Physics Letters B 758 (2016) 296–320 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Search for a low-mass pseudoscalar Higgs boson produced in association with a bb pair in pp collisions at √ s = 8 TeV .CMS Collaboration � CERN, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Received 11 November 2015 Received in revised form 21 April 2016 Accepted 2 May 2016 Available online 6 May 2016 Editor: M. Doser Keywords: CMS Physics Higgs A search is reported for a light pseudoscalar Higgs boson decaying to a pair of τ leptons, produced in association with a bb pair, in the context of two-Higgs-doublet models. The results are based on pp collision data at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7 fb−1. Pseudoscalar boson masses between 25 and 80 GeV are probed. No evidence for a pseudoscalar boson is found and upper limits are set on the product of cross section and branching fraction to τ pairs between 7 and 39 pb at the 95% confidence level. This excludes pseudoscalar A bosons with masses between 25 and 80 GeV, with SM-like Higgs boson negative couplings to down-type fermions, produced in association with bb pairs, in Type II, two-Higgs-doublet models. © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction The discovery of a new boson with a mass close to 125 GeV [1–3], consistent with the standard model (SM) Higgs boson, has shed light on one of the most important questions of physics: the origin of the mass of elementary particles. Although all the mea- surements made up to now are in impressive agreement with the predictions of the SM [4,5], the SM cannot address several crucial issues such as the hierarchy problem, the origin of the matter- antimatter asymmetry and the nature of dark matter [6–9]. Theo- ries predicting new physics beyond the standard model have been proposed to address these open questions. Many of them predict the existence of more than one Higgs boson. Two-Higgs-doublet models (2HDM) [10–14] are a particularly simple extension of the SM. Starting with the two doublet fields �1 and �2 and assuming an absence of CP violation in the Higgs sector, after SU(2)L symmetry breaking five physical states are left: two CP-even (h and H), one CP-odd (A), and two charged (H±) bosons. To avoid tree-level flavour changing neutral currents, one imposes a Z2 symmetry according to which the Lagrangian is required to be invariant under �1 → �1, �2 → −�2. The re- sult is four distinct classes of models, corresponding to different patterns of quark and lepton couplings. The most commonly con- sidered are Type I and Type II. In Type I, all quarks and leptons � E-mail address: cms-publication-committee-chair@cern.ch. obtain masses from 〈�1〉. In Type II, up-type quarks masses are derived from 〈�1〉 ≡ v1 and down-type quarks and charged lep- tons masses are derived from 〈�2〉 ≡ v2. In the limit of an exact Z2 symmetry [15], the Higgs sector of a 2HDM can be described by six parameters: four Higgs boson masses (mh, mH, mA, and mH± ), the ratio of the vacuum expectation values of the two doublets (tan β ≡ v2/v1) and the mixing angle α of the two neutral CP-even Higgs states. Allowing a soft breaking of the Z2 symmetry intro- duces a new Higgs mixing parameter m2 12 [11]. In the “decoupling limit” of 2HDMs [16,17], the masses mH, mA, and mH± are all large, cos(β − α) � 1, and h is the observed boson at 125 GeV and is SM-like. An SM-like h or H at 125 GeV can also be obtained in the “alignment limit” [16,17] without the other bosons being heavy. This is an interesting case and can be compatible with the SM-like Higgs boson total width measurements and branching fractions even if one or more of the light Higgs bosons have a mass below half of 125 GeV provided one adjusts the model parameters so that the branching fraction of the SM Higgs boson to pairs of light Higgs bosons is very small. This scenario can be tested at the CERN LHC by searching for singly produced light bosons decaying to a pair of τ leptons with large cross sections. In Type II 2HDMs, if the Higgs coupling to the third generation of quarks is enhanced, as happens at large tan β , a large production cross section is expected for the production of the low-mass A boson in association with bb. The cross section is of the order of 1 pb for regions of the 2HDM pa- rameter space with sin(β − α) ≈ 1, cos(β − α) > 0 and small m2 12. The cross section can be much larger, between 10 and 100 pb, http://dx.doi.org/10.1016/j.physletb.2016.05.003 0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. http://dx.doi.org/10.1016/j.physletb.2016.05.003 http://www.ScienceDirect.com/ http://www.elsevier.com/locate/physletb http://creativecommons.org/licenses/by/4.0/ mailto:cms-publication-committee-chair@cern.ch http://dx.doi.org/10.1016/j.physletb.2016.05.003 http://creativecommons.org/licenses/by/4.0/ http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.05.003&domain=pdf CMS Collaboration / Physics Letters B 758 (2016) 296–320 297 for some other regions of the parameter space, i.e. sin(β ± α) ≈ 1, cos(β − α) < 0 and tan β > 5 [18,19], where the coupling of the SM-like h boson to down-type fermions is negative (“wrong sign” Yukawa coupling). Consequently, given the large production cross section of the A boson in such scenarios, the LHC data are sensitive to its presence for some combinations of model parameters. Previous searches for di-τ resonances [20,21] have mainly fo- cused on masses greater than the mass of the Z boson, for exam- ple in the context of the minimal supersymmetric standard model (MSSM) [22–24], which is a highly constrained 2HDM of Type II. In fact, a light pseudoscalar Higgs boson is excluded in the MSSM, but an A boson can still have quite a low mass in general 2HDMs, even given all the constraints from LEP, Tevatron and LHC data [18,19]. This letter presents a search for a low-mass pseudoscalar Higgs boson produced in association with a bb pair and decaying to a pair of τ leptons. Associated production of the A boson with a bb pair has the advantage that there is a higher signal over background ratio relative to gluon–gluon fusion production. Such a signature is also relevant in the context of light pseudoscalar mediators and coy dark sectors [25]. The analysis is based on pp collision data at a centre-of-mass energy of 8 TeV recorded by the CMS experiment at the LHC in 2012. The integrated luminosity amounts to 19.7 fb−1. The τ leptons are reconstructed via their muon, electron and hadronic decays. In the following, the terms leptons refer to electrons and muons, whereas τ s that decay into hadrons + ντ are denoted by τh. The invariant mass distributions of the τ pairs in all three channels are used to search for pseudo- scalar bosons with masses between 25 and 80 GeV. 2. The CMS detector and event samples The central feature of the CMS apparatus is a superconduct- ing solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each com- posed of a barrel and two endcap sections. Muons are detected in gas-ionisation detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A de- tailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [26]. The first level of the CMS triggering system (Level-1), com- posed of custom hardware processors, uses information from the calorimeters and the muons detectors to select the most interest- ing events in a fixed time interval of less than 4 μs. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. A set of Monte Carlo (MC) simulated events is used to model the signal and backgrounds. Drell–Yan, W boson production asso- ciated to additional jets, production of top quark pairs (tt), and diboson (WW, WZ and ZZ) backgrounds are generated using the leading order (LO) MadGraph 5.1 package [27]. Single top quark samples are produced using the next-to-leading-order (NLO) gen- erator powheg (v1.0) [28]. Simulated samples of gluon–gluon fu- sion to bbA signal events are generated with pythia 6.426 [29] for masses between 25 and 80 GeV in 5 GeV steps. As no loop is involved at leading order in the bbA production process, the prod- uct of acceptance and efficiency for signal only depends on the A boson mass, with no dependence on other model parameters. The simulated samples are produced using the CTEQ6L1 parton distribution function (PDF) set [30]. All the generated signal and background samples are processed with the simulation of the CMS detector based on geant 4 [31]. Additional events are added to the MC-simulated events, with weights corresponding to the luminosity profile in data, to simu- late LHC conditions and the presence of other soft pp interactions (pileup) in the same or neighbouring bunch crossings of the main interaction. Finally, identical algorithms and procedures are used to reconstruct both simulated events and the collected data. 3. Event reconstruction Event reconstruction is based on the particle-flow (PF) algo- rithm [32,33], which aims to exploit the information from all sub- detectors to identify individual particles (PF candidates): charged and neutral hadrons, muons, electrons, and photons. Complex ob- jects, such as τ leptons that decay into hadrons and a neutrino, jets, and the imbalance in the transverse momentum in the event are reconstructed from PF candidates. The deterministic annealing algorithm [34,35] is used to recon- struct the collision vertices. The vertex with the maximum sum of squared transverse momenta (p2 T) of all associated tracks is consid- ered as the primary vertex. Muons, electrons, and τhs are required to originate from the primary collision vertex. Muon reconstruction starts by matching tracks in the silicon tracker with tracks in the outer muon spectrometer [36]. A global muon track is fitted to the hits from both tracks. A preselection is applied to these muon tracks that includes requirements on their impact parameters, to distinguish genuine prompt muons from spurious muons or muons from cosmic rays. In addition, muons are required to pass isolation criteria to separate prompt muons from those associated with a jet, usually from the semi-leptonic decays of heavy quarks. The muon relative isolation is defined as the following [26]: Irel = ⎡ ⎣ ∑ charged pT + max ⎛ ⎝0, ∑ neutral pT + ∑ γ pT − 1 2 ∑ charged,PU pT ⎞ ⎠ ⎤ ⎦/pμ T , (1) where all sums are over the scalar pT of particles inside a cone with size of R = √ ( η)2 + ( φ)2 = 0.4 relative to the muon direction, where η is the pseudorapidity and φ is the azimuthal angle (in radians) in the plane transverse to the beam axis, and “charged” corresponds to charged hadrons, muons, and electrons originating from the primary vertex, “neutral” refers to neutral hadrons and “charged, PU” refers to charged hadrons, muons, and electrons originating from other reconstructed vertices. The last of these sums is used to subtract the neutral pileup component in the computation, and the factor of 1/2 reflects the approximate ratio of neutral to charged particles in jets [37]. Electron reconstruction starts from ECAL superclusters, which are groups of one or more associated clusters of energy deposited in the ECAL. Superclusters are matched to track seeds in the inner tracker (the closest layers of the tracker to the interaction point) and electron tracks are formed from those. Trajectories are recon- structed based on the modelling of electron energy loss due to bremsstrahlung, and are fitted using the Gaussian sum filter algo- rithm [38]. Electron identification is based on a multivariate (MVA) boosted decision tree technique [39] to discriminate genuine elec- trons from jets misidentified as electrons [40]. The most powerful variables for the discrimination of τh candidates are the ratio of energy depositions in the ECAL and HCAL, the angular difference between the track and supercluster, and the distribution of energy depositions in the electron shower. Relative isolation is defined in 298 CMS Collaboration / Physics Letters B 758 (2016) 296–320 an analogous way to that of Eq. (1) and is used to distinguish prompt electrons from electrons within a jet. Jets are reconstructed from PF candidates using the anti-kT [41] algorithm with a distance parameter of 0.5, in the FastJet pack- age [42]. Several corrections are applied to the jet energies to reduce the effect of pileup and correct for the nonlinear response of the calorimeters [37]. To identify and reject jets from pileup, an MVA discriminator is defined based on information from the vertex and the jet distribution [43]. Jets identified as originating from a b quark, called b-tagged jets, are identified using the com- bined secondary vertex (CSV) algorithm [44], which is based on a likelihood technique, and exploits information such as the impact parameters of charged-particle tracks and the properties of recon- structed decay vertices. The hadron-plus-strips (HPS) algorithm [45,46] is used to re- construct the τh candidates. It starts from a jet, and searches for candidates produced by the main hadronic decay modes of the τ lepton: either directly to one charged hadron, or via intermediate ρ and a1(1280) mesons to one charged hadron plus one or two neutral pions, or three charged hadrons with up to one neutral pion. The charged hadrons are usually long-lived pions, while the neutral pions decay rapidly into two photons. The HPS algorithm takes into account the possible conversion of photons into e+e− pairs in material in front of the ECAL, and their corresponding bremsstrahlung in the magnetic field with consequent broadening of the distribution of the shower. Strips are formed from energy depositions in the ECAL arising from electrons and photons. The strip sizes in ECAL are 0.05 × 0.20 in η × φ. The τh decay modes are reconstructed by combining the charged hadrons with ECAL strips. Neutrinos produced in τh decays are not reconstructed but contribute to Emiss T . Isolation requirements based on an MVA tech- nique take into account the pT of PF candidates around the τ lepton direction and information related to its lifetime, such as the transverse impact parameter of the leading track of the τh can- didate and its significance for decays to one charged hadron or the distance between the τh production and decay vertices and its significance for decays to three charged hadrons. Electrons can be misidentified as τh candidates with one track and ECAL strip. An MVA discriminator based on properties of the reconstructed elec- tron, such as the distribution of the shower and the ratio of the ECAL and HCAL deposited energies, is used to improve pion/elec- tron separation. Finally, another MVA discriminator is used to sup- press muons reconstructed as τh candidates with one track. It ex- ploits information about the energy deposited in the calorimeters with τh candidates, as well as hits and segments reconstructed in the muon spectrometers that can be matched to the components of the τh. The missing transverse momentum vector pmiss T is defined as the projection on the plane perpendicular to the beams of the neg- ative vector sum of the momenta of all reconstructed particles in an event. Its magnitude is referred to as Emiss T . To improve the res- olution, and reduce the effect of pileup, a pmiss T based on an MVA regression technique [47] is used, which takes into account several collections of particles from different vertices. The invariant mass of the τ pair (mττ ) is used as the observable for the statistical interpretation of results in all channels and is reconstructed using the SVFit algorithm [48]. The SVFit algorithm uses a maximum likelihood technique where the likelihood takes as input the four-momenta of the visible decay products of the τ , the projection of pmiss T along the x- and y-axes, as well as the covariance matrix of the components of pmiss T . The relative mττ resolution obtained through the SVFit algo- rithm is about 15% over the whole mass range. It is slightly higher for the eμ channel because of the presence of one additional neu- trino. 4. Event selection Three di-τ final states are considered: μτh, eτh, and eμ. The μμ and ee final states are discarded because of their small branch- ing fractions and large backgrounds, while τhτh is not considered because of inefficiencies due to the trigger threshold. The selection of events in the μτh or eτh final state starts from a trigger that requires a combination of a muon or elec- tron with pT > 17 or 22 GeV, respectively, and an isolated τh with pT > 20 GeV. This combined trigger is seeded by a single muon or electron, with pT > 16 or 20 GeV at Level-1. The offline selection requires a muon or electron with pT > 18 or 24 GeV, respec- tively, and |η| < 2.1, and an oppositely charged τh candidate with pT > 22 GeV and |η| < 2.3. Leptons are required to pass a tight identification [36,40] and have a relative isolation, Irel, <0.1. The τh candidates have to pass a tight working point of the MVA dis- criminant that combines isolation and lifetime information (result- ing in a τh reconstruction and isolation efficiency of about 30% and a jet to τh misidentification rate between 0.5 and 1.0 per mille), as well as the requirements to suppress electron and muon candi- dates misidentified as τh, described in Section 3. Leptons and τh candidates are required to be separated by R > 0.5. Events with additional identified and isolated electrons or muons are discarded. To suppress W + jets and tt backgrounds, the transverse mass be- tween the lepton transverse momentum p T and pmiss T , defined in Eq. (2), is required to be smaller than 30 GeV, MT( , pmiss T ) = √ 2p T Emiss T (1 − cos φ), (2) where φ is the azimuthal angle between the lepton transverse momentum and the pmiss T vectors. Events selected in the eμ channel must pass a trigger that requires a combination of an electron and a muon, with pT > 17(8) GeV for the leading (subleading) lepton. Depending on the flavour of the leading lepton that passes the trigger selection, events are required to have either a muon with pT > 18 GeV and an electron with pT > 10 GeV, or a muon with pT > 10 GeV and an electron with pT > 20 GeV. The fiducial regions for muons (electrons) are defined by |η| < 2.1(2.3). Additionally, leptons with opposite charge are selected and required to be spatially separated by R > 0.5. The muons and electrons are required to be isolated, with rel- ative isolation less than 0.15 in the barrel (|η| < 1.479) and less than 0.1 in the endcaps (|η| > 1.479). In addition, both muons and electrons are required to pass the tight identification criteria as described in Section 3. Events having additional identified and iso- lated leptons are vetoed, similarly to the μτh and eτh channels. To reduce the large tt background in the eμ final state, a linear com- bination of the Pζ and P vis ζ variables [49] is used. Pζ and P vis ζ are defined as follows: Pζ = ( pμ T + pe T + pmiss T ) · ζ̂ and P vis ζ = ( pμ T + pe T ) · ζ̂ , (3) where ζ̂ is the unit vector of the axis bisecting the angle be- tween pμ T and pe T of the muon and electron candidates, respec- tively. These variables take into account the fact that the neutrinos produced in τ decays are mostly collinear with the visible τ decay products, but this is not true for neutrinos from the other sources, nor for misidentified τh candidates from background. The linear combination Pζ − αP vis ζ is required to be greater than −40 GeV, with an optimal value of α of 1.85, determined in the CMS search for a MSSM Higgs boson in the ττ final state [21]. To further re- duce tt and electroweak backgrounds in the eμ final state, the MT CMS Collaboration / Physics Letters B 758 (2016) 296–320 299 between the dilepton transverse momentum and pmiss T , defined as in Eq. (2), is required to be less than 25 GeV. In addition to the above selections, events in all channels are also required to have at least one b-tagged jet with pT > 20 GeV and |η| < 2.4, which passes the working point of the CSV b-tagging discriminant (corresponding to b-tagging efficiency of about 65% and light-jet misidentification rate of about 1%) and the pileup MVA discriminant for jets, and is separated by at least R = 0.5 from the signal leptons. 5. Background estimation One of the main backgrounds in all three channels is Z/γ ∗ → ττ . Drell–Yan events with invariant mass larger than 50 GeV are modelled using “embedded” event samples, as follows: Z → μμ events are selected in data with an invariant mass larger than 50 GeV to remove the mass range biased by a trigger requirement. The reconstructed muons are replaced by simulated τ leptons that are subsequently decayed via tauola [50]. To model the detector response to the τ decay products the GEANT based detector sim- ulation is used. Jets, pmiss T , and τh are then reconstructed, while lepton isolations are recomputed [51]. This substantially reduces the uncertainties related to the modelling of the Emiss T , the jet en- ergy scale, and the b jet efficiency. Low-mass Z/γ ∗ → ττ events, which cannot be covered by the embedded samples, are taken di- rectly from a simulated sample. Multijet events originated by QCD processes comprise another major background, especially at low di-τ mass. The contribution of the QCD multijet background arises from jet → τh misidentification and to a lesser extent from jet → μ and jet → e misidentifica- tion, depending on the final state. Other contributions are due to the presence of muons or electrons from the semi-leptonic de- cays of heavy flavour quarks. This background is estimated from data. Multijet background normalisation in the μτh and eτh final states is determined from a sample defined in the same way as the signal selection described in Section 4, except that the lep- ton and the τh candidate are required to have electric charge of same sign (SS). The events with the SS selection are dominated by multijets, and the limited contribution from the other processes is subtracted using predictions from simulated events. To take into account the difference in the multijet normalisation between the SS and opposite-sign (OS) regions, an OS/SS extrapolation factor is used to multiply the multijet yield in the SS region. This fac- tor is measured in signal-free events selected with inverted lepton isolations (0.2 < Irel < 0.5) and a relaxed τh isolation. The OS/SS extrapolation factor is parameterised as a function of mττ , and fitted with an exponentially decreasing function. This ratio is ap- proximately equal to 1.2 for di-τ masses of 20 GeV, and decreases to about 1.1 for masses above 50 GeV. The mττ distribution for the QCD multijet background is ob- tained from a control region in data by inverting the lepton iso- lation and relaxing the τh isolation. These two selections are re- quired to attain a control region populated with QCD multijet events and obtain a sufficiently smooth mττ distribution. A correc- tion has been applied to account for the differences between the nominal selection and the selection used to estimate the QCD mul- tijet mττ distribution. The correction depends on the τh misiden- tification rate (the probability for a τh, that passes a looser iso- lation requirement, to pass the tight isolation selection). This rate is parameterised as a function of the pT of the τh in three bins of pseudorapidity. It was checked that the mττ distributions ob- tained when the lepton isolation is inverted and the τh isolation is relaxed, are consistent within statistical uncertainties with the normal search procedure. In the eμ final state, the QCD multijet background is measured simultaneously with other backgrounds using misidentified leptons in data, through a “misidentified-lepton” method [51], and requir- ing at least one jet misidentified as a lepton. The probability for loosely preselected leptons, mainly dominated by leptons within jets, to be identified as good leptons is measured in samples de- pleted of isolated leptons as a function of the pT and η. Weights obtained from this measurement are applied to events in data with electrons and muons passing the loose preselection but not the nominal selection criteria, to extract the QCD multijet background contribution. In the μτh and eτh final states, the W + jets background arises from events with a genuine isolated and identified lepton from the leptonic decay of a W boson and a jet misidentified as a τh. Its contribution is highly suppressed by requiring the MT of the lepton and pmiss T of Eq. (2) to be <30 GeV (low-MT region). The W + jets normalisation is determined from collision data using the yield in the high-MT (>70 GeV) sideband, multiplied by an ex- trapolation factor that is the ratio of the W + jets events in the high- and low-MT regions in simulated events. The small contri- bution from other backgrounds in events selected with high-MT selection is subtracted using the prediction from simulations. The distribution of mττ for the W + jets background is taken from simulation. A correction to the distribution, measured in a sam- ple enriched in W + jets and as a function of the pT of the lepton originating from the W boson, is applied to correct the differences between observed and simulated events. In the eμ final state, the W + jets background is estimated together with the backgrounds that contain at least one jet misidentified as a lepton, such as QCD multijets, as previously described. The Z/γ ∗ → μμ and Z/γ ∗ → ee processes contribute, respec- tively, to the μτh and eτh final states, because of the misidentifi- cation of a lepton as a τh. The normalisation and the distribution of mττ for these backgrounds are obtained from simulation. The presence of genuine b jets from top quark decays makes the tt background contribution important. The tt background has true τh ≈ 70% of the times and misidentified τh in ≈30% of the times. The distribution of mττ for tt events is taken from simulation, but normalised to the measurement of the tt cross section [52]. A reweighting is applied to generated tt events to improve the modelling of the top quark pT spectrum. This reweighting only depends on the simulated pT of top and anti- top quarks [52], and has a negligible impact on the final results. In addition, the mττ distributions observed in data and predicted by MC simulations are compared in a region with high purity of tt events, and depleted in signal, obtained by raising the pT threshold of the leptons and τh, and requiring at least two b-tagged jets with a higher pT threshold than that used in event selections described in Section 4. Good agreement is found between distributions in data and MC simulation. Single top quark, diboson (WW, WZ, ZZ), and SM Higgs back- grounds represent a small fraction of the total background, and are taken from simulations and normalised to the NLO cross sec- tions [51,53,54]. Scale factors to correct for residual discrepancies between data and MC simulation related to the lepton triggering, identification, and isolation are applied to the signal and the backgrounds es- timated from MC simulations. These correction factors are deter- mined using the “tag-and-probe” technique [45,46,55], which relies on the presence of two leptons from Z boson decays. No correction factor is applied to the τh candidate nor to the selected b jet, as the corrections are found to be consistent with unity. The uncer- tainties related to these scale factors are described in Section 6. 300 CMS Collaboration / Physics Letters B 758 (2016) 296–320 Table 1 Systematic uncertainties that affect the normalisation. Systematic source Systematic uncertainty μτh eτh eμ N or m al is at io n Integrated luminosity 2.6% 2.6% 2.6% Muon ID/trigger 2% — 2% Electron ID/trigger — 2% 2% τh ID/trigger 8% 8% — Muon to τh misidentification rate 30% — — Electron to τh misidentification rate — 30% — b tagging efficiency 1–4% 1–4% 1–4% b mistag rate 1–9% 1–9% 1–9% Emiss T scale 1–2% 1–2% 1–2% Z/γ ∗ → ττ normalisation 3% 3% 3% Z/γ ∗ → ττ low-mass normalisation 10% 10% 10% QCD multijet normalisation 20% 20% — Reducible background normalisation — — 30% W + jets normalisation 30% 30% — tt cross section 10% 10% 10% Diboson cross section 15% 15% 15% H → ττ signal strength 30% 30% 30% Th eo ry Underlying event and parton shower 1–5% 1–5% 1–5% Scales for A boson production 10% 10% 10% PDF for generating signal 10% 10% 10% NLO vs. LO 20% 20% 20% 6. Systematic uncertainties The results of the analysis are extracted from a fit based on the mττ distributions in each final state, as discussed in Section 7. Systematic uncertainties in the fit affect the normalisation or the shape of the mττ distribution for the signal and backgrounds. The normalisation uncertainties are summarised in Table 1. The uncertainty in normalisation that affects the signal and most of the simulated backgrounds is related to the integrated lu- minosity at 8 TeV, which is measured with a precision of 2.6% [56]. Uncertainties in muon and electron identification and trigger effi- ciency, as well as in the τh identification efficiency, are determined using the “tag-and-probe” technique [45,46,55]. These uncertain- ties are about 2% for muon and electron and 8% for τh. Changes in acceptance due to the uncertainty in the b tagging efficiency and the b mistag rate range from 1 to 9% depending on the process. To estimate the uncertainty in the W + jets normalisation, the un- certainty in the extrapolation factor from the high-MT sideband to the signal region is obtained by varying Emiss T and its resolution by their uncertainties, leading to a 30% uncertainty. The uncertainty in the normalisation of QCD multijet background is obtained by adding the statistical uncertainty related to the sample size of the QCD multijet-dominated control region in quadrature with the un- certainty in the extrapolation factor from the control region to the signal region; this amounts to 20%. The normalisation uncertainty for the tt background amounts to 10%; it is determined from a control region where both W bosons originating from the top and antitop quarks decay to τ leptons [51]. Uncertainties related to the diboson background cross section amount to 15% [57]. A 30% uncertainty in the signal strength (ratio of observed to expected cross sections) for the SM Higgs boson is applied [51]. Theoretical uncertainties arising from the underlying event and parton showering matching scale, PDF [58] and the dependence on factorisation and normalisation scales are considered for signal. The PDF uncertainty is taken as the difference in the signal accep- tance for the signal simulation with CTEQ6L1, MSTW2008NLO [59], and NNPDF2.3NLO [60] PDF sets, leading to a 10% uncertainty. A 20% uncertainty in the signal normalisation is applied to take into account the possible difference in the product of acceptance and efficiency between the LO sample generated with PYTHIA6.4 and the NLO sample generated by the MadGraph5_aMC@NLO gen- erator [61]. The τh and electron energy scales are among the systematic uncertainties affecting the mττ distributions. To estimate the ef- fects of these uncertainties, the electron energy scale is changed by 1% or by 2.5% for electrons reconstructed in the barrel or in the endcap regions of the ECAL [40], respectively, while the τh energy scale is varied by 3% [46]. The top quark pT reweighting correction, used for simulated tt events to match the observed pT spectrum in a dedicated control region, is changed between zero and twice the nominal value [52,62]. The uncertainty in the τh misidentifica- tion rate correction of the QCD multijet and W + jets background distributions has been taken into account. To estimate this uncer- tainty, the τh misidentification rate correction has been changed between zero and twice its value. An additional trigger uncertainty is applied to the μτh and eτh final states to cover possible differ- ences between collision data and simulated events in the low-pT lepton region, where the trigger efficiency has not yet reached its plateau. These low-pT leptons are attributed an uncertainty that corresponds to half of the difference between the measured and the plateau efficiencies. Finally, uncertainties due to the limited number of simulated events, or the number of events in the con- trol regions in data, are taken into account. These uncertainties are uncorrelated across the bins in each background distribution [63]. Among all systematic uncertainties, the ones that have the largest impact on the results are the τh energy scale, the uncer- tainties related to the jet to muon, electron or τh misidentification rates, and the uncertainties from the limited number of simulated events (or the observed events in data control regions). The im- pact of these individual uncertainties on the combined expected limit ranges between 5 and 10% depending on mττ . 7. Results The mass distributions for the μτh, eτh and eμ channels are shown in Fig. 1. No significant excess of data is observed on top of the SM backgrounds. A binned maximum likelihood fit has been applied simultaneously to all three distributions, taking into ac- count the systematic uncertainties as nuisance parameters. A log- normal probability distribution function is assumed for the nui- sance parameters that affect the event yields of the various back- ground contributions. Systematic uncertainties affecting the mττ distributions are assumed to have a Gaussian probability distribu- tion function. CMS Collaboration / Physics Letters B 758 (2016) 296–320 301 Fig. 1. Observed and predicted mττ distributions in the μτh (top), eτh (middle), and eμ (bottom) channels. The plots on the left are the zoomed-in versions for mττ distributions below 50 GeV. A signal for a mass of mA = 35 GeV is shown for a cross section of 40 pb. In μτh and eτh final states, the electroweak background is composed of Z → ee, Z → μμ, W + jets, diboson, and single top quark contributions. In the eμ final state, the electroweak background is composed of diboson and single top backgrounds, while the misidentified e/μ background is due to QCD multijet and W + jets events. The contribution from the SM Higgs boson is negligible and therefore not shown. Expected background contributions are shown for the values of nuisance parameters (systematic uncertainties) obtained after fitting the signal + background hypothesis to the data. 302 CMS Collaboration / Physics Letters B 758 (2016) 296–320 Fig. 2. Observed and expected upper limits at 95% CL on the product of cross section and branching fraction for a light pseudoscalar Higgs boson produced in association with two b quarks, that decays to two τ leptons, in the μτh (left), eτh (middle), and eμ (right) channels. The 1σ and 2σ bands represent the 1 and 2 standard deviation uncertainties on the expected limits. Upper limits on the product of cross section and branching fraction of the pseudoscalar Higgs boson to ττ are set at 95% confidence level (CL) using the modified frequentist construction CLs [64,65] and the procedure is described in Refs. [66,67]. The observed and expected limits on the bbA → bbττ process and the one and two standard deviation uncertainties on the expected lim- its are shown in Fig. 2. Among the three channels, μτh is the most sensitive one for the entire mass range because of the higher branching fraction relative to the eμ channel, lower trigger and of- fline thresholds on the lepton pT relative to the eτh channel, and higher muon than electron identification efficiency. Although back- ground yields increase sharply with the mass, the acceptance of the signal grows faster, providing thereby more stringent limits on the cross section at higher masses. The product of signal accep- tance and efficiency in the μτh channel changes from 1.5 × 10−5 at an A boson mass of 25 GeV to 6 × 10−4 at mA = 80 GeV. In the eτh channel it ranges from 3 × 10−6 at 25 GeV to 2 × 10−4 at 80 GeV, and finally in the eμ channel, it ranges from 1.3 × 10−5 at 25 GeV to 3.5 × 10−4 at 80 GeV. The trigger requirements and the pT threshold of the leptons and τhs are the main factors in driving the signal acceptance and efficiency, especially at low masses. The upper limits from the combination of all final states are presented in Fig. 3, with exact values quoted in Table 2. They range from 7 to 39 pb for A boson masses between 25 and 80 GeV. In ad- dition, superimposed in Fig. 3 are several typical production cross sections for the pseudoscalar Higgs boson produced in association with a pair of b quarks in Type II 2HDM, for mA less than half of the 125 GeV Higgs boson (h), and for B(h → AA) < 0.3 [19]. The points are obtained from a series of scans in the 2HDM param- eter space. Points with SM-like Yukawa coupling and small tan β have sin(β − α) ≈ 1, cos(β − α) > 0, and low m2 12, while points with “wrong sign” Yukawa coupling have sin(β ± α) ≈ 1, small cos(β − α) < 0, and tan β > 5. While the combined results of the current analysis are not sensitive to the SM-like Yukawa coupling, they exclude the “wrong sign” Yukawa coupling for almost the entire mass range, and more generally for tan β > 5. For masses greater than mh/2, where the constraint on B(h → AA) < 0.3 is automatically satisfied, the production cross section of the pseudo- scalar Higgs boson in association with a pair of b quarks is much larger [18]; consequently, the exclusion limit extends to masses up to 80 GeV. 8. Summary A search by the CMS experiment for a light pseudoscalar Higgs boson produced in association with a bb pair and decaying to a Fig. 3. Expected cross sections for Type II 2HDM, superimposed on the expected and observed combined limits from this search. Cyan and green points, indicating small values of tanβ as shown in the colour scale, have sin(β − α) ≈ 1, cos(β − α) > 0, and low m2 12, and correspond to models with SM-like Yukawa coupling, while red and orange points, with large tanβ , have sin(β + α) ≈ 1, small cos(β − α) < 0, and tanβ > 5, and correspond to the models with a “wrong sign” Yukawa coupling. Theoretically viable points are shown only up to mA = mh/2 [19]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) pair of τ leptons is reported. Three final states: μτh, eτh, and eμ, are used where τh represents a hadronic τ decay. The results are based on proton–proton collision data accumulated at a centre-of- mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb−1. Pseudoscalar boson masses between 25 and 80 GeV are probed. No evidence for a pseudoscalar boson is found and upper limits are set on the product of cross section and branching frac- tion to τ pairs between 7 and 39 pb at the 95% confidence level. This excludes pseudoscalar A bosons with masses between 25 and 80 GeV, with SM-like Higgs boson negative couplings to down- type fermion, produced in association with bb pairs, in Type II, two-Higgs-doublet models. Acknowledgements We congratulate our colleagues in the CERN accelerator depart- ments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS in- stitutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and CMS Collaboration / Physics Letters B 758 (2016) 296–320 303 Table 2 Expected and observed combined upper limits at 95% CL in pb, along with their 1 and 2 standard deviation uncertainties, in the product of cross section and branching fraction for pseudoscalar Higgs bosons produced in association with bb pairs. mA (GeV) Expected limit (pb) Observed limit (pb) −2σ −1σ Median +1σ +2σ 25 20.4 28.1 41.3 63.1 95.5 35.8 30 14.6 20.0 29.1 44.3 66.3 38.7 35 12.2 16.6 24.3 36.7 55.1 37.4 40 10.3 14.1 20.6 31.1 46.5 31.3 45 8.4 11.6 16.8 25.3 37.9 20.3 50 7.0 9.5 13.7 20.7 30.8 13.2 55 6.7 9.2 13.3 20.1 29.9 10.5 60 6.1 8.2 12.0 18.0 26.7 10.6 65 5.6 7.7 11.2 17.0 25.4 8.3 70 5.1 7.0 10.2 15.6 23.3 7.1 75 5.3 7.2 10.5 15.9 23.8 7.9 80 5.5 7.5 10.9 16.6 25.0 8.0 personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construc- tion and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie pro- gramme and the European Research Council and EPLANET (Eu- ropean Union); the Leventis Foundation; the A. P. Sloan Founda- tion; the Alexander von Humboldt Foundation; the Belgian Fed- eral Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT- Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Pol- ish Science, cofinanced from European Union, Regional Develop- ment Fund; the OPUS programme of the National Science Cen- ter (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofi- nanced by EU-ESF and the Greek NSRF; the National Priorities Re- search Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845. References [1] ATLAS Collaboration, Observation of a new particle in the search for the Stan- dard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, http://dx.doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214. [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, http://dx.doi.org/ 10.1016/j.physletb.2012.08.021, arXiv:1207.7235. [3] CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at √s = 7 and 8 TeV, J. High Energy Phys. 06 (2013) 081, http://dx.doi.org/10.1007/JHEP06(2013)081, arXiv:1303.4571. [4] ATLAS Collaboration, Measurement of the Higgs boson mass from the H → γ γ and H → Z Z∗ → 4 channels in pp collisions at center-of-mass ener- gies 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052004, http://dx.doi.org/10.1103/PhysRevD.90.052004, arXiv:1406.3827. [5] CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions us- ing proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212, http:// dx.doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662. [6] J. Wess, B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70 (1974) 39, http://dx.doi.org/10.1016/0550-3213(74)90355-1. [7] H.-C. Cheng, I. Low, TeV symmetry and the little hierarchy problem, J. High Energy Phys. 09 (2003) 051, http://dx.doi.org/10.1088/1126-6708/2003/09/051, arXiv:hep-ph/0308199. [8] T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Bounds on universal extra di- mensions, Phys. Rev. D 64 (2001) 035002, http://dx.doi.org/10.1103/PhysRevD. 64.035002, arXiv:hep-ph/0012100. [9] G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rep. 405 (2005) 279, http://dx.doi.org/10.1016/j.physrep. 2004.08.031, arXiv:hep-ph/0404175. [10] T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226, http://dx.doi.org/10.1103/PhysRevD.8.1226. [11] N.G. Deshpande, E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574, http://dx.doi.org/10.1103/PhysRevD.18.2574. [12] N.G. Deshpande, E. Ma, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493, http:// dx.doi.org/10.1016/0550-3213(79)90225-6. [13] J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide, Fron- tiers in Physics, vol. 80, Perseus Books, 2000. [14] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rep. 516 (2012) 1, http://dx.doi.org/10.1016/j.physrep.2012.02.002, arXiv:1106.0034. [15] S. Glashow, S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1958), http://dx.doi.org/10.1103/PhysRevD.15.1958. [16] H.E. Haber, Y. Nir, Multi-scalar models with a high-energy scale, Nucl. Phys. B 335 (1990) 363, http://dx.doi.org/10.1016/0550-3213(90)90499-4. [17] J.F. Gunion, H.E. Haber, The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019, http:// dx.doi.org/10.1103/PhysRevD.67.075019, arXiv:hep-ph/0207010. [18] B. Dumont, J.F. Gunion, Y. Jiang, S. Kraml, Constraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal, Phys. Rev. D 90 (2014) 035021, http://dx.doi.org/10.1103/PhysRevD.90.035021, arXiv: 1405.3584v1. [19] J. Bernon, J.F. Gunion, Y. Jiang, S. Kraml, Light Higgs bosons in two-Higgs- doublet models, Phys. Rev. D 91 (2015) 075019, http://dx.doi.org/10.1103/ PhysRevD.91.075019, arXiv:1412.3385. [20] ATLAS Collaboration, Search for neutral Higgs bosons of the minimal supersym- metric standard model in pp collisions at √s = 8 TeV with the ATLAS detector, J. High Energy Phys. 11 (2014) 056, http://dx.doi.org/10.1007/JHEP11(2014)056, arXiv:1409.6064. [21] CMS Collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, J. High Energy Phys. 10 (2014) 160, http:// dx.doi.org/10.1007/JHEP10(2014)160, arXiv:1408.3316. [22] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104, http://dx.doi.org/ 10.1016/0550-3213(75)90636-7. [23] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159, http://dx.doi.org/10.1016/0370-2693(76)90319-1. [24] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromag- netic and strong interactions, Phys. Lett. B 69 (1977) 489, http://dx.doi.org/ 10.1016/0370-2693(77)90852-8. http://dx.doi.org/10.1016/j.physletb.2012.08.020 http://dx.doi.org/10.1016/j.physletb.2012.08.021 http://dx.doi.org/10.1007/JHEP06(2013)081 http://dx.doi.org/10.1103/PhysRevD.90.052004 http://dx.doi.org/10.1140/epjc/s10052-015-3351-7 http://dx.doi.org/10.1016/0550-3213(74)90355-1 http://dx.doi.org/10.1088/1126-6708/2003/09/051 http://dx.doi.org/10.1103/PhysRevD.64.035002 http://dx.doi.org/10.1016/j.physrep.2004.08.031 http://dx.doi.org/10.1103/PhysRevD.8.1226 http://dx.doi.org/10.1103/PhysRevD.18.2574 http://dx.doi.org/10.1016/0550-3213(79)90225-6 http://refhub.elsevier.com/S0370-2693(16)30150-2/bib47756E696F6E3A313938397765s1 http://refhub.elsevier.com/S0370-2693(16)30150-2/bib47756E696F6E3A313938397765s1 http://dx.doi.org/10.1016/j.physrep.2012.02.002 http://dx.doi.org/10.1103/PhysRevD.15.1958 http://dx.doi.org/10.1016/0550-3213(90)90499-4 http://dx.doi.org/10.1103/PhysRevD.67.075019 http://dx.doi.org/10.1103/PhysRevD.90.035021 http://dx.doi.org/10.1103/PhysRevD.91.075019 http://dx.doi.org/10.1007/JHEP11(2014)056 http://dx.doi.org/10.1007/JHEP10(2014)160 http://dx.doi.org/10.1016/0550-3213(75)90636-7 http://dx.doi.org/10.1016/0370-2693(76)90319-1 http://dx.doi.org/10.1016/0370-2693(77)90852-8 http://dx.doi.org/10.1016/j.physletb.2012.08.021 http://dx.doi.org/10.1140/epjc/s10052-015-3351-7 http://dx.doi.org/10.1103/PhysRevD.64.035002 http://dx.doi.org/10.1016/j.physrep.2004.08.031 http://dx.doi.org/10.1016/0550-3213(79)90225-6 http://dx.doi.org/10.1103/PhysRevD.67.075019 http://dx.doi.org/10.1103/PhysRevD.91.075019 http://dx.doi.org/10.1007/JHEP10(2014)160 http://dx.doi.org/10.1016/0550-3213(75)90636-7 http://dx.doi.org/10.1016/0370-2693(77)90852-8 304 CMS Collaboration / Physics Letters B 758 (2016) 296–320 [25] J. Kozaczuk, T.A.W. Martin, Extending LHC coverage to light pseudoscalar me- diators and coy dark sectors, J. High Energy Phys. 04 (2015) 046, http:// dx.doi.org/10.1007/JHEP04(2015)046, arXiv:1501.07275. [26] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, http://dx.doi.org/10.1088/1748-0221/3/08/S08004. [27] F. Maltoni, T. Stelzer, MadEvent: automatic event generation with MadGraph, J. High Energy Phys. 02 (2003) 027, http://dx.doi.org/10.1088/1126-6708/2003/ 02/027, arXiv:hep-ph/0208156. [28] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, http://dx.doi.org/10.1088/1126-6708/2007/11/070, arXiv:0709.2092. [29] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026, http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175. [30] J. Pumplin, D.R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, New gen- eration of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012, http://dx.doi.org/10.1088/1126-6708/2002/ 07/012, arXiv:hep-ph/0201195. [31] S. Agostinelli, et al., GEANT4 Collaboration, GEANT4—a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250, http://dx.doi.org/10.1016/ S0168-9002(03)01368-8. [32] CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and Emiss T , CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009. URL: http://cdsweb.cern.ch/record/1194487. [33] CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics Anal- ysis Summary CMS-PAS-PFT-10-001, 2010. URL: http://cdsweb.cern.ch/record/ 1247373. [34] K. Rose, Deterministic annealing for clustering, compression, classification, re- gression and related optimisation problems, Proc. IEEE 86 (1998) 2210–2239, http://dx.doi.org/10.1109/5.726788. [35] W. Waltenberger, R. Frühwirth, P. Vanlaer, Adaptive vertex fitting, J. Phys. G 34 (2007) N343, http://dx.doi.org/10.1088/0954-3899/34/12/N01. [36] CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at √s = 7 TeV, J. Instrum. 7 (2012) P10002, http://dx.doi.org/10.1088/ 1748-0221/7/10/P10002, arXiv:1206.4071. [37] CMS Collaboration, Determination of jet energy calibration and transverse mo- mentum resolution in CMS, J. Instrum. 6 (2011) P11002, http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277. [38] W. Adam, R. Frühwirth, A. Strandlie, T. Todorov, Reconstruction of elec- trons with the Gaussian-sum filter in the CMS tracker at the LHC, J. Phys. G 31 (2005) N9, http://dx.doi.org/10.1088/0954-3899/31/9/N01, arXiv:physics/ 0306087. [39] H. Voss, A. Höcker, J. Stelzer, F. Tegenfeldt, TMVA, the toolkit for multi- variate data analysis with ROOT, in: XIth International Workshop on Ad- vanced Computing and Analysis Techniques in Physics Research (ACAT), 2007, p. 40. URL: http://pos.sissa.it/archive/conferences/050/040/ACAT_040.pdf, arXiv: physics/0703039. [40] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at √ s = 8 TeV, J. Instrum. 10 (2015) P06005, http://dx.doi.org/10.1088/1748-0221/10/06/P06005, arXiv: 1502.02701. [41] M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm, J. High Energy Phys. 04 (2008) 063, http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189. [42] M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896, http://dx.doi.org/10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097. [43] CMS Collaboration, Pileup jet identification, CMS Physics Analysis Summary CMS-PAS-JME-13-005, 2013. URL: http://cdsweb.cern.ch/record/1581583. [44] CMS Collaboration, Identification of b-quark jets with the CMS experiment, J. Instrum. 8 (2013) P04013, http://dx.doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462. [45] CMS Collaboration, Performance of tau-lepton reconstruction and identifica- tion in CMS, J. Instrum. 7 (2012) P01001, http://dx.doi.org/10.1088/1748-0221/ 7/01/P01001, arXiv:1109.6034. [46] CMS Collaboration, Reconstruction and identification of τ lepton decays to hadrons and ντ at CMS, J. Instrum. 11 (2016) P01019, http://dx.doi.org/10. 1088/1748-0221/11/01/P01019, arXiv:1510.07488. [47] CMS Collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at √ s = 8 TeV, J. Instrum. 10 (2015) P02006, http://dx.doi.org/10.1088/1748-0221/10/02/P02006, arXiv:1411.0511. [48] L. Bianchini, J. Conway, E.K. Friis, C. Veelken, Reconstruction of the Higgs mass in H → ττ events by dynamical likelihood techniques, J. Phys. Conf. Ser. 513 (2014) 022035, http://dx.doi.org/10.1088/1742-6596/513/2/022035, arXiv: 1603.05910. [49] CDF Collaboration, Search for MSSM Higgs decaying to tau pairs, CDF Pub- lic Note 7161, 2004. URL: http://www-cdf.fnal.gov/physics/exotic/r2a/20040610. ditau_mssmhiggs/note_7161.pdf. [50] S. Jadach, Z. Was, R. Decker, J.H. Kuhn, The tau decay library Tauola: ver- sion 2.4, Comput. Phys. Commun. 76 (1993) 361, http://dx.doi.org/10.1016/ 0010-4655(93)90061-G. [51] CMS Collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, J. High Energy Phys. 05 (2014) 104, http://dx.doi.org/10.1007/ JHEP05(2014)104, arXiv:1401.5041. [52] CMS Collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at √s = 8 TeV, Eur. Phys. J. C 75 (2015) 542, http://dx.doi.org/10.1140/epjc/s10052-015-3709-x, arXiv:1505.04480. [53] CMS Collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at √ s = 8 TeV, Phys. Rev. Lett. 112 (2014) 231802, http://dx.doi.org/10.1103/PhysRevLett.112.231802, arXiv: 1401.2942. [54] J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC, J. High Energy Phys. 07 (2011) 018, http://dx.doi.org/10.1007/JHEP07(2011)018, arXiv:1105.0020. [55] CMS Collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at √ s = 7 TeV with the CMS experiment, J. High Energy Phys. 10 (2011) 132, http://dx.doi.org/10.1007/JHEP10(2011)132, arXiv: 1107.4789. [56] CMS Collaboration, CMS luminosity based on pixel cluster counting — Sum- mer 2013 update, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013. URL: http://cdsweb.cern.ch/record/1598864. [57] CMS Collaboration, Measurement of W+W− and ZZ production cross sections in pp collisions at √s = 8 TeV, Phys. Lett. B 721 (2013) 190, http://dx.doi.org/ 10.1016/j.physletb.2013.03.027, arXiv:1301.4698. [58] S. Alekhin, et al., The PDF4LHC Working Group interim report, arXiv:1101.0536, 2011. [59] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/ s10052-009-1072-5, arXiv:0901.0002. [60] R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio, S. Forte, A. Guf- fanti, N.P. Hartland, J.I. Latorre, J. Rojo, M. Ubiali, Parton distributions with LHC data, Nucl. Phys. B 867 (2012) 244, http://dx.doi.org/10.1016/j.nuclphysb. 2012.10.003, arXiv:1207.1303. [61] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, http://dx.doi.org/10. 1007/JHEP07(2014)079, arXiv:1405.0301. [62] CMS Collaboration, Measurement of differential top-quark pair production cross sections in pp collisions at √s = 7 TeV, Eur. Phys. J. C 73 (2013) 2339, http://dx.doi.org/10.1140/epjc/s10052-013-2339-4, arXiv:1211.2220. [63] R. Barlow, C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun. 77 (1993) 219, http://dx.doi.org/10.1016/0010-4655(93)90005-W. [64] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693, http://dx.doi.org/10.1088/0954-3899/28/10/313. [65] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods A 434 (1999) 435, http://dx.doi.org/10.1016/ S0168-9002(99)00498-2, arXiv:hep-ex/9902006. [66] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood- based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, http://dx.doi.org/ 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727; Erratum: http://dx.doi.org/10.1140/epjc/s10052-013-2501-z. [67] ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group, Pro- cedure for the LHC Higgs boson search combination in Summer 2011, Tech- nical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, CERN, 2011. URL: http://cdsweb.cern.ch/record/1379837. CMS Collaboration V. Khachatryan, A.M. Sirunyan, A. Tumasyan Yerevan Physics Institute, Yerevan, Armenia http://dx.doi.org/10.1007/JHEP04(2015)046 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://dx.doi.org/10.1088/1126-6708/2003/02/027 http://dx.doi.org/10.1088/1126-6708/2007/11/070 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://cdsweb.cern.ch/record/1194487 http://cdsweb.cern.ch/record/1247373 http://cdsweb.cern.ch/record/1247373 http://dx.doi.org/10.1109/5.726788 http://dx.doi.org/10.1088/0954-3899/34/12/N01 http://dx.doi.org/10.1088/1748-0221/7/10/P10002 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://dx.doi.org/10.1088/0954-3899/31/9/N01 http://pos.sissa.it/archive/conferences/050/040/ACAT_040.pdf http://dx.doi.org/10.1088/1748-0221/10/06/P06005 http://dx.doi.org/10.1088/1126-6708/2008/04/063 http://dx.doi.org/10.1140/epjc/s10052-012-1896-2 http://cdsweb.cern.ch/record/1581583 http://dx.doi.org/10.1088/1748-0221/8/04/P04013 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://dx.doi.org/10.1088/1748-0221/11/01/P01019 http://dx.doi.org/10.1088/1748-0221/10/02/P02006 http://dx.doi.org/10.1088/1742-6596/513/2/022035 http://www-cdf.fnal.gov/physics/exotic/r2a/20040610.ditau_mssmhiggs/note_7161.pdf http://www-cdf.fnal.gov/physics/exotic/r2a/20040610.ditau_mssmhiggs/note_7161.pdf http://dx.doi.org/10.1016/0010-4655(93)90061-G http://dx.doi.org/10.1007/JHEP05(2014)104 http://dx.doi.org/10.1140/epjc/s10052-015-3709-x http://dx.doi.org/10.1103/PhysRevLett.112.231802 http://dx.doi.org/10.1007/JHEP07(2011)018 http://dx.doi.org/10.1007/JHEP10(2011)132 http://cdsweb.cern.ch/record/1598864 http://dx.doi.org/10.1016/j.physletb.2013.03.027 http://refhub.elsevier.com/S0370-2693(16)30150-2/bib416C656B68696E3A32303131736Bs1 http://refhub.elsevier.com/S0370-2693(16)30150-2/bib416C656B68696E3A32303131736Bs1 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003 http://dx.doi.org/10.1007/JHEP07(2014)079 http://dx.doi.org/10.1140/epjc/s10052-013-2339-4 http://dx.doi.org/10.1016/0010-4655(93)90005-W http://dx.doi.org/10.1088/0954-3899/28/10/313 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://dx.doi.org/10.1140/epjc/s10052-011-1554-0 http://dx.doi.org/10.1140/epjc/s10052-013-2501-z http://cdsweb.cern.ch/record/1379837 http://dx.doi.org/10.1007/JHEP04(2015)046 http://dx.doi.org/10.1088/1126-6708/2003/02/027 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1088/1748-0221/7/10/P10002 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://dx.doi.org/10.1088/1748-0221/11/01/P01019 http://dx.doi.org/10.1016/0010-4655(93)90061-G http://dx.doi.org/10.1007/JHEP05(2014)104 http://dx.doi.org/10.1016/j.physletb.2013.03.027 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003 http://dx.doi.org/10.1007/JHEP07(2014)079 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://dx.doi.org/10.1140/epjc/s10052-011-1554-0 CMS Collaboration / Physics Letters B 758 (2016) 296–320 305 W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth 1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler 1, V. Knünz, A. König, M. Krammer 1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady 2, B. Rahbaran, H. Rohringer, J. Schieck 1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz 1 Institut für Hochenergiephysik der OeAW, Wien, Austria V. Mossolov, N. Shumeiko, J. Suarez Gonzalez National Centre for Particle and High Energy Physics, Minsk, Belarus S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Universiteit Antwerpen, Antwerpen, Belgium S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs Vrije Universiteit Brussel, Brussel, Belgium P. Barria, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, T. Maerschalk, A. Marinov, L. Perniè, A. Randle-conde, T. Reis, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang 3 Université Libre de Bruxelles, Bruxelles, Belgium K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Ghent University, Ghent, Belgium S. Basegmez, C. Beluffi 4, O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco 5, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov 6, L. Quertenmont, M. Selvaggi, M. Vidal Marono Université Catholique de Louvain, Louvain-la-Neuve, Belgium N. Beliy, G.H. Hammad Université de Mons, Mons, Belgium W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, M. Hamer, C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato 7, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote 7, A. Vilela Pereira Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil S. Ahuja a, C.A. Bernardes b, A. De Souza Santos b, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, C.S. Moon a,8, S.F. Novaes a, Sandra S. Padula a, D. Romero Abad, J.C. Ruiz Vargas a Universidade Estadual Paulista, São Paulo, Brazil b Universidade Federal do ABC, São Paulo, Brazil 306 CMS Collaboration / Physics Letters B 758 (2016) 296–320 A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov University of Sofia, Sofia, Bulgaria M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina 9, F. Romeo, S.M. Shaheen, J. Tao, C. Wang, Z. Wang, H. Zhang Institute of High Energy Physics, Beijing, China C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria Universidad de Los Andes, Bogota, Colombia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia Z. Antunovic, M. Kovac University of Split, Faculty of Science, Split, Croatia V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic Institute Rudjer Boskovic, Zagreb, Croatia A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski University of Cyprus, Nicosia, Cyprus M. Bodlak, M. Finger 10, M. Finger Jr. 10 Charles University, Prague, Czech Republic A.A. Abdelalim 11,12, A. Awad, A. Mahrous 11, A. Radi 13,14 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken National Institute of Chemical Physics and Biophysics, Tallinn, Estonia P. Eerola, J. Pekkanen, M. Voutilainen Department of Physics, University of Helsinki, Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Helsinki Institute of Physics, Helsinki, Finland J. Talvitie, T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France CMS Collaboration / Physics Letters B 758 (2016) 296–320 307 I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms, O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France J.-L. Agram 15, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte 15, X. Coubez, J.-C. Fontaine 15, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin 2, K. Skovpen, P. Van Hove Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France S. Gadrat Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France T. Toriashvili 16 Georgian Technical University, Tbilisi, Georgia Z. Tsamalaidze 10 Tbilisi State University, Tbilisi, Georgia C. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer, V. Zhukov 6 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann 2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo 17, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel 18, H. Jung, A. Kalogeropoulos, O. Karacheban 18, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann 18, R. Mankel, I. Marfin 18, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh, C. Wissing Deutsches Elektronen-Synchrotron, Hamburg, Germany 308 CMS Collaboration / Physics Letters B 758 (2016) 296–320 V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo 2, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, J. Schwandt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald University of Hamburg, Hamburg, Germany M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann 2, S.M. Heindl, U. Husemann, I. Katkov 6, A. Kornmayer 2, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Athens, Athens, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas University of Ioánnina, Ioánnina, Greece G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath 19, F. Sikler, V. Veszpremi, G. Vesztergombi 20, A.J. Zsigmond Wigner Research Centre for Physics, Budapest, Hungary N. Beni, S. Czellar, J. Karancsi 21, J. Molnar, Z. Szillasi Institute of Nuclear Research ATOMKI, Debrecen, Hungary M. Bartók 22, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari University of Debrecen, Debrecen, Hungary P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo, S.K. Swain National Institute of Science Education and Research, Bhubaneswar, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U. Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia Panjab University, Chandigarh, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma University of Delhi, Delhi, India S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan Saha Institute of Nuclear Physics, Kolkata, India CMS Collaboration / Physics Letters B 758 (2016) 296–320 309 A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty 2, L.M. Pant, P. Shukla, A. Topkar Bhabha Atomic Research Centre, Mumbai, India T. Aziz, S. Banerjee, S. Bhowmik 23, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu 24, G. Kole, S. Kumar, B. Mahakud, M. Maity 23, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar 23, K. Sudhakar, N. Sur, B. Sutar, N. Wickramage 25 Tata Institute of Fundamental Research, Mumbai, India S. Chauhan, S. Dube, S. Sharma Indian Institute of Science Education and Research (IISER), Pune, India H. Bakhshiansohi, H. Behnamian, S.M. Etesami 26, A. Fahim 27, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh 28, M. Zeinali Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Felcini, M. Grunewald University College Dublin, Dublin, Ireland M. Abbrescia a,b, C. Calabria a,b, C. Caputo a,b, A. Colaleo a, D. Creanza a,c, L. Cristella a,b, N. De Filippis a,c, M. De Palma a,b, L. Fiore a, G. Iaselli a,c, G. Maggi a,c, M. Maggi a, G. Miniello a,b, S. My a,c, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, R. Radogna a,b, A. Ranieri a, G. Selvaggi a,b, L. Silvestris a,2, R. Venditti a,b, P. Verwilligen a a INFN Sezione di Bari, Bari, Italy b Università di Bari, Bari, Italy c Politecnico di Bari, Bari, Italy G. Abbiendi a, C. Battilana 2, A.C. Benvenuti a, D. Bonacorsi a,b, S. Braibant-Giacomelli a,b, L. Brigliadori a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, S.S. Chhibra a,b, G. Codispoti a,b, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, D. Fasanella a,b, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, S. Marcellini a, G. Masetti a, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, A.M. Rossi a,b, T. Rovelli a,b, G.P. Siroli a,b, N. Tosi a,b, R. Travaglini a,b a INFN Sezione di Bologna, Bologna, Italy b Università di Bologna, Bologna, Italy G. Cappello a, M. Chiorboli a,b, S. Costa a,b, F. Giordano a,b, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b a INFN Sezione di Catania, Catania, Italy b Università di Catania, Catania, Italy G. Barbagli a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, S. Gonzi a,b, V. Gori a,b, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,b, L. Viliani a,b a INFN Sezione di Firenze, Firenze, Italy b Università di Firenze, Firenze, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera INFN Laboratori Nazionali di Frascati, Frascati, Italy V. Calvelli a,b, F. Ferro a, M. Lo Vetere a,b, M.R. Monge a,b, E. Robutti a, S. Tosi a,b a INFN Sezione di Genova, Genova, Italy b Università di Genova, Genova, Italy 310 CMS Collaboration / Physics Letters B 758 (2016) 296–320 L. Brianza, M.E. Dinardo a,b, S. Fiorendi a,b, S. Gennai a, R. Gerosa a,b, A. Ghezzi a,b, P. Govoni a,b, S. Malvezzi a, R.A. Manzoni a,b, B. Marzocchi a,b,2, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b a INFN Sezione di Milano-Bicocca, Milano, Italy b Università di Milano-Bicocca, Milano, Italy S. Buontempo a, N. Cavallo a,c, S. Di Guida a,d,2, M. Esposito a,b, F. Fabozzi a,c, A.O.M. Iorio a,b, G. Lanza a, L. Lista a, S. Meola a,d,2, M. Merola a, P. Paolucci a,2, C. Sciacca a,b, F. Thyssen a INFN Sezione di Napoli, Napoli, Italy b Università di Napoli ‘Federico II’, Napoli, Italy c Università della Basilicata, Potenza, Italy d Università G. Marconi, Roma, Italy P. Azzi a,2, N. Bacchetta a, M. Bellato a, L. Benato a,b, D. Bisello a,b, A. Boletti a,b, A. Branca a,b, R. Carlin a,b, P. Checchia a, M. Dall’Osso a,b,2, T. Dorigo a, U. Dosselli a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, S. Ventura a, M. Zanetti, P. Zotto a,b, A. Zucchetta a,b,2, G. Zumerle a,b a INFN Sezione di Padova, Padova, Italy b Università di Padova, Padova, Italy c Università di Trento, Trento, Italy A. Braghieri a, A. Magnani a, P. Montagna a,b, S.P. Ratti a,b, V. Re a, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitulo a,b a INFN Sezione di Pavia, Pavia, Italy b Università di Pavia, Pavia, Italy L. Alunni Solestizi a,b, M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b,2, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, A. Saha a, A. Santocchia a,b, A. Spiezia a,b a INFN Sezione di Perugia, Perugia, Italy b Università di Perugia, Perugia, Italy K. Androsov a,29, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a,29, R. Dell’Orso a, S. Donato a,c,2, G. Fedi, L. Foà a,c,†, A. Giassi a, M.T. Grippo a,29, F. Ligabue a,c, T. Lomtadze a, L. Martini a,b, A. Messineo a,b, F. Palla a, A. Rizzi a,b, A. Savoy-Navarro a,30, A.T. Serban a, P. Spagnolo a, P. Squillacioti a,29, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a a INFN Sezione di Pisa, Pisa, Italy b Università di Pisa, Pisa, Italy c Scuola Normale Superiore di Pisa, Pisa, Italy L. Barone a,b, F. Cavallari a, G. D’imperio a,b,2, D. Del Re a,b, M. Diemoz a, S. Gelli a,b, C. Jorda a, E. Longo a,b, F. Margaroli a,b, P. Meridiani a, G. Organtini a,b, R. Paramatti a, F. Preiato a,b, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b, P. Traczyk a,b,2 a INFN Sezione di Roma, Roma, Italy b Università di Roma, Roma, Italy N. Amapane a,b, R. Arcidiacono a,c,2, S. Argiro a,b, M. Arneodo a,c, R. Bellan a,b, C. Biino a, N. Cartiglia a, M. Costa a,b, R. Covarelli a,b, A. Degano a,b, N. Demaria a, L. Finco a,b,2, B. Kiani a,b, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, E. Monteil a,b, M. Musich a, M.M. Obertino a,b, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, F. Ravera a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, A. Solano a,b, A. Staiano a, U. Tamponi a a INFN Sezione di Torino, Torino, Italy b Università di Torino, Torino, Italy c Università del Piemonte Orientale, Novara, Italy CMS Collaboration / Physics Letters B 758 (2016) 296–320 311 S. Belforte a, V. Candelise a,b,2, M. Casarsa a, F. Cossutti a, G. Della Ricca a,b, B. Gobbo a, C. La Licata a,b, M. Marone a,b, A. Schizzi a,b, A. Zanetti a a INFN Sezione di Trieste, Trieste, Italy b Università di Trieste, Trieste, Italy A. Kropivnitskaya, S.K. Nam Kangwon National University, Chunchon, Republic of Korea D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son Kyungpook National University, Daegu, Republic of Korea J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu Chonbuk National University, Jeonju, Republic of Korea S. Song Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea S. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park, Y. Roh Korea University, Seoul, Republic of Korea H.D. Yoo Seoul National University, Seoul, Republic of Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu University of Seoul, Seoul, Republic of Korea Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Sungkyunkwan University, Suwon, Republic of Korea A. Juodagalvis, J. Vaitkus Vilnius University, Vilnius, Lithuania I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali 31, F. Mohamad Idris 32, W.A.T. Wan Abdullah, M.N. Yusli National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz 33, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Universidad Iberoamericana, Mexico City, Mexico I. Pedraza, H.A. Salazar Ibarguen Benemerita Universidad Autonoma de Puebla, Puebla, Mexico A. Morelos Pineda Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico D. Krofcheck University of Auckland, Auckland, New Zealand 312 CMS Collaboration / Physics Letters B 758 (2016) 296–320 P.H. Butler University of Canterbury, Christchurch, New Zealand A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski National Centre for Nuclear Research, Swierk, Poland G. Brona, K. Bunkowski, A. Byszuk 34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev 35, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin Joint Institute for Nuclear Research, Dubna, Russia V. Golovtsov, Y. Ivanov, V. Kim 36, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Nuclear Research, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin Institute for Theoretical and Experimental Physics, Moscow, Russia A. Bylinkin National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia V. Andreev, M. Azarkin 37, I. Dremin 37, M. Kirakosyan, A. Leonidov 37, G. Mesyats, S.V. Rusakov, A. Vinogradov P.N. Lebedev Physical Institute, Moscow, Russia A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin 38, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia CMS Collaboration / Physics Letters B 758 (2016) 296–320 313 P. Adzic 39, M. Ekmedzic, J. Milosevic, V. Rekovic University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran Universidad Autónoma de Madrid, Madrid, Spain J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia Universidad de Oviedo, Oviedo, Spain I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, R. Castello, G. Cerminara, S. Colafranceschi 40, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli 41, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi 42, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Silva, M. Simon, P. Sphicas 43, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsirou, G.I. Veres 20, N. Wardle, H.K. Wöhri, A. Zagozdzinska 34, W.D. Zeuner CERN, European Organization for Nuclear Research, Geneva, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe Paul Scherrer Institut, Villigen, Switzerland F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Quittnat, M. Rossini, A. Starodumov 44, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 314 CMS Collaboration / Physics Letters B 758 (2016) 296–320 T.K. Aarrestad, C. Amsler 45, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, D. Salerno, Y. Yang Universität Zürich, Zurich, Switzerland M. Cardaci, K.H. Chen, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, S.S. Yu National Central University, Chung-Li, Taiwan Arun Kumar, R. Bartek, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.f. Tsai, Y.M. Tzeng National Taiwan University (NTU), Taipei, Taiwan B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand A. Adiguzel, M.N. Bakirci 46, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal 47, G. Onengut 48, K. Ozdemir 49, A. Polatoz, D. Sunar Cerci 50, H. Topakli 46, M. Vergili, C. Zorbilmez Cukurova University, Adana, Turkey I.V. Akin, B. Bilin, S. Bilmis, B. Isildak 51, G. Karapinar 52, M. Yalvac, M. Zeyrek Middle East Technical University, Physics Department, Ankara, Turkey E.A. Albayrak 53, E. Gülmez, M. Kaya 54, O. Kaya 55, T. Yetkin 56 Bogazici University, Istanbul, Turkey K. Cankocak, S. Sen 57, F.I. Vardarlı Istanbul Technical University, Istanbul, Turkey B. Grynyov Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine L. Levchuk, P. Sorokin National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold 58, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith University of Bristol, Bristol, United Kingdom K.W. Bell, A. Belyaev 59, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm Rutherford Appleton Laboratory, Didcot, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Kenzie, R. Lane, R. Lucas 58, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko 44, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta 60, T. Virdee, S.C. Zenz Imperial College, London, United Kingdom CMS Collaboration / Physics Letters B 758 (2016) 296–320 315 J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Brunel University, Uxbridge, United Kingdom A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika Baylor University, Waco, USA O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio The University of Alabama, Tuscaloosa, USA A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou Boston University, Boston, USA J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Dhingra, A. Ferapontov, A. Garabedian, J. Hakala, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, T. Sinthuprasith, R. Syarif Brown University, Providence, USA R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, J. Gunion, Y. Jiang, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Davis, Davis, USA R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Los Angeles, USA K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny, B.R. Yates University of California, Riverside, Riverside, USA J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech 61, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, San Diego, La Jolla, USA D. Barge, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, I. Suarez, W. To, C. West, J. Yoo University of California, Santa Barbara, Santa Barbara, USA D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu California Institute of Technology, Pasadena, USA M.B. Andrews, V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev Carnegie Mellon University, Pittsburgh, USA 316 CMS Collaboration / Physics Letters B 758 (2016) 296–320 J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner University of Colorado Boulder, Boulder, USA J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Cornell University, Ithaca, USA S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, S. Jindariani, M. Johnson, U. Joshi, A.W. Jung, B. Klima, B. Kreis, S. Kwan †, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, H.A. Weber, A. Whitbeck, F. Yang Fermi National Accelerator Laboratory, Batavia, USA D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. Di Giovanni, R.D. Field, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, P. Milenovic 62, G. Mitselmakher, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton University of Florida, Gainesville, USA S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida International University, Miami, USA A. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg Florida State University, Tallahassee, USA M.M. Baarmand, V. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva Florida Institute of Technology, Melbourne, USA M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria University of Illinois at Chicago (UIC), Chicago, USA B. Bilki 63, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya 64, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok 53, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi The University of Iowa, Iowa City, USA I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, M. Swartz, M. Xiao, Y. Xin, C. You Johns Hopkins University, Baltimore, USA CMS Collaboration / Physics Letters B 758 (2016) 296–320 317 P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, S. Sanders, R. Stringer, Q. Wang The University of Kansas, Lawrence, USA A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Kansas State University, Manhattan, USA D. Lange, F. Rebassoo, D. Wright Lawrence Livermore National Laboratory, Livermore, USA C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar University of Maryland, College Park, USA A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova Massachusetts Institute of Technology, Cambridge, USA B. Dahmes, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Minnesota, Minneapolis, USA J.G. Acosta, S. Oliveros University of Mississippi, Oxford, USA E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow University of Nebraska-Lincoln, Lincoln, USA M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio State University of New York at Buffalo, Buffalo, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northeastern University, Boston, USA K.A. Hahn, A. Kubik, N. Mucia, N.