RESSALVA
Atendendo solicitação da
autora, o texto completo desta tese
será disponibilizado somente a partir
de 13/09/2021.
UNIVERSIDADE ESTADUAL PAULISTA
“JÚLIO DE MESQUITA FILHO”
INSTITUTO DE PESQUISA EM
BIOENERGIA
unesp
PROGRAMA INTEGRADO (UNESP, USP E UNICAMP) DE PÓS-GRADUAÇÃO
EM BIOENERGIA
Green stabilization of nanoscale zero valent iron (nZVI) with
rhamnolipids produced by agro-industrial waste: application
on nitrate reduction
Cinthia Cristine de Moura
Tese apresentada ao Instituto de
Pesquisa em Bioenergia de Rio
Claro, Universidade Estadual
Paulista, como parte dos requisitos
para obtenção do título de Doutor
em Ciências.
Orientador(a): Jonas Contiero
Setembro - 2019
Green stabilization of nanoscale zero-valent iron
(nZVI) with rhamnolipids produced by agro-industrial
waste: application on nitrate reduction
CINTHIA CRISTINE DE MOURA
Rio Claro
2019
Tese apresentada ao Instituto de
Pesquisa em Bioenergia de Rio Claro,
Universidade Estadual Paulista, como
parte dos requisitos para obtenção do
título de Doutor em Ciências.
Orientador(a): Jonas Contiero
M929g
Moura, Cinthia Cristine de
Green stabilization of nanoscale zero valent iron (nZVI) with
rhamnolipids produced by agro-industrial waste : application on
nitrate reduction / Cinthia Cristine de Moura. -- Rio Claro, 2019
137 f. : il., tabs.
Tese (doutorado) - Universidade Estadual Paulista (Unesp),
Instituto de Pesquisa em Bioenergia - IPBEN, Rio Claro
Orientador: Jonas Contiero
1. Biossurfactantes. 2. Nanopartículas de ferro zero valente. 3.
Resíduos agrícolas. 4. Remediação Ambiental. 5. Design
experimental. I. Título.
Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de
Biociências, Rio Claro. Dados fornecidos pelo autor(a).
Essa ficha não pode ser modificada.
User
Máquina de escrever
Título alterado para "Green stabilization of nanoscale zero-valent iron (nZVI) with rhamnolipids produced by agro-industrial waste: application on nitrate reduction"
“A lei da mente é implacável.
O que você pensa, você cria;
O que você sente, você atrai;
O que você acredita
Torna-se realidade”.
Buda
AGRADECIMENTOS
Primeiramente gostaria de agradecer a Universidade Estadual Paulista “Júlio de
Mesquita Filho” e ao Instituto de Pesquisa em Bioenergia, bem como aos coordenadores
e professores. À Capes pela bolsa de auxílio financeiro. O presente trabalho foi realizado
com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Código de Financiamento 001.
Agradeço ao Prof. Dr. Jonas Contiero pela sua sabedoria e paciência, que me
ensinaram muito.
Ao Prof. Dr. Miguel Jafelicci e ao Prof. Dr. Rodrigo Marques por gentilmente
cederem o laboratório no Instituto de Química da Unesp de Araraquara para realização
dos testes com as nanopartículas.
Aos meus pais Júlio e Sandra por sempre incentivarem a continuidade deste
trabalho, por me ouvirem e por sempre estarem ao meu lado nos momentos difíceis.
Ao meu irmão Douglas, a minha cunhada Mariana e meu sobrinho Diogo, por
trazerem alegria nos poucos momentos que estávamos juntos.
Aos amigos do LMI, pelo convívio diário, pelos papos na hora do café, por me
ensinarem, por me ouvirem, aconselharam, e por terem sido minha família nesses 4 anos.
Ao Rodolfo e Caio que me ensinaram e ajudaram na síntese das nanopartículas e
nas discussões dos resultados.
A Ana Maria, que foi minha chefe, minha estagiária, minha mãe, minha irmã,
minha filha e em todas as situações: minha amiga. Nada disso teria sido possível sem
você ao meu lado.
A Thalita Moura e Yaliana Tafurt, mesmo longe nunca deixaram de me apoiar.
A Cristhian Lao, que me apoiou, ouviu e ajudou durante todo o doutorado.
Obrigada por sempre estar ao meu lado, por não desistir de mim e nem me deixar desistir.
As minhas primas, que considero como irmãs: Flávia Nunes e Nathália Giovanni.
Ao meu tio Fernando que me deu várias caronas, os longos papos no transito
faziam as viagens mais divertidas.
Aos meu pais, tia Elaine, tia Rosana, tio Fernando, primas Rafaela e Nathália,
obrigada por terem vindo na defesa, obrigada por encararem as longas horas de viagem e
por fazerem parte desse momento tão especial!
E agradeço a todos aqueles que de alguma forma contribuíram para o andamento
do trabalho realizado durante esta etapa da minha formação profissional.
Resumo
A contaminação ambiental causada por compostos orgânicos é um importante problema
que afeta solos e água superficiais. Para reduzir ou remover esses poluentes, os locais
contaminados são geralmente tratados com métodos físicos e químicos. No entanto, a
maioria dessas técnicas de remediação é custosa e geralmente leva à remoção incompleta
e à produção de resíduos secundários. A nanotecnologia consiste na produção e aplicação
de estruturas extremamente pequenas, cujas dimensões estão na faixa de 1 a 100 nm, neste
cenário a nanopartícula de ferro zero valente representa uma nova geração de tecnologias
de remediação ambiental. É não tóxica, abundante, barata, fácil de produzir, e seu
processo de produção é simples. No entanto, a fim de diminuir a tendência de agregação,
a nanopartícula de ferro zero é frequentemente revestida com surfactantes. A maioria dos
surfactantes é quimicamente sintetizado a partir de fontes petroquímicas, eles são
persistentes ou parcialmente biodegradáveis, enquanto oferecem baixos riscos à saúde
humana, esses compostos podem prejudicar plantas e animais. Para diminuir o uso de
métodos químicos, a síntese e estabilização verde de nanomateriais metálicos
apresentam-se como uma opção menos perigosa ao meio ambiente. Os biossurfactantes
podem potencialmente substituir qualquer surfactante sintético, eles são compostos
extracelulares produzidos por microrganismos, como bactérias, e cultivados em
diferentes fontes de carbono, podendo ser substratoshidrofílicos. Os biossurfactantes
possuem uma grande variedade de estruturas químicas e propriedadesde superfície e entre
eles estão os ramnolipídios que já foram intensamente investigados e estudados. Os
ramnolipídios podem ser produzidos pela Pseudomonas aeruginosa em diferentes
substratos, incluindo o glicerol. Uma produção bem-sucedida de biossurfactantes
depende do uso de materiais renováveis e de baixo custo. O glicerol bruto, principal
subproduto do processo de transesterificação em uma usina de biodiesel, é um substrato
amplamente utilizado para a produção de ramnolipídios. A fim de obter a melhor
temperatura e concentração inicial de glicerol, o design rotacional composto central e o
método de superfície de resposta foram empregados para delimitar as melhores condições
para aumentar a produção de ramnolipídeos e diminuir o glicerol remanescente no meio.
Com o auxílio do Método de Superfície e Resposta foi possível verificar a viabilidade do
uso do glicerol bruto livre de sal, atingindo uma produção de 2,63 g/L de ramnolipidios
e depleção total da fonte de carbono, no meio otimizado contendo 25 g/L de fonte inicial
de carbono a 32 ° C. Em seguida, as nanopartículas de ferro zero foram sintetizadas
utilizando a redução química com borohidreto de sódio. Foram testadas duas
metodologias: (i) adição de ramnolipídios durante a síntese química e (ii) adição após a
síntese. As nanopartículas foram subsequentemente testadas quanto à eficiência na
redução de nitrato em água subterrânea simulada sob condições anaeróbias em pH 4. A
nanopartícula de ferro zero sintetizada adicionando ramnolipídios após a síntese, mostrou
a melhor eficiência com uma taxa de remoção de cerca de 78% de remoção de nitrato e
concentração inicial de nitrato de 25. mg/L. O método para preparar nanopartícula de
ferro zero, usando ramnolipídios como agente estabilizador, mostrou-se uma alternativa
promissora para a funcionalização de superfície da nanopartícula, em substituição a
surfactantes sintéticos e tóxicos
Palavras chave: Biossurfactantes. Química verde. Design experimental. Glicerol.
Nanopartícula de ferro zero valente. Águas subterrâneas.
Abstract
Environmental contamination caused by organic compounds is the most important
challenge that affects a huge number of soils and water surfaces. To reduce or remove
these pollutants, contaminated sites are usually treated using physical and chemical
methods. However, most of these remediation techniques are expensive and commonly
lead to incomplete removal and to the production of secondary wastes. Nanotechnology
is the production and application of extremely small structures, whose dimensions are in
the range of 1 to 100 nm and Nanoscale zero-valent iron represents a new generation of
environmental remediation technologies, is non-toxic, abundant, cheap, easy to produce,
and its reduction process requires little maintenance. Nonetheless, in order to diminish
the tendency of aggregation, nanoscale zero-valent iron is often coated with surfactants.
Most surfactants are chemically synthesized from petrochemical sources, they are slowly
or partially biodegradable, while offer low harm to humans, such compounds can
influence plants and animals. To decrease the use of chemical methods green synthesis
and stabilization of metallic nanomaterials viable option. Biosurfactants can potentially
replace virtually any synthetic they are extracellular compounds produced by microbes
such as by bacteria and grown on different carbon sources containing
hydrophobic/hydrophilic substrates. The biosurfactants have a wide variety of chemical
structures and surface properties and among them is the rhamnolipids which have been
intensively investigated and extensively reviewed, they can be produced by Pseudomonas
aeruginosa from different substrates, including glycerol. Successful production of
biosurfactants depends on the use of renewable materials and low cost. Crude glycerol is
the primary byproduct of the transesterification process in a biodiesel plant and it is a
widely used substrate for rhamnolipid production. To provide the best temperature and
initial concentration of glycerol the central composite rotational design and response
surface method were employed to increase rhamnolipids yield and lower the glycerol
remaining in the medium. The response surface method methodology indicated the
viability of the use of crude glycerol, reaching a production of 2.63 g/L of biosurfactant
and total depletion of carbon source, at the optimized medium containing 25 g/L of initial
carbon source at 32 °C. Then, the iron nanoparticles were synthesized using the chemical
reduction of ferric ions with sodium borohydride. Were tested two methodologies: (i)
adding rhamnolipids during the chemical synthesis and (ii) adding after the synthesis. The
nanoparticles were subsequently tested for their efficiency in nitrate reduction in
simulated groundwater under anaerobic conditions at pH 4. The nanoscale zero-valent
iron synthetized adding rhamnolipids after the synthesis showed the best efficiency with
a removal rate about 78% and initial nitrate concentration of 25 mg/L. The method for
preparing nanoscale zero-valent iron using rhamnolipids biosurfactants as stabilizer was
found as a promising alternative for the synthesis and surface functionalization of iron
nanoparticles, in replacement to toxic synthetic surfactants
Key words: Biosurfactants. Green chemistry. Experimental design. Glycerol. Nanoscale
zero-valent iron. Groundwater.
Lista de Figuras
Figure 1.1 Illustration of the top-down and bottom-up approaches _______________ 19
Figure 1.2 Typical production of biosurfactants during growth __________________ 23
Figure 1.3 The relationship between biosurfactant concentration, surface tension, and
formation of micelles. __________________________________________________ 24
Figure 1.4 Structure of the four main counterparts of rhamnolipids ______________ 28
Figure 1.5 Transesterification reaction of a triacylglycerol with an alcohol. ________ 33
Figure 2. 1 Schematic illustration of (a) surface modification and (b) network
stabilization 52
Figure 2. 2 Molecular structure of the surfactants Sodium Dodecyl Sulfate (SDS),
Alkylphenol polyethoxylate (Triton X-100), Polyvinylpyrrolidone (PVP), Polyethylene
glycol (PEG) 54
Figure 2. 3 Molecular structure of the main biosurfactants (a) Sophorolipids, (b)
Mannosylerythritol Lipids (MEL) (c) Emulsan (d) Surfactin (e) Rhamnolipids 63
Figure 2. 4 Application of nZVI for in situ remediation. 68
Figure 2. 5 The core consists of principally zero-valent iron and supplies force for the
reducing reactions with pollutants. The shell is mostly iron oxides/hydroxides created
by the oxidation of zero-valent iron and it supplies sites for chemical reduction
reaction.⠀ 70
Figure 3. 1 Experimental rhamnolipids concentration plotted against rhamnolipids
concentration predicted by the fitted model _________________________________ 98
Figure 3. 2 Experimental glycerol remaining concentration plotted against glycerol
remaining concentration predicted by the fitted ______________________________ 99
Figure 3. 3 Response surface curve of interaction of initial glycerol and temperature (a)
rhamnolipids; (b) glycerol remaining _____________________________________ 100
Figure 4. 1 FTIR spectra of rhamnolipids _________________________________ 112
Figure 4. 2X-ray diffraction peaks associated with nZVI particles after the synthesis (e)
bare nZVI, (c) nZVI-A (a) nZVI-S. and associated with nZVI particles 1 month after the
synthesis (f) bare-nZVI(d) nZVI-A and (b) nZVI-S _________________________ 113
Figure 4. 3 Zeta potential and pzc of nZVI ________________________________ 114
Figure 4. 4 Average particle diameter size distribution of nZVI particles. ________ 115
Figure 4. 5 FEGSEM images (magnitude 30.0 k) of (a) bare-nZVI (b) nZVI-A (c) nZVI-
S _________________________________________________________________ 116
Figure 4. 6 TGA and DTA curves for (a) bare-nZVI, (b) nZVI-A and (c) nZVI-S. _ 117
Figure 4. 7 Effect of time and initial nitrates concentration on nitrates reduction using
nZVI at pH 4 (a) 25 mg/L NO3-N (b) 50 mg/L NO3-N (c) 100 mg/L NO3-N and effect
of time and initial nitrates concentration on ammonia concentration using nZVI at pH 4
(d) 25 mg/L NO3-N (e) 50 mg/L NO3-N (f) 100 mg/L NO3-N ________________ 121
Figure A. 1 Results of tests using P. aeruginosa strains in different temperatures using 25
g/L of glycerin regarding to (a) rhamnolipids production by P. aeruginosa PAO1, (b)
rhamnolipids production by P. aeruginosa LBI (c) rhamnolipids production by P.
aeruginosa __________________________________________________________ 133
Lista de Tabelas
Table 1.1 Type and microbial origin of biosurfactants ________________________ 25
Table 1.2 P. aeruginosa strain in various carbon source._______________________ 27
Table 1.3 Production of Rhamnolipids by Pseudomonas strains using Glycerol _____ 35
Table 2. 1 Production of biosurfactants using different strains and carbon sources ...... 59
Table 2. 2 Remediation applications for most common pollutants 69
Table 3. 1 Real and coded values of independents variables for the central composite
rotational design. _____________________________________________________ 95
Table 3. 2 Planning matrix for central composite rotational design and experimental
results ______________________________________________________________ 96
Table 3. 3 Analysis of variance for response surface quadratic model regarding
rhamnolipids. ________________________________________________________ 97
Table 3. 4 Analysis of variance for response surface quadratic model regarding glycerol
remaining ___________________________________________________________ 99
Table 3. 5 Planning matrix for validation of optmization design and experimental results
__________________________________________________________________ 101
Table 4. 1 Stabilization methodology of nZVI ______________________________ 110
Table 4. 2 Regions of mass loss and gain (%) of nZVI-A and nZVI-S samples. ____ 118
Table 4. 3 Observed pseudo first-order rate coefficient of nitrate reduction with nZVI
__________________________________________________________________ 120
Table A. 1 Matrix of pre-test analysis with P. aeruginosa strains in different conditions.
__________________________________________________________________ 130
Table A. 2 Pre-tests results for different pH, temperaturature and initicial concentration
of glycerol pro-analysis _______________________________________________ 132
Table A. 3 Yield coefficients regarding to biomass yield on substrat (YX/S), rhamnolipid
yield on substrat (YP/S) and rhamnolipid yield on biomass (YP/X). 134
Sumário
1. INTRODUCTION 13
1.1. NANOTECHNOLOGY 15
1.1.1. NANOTECHNOLOGY APLICATIONS 15
1.1.2. TYPES AND APPLICATIONS OF NANOPARTICLES: 16
1.1.3. PHYSICOCHEMICAL OF NANOTECHNOLOGY APPLIED TO THE STABILIZATION
PROCESS 17
1.1.3.1. Superparamagnectic Nanoparticles 17
1.2. NANOSCALE ZERO-VALENT IRON (NZVI) 18
1.3. SYNTHESIS OF NON-STABILIZED NZVI PARTICLES 18
1.3.1. TOP-DOWN APPROACHES 18
1.3.2. BOTTOM-UP APPROACHES 19
1.3.2.1. Chemical Reduction 19
1.3.2.3. Electrochemical method 20
1.3.2.4. Pulsed Plasma: 20
1.3.2.5. Sonochemical Method 21
1.3.2.6. Biosynthesis of nzvi 21
1.4. SURFACTANTS 22
1.5. BIOSURFACTANT 23
1.6. PRODUCTION OF RHAMNOLIPIDS 26
1.7. PROCESS OF BIOREMEDIATION 29
1.8. RHAMNOLIPIDS IN BIOREMEDIATION 30
1.9. CRUDE GLYCEROL 32
2. Background and project relevance 35
3. Objectives 36
GENERAL 36
References 36
2. BIOSURFACTANTS AS GREEN CHEMICAL STABILIZERS FOR
NANOSCALE ZERO VALENT IRON 48
Abstract 48
1. Introduction 48
2. Methods 50
3. Nanoscale zero-valent iron 50
3.1. AGGLOMERATION STABILIZATION 50
3.1.1. PRE-AGGLOMERATION STABILIZATION 51
3.2. STABILIZATION OF NANOSCALE ZERO-VALENT IRON 51
3.2.1. NETWORK STABILIZATION (OR VISCOUS STABILIZATION) 52
3.2.2. SURFACE MODIFICATION 52
Electrostatic repulsion 52
Steric stabilization 52
Electrosteric stabilization 53
3.3. CHEMICAL STABILIZATION AND ITS DISADVANTAGES 53
3.4. GREEN STABILIZATION AND ITS ADVANTAGES 56
4. Green stabilization allies: biosurfactants 58
4.1. HIGH MOLECULAR WEIGHT POLYMERIC BIOSURFACTANTS 60
4.1.1. EMULSAN 60
4.1.2. LIPOSAN 61
4.1.3. ALASAN 61
4.1.4. MANNOPROTEIN 61
4.2. LOW MOLECULAR WEIGHT BIOSURFACTANTS 62
4.2.1. FATTY ACIDS AND PHOSPHOLIPIDS 62
4.2.2. LIPOPEPTIDES 62
4.2.3. GLYCOLIPIDS 62
Rhamnolipids 63
Sophorolipids 64
Trehalose lipids 64
Mannosylerythritol lipids (mel) 64
4.3. GREEN CHEMISTRY ALLIES: BIOSURFACTANTS 65
4.3.1. TOXICITY 66
5. Nanoscale zero-valent iron in remediation 67
5.1. FE TOXICITY 70
6. Biosurfactants and nanoscale zero-valent iron: state of art 71
7. Future research needs 72
8. Conclusion 73
9. References 74
3. EXPERIMENTAL DESIGN TO IMPROVE CRUDE GLYCEROL
CONSUMPTION AND RHAMNOLIPIDS PRODUCTION 91
Abstract 91
1. Introduction 91
2. Materials and methods 93
2.1. MATERIALS 93
2.2. RAW MATERIAL 93
2.3. MICROORGANISMS 93
2.4. MEDIA 93
2.5. PREPARATION OF PRODUCTION MEDIUM 94
2.6. SAMPLE AND PROCESSING 94
2.7. EXPERIMENTAL DESIGN THROUGH CENTRAL COMPOSITE ROTATABLE DESIGN
(CCRD) 94
2.8. STATISTICAL ANALYSIS 95
2.9. VERIFICATION EXPERIMENTS 95
3. Results and discussion 95
3.1. CENTRAL COMPOSITE ROTATABLE DESIGN 95
3.2. REGRESSION MODEL FOR RHAMNOLIPIDS (Y1) 96
3.3. REGRESSION MODEL FOR INITIAL GLYCEROL (Y2) 98
3.4. SURFACE RESPONSE METHOD (RSM) FOR RHAMNOLIPIDS (X1) AND INITIAL
GLYCEROL (X2) CONCENTRATIONS 99
3.5. VALIDATION TESTS 101
4. Conclusion 102
References 103
4. RHAMNOLIPIDS AS GREEN STABILIZER OF NZVI AND ITS
APPLICATION ON NITRATE REMOVAL IN SIMULATED GROUNDWATER
106
ABSTRACT 106
1. Introduction 106
2. Materials and methods 108
2.1. MATERIALS 108
2.1. PRODUCTION AND EXTRACTION OF RHAMNOLIPIDS 108
2.2. SURFACE ACTIVITY MEASUREMENTS AND STRUCTURAL CHARACTERIZATION OF
RHAMNOLIPIDS 109
2.3. SYNTHESIS AND GREEN STABILIZATION OF NZVI 109
2.4. NANOPARTICLE CHARACTERIZATION 110
2.5. NITRATE REDUCTION TESTS 110
3. Results and discussion 111
3.1. RHAMNOLIPIDS PRODUCTION AND CHARACTERIZATION 111
3.2. NZVI CHARACTERIZATION 112
3.3. NITRATE REDUCTION BY NZVI IN LOW PH CONDITIONS 119
4. Conclusion 121
References 122
General conclusions 128
A. ANNEX 129
1. Selection of the Pseudomonas aeruginosa strain 129
1.1. MATERIALS AND METHODS 129
1.1.1. MICROORGANISM 129
1.1.2. GROWING CONDITIONS 129
1.1.2.1. Preparation of the inoculum 129
1.1.2.2. Flask experiments 129
1.1.3. EXPERIMENTS 130
2. Results and discussion 130
3. Conclusion 134
References 134
13
1. Introduction
Nanotechnology is the production and application of extremely small structures,
at the level of atoms, molecules, and supramolecular structures, whose dimensions are in
the range of 1 to 100 nm (ISO, 2009; NSET, 2003). Is an innovative alternative that can
be used for the remediation of contaminated sites, it has the potential to significantly
affect environmental protection, because it has the property to remove the finest
contaminants from water supplies and air and mitigate pollutants in the environment
(NSET, 2003). Environmental pollution by organic contaminants is a major problem
today. Recently, there have been many reports of soil and surface water locations
contaminated with organic pollutants (CETESB, 2016; EPA, 2002; EUROPEAN
COMMISSION DG; ALERT; SERVICE, 2013), with a great impact on soil and
groundwater.
Nanoscale zero-valent iron (nZVI) represents a new generation of environmental
remediation technologies, because nZVI is non-toxic, abundant, cheap, easy to produce,
and its reduction process requires little maintenance (FU; DIONYSIOU; LIU, 2014). To
reduce problems with aggregation, nZVI is often coated with surfactants (CRANE;
SCOTT, 2012; NSET, 2003). Surfactants play major roles improving the particle mobility
(DUTRA, 2015) and lowering the interfacial tension, they also prevent coalescence of
newly formed drops (MORSY, 2014).
Most of the commercially available surfactants are chemically synthetized , produced
based on petrochemical sources (BANAT; MAKKAR; CAMEOTRA, 2000; GAUTAM;
TYAGI, 2006; VAN BOGAERT et al., 2007). Furthermore, some of the surfactants are
only slowly or partially biodegradable (KUMAR, 2019) contributing to environmental
impact (HAUSMANN; SYLDATK, 2015). Thus, the rapid advances in biotechnology
and increased environmental awareness, the chemically surfactants have increasingly
been replaced by biologically synthetized surfactants (BANAT; MAKKAR;
CAMEOTRA, 2000; GAUTAM; TYAGI, 2006). Surfactants present low toxicity to
humans but can affect plants and animals, i.e. ethoxylated alcohols, found in laundry
detergents are toxic to fish (MULLIGAN; YONG; GIBBS, 2001a).
Biosurfactants are an alternative, they can potentially replace the synthetic
surfactant (REIS et al., 2013; SÁENZ-MARTA et al., 2015). Biosurfactants can be
applied in bioremediation field, to clean the contaminated soil and water (THAVASI,
2011), they present advantages in microbial enhance oil recovery (MEOR) , when
14
compared to the synthetic surfactants (BANAT et al., 2010). They have low toxicity and
high biodegradability and biocompatibility, additionally, present functionality under
extreme conditions of temperature, pH, salinity; with possibility of production from
renewable sources (BANAT et al., 2010; COOPER, 1986; DESAI; BANAT, 1997a) and
the in situ application (WANG et al., 2016)
Pseudomonas aeruginosa has the ability to synthesize a glycolipid-type
biosurfactant, rhamnolipids this was first reported in 1949 by Jarvis et al., appud
(MAIER; SOBERÓN-CHÁVEZ, 2000). It can produce rhamnolipids from substrates
including C11 and C12 alkanes, succinate, pyruvate, citrate, fructose, glycerol, olive oil,
glucose and mannitol (ROBERT et al., 1989). They have been intensively investigated
and extensively reviewed (MAIER; SOBERÓN-CHÁVEZ, 2000; NITSCHKE; COSTA;
CONTIERO, 2005; OCHSNER; HEMBACH; FIECHTER, 1996). The application of
biosurfactants in the bioremediation has become one of the methods used in the
remediation of contaminated sites. They can be used to clean the contaminated soil and
water (THAVASI, 2011). The use of a raw material of agro-based wastes, low-cost
renewable substrates and the new research about rhamnolipids applications on
biodegradation and toxicity are worth further investigation and may make biosurfactants
a versatile sustainable molecule. The industrial conversion of renewable resources into
useful compounds has been receiving much attention; the use of crude glycerol is
becoming very important from the environmental point of view (MORITA et al.; 2007;
EASTERLING et al., 2009). It is a widely used substrate for rhamnolipid production
(SYLDATK et al. 1985) since a wide variety of microorganisms, as Pseudomonas
aeruginosa, can utilize glycerol as a source of carbon and it is often formed as an
intermediate in both the aerobic and anaerobic catabolism of lipids and glucose.
(JOHNSON, TACONI, 2007; HAUSMANN; SYLDATK, 2015).
The hypothesis of this work lies in the fact that the rhamnolipids produced by
Pseudomonas aeruginosa strain, using glycerol as a substrate may significantly increase
the stabilization of nanoparticles of zero valent iron. It can become a novel application
for biosurfactants allied to a consequently reduction on the costs of the process due to the
use of a renewable substrate.
36
3. Objectives
General
Stabilization of de nanoscale zero-valent iron (nZVI) aiming the biosurfactant
produced by Pseudomonas aeruginosa using glycerol as a carbon source.
Specific
1. A bibliographic survey about the state of the art of nZVI and biosurfactants;
2. Optimization of temperature and initial carbon source for the production of
rhamnolipids and glycerol consumption using Pseudomonas aeruginosa LBI 2A1;
3. Production, stabilization and characterization of nZVI using rhamnolipids as
capping agent;
4. Study the performance of bare nZVI and stabilized nZVI in nitrate removal.
References
ABALOS, A. et al. Enhanced Biodegradation of Casablanca Crude Oil by A Microbial
Consortium in Presence of a Rhamnolipid Produced by ... n. April, p. 249–260, 2004.
ABOU EL-NOUR, K. M. M. et al. Synthesis and applications of silver nanoparticles.
Arabian Journal of Chemistry, v. 3, n. 3, p. 135–140, jul. 2010.
AGGELIS, G. Microbial conversions of raw glycerol. UK ed. ed. [s.l.] Nova Science
Publishers, 2009.
APARNA, A.; SRINIKETHAN, G.; HEGDE, S. Effect of Addition of Biosurfactant
Produced by Pseudomonas sps. on Biodegradation of Crude Oil. International
confrence on environmental science and technology, v. 6, p. 1–5, 2011.
BANAT, I. M. et al. Microbial biosurfactants production, applications and future
potential. Applied Microbiology and Biotechnology, v. 87, n. 2, p. 427–444, 2010.
BANAT, I. M.; MAKKAR, R. S.; CAMEOTRA, S. S. Potential commercial applications
of microbial surfactants. Applied microbiology and biotechnology, v. 53, n. 5, p. 495–
508, 2000.
BARDOS, P. et al. A Risk / Benefit Appraisal for the Application of Nano-Scale Zero
Valent Iron ( nZVI ) for the Remediation of Contaminated Sites. n. 245162, 2014.
BENINCASA, M. et al. Rhamnolipid production by Pseudomonas aeruginosa LBI
growing on soapstock as the sole carbon source. Journal of Food Engineering, v. 54, n.
4, p. 283–288, out. 2002.
BERGAMINI, F. R. G. et al. Nanopartículas de Óxido de Ferro para Aplicações
37
Biomédicas. XVIII Congresso Interno de Iniciação Científica da UNICAMP, p. 1,
2010.
BEZZA, F. A.; CHIRWA, E. M. N. Production and applications of lipopeptide
biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochemical
Engineering Journal, v. 101, p. 168–178, 2015.
BINI, R. D. Desenvolvimento de nanopartículas de magnetita para aplicações
biológicas: propriedades estruturais, microestruturais e magnéticas.2016. 72 f.
Dissertação (Mestrado em Física) - Departamento de Física, Universidade Estadual de
Maringá, Maringá, 2016.
BYSTRZEJEWSKI, M. Synthesis of carbon-encapsulated iron nanoparticles via solid
state reduction of iron oxide nanoparticles. Journal of Solid State Chemistry, v. 184, n.
6, p. 1492–1498, 2011.
CAMERON, R. A Guide for Site and Soil Description in Hazardous Waste Site
Characterization. In: Superfund Risk Assessment in Soil Contamination Studies.
Washington, DC: Environmental Protection Agency, 1992. p. 3-3–15.
CARRIQUIRY, M. A. A Comparative Analysis of the Development of the United
States and European Union Biodiesel Industries.: 1. Ames, Iowa: Center for
Agricultural and Rural Development, 2007.
CETESB. Qualidade das águas subterrâneas no Estado de São Paulo 2013-2015. São
Paulo: CETESB, 2016.
CHATZIFRAGKOU, A. et al. Effect of biodiesel-derived waste glycerol impurities on
biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718.
Biotechnology and Bioengineering, 2010.
CHATZIFRAGKOU, A.; PAPANIKOLAOU, S. Effect of impurities in biodiesel-
derived waste glycerol on the performance and feasibility of biotechnological processes.
Applied Microbiology and Biotechnology, v. 95, n. 1, p. 13–27, 2012.
CHEN, Q. et al. Rhamnolipids enhance marine oil spill bioremediation in laboratory
system. Marine Pollution Bulletin, v. 71, n. 1–2, p. 269–275, 2013.
CHEN, S. S.; HSU, H. DER; LI, C. W. A new method to produce nanoscale iron for
nitrate removal. Journal of Nanoparticle Research, v. 6, n. 6, p. 639–647, 2004.
CHEN, W. et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using
biosurfactant rhamnolipid. Environmental Science and Pollution Research, 2017.
CHOU, C.; PHILLIPS, J. Plasma production of metallic nanoparticles. v. 7, n. 8, p. 2107–
2113, 1992.
COMMISSION, E. Proceedings of the Workshop on Nanotechnology and Life Cycle
Assessment. International Journal of Life Cycle Assessment, n. October 2006, p. 38,
2007.
COOPER, D. G. Biosurfactants. Microbiol Sci, v. 3, p. 145–149, 1986.
38
COSTA, S. G. V. A. O. et al. Production of Pseudomonas aeruginosa LBI rhamnolipids
following growth on Brazilian native oils. Process Biochemistry, v. 41, n. 2, p. 483–488,
2006.
COSTA, S. G. V. A. O. et al. Cassava wastewater as a substrate for the simultaneous
production of rhamnolipids and polyhydroxyalkanoates by pseudomonas aeruginosa.
Journal of Industrial Microbiology and Biotechnology, v. 36, n. 8, p. 1063–1072,
2009.
COSTA, T. C. DE C. Síntese de nanopartículas de magnetita via decomposição
térmica em meio não aquosoTese de Doutorado116 f. Tese (Doutorado em Ciências e
Engenharia de Materiais) - Centro de Ciências Exatas e da Terra. Universidade Federal
do Rio Grande do Norte, NatalNatal, , 2013.
CRANE, R. A. et al. Magnetite and zero-valent iron nanoparticles for the remediation of
uranium contaminated environmental water. Water Research, v. 45, n. 9, p. 2931–2942,
2011.
CRANE, R. A.; SCOTT, T. The removal of uranium onto carbon-supported nanoscale
zero-valent iron particles. Journal of Nanoparticle Research, v. 16, n. 12, 2014.
CRANE, R. A.; SCOTT, T. B. Nanoscale zero-valent iron: Future prospects for an
emerging water treatment technology. Journal of Hazardous Materials, v. 211–212, p.
112–125, 2012.
DA SILVA, G. P.; MACK, M.; CONTIERO, J. Glycerol: A promising and abundant
carbon source for industrial microbiologyBiotechnology Advances, 2009.
DAS, M. et al. Review on gold nanoparticles and their applications. Toxicology and
Environmental Health Sciences, v. 3, n. 4, p. 193–205, 22 dez. 2011.
DE FRANÇA, Í. W. L. et al. Production of a biosurfactant by Bacillus subtilis ICA56
aiming bioremediation of impacted soils. Catalysis Today, v. 255, p. 10–15, out. 2015.
DESAI, J. D.; BANAT, I. M. Microbial production of surfactants and their commercial
potential. Fuel and Energy Abstracts, v. 38, n. 4, p. 221, 1997a.
DESAI, J. D.; BANAT, I. M. Microbial production of surfactants and their commercial
potential. Microbiology and Molecular Biology Reviews, v. 61, n. 1, p. 47 LP – 64, 1
mar. 1997b.
DEVADASU, V. R.; BHARDWAJ, V.; KUMAR, M. N. V. R. Can Controversial
Nanotechnology Promise Drug Delivery? Chemical Reviews, v. 113, n. 3, p. 1686–1735,
13 mar. 2013.
DEZIEL, E. et al. Biosurfactant production by a soil pseudomonas strain growing on
polycyclic aromatic hydrocarbons . These include : Biosurfactant Production by a Soil
Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons. Microbiology, v.
62, n. 6, p. 1908–1912, 1996.
DUNCAN, T. V. Applications of nanotechnology in food packaging and food safety:
Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science,
39
v. 363, n. 1, p. 1–24, 2011.
DUTRA, M. C. Síntese e caracterização de nanopartículas de ferro-zero valente
(nzvi) aplicadas ao tratamento de águas contaminadas com 4-clorofenol. 2015. 78 f.
Disserrtação (Mestrado em Engenharia Química) - Centro Tecnológico, Uniiversidade
Federal de Santa Catarina, Florianópolis, 2015.
EARNSHAW, A. Introduction to Magneto Chemistry. 1. ed. New York: Academic
Press INC, 1968.
EASTERLING, E. R. et al. The effect of glycerol as a sole and secondary substrate on
the growth and fatty acid composition of Rhodotorula glutinis. Bioresource Technology,
v. 100, n. 1, p. 356–361, 2009.
EPA. Drinking Water From Household Wells. Washington, DC: U.S. Environmental
Protection Agency, 2002.
EPA. U.S. Environmental Protection Agency Nanotechnology White Paper.
Washington, DC: U.S. Environmental Protection Agency, 2007.
EPA. Introduction to In Situ Bioremediation of Groundwater. Washington, DC: U.S.
Environmental Protection Agency, 2013.
ERAQI, W. A. et al. Utilization of Crude Glycerol as a Substrate for the Production of
Rhamnolipid by Pseudomonas aeruginosa . Biotechnology Research International, v.
2016, p. 1–9, 2016.
EUROPEAN COMMISSION DG; ALERT, E. N.; SERVICE. Science for Environment
Policy.
FERNANDES, T. C. C. Investigação dos efeitos tóxicos do biossurfactante
ramnolipídio e suas implicações quando usado na biorremediação de águas
contaminadas por petróleo. 2011. 188 f. Tese (Doutorado em Biologia Celular e
Molecular) - Intituto de Biociências, Universidade Estadual Paulista, Rio Claro, 2011.
FERREIRA, R. V. Síntese e Caracterização de Nanopartículas Magnéticas
Funcionalizadas com Núcleo Magnético de Magnetita. 2009. 93 f. Dissertação
(Mestrado em Química) - Departamento de Química, Universidade Federal de Minas
Gerais, Belo Horizonte, 2009.
FILIPPOUSI, M. et al. Surfactant effects on the structural and magnetic properties of iron
oxide nanoparticles. Journal of Physical Chemistry C, v. 118, n. 29, p. 16209–16217,
2014.
FU, F.; DIONYSIOU, D. D.; LIU, H. The use of zero-valent iron for groundwater
remediation and wastewater treatment: A review. Journal of Hazardous Materials, v.
267, p. 194–205, 2014.
GARGOURI, B. et al. Biosurfactant production by the crude oil degrading
Stenotrophomonas sp. B-2: chemical characterization, biological activities and
environmental applications. Environmental Science and Pollution Research, v. 24, n.
4, p. 3769–3779, 2017.
40
GATES, B. B.; MAYERS, B.; GROSSMAN, A. of Crystalline Selenium Nanowires in
Solutions. n. 23, p. 1749–1752, 2002.
GAUTAM, K. K.; TYAGI, V. K. Microbial Surfactants: A Review. Journal of Oleo
Science, v. 55, n. 4, p. 155–166, 2006.
GRAU, A. et al. A study on the interactions of surfactin with phospholipid vesicles.
Biochimica et Biophysica Acta - Biomembranes, v. 1418, n. 2, p. 307–319, 1999.
GRIBBIN, J.; GRIBBIN, M. Richard Feynman: A Life in Science. [s.l.] Dutton, 1997.
GUDIÑA, E. J. et al. Bioconversion of agro-industrial by-products in rhamnolipids
toward applications in enhanced oil recovery and bioremediation. Bioresource
Technology, v. 177, p. 87–93, 2015.
GUERRA-SANTOS, L.; KAPPELI, O.; FIECHTER, A. Pseudomonas aeruginosa
biosurfactant production in continuous culture with glucose as carbon source. Applied
and Environmental Microbiology, v. 48, n. 2, p. 301–305, 1984.
GUERRA-SANTOS, L.; KAPPELI, O.; FIECHTER, A. Dependence of Pseudomonas
aeruginosa continous culture biosurfactant production on nutritional and environmental
factors. Applied Microbiology and Biotechnology, v. 24, n. 6, p. 443–448, 1986.
GUPTA, J. Nanotechnology applications in medicine and dentistry. Journal of
investigative and clinical dentistry, v. 2, n. 2, p. 81–88, 2011.
HABA, E. et al. Screening and production of rhamnolipids by Pseudomonas aeruginosa
47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, v. 88, n.
3, p. 379–387, 2000.
HAUSMANN, R.; SYLDATK, C. Types and Classification of Microbial Surfactants. In:
Biosurfactants. [s.l.] CRC Press, 2014. p. 3–18.
HAUSMANN, R.; SYLDATK, C. Types and Classification of Microbial Surfactants. In:
KOSARIC, N.; FAZILET VARDAR-SUKAN (Eds.). . Biossurfactant Production and
Utilization – Processes, Technologies, and Economics. [s.l.] CRC Press, 2015. p. 390.
HENKEL, M. et al. Rhamnolipids as biosurfactants from renewable resources: Concepts
for next-generation rhamnolipid production. Process Biochemistry, v. 47, n. 8, p. 1207–
1219, 2012.
HEYD, M. et al. Development and trends of biosurfactant analysis and purification using
rhamnolipids as an example. Analytical and Bioanalytical Chemistry, v. 391, n. 5, p.
1579–1590, 2008.
HISATSUKA, K. et al. Formation of Rhamnolipid by Pseudomonas aeruginosa and its
Function in Hydrocarbon Fermentation. Agricultural and Biological Chemistry, v. 35,
n. February 2015, p. 686–692, 1971.
HOCH, L. B. et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent
iron particles for the remediation of hexavalent chromium. Environmental Science and
Technology, v. 42, n. 7, p. 2600–2605, 2008.
41
HUBER, D. L. reviews Synthesis , Properties , and Applications of Iron Nanoparticles.
n. 5, p. 482–501, 2005.
ISO. ISO/TS 27687: Nanotechnologies — Terminology and definitions for nano-
objects — Nanoparticle, nanofibre and nanoplateInternational Organization for
Standardization.Geneva, 2009.
ITOH, S. et al. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin
(mixture of C12, C13 and C14 fractions). The Journal of antibiotics, v. 24, n. 12, p.
855–859, 1971.
JACQUES, R. J. S. et al. Biorremediação de solos contaminados com hidrocarbonetos
aromáticos policíclicos. Ciência Rural, v. 37, n. 4, p. 1192–1201, 2007.
JAIN, D. K.; LEE, H.; TREVORS, J. T. Effect of addition of Pseudomonas aeruginosa
UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil.
Journal of Industrial Microbiology, v. 10, n. 2, p. 87–93, 1992.
KELGENBAEVA, Z. et al. Synthesis of pure iron nanoparticles at liquid – liquid
interface using pulsed plasma. 2014.
KIRUBA DANIEL, S. C. G. et al. Biosynthesis of Cu, ZVI, and Ag nanoparticles using
Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of
Nanoparticle Research, 2013.
KOCH, A. K.; KAPPELI, O.; FIECHTER, A. Hydrocarbon assimilation and
biosurfactant production in Pseudomonas aeruginosa Hydrocarbon Assimilation and
Biosurfactant Production in Pseudomonas aeruginosa Mutants. v. 173, n. 13, p. 4212–
4219, 1991.
KOLTYPIN, Y.; PERKAS, N.; GEDANKEN, A. Commercial edible oils as new solvents
for ultrasonic synthesis of nanoparticles : the preparation of air stable nanocrystalline iron
particles. n. C, p. 2975–2977, 2004.
KOSARIC, N. Biosurfactants and Their Application for Soil Bioremediation. Food
Technology and Biotechnology, v. 39, n. 4, p. 295–304, 2001.
KUMAR. Environmental Pollution: Pollutants Types, Agents, Classification,
General Effects.
KUMARI, A.; YADAV, S. K.; YADAV, S. C. Biodegradable polymeric nanoparticles
based drug delivery systems. Colloids and Surfaces B: Biointerfaces, v. 75, n. 1, p. 1–
18, 2010.
LI, H. et al. Microstructure of cement mortar with nano-particles. Composites Part B:
Engineering, v. 35, n. 2, p. 185–189, 2004.
LI, S.; YAN, W.; ZHANG, W. Solvent-free production of nanoscale zero-valent iron
(nZVI) with precision milling. Green Chemistry, v. 11, n. 10, p. 1618, 2009.
LI, X.; ELLIOTT, D. W.; ZHANG, W. Zero-Valent Iron Nanoparticles for Abatement of
Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid
42
State and Materials Sciences, v. 31, n. 4, p. 111–122, 2006.
LIN, W. et al. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil
Combined with Sphingomonas sp. GY2B and Biosurfactant. Applied Biochemistry and
Biotechnology, v. 178, n. 7, p. 1325–1338, 2016.
LOVAGLIO, R. B. et al. Rhamnolipids production by a pseudomonas eruginosa LBI
mutant: Solutions and homologs characterization. Tenside, Surfactants, Detergents,
2014.
LOVAGLIO, R. B. et al. Rhamnolipids know-how: Looking for strategies for its
industrial dissemination. Biotechnology Advances, v. 33, n. 8, p. 1715–1726, dez. 2015.
LUNA, J. M.; RUFINO, R. D.; SARUBBO, L. A. Biosurfactant from Candida sphaerica
UCP0995 exhibiting heavy metal remediation properties. Process Safety and
Environmental Protection, v. 102, p. 558–566, 2016.
MACAULAY, B. M.; REES, D. Bioremediation of oil spills: A review of challenges for
research advancement. Annals of Environmental Science. Annals of Environmental
Science, v. 8, n. March, p. 9–38, 2014.
MAIER, R. M.; SOBERÓN-CHÁVEZ, G. Pseudomonas aeruginosa rhamnolipids:
biosynthesis and potential applications. Applied Microbiology and Biotechnology, v.
54, n. 5, p. 625–633, 2000.
MAKKAR, R.; CAMEOTRA, S. An update on the use of unconventional substrates
for biosurfactant production and their new applicationsApplied Microbiology and
Biotechnology, 2002.
MAKKAR, R. S.; CAMEOTRA, S. S. Biosurfactant production by microorganisms on
unconventional carbon sources. Journal of Surfactants and Detergents, v. 2, n. 2, p.
237–241, 1999.
MANIASSO, N. Ambientes micelares em química analítica. Quimica Nova, v. 24, n. 1,
p. 87–93, 2001.
MILLER, R. M. Biosurfactant-facilitated remediation of metal-contaminated soils.
Environmental Health Perspectives, v. 103, n. SUPPL. 1, p. 59–62, 1995.
MISHRA, M. et al. Basics and potential applications of surfactants - A review.
International Journal of PharmTech Research, v. 1, n. 4, p. 1354–1365, 2009.
MOHANPURIA, P.; RANA, N. K.; YADAV, S. K. Biosynthesis of nanoparticles:
Technological concepts and future applications. Journal of Nanoparticle Research, v.
10, n. 3, p. 507–517, 2008.
MORITA, T. et al. Microbial conversion of glycerol into glycolipid biosurfactants,
mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM
10317T. Journal of Bioscience and Bioengineering, v. 104, n. 1, p. 78–81, 2007.
MORSY, S. Role of Surfactants in Nanotechnology and Their Applications. Int. J. Curr.
Microbiol. App. Sci, v. 3, n. 5, p. 237–260, 2014.
43
MÜLLER, M. M. et al. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid
production in bioreactor systems. Applied Microbiology and Biotechnology, v. 87, n.
1, p. 167–174, 2010.
MULLIGAN, C. N.; GIBBS, B. F. Factors Influencing the Economics of Biosurfactants.
In: KOSARIC, N. (Ed.). . Biosurfactants, Production, Properties, Applications. New
York: Marcel Dekker, 1993. p. 329–371.
MULLIGAN, C. N.; GIBBS, B. F. Types, Production and Applications of
BiosurfactantsProc. Indian natn Sci Acad, 2004.
MULLIGAN, C. N.; YONG, R. N. Natural attenuation of contaminated soils.
Environment International, v. 30, n. 4, p. 587–601, 2004.
MULLIGAN, C. N.; YONG, R. N.; GIBBS, B. F. Surfactant-enhanced remediation of
contaminated soil: A review. Engineering Geology, v. 60, n. 1–4, p. 371–380, 2001a.
MULLIGAN, C. N.; YONG, R. N.; GIBBS, B. F. Heavy metal removal from sediments
by biosurfactants. Journal of Hazardous Materials, v. 85, n. 1–2, p. 111–125, 2001b.
NANDA, M. R. et al. Thermodynamic and kinetic studies of a catalytic process to convert
glycerol into solketal as an oxygenated fuel additive. Fuel, v. 117, n. PART A, p. 470–
477, 2014.
NIKAM A.P., MUKESH P., R., C. S. P. Nanoparticles – an overview. Int. J. Res.
Dev.Pharm. L. Sci., v. 3, n. 5, p. 1121–1127, 2014.
NITSCHKE, M. et al. Oil Wastes as Unconventional Substrates for Rhamnolipid
Biosurfactant Production by Pseudomonas aeruginosa LBI. Biotechnology Progress, v.
21, n. 5, p. 1562–1566, 7 out. 2005.
NITSCHKE, M.; COSTA, S. G. V. A. O.; CONTIERO, J. Rhamnolipid surfactants: An
update on the general aspects of these remarkable biomolecules. Biotechnology
Progress, v. 21, n. 6, p. 1593–1600, 2005.
NJAGI, E. C. et al. Biosynthesis of Iron and Silver Nanoparticles at Room Temperature
Using Aqueous Sorghum Bran Extracts. v. 27, n. 17, p. 264–271, 2011.
NNI. What is Nanotechnology. Disponível em: . Acesso em:
9 jan. 2016.
NSET. Nanotechnology and the Environment: Report of a National Nanotechnology
Initiative WorkshopNanotechnology. Arlington: [s.n.].
NURMI, J. T. et al. Characterization and Properties of Metallic Iron Nanoparticles:
Spectroscopy, Electrochemistry, and Kinetics. Environmental Science & Technology,
v. 39, n. 5, p. 1221–1230, 2005.
OCHSNER, U. A.; HEMBACH, T.; FIECHTER, A. Production of rhamnolipid
biosurfactants. Advances in biochemical engineering/biotechnology, v. 53, p. 89–118,
1996.
44
OCHSNER, U. R. S. A; REISER, J.; FIECHTER, A. Production of Pseudomonas
aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts . These include :
Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous
Hosts. v. 61, n. 9, p. 3503–3506, 1995.
OLIVEIRA, A. C. DOS S. M. Recuperação e Purificação de Ramnolipídeos
produzidos por Pseudomonas aeruginosa P029-GVIIA utilizando Melaço de Cana
como substrato Ana Carmen dos Santos Mendes de Oliveira RAMNOLIPÍDEOS
PRODUZIDOS POR Pseudomonas aeruginosa P029-GVIIA. [s.l.] Universidade
Federal do Rio Grande do Norte, 2010.
ÖZDAL, M. et al. Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste
frying oil and ram horn peptone. v. 020102, p. 020102, 2017.
PACWA-PŁOCINICZAK, M. et al. Environmental applications of biosurfactants:
Recent advances. International Journal of Molecular Sciences, v. 12, n. 1, p. 633–654,
2011.
PAGLIARO, M.; ROSSI, M. The Future of Glycerol: New Uses of a Versatile Raw
Material. Cambridge: Royal Society of Chemistry, 2008.
PAGLIARO, M.; ROSSI, M. The Future of Glycerol. 2. ed. Cambridge: Royal Society
of Chemistry, 2010.
PAPANIKOLAOU, S. Microbial conversion of glycerol into 1,3-propanediol: Glycerol
assimilation, biochemical events related with 1,3-propanediol biosynthesis and
biochemical engineering of the process. In: Microbial Conversions of Raw Glycerol.
[s.l: s.n.].
PARRA, J. L. et al. Chemical characterization and physicochemical behavior of
biosurfactants. Journal of the American Oil Chemists Society, v. 66, n. 1, p. 141–145,
1989.
PEYPOUX, F.; BONMATIN, J. M.; WALLACH, J. Recent trends in the biochemistry of
surfactin. Applied Microbiology and Biotechnology, v. 51, n. 5, p. 553–563, 1999.
PIRÔLLO, M. P. S. et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI
isolated from a hydrocarbon-contaminated site. Journal of Applied Microbiology, v.
105, n. 5, p. 1484–1490, 2008a.
PIRÔLLO, M. P. S. et al. Biodegradability of commercial and weathered diesel oils.
Brazilian Journal of Microbiology, 2008b.
PUTRI, M.; HERTADI, R. Effect of Glycerol as Carbon Source for Biosurfactant
Production by Halophilic Bacteria Pseudomonas Stutzeri BK-AB12. Procedia
Chemistry, v. 16, p. 321–327, 2015.
RAHMAN, K. S. M. et al. Rhamnolipid biosurfactant production by strains of
Pseudomonas aeruginosa using low-cost raw materials. Biotechnology Progress, v. 18,
n. 6, p. 1277–1281, 2002.
RAI, M.; INGLE, A. Role of nanotechnology in agriculture with special reference to
45
management of insect pests. Applied Microbiology and Biotechnology, v. 94, n. 2, p.
287–293, 3 abr. 2012.
RASHIDI, L.; KHOSRAVI-DARANI, K. The Applications of Nanotechnology in Food
Industry. Critical Reviews in Food Science and Nutrition, v. 51, n. 8, p. 723–730, 2011.
REIS, R. S. et al. Biosurfactants: Production and Applications. In: Biodegradation - Life
of Science. [s.l.] InTech, 2013.
ROBERT, M. et al. Effect of the carbon source on biosurfactant production by
Pseudomonas aeruginosa 44T1. Biotechnology Letters, v. 11, n. 12, p. 871–874, 1989.
RODUNER, E. Size matters: why nanomaterials are different. Chemical Society
Reviews, v. 35, n. 7, p. 583, 2006.
RON, E. Z.; ROSENBERG, E. Natural roles of biosurfactants. Environmental
Microbiology, v. 3, n. 4, p. 229–236, 2001.
RON, E. Z.; ROSENBERG, E. Biosurfactants and oil bioremediation. Current Opinion
in Biotechnology, v. 13, n. 3, p. 249–252, 2002.
ROOZBEH, M.; REZA, M.; ANVARIPOUR, B. Ultrasonics Sonochemistry A novel
ultrasound assisted method in synthesis of NZVI particles. ULTRASONICS
SONOCHEMISTRY, 2013.
SÁENZ-MARTA, C. I. et al. Biosurfactants as Useful Tools in Bioremediation. In:
Advances in Bioremediation of Wastewater and Polluted Soil. [s.l.] InTech, 2015.
SALAZAR-BRYAM, A. M.; LOVAGLIO, R. B.; CONTIERO, J. Biodiesel byproduct
bioconversion to rhamnolipids : Upstream aspects. Heliyon, n. January, p. e00337, 2017.
SANCHEZ, F.; SOBOLEV, K. Nanotechnology in concrete - A review. Construction
and Building Materials, v. 24, n. 11, p. 2060–2071, 2010.
SANTA ANNA, L. M. et al. Production of biosurfactants from Pseudomonas aeruginosa
PA 1 isolated in oil environments. Brazilian Journal of Chemical Engineering, v. 19,
n. 2, p. 159–166, abr. 2002.
SANTOS, D. K. F. et al. Synthesis and evaluation of biosurfactant produced by Candida
lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science and
Engineering, v. 105, p. 43–50, 2013.
SANTOS, F. P. B. DOS. Produção de Biossurfatante por Pseudomonas aeruginosa
EQ 109 a Partir de Glicerol. 2011. 122f. Tese (Doutorado em Tecnologia de Processos
Químicos e Bioquímicos) – Universidade Federal do Rio de Janeiro, Escola de Química,
Rio de Janeiro, 2011.
SILVA, S. N. R. L. et al. Glycerol as substrate for the production of biosurfactant by
Pseudomonas aeruginosa UCP0992. Colloids and Surfaces B: Biointerfaces, v. 79, n.
1, p. 174–183, 2010.
SINGH, R.; SINGH, P.; SHARMA, R. Microorganism as a tool of bioremediation
46
technology for cleaning environment: A review. Proceedings of the International
Academy of Ecology and Environmental Sciences, v. 4, n. 1, p. 1–6, 2014.
SOARES JÚNIOR, F. H. Efeitos de superfície nas propriedades magnéticas do
nanocompósito de CoFe2O4/Ag. 2012. 89f. Dissertação (Mestrado em Física) -
Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró,
2012.
SOBOLEV, K.; GUTIÉRREZ, M. F. How nanotechnology can change the concrete
world. American Ceramic Society Bulletin, v. 84, n. 10, p. 14–18, 2005.
SOLIEMANZADEH, A. et al. Biosynthesis of iron nanoparticles and their application in
removing phosphorus from aqueous solutions. Chemistry and Ecology, v. 32, n. 3, p.
286–300, 2016.
SOUSA, J. R. DE et al. Evaluation of a co-product of biodiesel production as carbon
source in the production of biosurfactant by P. aeruginosa MSIC02. Process
Biochemistry, v. 46, n. 9, p. 1831–1839, set. 2011.
SOUSA, J. R. et al. Cinética e caracterização de ramnolipídeos produzidos por
pseudomonas aeruginosa msic02 utilizando glicerol como fonte de carbono. Quimica
Nova, v. 37, n. 3, p. 431–441, 2014.
SOUZA JUNIOR, J. B. Nanopartículas magnéticas de cobalto metálico e ferrita de
cobalto recobertas com ouro como materiais biocompatíveis visando aplicações em
biomedicina. 2012. Dissertação (Mestrado em Físico-Química) - Instituto de Química de
São Carlos, Universidade de São Paulo, São Carlos, 2012.
SRILATH, B. Nanotechnology in Agriculture. Journal of Nanomedicine &
Nanotechnology, v. 02, n. 07, p. 233–242, 2011.
STEFANIUK, M.; OLESZCZUK, P.; OK, Y. S. Review on nano zerovalent iron (nZVI):
From synthesis to environmental applications. Chemical Engineering Journal, v. 287,
n. December, p. 618–632, 2016.
SUSLICK, K. S. et al. Sonochemical Synthesis of Iron Colloids. v. 7863, n. 96, p. 11960–
11961, 1996.
SYLDATK, C. et al. Production of four interfacial active rhamnolipids from ??-alkanes
or glycerol by resting cells of pseudomonas species DSM 2874. Zeitschrift fur
Naturforschung - Section C Journal of Biosciences, v. 40, n. 1–2, p. 61–67, 1985.
TAHA, M. R. et al. Applicability of nano zero valent iron ( nZVI ) in sono – Fenton
process. Journal of Physics: Conference Series, v. 495, 2014.
TAVAKOLI, F.; SALAVATI-NIASARI, M.; MOHANDES, F. Sonochemical Synthesis
and Characterization of Lead Iodide Hydroxide Micro / nanostructures. ULTRASONICS
SONOCHEMISTRY, 2013.
THAVASI, R. Microbial Biosurfactants: From an Environmental Application Point of
View. Journal of Bioremediation and Biodegradation, v. 02, n. 5, p. 1000104, 2011.
47
TOMAR, A.; GARG, G. Short review on application of gold nanoparticles. Global
Journal of Pharmacology, v. 7, n. 1, p. 34–38, 2013.
TRAN, Q. H.; NGUYEN, V. Q.; LE, A. Silver nanoparticles : synthesis , properties ,
toxicology ,. 2013.
TRUMMLER, K.; EFFENBERGER, F.; SYLDATK, C. An integrated
microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from
rapeseed oil with Pseudomonas sp. DSM 2874. European Journal of Lipid Science and
Technology, v. 105, n. 10, p. 563–571, 2003.
UMAR, A. Growth of comb-like ZnO nanostructures for Dye-sensitized solar cells
applications. Nanoscale Research Letters, v. 4, n. 9, p. 1004–1008, 2009.
VALENTIM, V. V. Um estudo descritivo do efeito superparamagnético em
nanopartículas. 2014. TCC (Física Bacharelado) - Centro de Ciências Exatas,
Universidade Federal do Espírito Santo, Vitória, 2014.
VAN BOGAERT, I. N. A. et al. Microbial production and application of sophorolipids.
Applied Microbiology and Biotechnology, v. 76, n. 1, p. 23–34, 2007.
VASEEM, M.; UMAR, A.; HAHN, Y. ZnO Nanoparticles : Growth, Properties, and
Applications. In: UMAR, A.; HAH, Y.-B. (Eds.). . Metal Oxide Nanostructures and
Their Applications. [s.l.] American Scientific Publishers, 2010. v. 5p. 1–36.
WANG, C.-B.; ZHANG, W.-X. Rapid and complete dechlorination of TCE and PCBs by
nanoscale Fe and Pd/Fe particles. v. 37, No. 1, n. 7, p. 78–79, 1997.
WANG, L. et al. Shifts in microbial community structure during in situ surfactant-
enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.
Environmental Science and Pollution Research, v. 23, n. 14, p. 14451–14461, 2016.
WANG, T. et al. Electrodeposition of monodispersed metal nanoparticles in a nafion film:
Towards highly active nanocatalysts. Electrochemistry Communications, v. 10, n. 5, p.
814–817, 2008.
WANG, Z. Z. Z. et al. Glycerol production by microbial fermentation. Biotechnology
Advances, v. 19, n. 3, p. 201–223, 2001.
WARD, G. The Grove Encyclopedia of Materials and Techniques in Art. [s.l.] Oxford
University Press, 2008.
WARD, O. P. Chapter 5: Microbial Biosurfactants and Biodegradation. In: SEN, R. (Ed.).
. Biosurfactants. 1. ed. New York: Landes Bioscience and Springer Science+Business
Media, LLC All, 2010. p. 65–74.
WEI-XIAN ZHANG. Nanoscale iron particles for environmental remediation- An
overview.pdf. Journal of Nanoparticle Research, v. 5, p. 323–332, 2003.
WEI, Y. H.; CHOU, C. L.; CHANG, J. S. Rhamnolipid production by indigenous
Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical
Engineering Journal, v. 27, n. 2, p. 146–154, 2005.
48
WEI, Y. T. et al. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ
treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, v.
211–212, p. 373–380, 2012.
WILSON, S. C.; JONES, K. C. Bioremediation of soil contaminated with polynuclear
aromatic hydrocarbons (PAHs): A review. Environmental Pollution, v. 81, n. 3, p. 229–
249, 1993.
YAMAMOTO, O.; SAWAI, J.; SASAMOTO, T. Activated carbon sphere with
antibacterial characteristics. Materials Transactions, v. 43, n. 5, p. 1069–1073, 2002.
YAN, W. et al. Iron nanoparticles for environmental clean-up: recent developments and
future outlook. Environmental Science: Processes & Impacts, v. 15, n. 1, p. 63, 2013.
YANG, Z. et al. Bioleaching remediation of heavy metal-contaminated soils using
Burkholderia sp. Z-90. Journal of Hazardous Materials, v. 301, p. 145–152, 2016.
YU-TAO, Z. et al. Fe Nanoparticle Production by an Atmospheric Cold Plasma Jet *. v.
27, n. 6, p. 6–7, 2010.
ZHANG, G. et al. Biodegradation of crude oil by Pseudomonas aeruginosa in the
presence of rhamnolipids. Journal of Zhejiang University. Science. B, v. 6, n. 8, p. 725–
730, 2005.
ZHANG, X. et al. Chemosphere Synthesis of nanoparticles by microorganisms and their
application in enhancing microbiological reaction rates. Chemosphere, v. 82, n. 4, p.
489–494, 2011.
ZHAO, X. et al. An overview of preparation and applications of stabilized zero-valent
iron nanoparticles for soil and groundwater remediation. Water Research, v. 100, p.
245–266, 2016.
ZHOU, C. H. et al. Chemoselective catalytic conversion of glycerol as a biorenewable
source to valuable commodity chemicals. Chemical Society Reviews, v. 37, n. 3, p. 527–
549, 2008.
74
9. References
AARTHI, T.; SHAAMA, M. S.; MADRAS, G. Degradation of water soluble polymers
under combined ultrasonic and ultraviolet radiation. Industrial and Engineering
Chemistry Research, v. 46, n. 19, p. 6204–6210, 2007.
ARUTCHELVI, J. I. et al. Mannosylerythritol lipids: a review. Journal of Industrial
Microbiology & Biotechnology, v. 35, n. 12, p. 1559–1570, 21 dez. 2008.
ASSELINEAU, C.; ASSELINEAU, J. Trehalose-containing glycolipids. Progress in
the Chemistry of Fats and other Lipids, v. 16, p. 59–99, jan. 1978.
AUFFAN, M. et al. Relation between the Redox State of Iron-Based Nanoparticles and
Their Cytotoxicity toward Escherichia coli. Environmental Science & Technology, v.
42, n. 17, p. 6730–6735, set. 2008.
BANAT, I. M. et al. Microbial biosurfactants production, applications and future
potential. Applied Microbiology and Biotechnology, v. 87, n. 2, p. 427–444, 2010.
BANAT, I. M.; MAKKAR, R. S.; CAMEOTRA, S. S. Potential commercial
applications of microbial surfactants. Applied microbiology and biotechnology, v. 53,
n. 5, p. 495–508, 2000.
BAO, M. et al. Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2
and its biodegradation of crude oil. Environmental Science: Processes & Impacts, v.
16, n. 4, p. 897, 2014.
BARDOS, P. et al. A Risk/Benefit Approach to the Application of Iron
Nanoparticles for the Remediation of Contaminated Sites in the Environment.
Defra Research Project Final Report. Defra Project Code: CB0440.NanoRem. [s.l:
s.n.].
BARKAY, T. et al. Enhancement of solubilization and biodegradation of polyaromatic
hydrocarbons by the bioemulsifier alasan. Applied and Environmental Microbiology,
v. 65, n. 6, p. 2697–2702, 1999.
BASNET, M. et al. Reduced transport potential of a palladium-doped zero valent iron
nanoparticle in a water saturated loamy sand. Water Research, v. 68, p. 354–363,
2015.
BASNET, M.; GHOSHAL, S.; TUFENKJI, N. Rhamnolipid biosurfactant and soy
protein act as effective stabilizers in the aggregation and transport of palladium-doped
zerovalent iron nanoparticles in saturated porous media. Environmental Science and
Technology, v. 47, n. 23, p. 13355–13364, 2013.
BEGUM, S.; AHMARUZZAMAN, M. CTAB and SDS assisted facile fabrication of
SnO2 nanoparticles for effective degradation of carbamazepine from aqueous phase: A
systematic and comparative study of their degradation performance. Water research, v.
129, p. 470–485, 1 fev. 2018.
BERNHARD, M. et al. Aerobic biodegradation of polyethylene glycols of different
75
molecular weights in wastewater and seawater. Water Research, v. 42, n. 19, p. 4791–
4801, 2008.
BHATTACHARJEE, S. et al. Effects of Rhamnolipid and Carboxymethylcellulose
Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles.
Environmental Science and Technology, v. 50, n. 4, p. 1812–1820, 2016.
BHATTACHARJEE, S.; GHOSHAL, S. Phase Transfer of Palladized Nanoscale
Zerovalent Iron for Environmental Remediation of Trichloroethene. Environmental
Science and Technology, v. 50, n. 16, p. 8631–8639, 2016.
BICCA, F. C.; FLECK, L. C.; AYUB, M. A. Z. Production of biosurfactant by
hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Revista de
Microbiologia, v. 30, n. 3, p. 231–236, 2 jul. 1999.
BIONDI, O. Low molecular weight polyethylene glycol induces chromosome
aberrations in Chinese hamster cells cultured in vitro. Mutagenesis, v. 17, n. 3, p. 261–
264, 2002.
CAMERON, D. R.; COOPER, D. G.; NEUFELD, R. J. The mannoprotein of
Saccharomyces cerevisiae is an effective bioemulsifier. Applied and environmental
microbiology, v. 54, n. 6, p. 1420–5, jun. 1988.
CAMPOS, J. M. et al. Formulation of mayonnaise with the addition of a bioemulsifier
isolated from Candida utilis. Toxicology Reports, v. 2, p. 1164–1170, 2015.
CASTANHO, G. M. et al. Sorption and mobility of polyethylene glycol (PEG 4000) in
tropical soils. Toxicological and Environmental Chemistry, v. 91, n. 7, p. 1263–1271,
2009.
CETESB. Qualidade das águas subterrâneas no Estado de São Paulo 2013-2015.
São Paulo: CETESB, 2016.
CHAIRAM, S.; KONKAMDEE, W.; PARAKHUN, R. Starch-supported gold
nanoparticles and their use in 4-nitrophenol reduction Starch-supported gold
nanoparticles in 4-nitrophenol reduction. Journal of Saudi Chemical Society, v. 21, n.
6, p. 656–663, 2017.
CHAMNONGPOL, S. et al. Fe(III)-mediated cellular toxicity. Molecular
Microbiology, v. 45, n. 3, p. 711–719, 25 jul. 2002.
CHANG, M. C.; KANG, H. Y. Remediation of pyrene-contaminated soil by
synthesized nanoscale zero-valent iron particles. Journal of Environmental Science
and Health, Part A, v. 44, n. 6, p. 576–582, 10 abr. 2009.
CHEN, H. J.; TSENG, D. H.; HUANG, S. L. Biodegradation of octylphenol
polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresource
Technology, v. 96, n. 13, p. 1483–1491, 2005.
CHEN, J. et al. Production, structure elucidation and anticancer properties of
sophorolipid from Wickerhamiella domercqiae. Enzyme and Microbial Technology,
2006a.
76
CHEN, J. et al. Production, structure elucidation and anticancer properties of
sophorolipid from Wickerhamiella domercqiae. Enzyme and Microbial Technology,
v. 39, n. 3, p. 501–506, jul. 2006b.
CHEN, J. et al. Effect of natural organic matter on toxicity and reactivity of nano-scale
zero-valent iron. Water Research, v. 45, n. 5, p. 1995–2001, fev. 2011.
CHEN, S.-S.; HUANG, Y.-C.; KUO, T.--Y. The Remediation of Perchloroethylene
Contaminated Groundwater by Nanoscale Iron Reactive Barrier Integrated with
Surfactant and Electrokinetics. Ground Water Monitoring & Remediation, v. 30, n.
4, p. 90–98, 2010.
CHEN, X. Y.; HA, W.; SHI, Y. P. Sensitive colorimetric detection of melamine in
processed raw milk using asymmetrically PEGylated gold nanoparticles. Talanta, v.
194, n. June 2018, p. 475–484, 2019.
CHO, Y.; CHOI, S. IL. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd
bimetallic particles under various experimental conditions. Chemosphere, v. 81, n. 7, p.
940–945, 2010.
CHRISTOVA, N. et al. Production, Structural Elucidation, and In Vitro Antitumor
Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain. Journal of
microbiology and biotechnology, v. 25, n. 4, p. 439–47, 28 abr. 2015.
CHRZANOWSKI, Ł. et al. Biodegradation of rhamnolipids in liquid cultures: Effect of
biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and
bacterial community composition. Bioresource Technology, v. 111, p. 328–335, maio
2012.
CLARK, J.; MACQUARRIE, D. Handbook of Green Chemistry and Technology.
[s.l: s.n.].
COLLA, L. M. et al. Simultaneous production of lipases and biosurfactants by
submerged and solid-state bioprocesses. Bioresource Technology, v. 101, n. 21, p.
8308–8314, 2010.
COMBA, S.; SETHI, R. Stabilization of highly concentrated suspensions of iron
nanoparticles using shear-thinning gels of xanthan gum. Water Research, v. 43, n. 15,
p. 3717–3726, 2009.
COOK, S. M. Assessing the use and application of zero-valent iron nanoparticle
technology for remediation at contaminated sites. EPA Report, n. August, p. 39, 2009.
COOPER, D. G. Biosurfactants. Microbiol Sci, v. 3, p. 145–149, 1986.
CRANE, R. A. et al. Magnetite and zero-valent iron nanoparticles for the remediation of
uranium contaminated environmental water. Water Research, v. 45, n. 9, p. 2931–
2942, 2011.
CRANE, R. A.; SCOTT, T. The removal of uranium onto carbon-supported nanoscale
zero-valent iron particles. Journal of Nanoparticle Research, v. 16, n. 12, 2014.
77
CRANE, R. A.; SCOTT, T. B. Nanoscale zero-valent iron: Future prospects for an
emerging water treatment technology. Journal of Hazardous Materials, v. 211–212, p.
112–125, 2012.
CSERHÁTI, T.; FORGÁCS, E.; OROS, G. Biological activity and environmental
impact of anionic surfactants. Environment International, v. 28, n. 5, p. 337–348,
2002.
DESAI, J. D.; BANAT, I. M. Microbial production of surfactants and their commercial
potential. Fuel and Energy Abstracts, v. 38, n. 4, p. 221, 1997.
DESHPANDE, M.; DANIELS, L. Evaluation of sophorolipid biosurfactant production
by Candida bombicola using animal fat. Bioresource Technology, v. 54, n. 2, p. 143–
150, 1995.
DHAL, B. et al. Chemical and microbial remediation of hexavalent chromium from
contaminated soil and mining/metallurgical solid waste: A review. Journal of
Hazardous Materials, v. 250–251, n. January, p. 272–291, 2013.
DÍAZ DE RIENZO, M. A. et al. Sophorolipid biosurfactants: Possible uses as
antibacterial and antibiofilm agent. New Biotechnology, v. 32, n. 6, p. 720–726, dez.
2015.
DÍAZ DE RIENZO, M. A. et al. Antibacterial properties of biosurfactants against
selected Gram-positive and -negative bacteria. FEMS microbiology letters, v. 363, n.
2, p. fnv224, jan. 2016.
DIRILGEN, N.; INCE, N. Inhibition effect of the anionic surfactant SDS on duckweed,
LEMNA minor with considerations of growth and accumulation. Chemosphere, v. 31,
n. 9, p. 4185–4196, 1995.
DONG, H. et al. Chromate removal by surface-modified nanoscale zero-valent iron:
Effect of different surface coatings and water chemistry. Journal of Colloid and
Interface Science, v. 471, p. 7–13, 2016.
DUTRA, M. C. Síntese e caracterização de nanopartículas de ferro-zero valente
(nzvi) aplicadas ao tratamento de águas contaminadas com 4-clorofenol. 2015. 78 f.
Disserrtação (Mestrado em Engenharia Química) - Centro Tecnológico, Uniiversidade
Federal de Santa Catarina, Florianópolis, 2015.
EL-NAHHAL, I. M. et al. Stabilization of nano-structured ZnO particles onto the
surface of cotton fibers using different surfactants and their antimicrobial activity.
Ultrasonics Sonochemistry, v. 38, n. December 2016, p. 478–487, 2017.
ENGELBREKT, C. et al. Green synthesis of gold nanoparticles with starch–glucose and
application in bioelectrochemistry. Journal of Materials Chemistry, v. 19, n. 42, p.
7839, 2009.
EPA. Drinking Water From Household Wells. Washington, DC: U.S. Environmental
Protection Agency, 2002.
EPA. U.S. Environmental Protection Agency Nanotechnology White Paper.
78
Washington, DC: U.S. Environmental Protection Agency, 2007.
EUROPEAN COMMISSION. Science for Environment Policy. Disponível em:
.
Acesso em: 3 jun. 2017.
FAJARDO, C. et al. Transcriptional and proteomic stress responses of a soil bacterium
Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, v. 93, n.
6, p. 1077–1083, out. 2013.
FAN, L. et al. Characterization and inducing melanoma cell apoptosis activity of
mannosylerythritol lipids-A produced from pseudozyma aphidis. PLoS ONE, v. 11, n.
2, p. 1–17, 2016.
FARIAS, C. B. B. et al. Synthesis of silver nanoparticles using a biosurfactant produced
in low-cost medium as stabilizing agent. Electronic Journal of Biotechnology, v. 17,
n. 3, p. 122–125, 2014.
FATISSON, J.; GHOSHAL, S.; TUFENKJI, N. Deposition of carboxymethylcellulose-
coated zero-valent iron nanoparticles onto silica: Roles of solution chemistry and
organic molecules. Langmuir, v. 26, n. 15, p. 12832–12840, 2010.
FEDEILA, M. et al. Biodegradation of anionic surfactants by Alcaligenes faecalis,
Enterobacter cloacae and Serratia marcescens strains isolated from industrial
wastewater. Ecotoxicology and Environmental Safety, v. 163, n. May, p. 629–635,
2018.
FERNANDES, T. C. C. Investigação dos efeitos tóxicos do biossurfactante
ramnolipídio e suas implicações quando usado na biorremediação de águas
contaminadas por petróleo. 2011. 188 f. Tese (Doutorado em Biologia Celular e
Molecular) - Intituto de Biociências, Universidade Estadual Paulista, Rio Claro, 2011.
FILIPPOUSI, M. et al. Surfactant effects on the structural and magnetic properties of
iron oxide nanoparticles. Journal of Physical Chemistry C, v. 118, n. 29, p. 16209–
16217, 2014.
FRANZETTI, A. et al. Environmental fate, toxicity, characteristics and potential
applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5.
Bioresource Technology, v. 108, p. 245–251, 2012.
GAUTAM, K. K.; TYAGI, V. K. Microbial Surfactants: A Review. Journal of Oleo
Science, v. 55, n. 4, p. 155–166, 2006.
GRAU, A. et al. A study on the interactions of surfactin with phospholipid vesicles.
Biochimica et Biophysica Acta - Biomembranes, v. 1418, n. 2, p. 307–319, 1999.
GROSS, R. A. Biodegradable Polymers for the Environment. Science, v. 297, n. 5582,
p. 803–807, 2 ago. 2002.
GU, J. et al. Effect of some common solubility enhancers on microbial growth. Annals
of the New York Academy of Sciences, v. 829, p. 62–73, 1997.
79
HAUSMANN, R.; SYLDATK, C. Types and Classification of Microbial Surfactants.
In: Biosurfactants. [s.l.] CRC Press, 2014. p. 3–18.
HE, F. et al. Stabilization of Fe - Pd nanoparticles with sodium carboxymethyl cellulose
for enhanced transport and dechlorination of trichloroethylene in soil and groundwater.
Industrial and Engineering Chemistry Research, 2007.
HE, F.; ZHAO, D. Hydrodechlorination of trichloroethene using stabilized Fe-Pd
nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction
conditions. Applied Catalysis B: Environmental, v. 84, n. 3–4, p. 533–540, 2008.
HE, W. et al. Availability and toxicity of Fe(II) and Fe(III) in Caco-2 cells. Journal of
Zhejiang University. Science. B, v. 9, n. 9, p. 707–12, set. 2008.
HENKEL, M. et al. Rhamnolipids as biosurfactants from renewable resources:
Concepts for next-generation rhamnolipid production. Process Biochemistry, v. 47, n.
8, p. 1207–1219, 2012.
HIRATA, Y. et al. Novel characteristics of sophorolipids , yeast glycolipid
biosurfactants , as biodegradable low-foaming surfactants. JBIOSC, v. 108, n. 2, p.
142–146, 2009.
HOTTA, Y. et al. Ecotoxicity by the biodegradation of alkylphenol polyethoxylates
depends on the effect of trace elements. Journal of Agricultural and Food Chemistry,
v. 58, n. 2, p. 1062–1067, 2010.
IKEHATA, K.; EL-DIN, M. G. Degradation of recalcitrant surfactants in wastewater by
ozonation and advanced oxidation processes: A review. Ozone: Science and
Engineering, v. 26, n. 4, p. 327–343, 2004.
ILORI, M. O.; AMOBI, C. J.; ODOCHA, A. C. Factors affecting biosurfactant
production by oil degrading Aeromonas spp. isolated from a tropical environment.
Chemosphere, v. 61, n. 7, p. 985–992, 2005.
JANG, M.-H.; LIM, M.; HWANG, Y. S. Potential environmental implications of
nanoscale zero-valent iron particles for environmental remediation. Environmental
Health and Toxicology, v. 29, p. e2014022, 18 dez. 2014.
JEGADEESAN, G.; MONDAL, K.; LALVANI, S. B. Arsenate remediation using
nanosized modified zerovalent iron particles. Environmental Progress, v. 24, n. 3, p.
289–296, 2005.
JIMÉNEZ-PEÑALVER, P. et al. Production of sophorolipids from winterization oil
cake by solid-state fermentation: Optimization, monitoring and effect of mixing.
Biochemical Engineering Journal, v. 115, p. 93–100, nov. 2016.
JOSHI, S. et al. Biosurfactant production using molasses and whey under thermophilic
conditions. Bioresource Technology, v. 99, n. 1, p. 195–199, 2008.
JOSHI, S.; BHARUCHA, C.; DESAI, A. J. Production of biosurfactant and antifungal
compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology, v.
99, n. 11, p. 4603–4608, 2008.
80
JULINOVA, M. et al. Initiating biodegradation of polyvinylpyrrolidone in an aqueous
aerobic environment: Technical note. Ecological Chemistry and Engineering S, v. 20,
n. 1, p. 199–208, 2013.
KANEL, S. R. et al. Removal of Arsenic (III) from Groundwater by Nanoscale Zero-
Valent Iron. Environmental Science & Technology, v. 39, n. 5, p. 1291–1298, 2005.
KANEL, S. R. et al. Transport of surface-modified iron nanoparticle in porous media
and application to arsenic(III) remediation. Journal of Nanoparticle Research, v. 9, n.
5, p. 725–735, 2007.
KANGA, S. A. et al. Solubilization of naphthalene and methyl-substituted naphthalenes
from crude oil using biosurfactants. Environmental Science and Technology, v. 31, n.
2, p. 556–561, 1997.
KHANI, A. H.; RASHIDI, A. M.; KASHI, G. Synthesis of tungsten nanoparticles by
reverse micelle method. Journal of Molecular Liquids, v. 241, p. 897–903, set. 2017.
KIM, H.-J. et al. Effect of emplaced nZVI mass and groundwater velocity on PCE
dechlorination and hydrogen evolution in water-saturated sand. Journal of Hazardous
Materials, v. 322, p. 136–144, 15 jan. 2017.
KIM, H. et al. Surface and physico-chemical properties of a glycolipid biosurfactant ,
mannosylerythritol lipid , from Candida antarctica. n. 3, p. 1637–1641, 2002.
KIM, H. S. et al. Characterization of a biosurfactant, mannosylerythritol lipid produced
from Candida sp. SY16. Applied Microbiology and Biotechnology, v. 52, n. 5, p.
713–721, 1999.
KIM, J.-S. et al. Microbial glycolipid production under nitrogen limitation and resting
cell conditions. Journal of Biotechnology, v. 13, n. 4, p. 257–266, mar. 1990.
KIM, Y.-Y.; WALSH, D. Metal sulfidenanoparticles synthesized via enzyme treatment
of biopolymer stabilized nanosuspensions. Nanoscale, v. 2, n. 2, p. 240–247, 2010.
KIRAN, G. S. et al. Optimization and production of a biosurfactant from the sponge-
associated marine fungus Aspergillus ustus MSF3. Colloids and Surfaces B:
Biointerfaces, v. 73, n. 2, p. 250–256, 2009.
KIRAN, G. S.; SABU, A.; SELVIN, J. Synthesis of silver nanoparticles by glycolipid
biosurfactant produced from marine Brevibacterium casei MSA19. Journal of
Biotechnology, 2010.
KITAMOTO, D. et al. Surface active properties and antimicrobial activities of
mannosylerythritol lipids as biosurfactants produced by Candida antarctica. Journal of
Biotechnology, v. 29, n. 1–2, p. 91–96, 1993.
KNOP, K. et al. Poly(ethylene glycol) in drug delivery: Pros and cons as well as
potential alternatives. Angewandte Chemie - International Edition, v. 49, n. 36, p.
6288–6308, 2010.
KRAJANGPAN, S. et al. Iron Nanoparticles Coated with Amphiphilic Polysiloxane
81
Graft Copolymers: Dispersibility and Contaminant Treatability. Environmental
Science & Technology, p. 120829074146002, 29 ago. 2012.
KRATOCHVIL, D.; VOLESKY, B. Advances in the biosorption of heavy
metalsTrends in Biotechnology, 1998.
KRAYNOV, A.; MÜLLER, T. E. Concepts for the Stabilization of Metal Nanoparticles
in Ionic Liquids. In: Applications of Ionic Liquids in Science and Technology. [s.l.]
InTech, 2012.
KUMAR, C. G. et al. Synthesis of biosurfactant-based silver nanoparticles with purified
rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. Journal of
Microbiology and Biotechnology, 2010.
KUYUKINA, M. S. et al. Recovery of Rhodococcus biosurfactants using methyl
tertiary-butyl ether extraction. Journal of Microbiological Methods, v. 46, n. 2, p.
149–156, 2001.
LEE, C. et al. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli.
Environmental Science & Technology, v. 42, n. 13, p. 4927–4933, jul. 2008.
LEE, Y.-C. et al. Characterization of nanoscale zero valent iron modified by nonionic
surfactant for trichloroethylene removal in the presence of humic acid: A research note.
Desalination Publications, v. 10, n. December, p. 33–38, 2009.
LI, G. et al. Effect of molecular weight of polyethylene glycol on the sheet-thickness
and photocatalytic performance of MoS2 nanoparticles. Applied Surface Science, v.
469, n. August 2018, p. 312–315, 2019.
LI, X.; ELLIOTT, D. W.; ZHANG, W. Zero-Valent Iron Nanoparticles for Abatement
of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in
Solid State and Materials Sciences, v. 31, n. 4, p. 111–122, 2006.
LI, Z. et al. Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale
Zerovalent Iron to E. coli. Environmental Science & Technology, v. 44, n. 9, p. 3462–
3467, maio 2010.
LIAO, Z. et al. Biocompatible surfactin-stabilized superparamagnetic iron oxide
nanoparticles as contrast agents for magnetic resonance imaging. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, v. 370, n. 1–3, p. 1–5, 2010.
LIMA, T. M. S. et al. Biodegradability of bacterial surfactants. Biodegradation, v. 22,
n. 3, p. 585–592, jun. 2011.
LIN, K.-S.; CHANG, N.-B.; CHUANG, T.-D. Fine structure characterization of zero-
valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and
groundwater. Science and Technology of Advanced Materials, v. 9, n. 2, p. 025015,
12 abr. 2008.
LOVAGLIO, R. B. et al. Rhamnolipids production by a pseudomonas eruginosa LBI
mutant: Solutions and homologs characterization. Tenside, Surfactants, Detergents,
2014.
82
LOVAGLIO, R. B. et al. Rhamnolipids know-how: Looking for strategies for its
industrial dissemination. Biotechnology Advances, v. 33, n. 8, p. 1715–1726, dez.
2015.
LUKONDEH, T.; ASHBOLT, N. J.; ROGERS, P. L. Evaluation of Kluyveromyces
marxianus FII 510700 grown on a lactose-based medium as a source of a natural
bioemulsifier. Journal of Industrial Microbiology and Biotechnology, v. 30, n. 12, p.
715–720, 2003.
MAKKAR, R. S.; CAMEOTRA, S. S. Utilization of molasses for biosurfactant
production by two Bacillus strains at thermophilic conditions. Journal of the
American Oil Chemists Society, v. 74, n. 7, p. 887–889, 1997.
MANIASSO, N. Ambientes micelares em química analítica. Quimica Nova, v. 24, n. 1,
p. 87–93, 2001.
MARCHAL, R. et al. Biodegradability of polyethylene glycol 400 by complex
microfloras. International Biodeterioration and Biodegradation, v. 62, n. 4, p. 384–
390, 2008.
MARGESIN, R.; SCHINNER, F. Biodegradation of the anionic surfactant sodium
dodecyl sulfate at low temperatures. International Biodeterioration and
Biodegradation, v. 41, n. 2, p. 139–143, 1998.
MARQUÉS, A. M. et al. The physicochemical properties and chemical composition of
trehalose lipids produced by Rhodococcus erythropolis 51T7. v. 158, p. 110–117, 2009.
MERCADÉ, M. E. et al. Olive oil mill effluent (OOME). New substrate for
biosurfactant production. Bioresource Technology, v. 43, n. 1, p. 1–6, 1993.
MOHAMMADI, A. Effect of SDS, silver nanoparticles, and SDS + silver nanoparticles
on methane hydrate semicompletion time. Petroleum Science and Technology, v. 35,
n. 15, p. 1542–1548, 2017.
MOHAN, P. K.; NAKHLA, G.; YANFUL, E. K. Biokinetics of biodegradation of
surfactants under aerobic, anoxic and anaerobic conditions. Water Research, v. 40, n.
3, p. 533–540, fev. 2006.
MOLNÁR, Z. et al. Green synthesis of gold nanoparticles by thermophilic filamentous
fungi. Scientific Reports, v. 8, n. 1, p. 1–12, 2018.
MORITA, T. et al. Microbial conversion of glycerol into glycolipid biosurfactants,
mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM
10317T. Journal of Bioscience and Bioengineering, v. 104, n. 1, p. 78–81, 2007.
MORITA, T. et al. Production of mannosylerythritol lipids and their application in
cosmetics. Applied Microbiology and Biotechnology, v. 97, n. 11, p. 4691–4700,
2013.
MULLIGAN, C. N. Environmental applications for biosurfactants. Environmental
Pollution, v. 133, n. 2, p. 183–198, 2005.
83
MULLIGAN, C. N.; GIBBS, B. F. Types, Production and Applications of
BiosurfactantsProc. Indian natn Sci Acad, 2004.
MULLIGAN, C. N.; YONG, R. N.; GIBBS, B. F. Surfactant-enhanced remediation of
contaminated soil: A review. Engineering Geology, v. 60, n. 1–4, p. 371–380, 2001.
MURIEL, J. M. . et al. Production of biosurfactants by Cladosporium resinae.
Biotechnology Letters, v. 18, n. 3, p. 235–240, 1996.
MUTALIK, S. R. et al. Use of response surface optimization for the production of
biosurfactant from Rhodococcus spp. MTCC 2574. Bioresource Technology, v. 99, n.
16, p. 7875–7880, 2008.
NAVON-VENEZIA, S. et al. Alasan, a new bioemulsifier from Acinetobacter
radioresistens. Applied and Environmental Microbiology, v. 61, n. 9, p. 3240–3244,
1995.
NGUYEN, T. T. et al. Rhamnolipid biosurfactant mixtures for environmental
remediation. Water Research, v. 42, n. 6–7, p. 1735–1743, 2008.
NITSCHKE, M. et al. Oil Wastes as Unconventional Substrates for Rhamnolipid
Biosurfactant Production by Pseudomonas aeruginosa LBI. Biotechnology Progress, v.
21, n. 5, p. 1562–1566, 7 out. 2005.
NITSCHKE, M.; PASTORE, G. Cassava flour wastewater as a substrate for
biosurfactant production. Applied biochemistry and biotechnology, v. 105–108, n. 7,
p. 295–301, 2003.
NOLL, H. et al. The chemical structure of the cord factor of Mycobacterium
tuberculosis. Biochimica et biophysica acta, v. 20, n. 2, p. 299–309, maio 1956.
NSET. National Nanotechnology Initiative Workshop. Nanotechnology and the
Environment. Anais...Arlington: 2003
NUNES, B.; CARVALHO, F.; GUILHERMINO, L. Acute toxicity of widely used
pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and
Tetraselmis chuii. Ecotoxicology and Environmental Safety, v. 61, n. 3, p. 413–419,
2005.
O’CARROLL, D. et al. Nanoscale zero valent iron and bimetallic particles for
contaminated site remediation. Advances in Water Resources, v. 51, p. 104–122,
2013.
OLIVEIRA, A. C. DOS S. M. Recuperação e Purificação de Ramnolipídeos
produzidos por Pseudomonas aeruginosa P029-GVIIA utilizando Melaço de Cana
como substrato Ana Carmen dos Santos Mendes de Oliveira RAMNOLIPÍDEOS
PRODUZIDOS POR Pseudomonas aeruginosa P029-GVIIA. 2010. 122 f. Tese
(Doutorado em em Tecnologia de Processos Químicos e Bioquímicos) - Escola de
Química, Universidade Federal do Rio Grande do Norte, Natal, 2010.
PALANISAMY, P. Biosurfactant mediated synthesis of NiO nanorods. Materials
Letters, v. 62, n. 4–5, p. 743–746, 2008.
84
PALANISAMY, P.; RAICHUR, A. M. Synthesis of spherical NiO nanoparticles
through a novel biosurfactant mediated emulsion technique. Materials Science and
Engineering C, v. 29, n. 1, p. 199–204, 2009.
PARK, Y. et al. Polysaccharides and phytochemicals: a natural reservoir for the green
synthesis of gold and silver nanoparticles. IET Nanobiotechnology, v. 5, n. 3, p. 69,
2011.
PARRA, J. L. et al. Chemical characterization and physicochemical behavior of
biosurfactants. Journal of the American Oil Chemists Society, v. 66, n. 1, p. 141–145,
1989.
PELUFFO, M. et al. Use of different kinds of persulfate activation with iron for the
remediation of a PAH-contaminated soil. Science of The Total Environment, v. 563–
564, p. 649–656, 1 set. 2016.
PERSSON, A.; ÖSTERBERG, E.; DOSTALEK, M. Biosurfactant production by
Pseudomonas fluorescens 378: growth and product characteristics. Applied
Microbiology and Biotechnology, v. 29, n. 1, p. 1–4, 1988.
PETROVIC, M. et al. Occurrence and distribution of nonionic surfactants, their
degradation products, and linear alkylbenzene sulfonates in coastal waters and
sediments in Spain. Environmental Toxicology and Chemistry, v. 21, n. 1, p. 37–46,
2002.
PEYPOUX, F.; BONMATIN, J. M.; WALLACH, J. Recent trends in the biochemistry
of surfactin. Applied Microbiology and Biotechnology, v. 51, n. 5, p. 553–563, 1999.
PHENRAT, T. et al. Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent
Iron Dispersions. Environmental Science & Technology, v. 41, n. 1, p. 284–290, jan.
2007.
PHENRAT, T. et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by
anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their
effect on aggregation and sedimentation. Journal of Nanoparticle Research, v. 10, n.
5, p. 795–814, 2008.
PHENRAT, T. et al. Particle size distribution, concentration, and magnetic attraction
affect transport of polymer-modified Fe0nanoparticles in sand columns.
Environmental Science and Technology, v. 43, n. 13, p. 5079–5085, 2009a.
PHENRAT, T. et al. Adsorbed polyelectrolyte coatings decrease Fe o nanoparticle
reactivity with TCE in water: Conceptual model and mechanisms. Environmental
Science and Technology, v. 43, n. 5, p. 1507–1514, 2009b.
PHENRAT, T. et al. Estimating attachment of nano- and submicrometer-particles
coated with organic macromolecules in porous media: Development of an empirical
model. Environmental Science and Technology, v. 44, n. 12, p. 4531–4538, 2010.
PHENRAT, T. et al. Adsorbed poly(aspartate) coating limits the adverse effects of
dissolved groundwater solutes on Fe0nanoparticle reactivity with trichloroethylene.
85
Environmental Science and Pollution Research, v. 25, n. 8, p. 7157–7169, 2018.
PIRÔLLO, M. P. S. et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI
isolated from a hydrocarbon-contaminated site. Journal of Applied Microbiology, v.
105, n. 5, p. 1484–1490, 2008.
POLIAKOFF, M. Green Chemistry: Science and Politics of Change. Science, v. 297, n.
5582, p. 807–810, 2 ago. 2002.
PONDER, S. M.; DARAB, J. G.; MALLOUK, T. E. Remediation of Cr(VI) and Pb(II)
Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental
Science & Technology, v. 34, n. 12, p. 2564–2569, 2000.
POREMBA, K. et al. Marine biosurfactants, III. Toxicity testing with marine
microorganisms and comparison with synthetic surfactants. Zeitschrift fur
Naturforschung. C, Journal of biosciences, v. 46, n. 3–4, p. 210–6, 1991.
PUTRI, M.; HERTADI, R. Effect of Glycerol as Carbon Source for Biosurfactant
Production by Halophilic Bacteria Pseudomonas Stutzeri BK-AB12. Procedia
Chemistry, v. 16, p. 321–327, 2015.
QI, H. et al. Polyethylene Glycol 20000-Supported Zero-Valent Iron Nanoparticle for
Removal of Pb(II) from Aqueous Solutions: Characteristics, Kinetic and
Thermodynamic Studies. Science of Advanced MaterialS, v. 8, n. 10, p. 1878–1886,
2016.
QIU, X. et al. Chemical stability and toxicity of nanoscale zero-valent iron in the
remediation of chromium-contaminated watershed. Chemical Engineering Journal, v.
220, p. 61–66, mar. 2013.
RAMEZANZADEH, M. H. et al. Synthesis and Survey Magnetic Properties of Fe 2 O 3
Nanoparticles Coated With Different Surfactant. Synthesis and Reactivity in
Inorganic, Metal-Organic, and Nano-Metal Chemistry, v. 45, n. 3, p. 392–396, 4
mar. 2015.
RAU, U. et al. Fed-batch bioreactor production of mannosylerythritol lipids secreted by
Pseudozyma aphidis. Applied Microbiology and Biotechnology, v. 68, n. 5, p. 607–
613, 2005.
RAVEENDRAN, P.; FU, J.; WALLEN, S. L. Completely “Green” Synthesis and
Stabilization of Metal Nanoparticles. Journal of the American Chemical Society, v.
125, n. 46, p. 13940–13941, 2003.
RAVI KUMAR, D. V. et al. Continuous flow synthesis of functionalized silver
nanoparticles using bifunctional biosurfactants. Green Chemistry, v. 12, n. 4, p. 609,
2010.
REDDY, A. S. et al. Synthesis of silver nanoparticles using surfactin: A biosurfactant as
stabilizing agent. Materials Letters, v. 63, n. 15, p. 1227–1230, 2009.
REIS, R. S. et al. Biosurfactants: Production and Applications. In: CHAMY, R. (Ed.). .
Biodegradation - Life of Science. Valparaiso, Chile: InTech, 2013. p. 31–63.
86
RIOUX, R. M. et al. High-surface-area catalyst design: Synthesis, characterization, and
reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. The journal of
physical chemistry. B, v. 109, n. 6, p. 2192–2202, 2005.
ROBERT, M. et al. Effect of the carbon source on biosurfactant production by
Pseudomonas aeruginosa 44T1. Biotechnology Letters, v. 11, n. 12, p. 871–874, 1989.
ROCHA, M. V. P. et al. Natural cashew apple juice as fermentation medium for
biosurfactant production by Acinetobacter calcoaceticus. World Journal of
Microbiology and Biotechnology, v. 22, n. 12, p. 1295–1299, 2006.
RODRIGUES, L. et al. Kinetic study of fermentative biosurfactant production by
Lactobacillus strains. Biochemical Engineering Journal, v. 28, n. 2, p. 109–116, 2006.
RON, E. Z.; ROSENBERG, E. Natural roles of biosurfactants. Environmental
Microbiology, v. 3, n. 4, p. 229–236, 2001.
RON, E. Z.; ROSENBERG, E. Biosurfactants and oil bioremediation. Current
Opinion in Biotechnology, v. 13, n. 3, p. 249–252, 2002.
ROSENBERG, E. et al. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying
properties. Applied and environmental microbiology, v. 37, n. 3, p. 402–8, mar. 1979.
RUFINO, R. D.; SARUBBO, L. A.; CAMPOS-TAKAKI, G. M. Enhancement of
stability of biosurfactant produced by Candida lipolytica using industrial residue as
substrate. World Journal of Microbiology and Biotechnology, v. 23, n. 5, p. 729–734,
2007.
RUÍZ-BALTAZAR, A. et al. Effect of the Surfactant on the Growth and Oxidation of
Iron Nanoparticles. Journal of Nanomaterials, v. 2015, p. 1–8, 2015.
SACCÀ, M. L. et al. Molecular Stress Responses to Nano-Sized Zero-Valent Iron
(nZVI) Particles in the Soil Bacterium Pseudomonas stutzeri. PLoS ONE, v. 9, n. 2, p.
e89677, 25 fev. 2014a.
SACCÀ, M. L. et al. Integrating classical and molecular approaches to evaluate the
impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, v. 104,
p. 184–189, jun. 2014b.
SÁENZ-MARTA, C. I. et al. Biosurfactants as Useful Tools in Bioremediation. In:
SHIOMI, N. (Ed.). . Advances in Bioremediation of Wastewater and Polluted Soil.
[s.l.] InTech, 2015.
SAHEBNAZAR, Z. et al. Zero-valent iron nanoparticles assisted purification of
rhamnolipid for oil recovery improvement from oily sludge. Journal of Environmental
Chemical Engineering, v. 6, n. 1, p. 917–922, 2018.
SAJNA, K. V. et al. White Biotechnology in Biosurfactants. In: PANDEY, A. et al.
(Eds.). . Industrial Biorefineries & White Biotechnology. [s.l.] Elsevier B.V., 2015a.
SAJNA, K. V. et al. White Biotechnology in Cosmetics. In: PANDEY, A. et al. (Eds.). .
Industrial Biorefineries & White Biotechnology. [s.l.] Elsevier, 2015b. p. 607–652.
87
SALAZAR-BRYAM, A. M. Aproveitamento de glicerol residual como fonte de
carbono para produção de ramnolipidios por linhagens de Pseudomonas
aeruginosa. 2016. 89f. Dissertação (Mestrado em Microbiologia Aplicada) -
Departamento de Bioquímica e Microbiologia, Universidade Estadual Paulista, Rio
Claro, 2016.
SALAZAR-BRYAM, A. M.; LOVAGLIO, R. B.; CONTIERO, J. Biodiesel byproduct
bioconversion to rhamnolipids : Upstream aspects. Heliyon, n. January, p. e00337,
2017.
SALEH, N. et al. Adsorbed triblock copolymers deliver reactive iron nanoparticles to
the oil/water interface. Nano Letters, v. 5, n. 12, p. 2489–2494, 2005.
SANDBACKA, M.; CHRISTIANSON, I.; ISOMAA, B. The acute toxicity of
surfactants on fish cells, Daphnia magna and fish—A comparative study. Toxicology in
Vitro, v. 14, n. 1, p. 61–68, 2000.
SANTOS, D. K. F. et al. Biosurfactant production from Candida lipolytica in bioreactor
and evaluation of its toxicity for application as a bioremediation agent. Process
Biochemistry, v. 54, p. 20–27, 2017.
SARUBBO, L. A.; FARIAS, C. B. B.; CAMPOS-TAKAKI, G. M. Co-utilization of
canola oil and glucose on the production of a surfactant by Candida lipolytica. Current
Microbiology, v. 54, n. 1, p. 68–73, 2007.
SEN, S.; SHAH, P. Application of Nanoscale Zero-valent Iron for Wastewater
Treatment. International Conference on Multidisciplinary Research & Practice.
Anais...2014
SERVA. Polyethylene glycol 4000. Disponível em:
. Acesso em: 14 nov. 2018.
SHEPHERD, R. et al. Novel bioemulsifiers from microorganisms for use in foods.
Journal of Biotechnology, v. 40, n. 3, p. 207–217, 1995.
SHI, L.; ZHANG, X.; CHEN, Z. Removal of Chromium (VI) from wastewater using
bentonite-supported nanoscale zero-valent iron. Water Research, v. 45, n. 2, p. 886–
892, jan. 2011.
SHIBAEV, L. A. et al. Thermal and tribological properties of fullerene-containing
composite systems. Part 3. Features of the mechanism of thermal degradation of poly-
(N-vinyl-pyrrolidone) and its compositions with fullerene C60. Journal of
Macromolecular Science, Part B: Physics, v. 47, n. 2, p. 276–287, 2008.
SIBILA, M. A. et al. Ecotoxicity and biodegradability of an alkyl ethoxysulphate
surfactant in coastal waters. Science of the Total Environment, v. 394, n. 2–3, p. 265–
274, 2008.
SIHN, Y.; BAE, S.; LEE, W. Immobilization of uranium(VI) in a cementitious matrix
with nanoscale zerovalent iron (NZVI). Chemosphere, v. 215, p. 626–633, 1 jan. 2019.
88
SILVA, A. C. S. DA et al. Biosurfactant production by fungi as a sustainable
alternative. Arquivos do Instituto Biológico, v. 85, n. 4, p. 37–42, 21 set. 2018.
SINGER, M. M. et al. Comparative Effects of Oil Dispersants To the Early-Life Stages
of Topsmelt (Atherinops-Affinis) and Kelp (Macrocystis-Pyrifera). Environmental
Toxicology and Chemistry, v. 13, n. 4, p. 649–655, 1994.
SINGHAL; NIE; WANG. Nanotechnology applications in surgical oncology. Annual
Review of Medicine, v. 61, p. 359–373, 2010.
SMYTH, T. J. P. et al. Isolation and Analysis of Low Molecular Weight Microbial
Glycolipids. In: TIMMIS, K. N. (Ed.). . Handbook of Hydrocarbon and Lipid
Microbiology. Berlin, Heidelberg: Springer-Verlag, 2010a.
SMYTH, T. J. P. et al. Isolation and Analysis of Lipopeptides and High Molecular
Weight Biosurfactants. In: Handbook of Hydrocarbon and Lipid Microbiology.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010b. p. 3687–3704.
SOHN, K. et al. Fe(0) Nanoparticles for Nitrate Reduction: Stability, Reactivity, and
Transformation. Environmental Science & Technology, v. 40, n. 17, p. 5514–5519,
set. 2006.
SONG, M.; BIELEFELDT, A. R. Toxicity and inhibition of bacterial growth by series
of alkylphenol polyethoxylate nonionic surfactants. Journal of Hazardous Materials,
v. 219–220, p. 127–132, 2012.
STURM, W.; MORGAN, J. Aquatic chemistry chemical equilibria and rates. 3. ed.
[s.l.] John Wiley & Sons, 1996.
SUN, Y. et al. Remediation of persistent organic pollutant-contaminated soil using
biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon
permeable reactive barrier. Environmental Science and Pollution Research, v. 24, n.
36, p. 28142–28151, 2017.
SUN, Y. P. et al. A method for the preparation of stable dispersion of zero-valent iron
nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
v. 308, n. 1–3, p. 60–66, 2007.
TAN, Y. et al. Preparation of gold, platinum, palladium and silver nanoparticles by the
reduction of their salts with a weak reductant–potassium bitartrate. Journal of
Materials Chemistry, v. 13, n. 5, p. 1069–1075, 2003.
THAVASI, R. Microbial Biosurfactants: From an Environmental Application Point of
View. Journal of Bioremediation and Biodegradation, v. 02, n. 5, p. 1000104, 2011.
THE ROYAL SOCIETY. Nanoscience and nanotechnologies: opportunities and
uncertainties. London: The Royal Society & The Royal Academy of Engineering,
2004.
TOLLEFSEN, K. E. et al. Cytotoxicity of alkylphenols and alkylated non-phenolics in a
primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes. Ecotoxicology
and Environmental Safety, v. 69, n. 1, p. 64–73, 2008.
89
TOSCO, T. et al. Nanoscale zerovalent iron particles for groundwater remediation: A
review. Journal of Cleaner Production, v. 77, p. 10–21, 2014.
TRATNYEK, P. G. et al. Reactivity of zerovalent metals in aquatic media: Effects of
organic surface coatings. ACS Symposium Series, v. 1071, n. Cmc, p. 381–406, 2011.
TRIMPIN, S. et al. Recalcitrance of poly(vinyl