh0.73Co0.27)2Si2.

YbNi4P2 is a tetragonal metal with a Curie temperature
of TC = 0.15 K. The low-temperature ferromagnetic moment
points perpendicular to the c axis, as indicated by the divergent
susceptibility χab at TC. Notably, χc(T ) is larger than χab(T )
for essentially all temperatures above TC. Hence, the g factors
obey gc > gab, such that both the exchange and g-factor
anisotropies appear opposite to those of Yb(Rh0.73Co0.27)2Si2.
In YbNi4P2, these anisotropies lead to a crossing of χab(T )
and χc(T ) at TX/TC ≈ 1.13.

There is, however, an additional ingredient relevant for
YbNi4P2 [in contrast to Yb(Rh0.73Co0.27)2Si2]. This material
appears to be located extremely close to a quantum critical
point. TC can be suppressed with a small amount of As
doping in YbNi4(P1−xAsx)2, with TC → 0 extrapolated for
x ≈ 0.1. This nearly quantum critical behavior in YbNi4P2 is
manifest in the temperature dependence of χ , which follows
χc ∝ T −0.66 in the temperature range TC < T < 10 K. It is this
power law which cannot be reproduced by any means in our
classical simulation. As seen in Fig. 2 the high-temperature
behavior of χ is Curie-like, and this divergence becomes
stronger upon approaching TC. In contrast, in YbNi4P2 the
high-temperature Curie-like behavior, χc ∝ 1/T , is followed
by the weaker power-law divergence upon cooling.

Recalling the good match we were able to find for
Yb(Rh0.73Co0.27)2Si2, we conclude that the latter material
is dominated by effectively classical magnetism, and the
quantum critical behavior of stoichiometric YbRh2Si2 does
not appear to extend to up to 27% of Co doping.

VI. SUMMARY

Motivated by the doping and temperature evolution of mag-
netism of Yb(Rh1−xCox)2Si2, we studied Heisenberg models
with competing anisotropies in the exchange interactions and g

factors. Such models possess ordered phases with spins aligned
either along the c axis or in the ab plane, separated from each at
low temperature by a first-order line which ends at a bicritical
point. The proximity to this bicritical point, combined with
the competition between ferromagnetic and antiferromagnetic
ordering, naturally explains the “switch” in the anisotropy in
the magnetic susceptibilities, as experimentally observed in
Yb(Rh0.73Co0.27)2Si2.

While our classical local-moment modeling gives a good
account of the susceptibility data of Yb(Rh0.73Co0.27)2Si2
near its finite-temperature phase transition, it fails to describe
YbNi4P2, where a similar switch of response anisotropies has
been observed. This highlights the importance of quantum
fluctuations, as YbNi4P2 is located very close to a putative
ferromagnetic quantum critical point.

More broadly, our results point towards bicritical behavior
being relevant in certain Yb-based heavy-fermion compounds.
Metallic quantum bicritical points, in particular involving
phenomena with different critical exponents, are thus an
exciting field for future research.
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APPENDIX: MODEL WITH SINGLE-ION ANISOTROPY

To further explore the physics of bicriticality in a local-
moment model, it is instructive to consider, in addition to
the exchange anisotropy, a single-ion anisotropy of the form
−D

∑
i(S

z
i )2. While such a term is absent from a spin-1/2

model, it is generically present for spins S � 1 in a tetragonal
environment.

For illustration, we consider a model with ferromagnetic
nearest-neighbor exchange only, with the Hamiltonian

H = −
∑

〈i,j〉

∑

α

J αSα
i Sα

j − D
∑

i

(
Sz

i

)2
, (A1)

where D > 0 (D < 0) favors spin alignment along the c axis
(in the ab plane). For the exchange anisotropy, we stick to the
parametrization J x = J y = J (1 + �) and J z ≡ J . Studies of
the model (A1) have appeared before in the literature [21,22],
and we complement these results here.

1. Phase diagram

The competition between the single-ion anisotropy D and
the exchange anisotropy � in Eq. (A1) leads to phase diagrams
as shown in Fig. 4. (Figure 4(b) matches within error bars
the corresponding result in Ref. [21].) At T = 0 there is a
first-order phase transition between in-plane and c-axis order at
D = zJ�/2, where z is the lattice coordination number. This
transition continues to finite T and terminates at at bicritical
point [22–24]. To efficiently sample all spin configurations
close to this first-order phase transition, we employ the
parallel-tempering algorithm [25,26]. The thermal transition
at the bicritical point is in the 3d Heisenberg universality
class, i.e., the O(3) symmetry is restored here. We notice
that when crossing the first-order line upon heating up the
system, we always favor the state which is the ground state for
D = 0, which has a higher entropy because both spin angles
are unlocked.

2. Susceptibilities

We now turn to the behavior of the anisotropic magnetic
susceptibilities (Fig. 5). Motivated by the experimental results
to Yb(Rh0.73Co0.27)2Si2, we only consider magnetic order

10−1
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( T
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100
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FIG. 5. (Color online) Anisotropic susceptibilities χab and χc on a log-log scale for gab = gc and L = 32: (a) � = 0.5 and D = 2.20J ;
(b) � = 0.5 and D = 2.25J ; (c) � = 0.5 and D = 2.50J ; (d) � = 1.0 and D = 4.40J ; (e) � = 1.5 and D = 6.60J ; and (f) � = −0.5 and
D = −1.50J .
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along the c axis. For all results in Fig. 5, we consider gab = gc

and the effects of the single-ion anisotropy are encoded by the
parameter D. In Figs. 5(a)–5(c) we see that as we approach
the bicritical point, the fluctuations in χab are enhanced.
Interestingly, in 5(a) and 5(b), we even have χab > χc at
intermediary temperatures above TC, with the two curves
crossing only very close to the transition. This difference
between χab and χc is further enhanced if we increase the
single-ion anisotropy D [Figs. 5(d) and 5(e)]. (In both of them
we keep the ratio D/� the same as in Fig. 5(a) so we do

not move too far away from the bicritical point.) Finally, in
Fig. 5(f) we consider both D and � negative and we always
have χc > χab for T > TC.

Therefore, we see that model (A1) naturally describes the
crossing of the susceptibilities above TC as a result of the
proximity to a bicritical point. While it is true that the splitting
between χab and χc above the crossing point is small, it is still
remarkable that a purely local-moment description is able to
capture such crossover, an observation which motivates us to
associate this crossing to the proximity of a bicritical point.
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