UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – CAMPUS DE BOTUCATU PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS – ZOOLOGIA DISSERTAÇÃO DE MESTRADO Biologia e ecologia de crustáceos decápodos (Caridea e Brachyura) do infralitoral não consolidado da costa sudeste do Brasil RAFAELA TORRES PEREIRA ORIENTADOR: PROF. DR. ADILSON FRANSOZO COORIENTADORA: PROF. DRA. ARIÁDINE CRISTINE DE ALMEIDA BOTUCATU – SP 2014 Biologia e ecologia de crustáceos decápodos (Caridea e Brachyura) do infralitoral não consolidado da costa sudeste do Brasil RAFAELA TORRES PEREIRA ORIENTADOR: PROF. DR. ADILSON FRANSOZO COORIENTADORA: PROF. DRA. ARIÁDINE CRISTINE DE ALMEIDA Dissertação apresentada ao curso de pós- graduação em Ciências Biológicas – Zoologia, do Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, como parte dos requisitos para a obtenção do título de Mestre em Ciências Biológicas – Área de Concentração: Zoologia. BOTUCATU – SP 2014 FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE - CRB 8/5651 Pereira, Rafaela Torres. Biologia e ecologia de crustáceos decápodos (Caridea e Brachyura) do infralitoral não consolidado da costa sudeste do Brasil / Rafaela Torres Pereira. – Botucatu, 2014 Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Botucatu Orientador: Adilson Fransozo Coorientador: Ariádine Cristine de Almeida Capes: 20400004 1. Biodiversidade - Conservação. 2. Decapode (Crustáceo). 3. Distribuição geográfica. 4. Reprodução animal. 5. Zoologia – Pesquisa. Palavras-chave: Biodiversidade; Crustacea (Decapoda); Distribuição ecológica; Estratégia reprodutiva; Estrutura populacional. EPÍGRAFE “Não são as espécies mais fortes que sobrevivem nem as mais inteligentes, e sim as mais suscetíveis a mudanças.” Charles Darwin DEDICATÓRIA AOS MEUS PAIS CLÁUDIO E CIDA, AOS MEUS IRMÃOS BRUNO E FABIANA (IN MEMORIAN), E AOS MEUS QUERIDOS AVÓS JOÃO, EMERITA, JOSÉ (IN MEMORIAN) E TEREZINHA, EU DEDICO! AGRADECIMENTOS Hoje, mais do que nunca, é momento de agradecer àqueles que contribuíram para que mais um objetivo em minha vida fosse atingido. Sem a colaboração destes essa etapa não estaria concluída. Agradeço a Deus por estar sempre ao meu lado durante toda esta trajetória. Sou grata ao professor doutor titular Adilson Fransozo, que além de orientador foi amigo. Obrigada pela oportunidade e confiança. Obrigada ainda pelos conselhos, sempre bem vindos, desde a época da graduação. Faltam-me palavras para expressar minha gratidão! À minha coorientadora e amiga, Dra. Ariádine Cristine de Almeida, por toda ajuda e ensinamentos, desde a época da graduação, e por estar sempre disposta a me ajudar em tudo que precisei. Agradeço ainda por toda amizade e carinho. À professora doutora titular Maria Lucia Negreiros Fransozo, carinhosamente chamada de “tia”, por todo carinho e conhecimento transmitido. Agradeço pela oportunidade de acompanhar suas aulas e pelas excelentes discussões em grupo, as quais foram fundamentais para meu crescimento profissional e pessoal. Você com certeza transmite um exemplo de profissionalismo a todos nós. Muito obrigada! Aos professores Dr. Antônio L. Castilho, Dr. Rogério C. da Costa, pelos ensinamentos em suas disciplinas e pelas valiosas discussões nas mesmas. Ao professor Dr. Válter Cobo, pelo conhecimento transmitido durante os cursos de extensão em Biologia Marinha. Aos professores Dr. Adilson Fransozo e Dr. Juan A. Baeza, por me conceder permissão de utilizar fotos de sua autoria nesta dissertação. Agradeço ao Conselho Nacional de desenvolvimento científico e tecnológico (CNPq), por ter financiado minha bolsa de mestrado. Ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) e à Polícia Federal, concederem a licença para as coletas do material nas áreas estudadas. Agradeço à Universidade estadual Paulista “Júlio de Mesquita Filho”, ao Instituto de Biociências e ao Departamento de Zoologia, por terem proporcionado infraestrutura para que essa dissertação fosse realizada. Em especial, agradeço ao curso de pós-graduação em Ciências Biológicas - Zoologia e ao Departamento de Zoologia, incluindo seus atenciosos funcionários André Arruda, Carolina Lopes, Davi Müller, Flávio da Silva, Hamilton Rodrigues, Herivaldo Santos, Juliana Ramos, Luciana Campos e Silvio Almeida. Sou grata às agências de fomento que financiaram os projetos de pesquisa, dos quais as coletas geraram os dados utilizados para execução dos trabalhos apresentados. Agradeço aos pescadores da embarcação Progresso, Édson Ferreti (Dedinho) e Djalma Rosa (Passarinho), e aos membros do NEBECC, que participaram das coletas que deram origem aos dados utilizados nos trabalhos aqui apresentados. O esforço de vocês gerou e continua gerando uma série de publicações bem conceituadas. Muito obrigada. Aos amigos do Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos (NEBECC). Aos membros atuais e aos “antigos”, por terem me acolhido e contribuído para meu crescimento profissional. Em especial, gostaria de agradecer àqueles que me ensinaram muito, contribuindo nos trabalhos apresentados nesta dissertação. Agradeço aos professores Dra. Ariádine Almeida, Dr. Gustavo Teixeira, Dra. Vivian Fransozo, Dra. Giovana Bertini e Dr. Fúlvio Freire; aos colegas de trabalho Carlos Alencar, Paloma Lima, Eduardo Bolla Jr., Samara Alves, Mariana Antunes, Thiago Silva e por todas as discussões de cunho estatístico. Sou grata ainda aos demais colegas do NEBECC pela convivência e carinho. É impossível deixar de agradecer àqueles que, além de colegas de trabalho se tornaram minha outra família em Botucatu. Obrigada Marciano Venâncio, Ariádine Almeida, Samara Alves, Douglas Alves, Eduardo Bolla Jr., Mariana Antunes, Thiago Silva, Kátia Hiroki, Bárbara Martins, Emanuelle Stopa, Gustavo Sancinetti, Augusto Silveira e Eduardo Degani. Quando eu mais precisava vocês sempre tinham uma palavra amiga e um gesto de carinho. Agradeço ao meu querido Augusto Silveira, por todo carinho, amor e amizade. Obrigada pelo cuidado e dedicação. E, principalmente, obrigada por se dispor a ser meu companheiro. Eu te amo! À toda minha família, em especial aos meus pais Cláudio Pereira e Maria Aparecida Torres Pereira, e avós, João Torres, Emerita Torres, José Pereira (in memorian) e Terezinha Pereira, que mesmo à distância se fizeram presentes a cada dia, em cada ligação, conversa por Skype e afins. Sem o apoio de vocês nada disso seria possível, obrigada por acreditarem no meu sonho, e principalmente por me incentivarem a busca-lo. Obrigada por cada palavra de carinho. Eu amo vocês! Papai e mamãe, nós sabemos o quanto foi e é difícil conviver com a distância, mas isso é irrelevante para nós. Distância nenhuma interfere na nossa união! Obrigada pela educação que me deram e por acreditarem que eu conseguiria. Essa é mais uma vitória que alcançamos juntos. Bruno, meu querido irmão, agradeço pelas lindas palavras de incentivo e por se orgulhar de mim. À minha eterna Ciça (in memorian), que continuará sempre em meus pensamentos, e à minha Lily, minhas queridas amigas caninas que fizeram com que meus dias fossem mais leves e felizes. Obrigada por serem tão amorosas. A todos que torceram por mim, meus sinceros agradecimentos! SUMÁRIO CONSIDERAÇÕES INICIAIS ........................................................................................... 1 CONSIDERAÇÕES INICIAIS ............................................................................................................. 2 REFERÊNCIAS .............................................................................................................................. 10 INFRAORDEM CARIDEA ............................................................................................. 13 CAPÍTULO 1 ...................................................................................................................... 14 REPRODUCTIVE STRATEGY OF THE SHRIMP NEMATOPALAEMON SCHMITTI (HOLTHUIS, 1950) (DECAPODA, CARIDEA, PALAEMONOIDEA) FROM THE SOUTHEASTERN BRAZILIAN COAST 14 ABSTRACT ................................................................................................................................... 15 INTRODUCTION ............................................................................................................................ 16 MATERIAL AND METHODS .......................................................................................................... 19 RESULTS ...................................................................................................................................... 22 DISCUSSION ................................................................................................................................. 29 REFERENCES ................................................................................................................................ 34 INFRAORDEM BRACHYURA ....................................................................................... 39 CAPÍTULO 2 ...................................................................................................................... 40 ECOLOGICAL DISTRIBUTION AND POPULATION PARAMETERS OF PERSEPHONA MEDITERRANEA (HERBST, 1794) (BRACHYURA, LEUCOSIIDAE) IN A PROTECTED AREA ON THE SOUTHEASTERN BRAZILIAN COAST ............................................................................ 40 ABSTRACT ................................................................................................................................... 41 INTRODUCTION ............................................................................................................................ 42 MATERIAL AND METHODS .......................................................................................................... 44 RESULTS ...................................................................................................................................... 50 DISCUSSION ................................................................................................................................. 59 REFERENCES ................................................................................................................................ 62 CAPÍTULO 3 ...................................................................................................................... 71 ENVIRONMENTAL FACTORS INFLUENCING THE DISTRIBUTION OF THREE SPECIES WITHIN THE GENUS PERSEPHONA LEACH, 1817 (CRUSTACEA, DECAPODA, LEUCOSIIDAE) IN TWO REGIONS ON THE NORTHERN COAST OF SÃO PAULO STATE, BRAZIL ................................. 71 ABSTRACT ................................................................................................................................... 72 INTRODUCTION ............................................................................................................................ 73 MATERIAL AND METHODS .......................................................................................................... 75 RESULTS ...................................................................................................................................... 82 DISCUSSION ................................................................................................................................. 96 REFERENCES .............................................................................................................................. 100 CAPÍTULO 4 .................................................................................................................... 105 ENVIRONMENTAL FACTORS MODULATING THE ABUNDANCE AND DISTRIBUTION OF CALLINECTES DANAE SMITH, 1869 (DECAPODA, PORTUNIDAE) FROM TWO AREAS OF THE SOUTHEASTERN COAST OF BRAZIL .................................................................................. 105 ABSTRACT ................................................................................................................................. 106 INTRODUCTION .......................................................................................................................... 108 MATERIAL AND METHODS ........................................................................................................ 110 RESULTS .................................................................................................................................... 114 DISCUSSION ............................................................................................................................... 123 REFERENCES .............................................................................................................................. 126 CONSIDERAÇÕES FINAIS .......................................................................................... 133 CONSIDERAÇÕES FINAIS ............................................................................................................ 134 1 CONSIDERAÇÕES INICIAIS CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 2 CONSIDERAÇÕES INICIAIS O subfilo Crustacea é, entre todos os organismos atuais, o grupo que apresenta a maior diversidade morfológica (Martin & Davis 2001). Essa variação de formas permitiu a esses organismos habitar os mais diferenciados ambientes, adquirindo, portanto uma expressiva distribuição no mundo todo (Ng et al. 2008). A ordem Decapoda é a mais diversa, sendo constituída de cerca de 14756 espécies descritas (De Grave et al. 2009) Essa ordem agrega organismos abundantes, com importância ecológica e apreciados na alimentação humana, como os camarões, lagostas, siris e caranguejos. A Infraordem Caridea é representada por aproximadamente 2500 espécies de camarões descritos. Estes são caracterizados por apresentarem filobrânquias, o primeiro ou os dois primeiros pares de pereópodos quelados e de tamanhos variados e a segunda pleura abdominal marcadamente mais expandida, recobrindo parcialmente a primeira e a terceira pleuras (Hendrickx 1995). Esta Infraordem é formada por 16 superfamílias e 36 famílias (Martin & Davis 2001). A Família Palaemonidae, inserida dentro da Superfamília Palaemonoidea, é grande e diversa, com pelo menos 118 gêneros e 887 espécies. Os camarões palaemonídeos são epibentônicos e ecologicamente importantes, atuando como detritívoros, predadores de pequenos invertebrados e presas para peixes (Bauer 2004). O camarão palaemonídeo utilizado nesse estudo foi o camarão barriga branca Nematopalaemon schmitti (Holthuis, 1950) (Figura 1). Esta espécie apresenta uma ampla distribuição geográfica, desde a Venezuela até o Brasil (do Amapá até São Paulo) (Holthuis 1980, Ramos-Porto & Coelho 1998). Esta espécie habita águas marinhas e CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 3 estuarinas, onde o substrato é composto por cascalho, areia e/ou silt + argila, e em profundidades de até 75 m (Holthuis 1980). Figura 1 - Nematopalaemon schmitti (Holthuis, 1950). Foto de JA, Baeza. Pertencente à subordem Pleocyemata, a Infraordem Brachyura é constituída por mais de 6700 espécies (Ng et al. 2008, De Grave et al. 2009), das quais mais de 300 são conhecidas na costa brasileira e 188 são descritas no litoral do Estado de São Paulo (Bertini et al. 2004). Esta Infraordem é composta por caranguejos e siris, os quais apresentam ampla distribuição, podendo ser encontrados em habitats diversificados (terrestre, marinho e dulcícola) (Ng et al. 2008). CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 4 As espécies de braquiúros utilizadas nesse estudo foram: Persephona mediterranea (Herbst, 1794), Persephona punctata (Linnaeus, 1758), Persephona lichtensteinii Leach, 1817 e Callinectes danae Smith, 1869. Os caranguejos P. mediterranea (Figura 2), P. punctata (Figura 3), e Persephona lichtensteinii (Figura 4) apresentam ampla distribuição no Atlântico Ocidental, habitando zonas bentônicas, em substratos compostos por lodo, areia, conchas, algas calcárias e corais. No Brasil, P. mediterranea e P. punctata possuem distribuição mais ampla quando comparadas à P. lichtensteinii. As duas primeiras ocorrem desde o Amapá ao Rio Grande do Sul, enquanto a outra espécie se distribui do Amapá à São Paulo (Melo 1996). Figura 2 - Persephona mediterranea (Herbst, 1794). Foto de A, Fransozo. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 5 Figura 3 - Persephona punctata (Linnaeus, 1758). Foto de A, Fransozo. Figura 4 - Persephona lichtensteinii Leach, 1817. Foto de A, Fransozo. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 6 O siri Callinectes danae (Figura 5) tem distribuição registrada para o Atlântico Ocidental, sendo encontrado em Bermuda, Flórida, Golfo do México, Antilhas, Colômbia, Venezuela e Brasil (da Paraíba ao Rio Grande do Sul). Essa espécie habita, preferencialmente, regiões de águas salobras até hipersalinas, sendo encontrada em manguezais e estuários lamosos, em praias arenosas e mar aberto, e na região intertidal até os 75m de profundidade (Melo 1996). Figura 5 - Callinectes danae Smith, 1869. Foto de A, Fransozo. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 7 Conhecer a distribuição de organismos marinhos é de fundamental importância para inferir sobre preferência de habitat, seja espacial ou temporal. Além disso, pode-se prever com base nos fatores ambientais analisados, de que forma essa distribuição pode ser moldada por fatores ambientais. No entanto, é importante pensar que a distribuição não é regida apenas por relações entre os organismos e os agentes do ambiente, variações genéticas e até mesmo intra e interespecíficas podem alterar os padrões distribucionais de organismos marinhos (Haedrich et al. 1975, Hecker 1990, Pinheiro et al. 1996, Bertini et al. 2001, Bertini & Fransozo 2004). Compreender esses padrões de distribuição é importante para conhecermos a biologia e ecologia das populações, fornecendo resultados que sirvam de subsídio a futuros estudos e ainda informações que possam servir de fonte para que os órgãos competentes possam estabelecer medidas de mitigação de impacto sobre as espécies marinhas. Ao se estudar uma população, a biologia reprodutiva e todos os seus aspectos deve ser estudada a fim de estabelecer padrões reprodutivos para espécies. Isso pode auxiliar a determinação de regiões de reprodução, as quais são de fundamental importância para a conservação e manutenção das populações. Aspectos como o tamanho ao atingir a maturidade sexual e o período reprodutivo da espécie são utilizados como ferramenta para definir períodos de defeso para espécies de interesse comercial. O tamanho ao atingir a maturidade sexual representa o tamanho a partir do qual os indivíduos tornam-se aptos a reprodução e, portanto, manter o equilíbrio da população (Hines 1982). Esse tamanho pode variar diante de uma série de fatores ambientais, gradiente latitudinal, relações intra e interespecíficas (Sastry 1983, Hartnoll 1982, 1985, 2006). Por isso, é importante conhecer o que, de fato, atua sobre a reprodução da população. Além disso, o período reprodutivo deve ser compreendido, CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 8 seja para dar suporte às inferências de regiões de reprodução, afirmando quando os organismos de uma população estão ativos reprodutivamente, ou então para dar suporte e informações básicas à biologia de espécies marinhas, podendo evidenciar padrões de reprodução contínua ou sazonal. A fim de fornecer informações complementares de populações, são ainda realizados estudos da estrutura populacional. Esses são fundamentais para se conhecer de que forma esses animais se distribuem em grupos demográficos (Jovens, Machos, Fêmeas e Fêmeas ovígeras), e como esses grupos flutuam em decorrência de eventos de natalidade e mortalidade. Ainda, esse tipo de estudo pode fornecer informações quanto ao equilíbrio populacional, quando se considera a razão sexual entre machos e fêmeas. Por fim, nesse tipo de estudo, pode-se ainda verificar a entrada de jovens na população ao avaliar o recrutamento da mesma, e assim obter informações que auxiliam tanto na compreensão da estrutura, e dos aspectos reprodutivos desses organismos (Bertini et al. 2010, Almeida et al. 2013). De modo geral, a presente dissertação tem como título “Biologia e ecologia de crustáceos decápodos (Caridea e Brachyura) do infralitoral não consolidado da costa sudeste do Brasil”, sendo subdividida em duas seções, as quais estão subdivididas em capítulos. A primeira seção, Infraordem Caridea, é composta por um capítulo. A segunda seção, Infraordem Brachyura, é subdividida em três capítulos. O primeiro capítulo, “Reproductive strategy of the shrimp Nematopalaemon schmitti (Holthuis, 1950) (Decapoda, Caridea, Palaemonoidea) from the Southeastern Brazilian coast” aborda as estratégias reprodutivas do camarão carídeo N. schmitti, focando no investimento reprodutivo, fecundidade, perda de ovos, e sincronia no desenvolvimento de ovos e ovários dessa espécie. Os dados utilizados nesse capítulo são provenientes de CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 9 coletas entre os anos de 2008 e 2011 na Enseada de Ubatuba. O segundo capítulo, “Ecological distribution and population parameters of Persephona mediterranea (Herbst, 1794) (Brachyura, Leucosiidae) in a protected área on the southeastern Brazilian coast” revela a distribuição ecológica de P. mediterranea, em diferentes profundidades e estações do ano, a estrutura populacional, a razão sexual e o tamanho ao atingir a maturidade sexual. Os caranguejos desse estudo foram coletados durante o ano 2000 na região de Ubatuba, na qual está incluída uma área marinha de proteção ambiental (APA marinha – Setor Cunhambebe). O terceiro capítulo, “Environmental factors influencing the distribution of three Species within the genus Persephona Leach, 1817 (Crustacea, Decapoda, Leucosiidae) in two regions on the northern coast of São Paulo State, Brazil” aborda a influência dos fatores ambientais na distribuição batimétrica de três espécies do gênero Persephona, buscando padrões de distribuição para essas espécies. Neste capítulo, os dados utilizados são provenientes de coletas no período de julho/2001 a junho/2003 nas regiões de Ubatuba e Caraguatatuba. O quarto capítulo, “Environmental factors modulating the abundance and distribution of Callinectes danae Smith, 1869 (Decapoda, Portunidae) from two áreas of the Southeastern coast of Brazil” compreende a influência dos fatores ambientais sobre a abundância e distribuição do siri Callinectes danae, destacando a abundância e distribuição da espécie em escala espacial e temporal. Esses siris foram coletados durante o período de julho/2001 a junho/2003 nas regiões de Ubatuba e Caraguatatuba. Assim, esta dissertação pretende contribuir com informações relevantes sobre aspectos da biologia e ecologia de diferentes espécies de crustáceos que habitam a costa sudeste brasileira. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 10 REFERÊNCIAS Almeida AC, Hiyodo C, Cobo VJ, Bertini G, Fransozo V & Teixeira GM. 2013. Relative growth, sexual maturity, and breeding season of three species of the genus Persephona (Decapoda: Brachyura: Leucosiidae): a comparative study. Journal of the Marine Biological Association of the United Kingdom 01: 1-11. Bauer RT. 2004. Remarkable shrimps: Natural History and Adapatations of the Carideans. University of Oklahoma Press, Norman, 316p. Bertini G, Fransozo A & Costa RC. 2001. Ecological distribution of three species of Persephona (Brachyura: Leucosiidae) in the Ubatuba region, São Paulo, Brazil. Nauplius 9(2): 31-42. Bertini G & Fransozo A. 2004. Bathymetric distribution of brachyuran crab (Crustacea, Decapoda) communities on coastal soft bottoms off southeastern Brazil. Marine Ecology Progress Series 279: 193-200. Bertini G, Fransozo A & Melo GAS. 2004. Biodiversity of brachyuran crabs (Crustacea: Decapoda) from non-consolidated sublittoral bottom on the northern coast of São Paulo State, Brazil. Biodiversity and Conservation 13: 2185-2207. Bertini G, Teixeira GM, Fransozo V & Fransozo A. 2010. Reproductive period and size at the onset of sexual maturity of mottled purse crab, Persephona mediterranea (Herbst, 1794) (Brachyura, Leucosioidea) on the southeastern Brazilian coast. Invertebrate Reproduction and Development 54(1): 7-17. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 11 De Grave S, Pentcheff ND, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D & Wetzer R. 2009. A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin of Zoology 21: 1-109. Haedrich RL, Rowe GT & Polloni PT. 1975. Zonation and faunal composition of epibenthic populations on the continental slope south of New England. Journal of Marine Research 33: 955-960. Hartnoll RG. 1982. Growth. In: Bliss DE & Abele LG (eds.), The biology of Crustacea: embryology, morphology and genetics. Vol. 2, Academic Press, New York, pp 111-196. Hartnoll RG. 1985. Growth, sexual maturity and reproductive output. In: Wenner AM (ed.), Crustacean issues: factors in adult growth. Vol. 3, AA Balkema, Rotterdan, pp. 101-128. Hartnoll RG. 2006. Reproductive investment in Brachyura. Hydrobiologia 557: 31- 40. Hecker B. 1990. Variation in megafaunal assemblages on the continental margin south of New England. Deep-Sea Research 37 (1): 37-57. Hendrickx ME. 1995. Camarones. In: W. Fischer, F. Krupp, W. Schneider, C. Sommer, K.E. Carpenter y V.H. Niem. (eds.), Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Vol. 1. Plantas e Invertebrados, FAO, Roma, Italia, pp 417-537. CONSIDERAÇÕES INICIAIS PEREIRA, RT. 2014 12 Hines AH. 1982. Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69: 309-320. Holthuis LB. 1980. Shrimps and Prawns of the World: An annotated catalogue of species of interest to fisheries. In: FAO Species Catalogue. FAO Fisheries Synopsis, 1: 1-270. Martin JW & Davis GE. 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County Science Series 39: 1-124. Melo GAS. 1996. Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. Plêiade/FAPESP, São Paulo, 603 p. Ng PKL, Guinot D & Davie PJF. 2008. Systema brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology 17: 1-286. Pinheiro MAA, Fransozo A & Negreiros-Fransozo ML. 1996. Distribution patterns of Arenaeus cribrarius (Lamarck, 1818) (Crustacea, Portunidae) in Fortaleza Bay, Ubatuba (SP), Brazil. Revista Brasileira de Biologia 56: 705-716. Ramos-Porto M, Coelho PA. 1998. Malacostraca. Eucarida. Caridea (Alpheoidea excluded). In: Young PS (ed.). Catalogue of Crustacea of Brazil. Rio de Janeiro: Museu Nacional, pp. 325-350. Sastry AN. 1983. Ecological aspects of reproduction. In: Vernberg FJ & Vernberg WB (eds.), The biology of Crustacea: environmental adaptations. Academic Press, New York, pp. 179−270. 13 INFRAORDEM CARIDEA 14 CAPÍTULO 1 REPRODUCTIVE STRATEGY OF THE SHRIMP Nematopalaemon schmitti (HOLTHUIS, 1950) (DECAPODA, CARIDEA, PALAEMONOIDEA) FROM THE SOUTHEASTERN BRAZILIAN COAST CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 15 ABSTRACT The specimens of Nematopalaemon schmitti were captured in southeastern Brazil from 2008 to 2011, for reproductive output (RO) and fecundity analysis of species. Changes in the egg development associated to the ovary maturation of ovigerous female were also analyzed in order to verify possible synchronous relationship between them. Obtained ovigerous females were measured (carapace length [CL]) and analyzed as the stage of development of their ovaries and eggs. The RO was calculated based on dry weight of eggs and female masses. Fecundity was expressed by the equation obtained from regression between egg numbers and CL. A significant relationship was observed between the number of eggs and CL (p<0.001), showing that as higher is the female higher is its capacity to produce eggs. Comparing the mean number of eggs in stages I and II in N. schmitti, became evident a loss of 7% of eggs. Females with rudimentary ovaries showed, predominantly, eggs in stage I and females with developed ovaries showed only eggs in stage II, showing synchrony between the developing of both, thus supporting the hypothesis of a continuous reproductive cycle for N. schmitti in the study region. The RO and fecundity can be affected for biotic and abiotic factors, as parasites and variations in the latitudinal gradient. Informations of the reproductive output and its relations with the synchrony between the gonadal and embryonic development are rare for the palaemonoid shrimps, although they are crucial in understanding the reproductive biology of these animals, as well as other caridean shrimps. Keywords: Egg loss, egg production, reproductive biology. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 16 INTRODUCTION Reproductive characteristics of crustaceans may vary according to the individual intrinsic aspects such as the size and age of females, and also environmental factors (Sastry 1983). These variations that can be the number and size of eggs and the reproductive investment of individuals may reflect adaptive mechanisms of species to environmental conditions. All these reproductive aspects play an important role in the biology and ecology of the species (Yoshino et al. 2002). Changes in volume of eggs of species of crustaceans were verified by Sastry (1983) in latitudinal gradients, depth, thermal and salinity. Furthermore, significant differences in reproductive investment of freshwater and marine caridean were verified by Anger & Moreira (1998). Thus, to study newly fertilized eggs can help show responses to selective pressures that these eggs were submitted, which affect the reproductive investment and larval development of crustaceans (Bauer 1991). Among the several subjects addressed in the reproduction of caridean shrimp studies, the reproductive output (RO) and the fecundity have been considered as important quantifiable measures of the species reproductive effort (e.g., Clarke et al. 1991, Clarke 1993, Anger & Moreira 1998, Wehrtmann & Lardies 1999, Kim & Hong 2004, Oh & Hartnoll 2004, Chilari et al. 2005, Pavanelli et al. 2008, Echeverría-Sáenz & Wehrtmann 2011). Reproductive output is defined by the association between the dry weight of the brood and dry weight of the female (Hines 1982). In general, both fecundity and RO show a strong relationship with some body measures of each species, and its respective variations at spatial and temporal scales. While, the Fecundity is considered as the number of eggs released by a female during a single spawning event CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 17 or specific period of its life history, being frequently associated to the female width (Negreiros-Fransozo et al. 1992, Ramírez-Llodra 2002). The population of whitebelly shrimp Nematopalaemon schmitti (Holthuis, 1950) has been heavily impacted due to the fishing activity, which can cause imbalances in the food chain in which it is, since it presents fundamental ecological importance in their habitat, serving as a food source for other species as an important item of marine trophic web (Fransozo et al. 2009, Almeida et al. 2012). Nevertheless, the publications related to this species are restricted to spatial and temporal variations in abundance and association with abiotic factors (Fransozo et al. 2009, Almeida et al. 2012), population structure and reproductive period (Almeida et al. 2011). In the southeast coast of Brazil, N. schmitti occurs at temperatures around 23°C (usually recorded during autumn and winter), in areas where the sediment is composed of fine and very fine sand and silt and clay, and presence of algae and plant fragments (Fransozo et al. 2009, Almeida et al. 2012). Concerning the population structure of the whitebelly shrimp, there is a sexual dimorphism in body size, with males attaining smaller sizes than females. In addition, the reproduction of N. schmitti is characterized by a continuous pattern along the northern coast of São Paulo State (Almeida et al. 2011). Therefore, additional investigations that contribute to the knowledge of the N. schmitti life history and reproductive aspects on the southeastern coast of Brazil are needed for the purpose of maintaining and preserving the natural stocks. The aim of this study is describing some features of the reproductive biology of N. schmitti on the Brazilian southeastern coast, such as reproductive output (RO), CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 18 fecundity (F) and possible synchronous relationship between ovary maturation and egg development. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 19 MATERIAL AND METHODS Shrimp samples were collected from Ubatuba Bay (23º 30’ S, 45º 09’ W), São Paulo, during November 2008, January 2009, July 2010 and July 2011 using a fishing boat carrying two otter-trawl nets (4.5 m wide; 20 mm and 15 mm mesh diameter at the body and cod end of the net, respectively). Females carrying embryos at different stages of development were immediately placed in an ice chest filled with ice, transported to the laboratory and stored frozen until analysis. Next, the carapace length (CL, the distance from the orbital angle to the posterior margin of the carapace) of each female was measured with a caliper (precision = 0.1 mm). After that, each female was examined under a stereomicroscope to determine the degree of embryonic and ovarian development. Two stages of embryonic development were recognized: (1) embryos just spawned with no visible eyes, no visible blastoderm and uniformly distributed yolk and (2) embryos near hatching with large developed eyes and no yolk (Corey 1981, Jewett et al. 1985). Similarly, based on the color and volume of the ovary, three stages of ovarian development were recognized: (1) rudimentary ovaries filling less than half of the space in the cephalothorax having a translucent white coloration, (2) developing ovaries with light orange coloration filling most of space in the cephalothorax, and (3) developed ovaries (near spawning) with dark orange coloration filling all the space in the cephalothorax and the first abdominal segment (modified from Bauer & Abdalla 2000). Females were measured and their embryos and ovarian development examined. The totality of the embryos attached to the pleopods of each female was carefully extracted using a dissecting needles and a fine brush. After that, they were counted CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 20 under the dissecting microscope. Each female and their embryo masses were dried for 48 h at 60°C and then weighed with an analytical balance (precision = 0.001 g). The differences between the number of eggs in different stages of development were tested using a Student t–test. The RO and fecundity were analyzed based on measurements of weight and body size, respectively. In addition, the brood production of the whitebelly shrimp was characterized according to changes in the ovary maturation and egg development. Differences in the RO of N. schmitti were analyzed by size classes with interval of 0.5 mm CL using analysis of variance (One-way ANOVA, ɑ = 0.05), followed by a multiple comparison test (Tukey, ɑ = 0.05). The fecundity (F = n° embryos female−1) of each female were obtained from both stages 1 and 2 of embryonic development. Whereas the reproductive output (RO = brood dry weight / female body dry weight - Clarke et al. 1991) was analyzed based on females carrying initial embryos (Stage I). The isometry was tested for F vs. CL and brood dry weight (BDW) vs. female body dry weight (FBW). For this purpose, the relationship between F and CL, and brood weight and body weight of females was examined using the allometric model y = axb, converted to the linear form, lny = lna + blnx, by means of natural logarithm transformation (y = dependent variables [F or brood dry weight]; x = independent variable [CL or body dry weight]; a = intercept on the y- axis of the line relating y to x; and b = allometric coefficient - Hartnoll 1978, 1982). The slope b of the ln–ln least squares linear regression represents the rate of exponential change of each reproductive parameter with an increase in CL or body weight of female shrimps. The relationship between F and CL was considered isometric when b was = 3, CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 21 positively allometric when b > 3 and negatively allometric when b < 3 (Somers 1991). In turn, the relationships between brood dry weight and female body dry weight were considered isometric when b was = 1, positively allometric when b > 1 and negatively allometric when b < 1. Departures from isometry were tested using a Student t–test (Zar 2010). We estimated embryo loss (%) during embryonic development and examined the hypothesis of successive spawning in N. schmitti. The hypothesis of no embryo loss during development was tested using a Student t-test (Zar 2010). In this test, embryo stage (I vs. II) was used as the factor to estimate differences between females carrying embryos in different stages of development in fecundity. Lastly, the hypothesis of successive spawning was examined as in Bauer & Newman (2004) and Baeza (2006) by determining the association between embryonic and ovarian development. For this purpose, the association between embryonic and ovarian development categories was tested with the Goodman’s test, which analyzes the contrasts between and within multinomial proportions (Goodman 1965, Curi & Moraes 1981). If females spawn successively after every molt, then the degree of embryonic development should be positively correlated with the degree of ovarian development. In the different analyses above, tests for homocedasticity and normality of the contrasted data sets (after ln-ln transformation) were examined and found to be satisfactory (Zar 2010). CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 22 RESULTS A total of 107 females carrying embryos at different stages of development were collected. Carapace length of ovigerous females varied between 10.2 and 13.7 mm, with mean (± standard deviation) of 11.6 ± 0.7 mm (Table I). C A PÍ TU LO 1 . R EP R O D U C TI V E ST R A TE G Y O F N . s ch m it ti PE R EI R A , R T. 2 01 4 23 T ab le I – N em at op al ae m on s ch m it ti (H ol th ui s, 19 50 ). N um be r o f o vi ge ro us fe m al es b y si ze c la ss (a m pl itu de 0 .5 m m C L) , g on ad d ev el op m en t st ag e (R ud im en ta ry , D ev el op in g, D ev el op ed ), an d em br yo d ev el op m en t s ta ge (I = in iti al , I I = fi na l). G on ad S ta ge R ud im en ta ry D ev el op in g D ev el op ed E m br yo ni c st ag e I II I II I II T ot al Si ze c la ss es C L (m m ) 1 10 .0 |- - 1 0. 5 1 0 1 2 0 1 5 2 10 .5 |- - 1 1. 0 7 1 3 2 0 1 14 3 11 .0 |- - 1 1. 5 9 2 2 2 0 3 18 4 11 .5 |- - 1 2. 0 17 2 3 2 0 4 28 5 12 .0 |- - 1 2. 5 5 0 5 3 0 2 15 6 12 .5 |- - 1 3. 0 2 0 2 2 0 0 6 7 13 .0 |- - 1 3. 5 1 0 2 0 0 0 3 8 13 .5 |- - 1 4. 0 1 0 0 0 0 0 1 To ta l 43 5 18 13 0 11 90 C L = ca ra pa ce le ng th (m m ); I = in iti al e m br yo ni c de ve lo pm en t; II = fin al e m br yo ni c de ve lo pm en t. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 24 Differences between RO and size classes was not statistically detected (ANOVA: F= 0.59, df= 7, p = 0.76), while the ratio between the weight of female and the weight of the egg mass was positive statistically significant (linear regression: F= 27.67, df= 1.73, p< 0. 0001). Obtained an isometric relation to brood dry weight and female body dry weight. The average RO of N. schmitti was 0.123 ± 0.041, rangind from 0.055 to 0.248. The reproductive output total estimado was de 12.31% (Figure 1). CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 25 Figure 1 – Nematopalaemon schmitti (Holthuis, 1950). Reproductive output (RO) by carapace length (CL), size class and weight. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 26 Fecundity of females carrying initial (stage I – N = 75) and final (stage II – N = 32) embryos varied, respectively, between 740 and 3293 (1542.03 ± 480.00 eggs) and between 708 and 2310 (1433.34 ± 406.26 eggs). No statistical difference was observed between the number of eggs at different stages of development (Student t-test, p = 0:30) with a loss of only 7% of embryos during development. Obtained an isometric relation to F and CL ratio. A positive statistically significant correlation between fecundity and CL was detected for females carrying both initial and final stage embryos (linear regression; stage I: R = 0.61, df = 1, p < 0.001; stage II: R =0.54, df = 1, p = 0.001) (Figure 2). Figure 2 – Nematopalaemon schmitti (Holthuis, 1950). Allometric relationship between ln number of eggs and ln carapace length (I = initial embryonic development, II = final embryonic development). CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 27 Lastly, the association between ovarian and embryonic development was statistically significant (Goodman’s test: p< 0.05). It is possible to observe changes in the egg development associated to the ovary maturation of females analyzed in the present study (Figure 3). Considering the developmental stages of eggs, there was a predominance of eggs in stage I (67.80%), followed by stage II (32.20%). In relation to gonadal development, it was observed that most females had rudimentary ovaries (53.33%). While females with developing and developed ovaries accounted for 34.44% and 12.22% of the total abundance, respectively. Females with rudimentary ovaries exhibited predominantly eggs at stage I, and females with developed ovaries showed only eggs in stage II. However, females with developing ovaries showed eggs in both stage I and II. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 28 Figure 3 – Nematopalaemon schmitti (Holthuis, 1950). Frequency of ovigerous females (N = 100) in each embryo development stage (I = initial, II = final) related to each gonad development stage (Rudimentary, Developing, Developed). CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 29 DISCUSSION No association was observed between reproductive output and the carapace lenght for N. schmitti in this study. Echeverría-Sáenz & Wehrtmann (2011) obtained similar results for Heterocarpus vicarius Fazon, 1893, attributing the lack of association between the RO and CL to variations in egg size of species. According Wehrtmann & Lardies (1999), as observed for fertility, the RO would also be related to latitudinal differences. These authors compared the RO of Austropandalus grayi (Cunningham, 1871) (collected in the Magellan Region, South America) with other species, and observed that A. grayi present lower values of RO compared to Pandalus borealis Kroyer, 1838 (collected in Western Bering Sea) and Pandalus montagui Leach, 1814 (collected in Northumberland coast, England), but high value when compared to Heterocarpus reedi Bahamonde, 1955 (collected in Northern Chile), indicating RO increased by increasing latitude. Thus, the production of eggs in caridean can be associated to the latitude of the area in which the species is distributed, there is a tendency to reduce the number of eggs and increase in eggs volume for the species that inhabit regions of high latitudes (Clarke et al. 1991, Echeverría-Sáenz & Wehrtmann 2011). It is possible that in southeastern Brazil the RO of N. schmitti is under latitudinal influence (23° 26’ S to 45° 02’ W), as observed by Clarke et al. (1991), Wehrtmann & Lardies (1999) and Echeverría-Sáenz & Wehrtmann (2011) for P. borealis species, A. grayi and H. vicarius, respectively, at different latitudes, for example 79° 10' N, 10° 40' E, 58° 47' N, 10° 55' E (Clarke et al. 1991.); 53° 42' 8'' S, 70° 57' 4'' N, 55° 09' 2'' S, 67° 01' 6'' W (Wehrtmann & Lardies 1999). How different latitudes imply different environmental conditions, specimens of N. schmitti obtained in this study in a tropical region have higher RO compared to species of polar areas, probably due to high CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 30 temperature, food availability, among other factors. Thus, species of tropical regions may have higher RO and consequent increased production of eggs to ensure the survival of their offspring by abiotic and biotic conditions favorable to their establishment in these regions. Assuming that female size is closely linked to reproductive strategies (Hines 1982), the positive relationship between carapace length and number of eggs observed in N. schmitti is corroborated with previous studies for other caridean shrimp as P. borealis (Clarke et al. 1991), Hippolyte zostericola (Smith, 1873) (Negreiros-Fransozo et al. 1996), A. grayi (Wehrtmann & Lardies 1999) Exhippolysmata oplophoroides (Holthuis, 1948) (Chacur & Negreiros-Fransozo 1999), Hippolyte obliquimanus Dana, 1852 (Mantelatto et al. 1999) and Palaemon gravieri (Yu, 1930) (Kim & Hong 2004). This positive relationship suggests that larger females produce more eggs because they are more energy resource and ability to use it (Baeza 2006), and more space in the abdomen to accommodate them (Clarke 1993, Chacur & Negreiros-Fransozo 1999, Mantelatto et al. 1999). According to Calado & Dinis (2007), in some cases after the seeding of puberty the growth rate of individuals of Lysmata seticaudata (Risso, 1816) decreases and energy resources are directed to gonad maturation. In the present study we observed that smaller females produce fewer eggs than larger females. Probably due to the larger females have higher abdominal cavity to accommodate the embryos and greater available energy resource, investing more in reproduction than smaller females. Although it is clear that the number of eggs is larger in larger females, the reproductive output does not vary significantly. The variation is much greater within each class than between the averages of the different classes. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 31 Studies show that the number of eggs tends to be higher in areas of low latitude, not associated only to the size of females (Clarke et al. 1991, Wehrtmann & Lardies 1999), which may vary with the number of consecutive spawns in a same reproductive cycle (Sainte-Marie 1993) and by the loss of eggs during embryonic development (Mantelatto et al. 1999). The egg loss that occurs during the development of embryos was reported by different authors (Wehrtmann & Lardies 1999, Nazari et al. 2003, Kim & Hong 2004, Oh & Hartnoll 2004, Echeverría-Sáenz & Wehrtmann 2011), among them Nazari et al. (2003) emphasize that this loss may be favorable for the eggs which remain adhered to the female pleopods, since they will have more space to accommodate in the abdominal cavity, allowing a greater circulation of water between them and the consequent increase rate of oxygen around them. Some authors mention the loss of eggs can be influenced by specimens sampling, increased volume eggs, parasite action or mechanical stress (Wehrtmann & Lardies 1999, Kim & Hong 2004, Oh & Hartnoll 2004, Echeverría-Sáenz & Wehrtmann 2011). In study conducted with the caridean A. grayi (Wehrtmann & Lardies 1999), it was verified the species loses 51.1% of the initially exteriorized eggs, being this loss related to the capture process and abrasions between embryos as for the caridean H. vicarius, a loss of 46.9% was observed (Echeverría-Sáenz & Wehrtmann 2011), which is associated with the end of embryonic development, when the incorporation of a large quantity of water occurs, which facilitates the larvae hatching. With the incorporation of large amounts of water, the eggs are larger and the space between them is reduced, which facilitates the abrasion between the embryos and the consequent loss to the environment. To N. schmitti a loss of less than the eggs of other species, with only 7% was observed. It was observed that CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 32 the loss of eggs in N. schmitti and other caridean, Exopalaemon modestus (Heller, 1862) (Oh et al. 2002) were similar, both around 7%. However, E. modestus inhabits freshwater environment and is subject to different conditions of temperature and salinity compared to the species of the marine environment. Moreover, the collection methodology can influence this loss, varying according to the time and type of network used in the sampling of specimens. For E. modestus used a hand net, while for N. schmitti made use of trawl nets. It is believed that the drag is more stressful for the animals, since they require longer collection time. In the present study, comparing the abundance of females according to each stage of development of eggs and ovaries, it was possible to see, in general, synchrony between the development of both. Females with rudimentary ovaries showed mostly eggs in stage I, and females with developed ovaries showed only eggs in stage II. According to the results obtained in this study, along with the standard continuous reproduction of N. schmitti in the study region (Almeida et al. 2011), it is assumed that the reproductive cycle of females occurs as follows: females with ovaries in advanced stages of development suffer molt, called "parturial molt" are copulated and then externalize their eggs. After extrusion, the ovaries of these females are rudimentary, and eggs in early stages of development. During the incubation period, both the eggs as the ovaries develop almost in synchrony, and at larvae hatching, the ovaries of these females are at an advanced stage of development, beginning again with the reproductive cycle. With these results, we argue in support of the hypothesis of successive spawning as in Bauer & Newman (2004) and Baeza (2006). It was noted in this study that the number of eggs exteriorized by N. schmitti is correlated to carapace length, showing that larger specimens have higher space available to accommodate the eggs in the abdomen CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 33 and greater potential as energy resources for production of the eggs. The loss of 7% in the number of eggs initially externalized can be linked to factors such as the increase in egg volume and the action of parasites, for example, may also have some influence on the loss. Although larger females have shown a greater number of eggs, the RO was not significantly associated to the size of females. Therefore, research on the reproductive biology of species that are widely distributed among different latitudes, help in understanding the influence of these species on the production of eggs. Through the wide geographic distribution of caridean N. schmitti, studies that address the RO along the Atlantic became critical for a better understanding of the reproductive biology of this species. The synchrony observed between the development of eggs and ovaries supports the standard cycle of continuous reproduction of N. schmitti in the study region. These results allow us a better understanding not only of the reproductive biology of N. schmitti, as well as other caridean which occur in the region of this study. Researches of this nature are essential for us to be able to propose effective conservation strategies, such as mitigation of impact on natural communities and important suggestion for conservation, and provide support for new research that addresses the biology and ecology of decapod crustaceans. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 34 REFERENCES Almeida AC, Fransozo A, Teixeira GM, Hiroki KAN, Furlan M & Bertini G. 2012. Ecological distribution of the prawn Nematopalaemon schmitti (Crustacea: Decapoda: Caridea) in three bays on the southeastern coast of Brazil. African Journal of Marine Science 34: 93-102. Almeida AC, Fransozo V, Teixeira GM, Furlan M, Hiroki KAN & Fransozo A. 2011. Population structure and reproductive period of whitebelly prawn Nematopalaemon schmitti (Holthuis 1950) (Decapoda: Caridea: Palaemonidae) on the southeastern coast of Brazil. Invertebrate Reproduction and Development 55: 30-39. Anger K & Moreira GS. 1998. Morphometric and reproductive traits of tropical caridean shrimps. Journal of Crustacean Biology 18: 823-838. Baeza JA. 2006. Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60: 1840-1850. Bauer RT. 1991. Analysis of embryo production in a caridean shrimp guild from a tropical seagrass meadow. In: A. Wenner & A. Kuris (eds.). Crustacean egg production. Crustacean Issues, Balkema Press, 7: 181-192. Bauer RT & Abdalla JH. 2000. Patterns of brood production in the grass shrimp Palaemonetes pugio (Decapoda: Caridea). Invertebrate Reproduction and Development 38(2): 107-113. Bauer RT & Newman WA. 2004. Protandric simultaneous hermaphroditism in the marine shrimp Lysmata californica (Caridea: Hippolytidae). Journal of Crustacean Biology 24(1): 131-139. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 35 Calado R & Dinis MT. 2007. Minimization of precocious sexual phase change during culture of juvenile ornamental shrimps Lysmata seticaudata (Decapoda: Hippolytidae). Aquaculture 269: 299-305. Chacur MM & Negreiros-Fransozo ML. 1999. Aspectos biológicos do camarão-espinho Exhippolysmata oplophoroides (Holthuis, 1948) (Crustacea, Caridea, Hippolytidae). Revista Brasileira de Biologia 59: 173-181. Chilari A, Thessalou-Legaki M & Petrakis G. 2005. Population structure and reproduction of the deep-water shrimp Plesionika martia (Decapoda: Pandalidae) from the eastern Ionian Sea. Journal of Crustacean Biology 25: 233-241. Clarke A, Hopkins CCE & Nilssen EM. 1991. Egg size and reproductive output in the deep-water prawn Pandalus borealis Krøyer, 1838. Functional Ecology 5: 724-730. Clarke A. 1993. Reproductive trade-offs in caridean shrimps. Functional Ecology 7: 411-419. Corey S. 1981. The life history of Crangon septemspinosa Say (Decapoda, Caridea) in the shallow sublitoral area of Passamaquoddy Bay, New Brunswick, Canada. Crustaceana 4: 21-28. Curi PR & Moraes RV. 1981. Associação, homogeneidade e contrastes entre proporções em tabelas contendo distribuições multinomiais. Ciência e Cultura 33(5): 712-722. Echeverría-Sáenz S & Wehrtmann IS. 2011. Egg Production of the Commercially Exploited Deepwater Shrimp, Heterocarpus vicarius (Decapoda: Pandalidae), Pacific Costa Rica. Journal of Crustacean Biology 31: 434-440. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 36 Fransozo V, Castilho AL, Freire FAM, Furlan M, Almeida AC, Teixeira GM & Baeza JA. 2009. Spatial and temporal distribution of the shrimp Nematopalaemon schmitti (Decapoda: Caridea: Palaemonidae) at a subtropical enclosed bay in South America. Journal of the Marine Biological Association of the United Kingdom 89: 1581-1587. Goodman LA. 1965. On simultaneous confidence intervals for multinomial proportions. Technometrics 7: 247-254. Hartnoll RG. 1978. The determination of relative growth in Crustacea. Crustaceana 34: 281-293. Hartnoll RG. 1982. Growth. In: Bliss DE & Abele LG (eds.), The biology of Crustacea: embryology, morphology and genetics. Vol. 2, Academic Press, New York, pp 111- 196. Hines AH. 1982. Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69: 309-320. Jewett SC, Sloan NA & Somerton DA. 1985. Size at sexual maturity and fecundity of the fjord-dwelling golden king crab Lithodes aequispina Benedict from northern British Columbia. Journal of Crustacean Biology 5: 377-385. Kim S & Hong S. 2004. Reproductive biology of Palaemon gravieri (Decapoda: Caridea: Palaemonidae). Journal of Crustacean Biology 24: 121-130. Mantelatto FLM, Martinelli JM & Garcia RB. 1999. Fecundity of Hippolyte obliquimanus Dana, 1852 (Decapoda, Caridea, Hippolytidae) from the Ubatuba region, Brazil. In: Schram FR, von Vaupel Klein JC (eds). Crustaceans and the CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 37 Biodiversity Crisis - Proccedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, July 20-24, 1998, 1: 691-700. Brill EJ. Leiden. Nazari EM, Simões-Costa MS, Müller YMR, Ammar D & Dias M. 2003. Comparisons of fecundity, egg size, and egg mass volume of the freshwater prawns Macrobrachium potiuna e Macrobrachium olfersi (Decapoda, Palaemonidae). Journal of Crustacean Biology 23: 862-868. Negreiros-Fransozo ML, Fransozo A, Mantelatto FLM, Nakagaki JM & Spilborghs MCF. 1992. Fecundity of Paguristes tortugae Schmitt, 1933 (Crustacea, Decapoda, Anomura) in Ubatuba (SP) Brazil. Revista Brasileira de Biologia 52(4): 547-553. Negreiros-Fransozo ML, Barba E, Sanchez AJ, Fransozo A & Raz-Guzmán A. 1996. The species of Hippolyte Leach (Crustacea, Caridea, Hippolytidae) from Terminos Lagoon, S. W Gulf of Mexico. Revista Brasileira de Zoologia 13: 539-551. Oh CW, Suh HL, Park KY, Ma CW & Lim HS. 2002. Growth and reproductive biology of the freshwater shrimp Exopalaemon modestus (Decapoda: Palaemonidae) in a lake of Korea. Journal of Crustacean Biology 22: 357-366. Oh CW & Hartnoll RG. 2004. Reproductive biology of the common shrimp Crangon crangon (Decapoda: Crangonidae) in the central Irish Sea. Marine Biology 144: 303- 316. Pavanelli CAM, Mossolin EC & Mantelatto FL. 2008. Reproductive strategy of the snapping shrimp Alpheus armillatus H. Milne-Edwards, 1837 in the South Atlantic: fecundity, egg features, and reproductive output. Invertebrate Reproduction and Development 52: 123-130. CAPÍTULO 1. REPRODUCTIVE STRATEGY OF N. schmitti PEREIRA, RT. 2014 38 Ramírez-Llodra E. 2002. Fecundity and life-history strategies in marine invertebrates. Marine Biology 43: 87-170. Sainte-Marie B. 1993. Reproductive cycle and Fecundity of primiparous and multiparous female snow crab, Chionoecetes opilio, in the North West gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 50: 2147-2156. Sastry AN. 1983. Ecological aspects of reproduction. In: Vernberg FJ & Vernberg WB (eds.), The biology of Crustacea: environmental adaptations. Academic Press, New York, pp. 179-270. Somers KM. 1991. Characterizing size-specific fecundity in crustaceans. In: Kuris A, Wenner A (eds), Crustacean Issues 2. Crustacean egg production. Balkema AA, Rotterdam, pp. 357-378. Wehrtmann IS & Lardies MA. 1999. Egg production of Austropandalus grayi (Decapoda, Caridea, Pandalidae) from the Magellan Region, South America. Scientia Marina 63: 325-331. Yoshino K, Goshima S & Nakao S. 2002. Temporal Reproductive patterns within a breeding season of the hermit crab Pagurus filholi: effects of crab size and shell species. Marine Biology 141: 1069-1075. Zar JH. 2010. Biostatistical analysis. 5th ed, Prentice-Hall, Upper Saddle River, New Jersey, 944 p. 39 INFRAORDEM BRACHYURA 40 CAPÍTULO 2 ECOLOGICAL DISTRIBUTION AND POPULATION PARAMETERS OF Persephona mediterranea (HERBST, 1794) (BRACHYURA, LEUCOSIIDAE) IN A PROTECTED AREA ON THE SOUTHEASTERN BRAZILIAN COAST CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 41 ABSTRACT The crab Persephona mediterranea is an abundant species in trawl fisheries in the Brazilian coast. As with other by catch species, it is subjected to similar impact as target species. In order to ascertain the life history of by catch species, investigations on their distribution and population parameters are needed. Such information becomes even more strategic when obtained from priority areas for conservation, for instance marine protected areas. In this study we aimed to describe the patterns of ecological distribution of P. mediterranea at different depths and seasons in the Ubatuba region, which is included in a marine protected area off the southeastern coast of Brazil (APA Navy - Sector Cunhambebe). According to our results, P. mediterranea is more abundant during the winter and at depths of 10 to 15 m. The type of sediment, salinity variations at the bottom of the water column and depth strongly affect the demographics of this species. With respect to the population parameters, the recruitment pattern and continuous reproduction are highlighted. Our results on population structure, sex ratio and sexual maturity are similar to literature records for the southeastern region of the continental shelf, suggesting that the distributional, structural and reproductive characterization of P. mediterranea seems to be conservative among species of the genus Persephona. Results of studies such as ours, therefore, are indispensable for future comparisons and to make decisions concerning the species in a newly established Marine Protected Area on the southeastern coast of Brazil. Keywords: Bathymetry, Brazilian littoral, purse crab, size at sexual maturity. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 42 INTRODUCTION The zonation of the soft-bottom marine fauna is probably the result of the interaction among complex physical and biological factors, and the relative importance of each factor varies among the different areas (Hecker 1990). What exactly determines zonation in benthic marine communities is insufficiently understood. The traditional perception has been that changes in the fauna correspond with variables in the physical environment, for example temperature, sediment type, intensity of currents, and topography (Haedrich et al. 1975). As noted by Bertini & Fransozo (2004), the bathymetric distribution pattern of crabs is visible and, according to Pinheiro et al. (1996), it derives from the direct influence of environmental and biotic factors, which act on the benthic community. The distribution of decapods has been studied and associated with environmental factors such as bottom temperature, surface salinity, organic matter content, grain size and depth. The following publications on the subject are noteworthy: Santos et al. (1994), Negreiros-Fansozo & Fransozo (1995), Pinheiro et al. (1996), Atrill et al. (1999), Bertini et al. (2001), Martínez et al. (2009), Carvalho et al. (2010), Carvalho & Couto (2010). Environmental and biotic factors vary in space and time, and are especially influential in coastal areas when it comes to the population dynamics of crustaceans (Warwick & Uncles 1980, Bertini et al. 2001). The reproductive cycles observed in decapods are continuous or seasonal (Sastry 1983, Choy 1988, Emmerson 1994, Pinheiro & Fransozo 2002). Several authors have studied the reproductive cycle of brachyurans with respect to the presence reproductively mature individuals (with developed gonads) and presence of ovigerous females (Batoy et al. 1987; Mantelatto & Fransozo 1999, Reigada & CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 43 Negreiros-Fransozo 1999, Mantelatto 2000, Pinheiro & Fransozo 2002, Bertini et al. 2010). Factors such as latitude, temperature and food availability can influence the reproductive season of brachyuran (Emmerson 1994). The crab Persephona mediterranea (Herbst, 1794) is widely distributed in the western Atlantic, with records of occurrence at the intertidal zone down to 60 m deep (Melo 1996). Although the species is not considered of economic importance, Bertini et al. (2010) pointed out that populations of this crab are subject to similar impacts as commercially harvested crabs and prawns in the southeastern coast of Brazil. Furthermore, the species plays an important ecological role as part of the trophic web (Martínez et al. 2009, Almeida et al. 2013). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 44 MATERIAL AND METHODS 1. Study area and sampling The Ubatuba region was established as a MPA (Marine Protected Area from north coast: Sector Cunhambebe) by Proclamation No. 53525, on 8 October 2008 by the Brazilian Ministry of Environment, which aimed to prioritize the conservation, preservation and sustainable use of marine resources in the region. Under this MPA, fishing is only permitted in two circumstances: when it is necessary for the subsistence of traditional human communities, or for sports. Commercial fishing is not allowed. The idea is to protect, ensure and discipline the rational use of resources in the region, promoting sustainable development. This region is characterized by innumerable spurs of the Serra do Mar mountain chain that form an extremely indented coastline (Ab`Saber 1955). The exchange of water and sediments between the coastal region and the adjacent shelf is very limited (Mahiques 1995). This region is influenced by three water masses: coastal water (CW: temperature > 20oC, salinity < 36 PSU), tropical water (TW: > 20oC, > 36 PSU) and South Atlantic central water (SACW: < 18oC, < 36 PSU) (Castro-Filho et al. 1987, Odebrecht & Castello 2001). During summer months, the SACW penetrates into the bottom layer of the coastal region and forms a thermocline over the inner shelf, which is located at depths of 10 to 15 m. In the winter, the SACW retreats to the shelf break and is replaced by the CW. As a result, no stratification is present over the inner shelf (Pires 1992, Pires-Vanin & Matsuura 1993). The sediment is composed mainly of silt, clay, and fine and very fine sand, a result of the limited water movement within the bay and between the bay and the adjacent continental shelf (Mahiques et al. 1998). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 45 Specimens of P. mediterranea were collected monthly in Ubatuba, São Paulo, from January to December 2000. Samples were taken with a commercial fishing boat equipped with "double rig" type nets (mesh size 20 mm, 15 mm in the cod end). Trawling was conducted at six different depths (10 m, 15 m, 20 m, 25 m, 30 m and 35 m) in the Ubatuba region (Figure 1). Figure 1 - Study area and transect sampling in Ubatuba, north coast of São Paulo, Brazil. In each transect sampled we recorded bottom (BT) and surface (ST) temperatures, bottom (BS) and surface (SS) salinity, organic matter (OM) and sediment grain size (Phi). Salinity (PSU) and temperature (oC) were measured in samples of the bottom-water, obtained each month from each transect, using a Nansen bottle. Temperature was measured with a mercury thermometer and salinity was measured with an optic refractor. Sediment samples were collected seasonally with a 0.06 m2 Van Veen grab. In the laboratory, the sediment was oven-dried at 70oC for 72h. For analysis of CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 46 grain size composition, two 50 g sub-samples were separated, treated with 250 ml of a 0.2 N NaOH solution and stirred for 5min to release silt and clay particles. Sub-samples were then rinsed on a 0.063 mm sieve. Sediments were sieved through 2 mm (gravel); 2.0-1.0 mm (very coarse sand); 1.0-0.5 mm (coarse sand); 0.5-0.25 mm (medium sand); 0.25-0.125 mm (fine sand); 0.125-0.063 mm (very fine sand); smaller particles were classified as silt-clay. Cumulative particle size curves were computer-plotted using the phi scale and phi values, corresponding to the 16th, 50th and 84th percentiles read from the curves to determine the mean diameter of the sediment. This was calculated using the formula Md = (φ15 + φ50 + φ84)/3. The value of phi was calculated using the formula φ = -log2d, where d = grain diameter (mm). The organic matter content of the sediment was calculated by the difference between the ash-free dry weights of three 10 g substrate subsamples incinerated in porcelain crucibles at 500oC for 3h. The three quantitatively most important sediments were defined according to Magliocca & Kutner (1965): class A corresponds to sediments in which medium sand (MS), coarse sand (CS), very coarse sand (VCS) and gravel (G) account for > 70% of the total weight; in class B, fine sand (FS) and very fine sand (VFS) make up > 70% of total weight of sediment. More than 70% of sediments in class C are silt and clay (S+C). From these three categories, groups were established according to the combination of granulometric fractions in several proportions: PA = (MS+CS+VCS+G) > 70%; PAB = prevalence of A over B (FS+VFS); PAC = prevalence of A over C (S+C); PB = (FS+VFS) > 70%; PBA = prevalence of B over A; PBC = prevalence of B over C; PC = (S+C) > 70%; PCA = prevalence of C over A; PCB = prevalence of C over B. All procedures for sediment analysis followed Hakanson & Jansson (1983) and Tucker (1988). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 47 Species identification was based on Melo (1996). The gender of the crabs was identified and specimens were dissected for the macroscopic observation of gonad development. The sex of the crabs was determined by scanning the shape of the abdomen and number of pleopods in each individual (abdomen of females approximately oval with four pairs of pleopods; males with abdomen elongated in a “T" with two pairs of pleopods). The gonads were classified into four stages of development according to their volume and color: immature (IM), rudimentary (RU), developing (DE) and advanced (AD) (adapted from Johnson 1980 and Bertini et al. 2010). From the classification of gonad groups the population structure (demographics) was defined for statistical analysis as IMM, IMF, RUM, RUF, DEM, DEF, ADM, ADF and OF (ovigerous females). The following abbreviation acronyms of gonad development were used, followed by M for male and F for female. Gonads were measured with a precision caliper (0.01mm), and the largest width of the carapace (CW) was measured. 2. Statistical analyses Initially, we tested the data for univariate and multivariate analysis normality, respectively, sing the Shapiro-Wilk test (Shapiro & Wilk 1965) and symmetry and multivariate kurtosis (Mardia 1970, 1980) (with modifications proposed by Doornik & Hansen 2008 - omnibus test). In order to test for univariate and multivariate homogeneity (equivalence of covariance matrices) we used the Levene test (Levene 1960) and the M Box test (Anderson 1958), respectively. We analyzed crab size (CW) and population structure temporally (seasons) and spatially (depth) through the SDF, considering the demographic groups (males, females and ovigerous females). The number of size classes was estimated by the CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 48 rule of (1926): K = 1+3.322 x logN, where K = number of classes, N = number of individuals captured. The range class was obtained by the equation A/K, where A=difference of the largest individual collected minus the smallest individual collected. As for the sex ratio, the subjects were analyzed for each sex, month and season using the multinomial proportions test proposed by Goodman (Goodman 1964). This analysis compares the binomial proportion between and within multinomial populations (Curi & Moraes 1981). The gonad sexual maturity was evaluated by plotting a logistic curve for each sex. The relative frequency (%) of subjects considered from the standpoint of mature gonads was plotted on a graph with the respective data size classes (Vazzoler 1996). The data were fitted by the logistics equation curve: Y=1/1 + e r (LC-LC 50 ) with r = slope of the line, and LC50 = width of shell in which 50% of individuals are mature. The fit of the logistic function was determined by the method of least squares using the routine "Solver" program Microsoft Excel (Microsoft 2010) and by the GRG2 algorithm (Fylstra 1998). We considered individuals to be mature when their gonads could be classified as RU, DE and AD. The relative abundance of crabs in groups of population structure (gonad stages) with respect to the environmental factors examined in each transect was assessed using redundancy analysis (RDA). Subsequently, we performed an adjustment of the RDA environmental vectors, a routine that draws the maximum correlation of environmental variables with the correlation data. The evaluation of the significance of the vectors adjustment was conducted through permutations (n = 9999) using the goodness of fit statistics of the squared (r2) correlation coefficient. According to Oksanen et al. (2012), for the environmental variables it is defined as CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 49 r2 = 1 – SSw/ SSt, where: SSw - sum of squares within groups and; SSt - total sum of squares. All analyzes were performed using the software R (R Development Core Team 2012), considering ɑ = 0:05 (Zar 2010). The RDA and the adjustment of the environmental vectors were made with the package "vegan" (Oksanen et al. 2012). Each analysis was conducted separately, in order to avoid computational conflicts. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 50 RESULTS 1. Population parameters We obtained a total of 194 specimens of P. mediterranea: 96 males, 24 non- ovigerous and 74 ovigerous females. Males were more abundant in 15 m and 20 m depths; females, 15 m and 25 m (Table I). The abundance of individuals of both sexes was low in the 10 m and 35 m depths. The largest amount of ovigerous females was found in the 15 m transects and the smallest numbers in the 10 m, 20 m and 25 m depths. Ovigerous females did not occur at depths of 30 m and 35 m (Figure 2). The smallest mature male measured 23 mm CW, the smallest non- ovigerous female, 20.3 mm and the smallest ovigerous female, 25.7 mm CW. Table I - Persephona mediterranea (Herbst 1794). Abundance of demographic groups in Ubatuba during the sampling period, for bathymetry. M – Males, F – Non ovigerous females, OF – Ovigerous females. Depth M F OF Total 10 2 0 4 6 15 36 8 29 73 20 30 4 25 59 25 22 8 16 46 30 2 1 0 3 35 4 3 0 7 Total per sex 96 24 74 194 Percentage 49% 12% 38% 100% CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 51 Figure 2 - Bathymetric distribution of demographic groups in Ubatuba during the sampling period. M – Males, F – Non ovigerous females, OF – Ovigerous female. A – 10 meters; B – 15 m; C – 20 m; D – 25 m; E – 30 m; F – 35 m. Ovigerous females occurred in all seasons; they were not very abundant in the spring and summer. The largest size class crabs were more abundant in autumn and winter, whereas summer and spring were characterized by the presence of crabs in the lower class sizes (Figure 3). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 52 Figure 3 - Seasonal distribution of demographic groups in Ubatuba during the sampling period. See Figure 2 for acronyms. A – Summer; B – Autumn; C – Winter; D – Spring. The multinomial analysis of Goodman indicated that there were seasonal (summer) and monthly (February) differences in the male/female ratio (Table II). When considering the variation in monthly multinomial proportions of each sex, we found different proportions of males in March, April, September, November and December and of females in January, March, April, June, August, September, November and December (Table II). Secondarily, with regards to the variation in seasonal multinomial proportions of each sex, differences were found between the summer and the other seasons for males, and between the summer and the winter for females (Table II). The size (CW) at which 50% of the crabs reached gonad maturity (CW50) was 29.98 mm for males and 28.80 mm for females (Figure 4). Of the 194 individuals collected, only 3 (1.55%) were immature (Table III). C A PÍ TU LO 2 . E C O LO G Y O F P . m ed it er ra ne a IN A P R O TE C TE D Á R EA P ER EI R A , R T. 2 01 4 53 T ab le II – R es ul ts fr om G oo dm an m ul tin om ia l p ro po rti on a na ly si s f or se x, b y m on th ly a nd b y se as on . M on th s To ta l N Pr op or tio n Se as on To ta l N Pr op or tio n M al es Fe m al es M al es Fe m al es M al es Fe m al es M al es Fe m al es Ja n 11 7 A 0 .6 1 B 0 .3 9 Su m m er 22 11 B 0 .6 7 a B C 0 .3 3 b Fe b 9 3 A 0 .7 5 a A 0 .2 5 b M ar 2 1 B 0 .7 B C 0 .3 A pr 4 8 B 0 .3 B 0 .7 A ut um n 11 18 B C 0 .4 4 B C 0 .5 6 M ay 7 9 A 0 .4 A 0 .6 Ju n 0 1 0 B C 1 Ju l 23 20 A 0 .5 A 0 .5 W in te r 49 53 A 0 .4 8 A 0 .5 1 A ug 22 29 A 0 .4 B 0 .6 Se p 4 4 B 0 .5 B C 0 .5 O ct 11 14 A 0 .4 A 0 .6 Sp rin g 14 16 B C 0 .4 7 B C 0 .5 3 N ov 1 1 B 0 .5 B C 0 .5 D ec 2 1 B 0 .6 7 B C 0 .3 3 O bs .: Si m ila r u pp er ca se le tte rs in th e sa m e co lu m n in di ca te th at th er e w as n o st at is tic al d iff er en ce b et w ee n th e m on th s / s ea so ns w ith in e ac h de m og ra ph ic g ro up a na ly ze d (m al es , f em al es ) (p < 0. 05 ). Si m ila r lo w er ca se l et te rs i n th e sa m e lin e in di ca te t ha t th er e w as n o st at is tic al di ff er en ce b et w ee n ea ch d em og ra ph ic g ro up w ith in e ac h m on th / se as on (p < 0. 05 ). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 54 Figure 4 - Gonad size at maturity (CW50) of males (full line) and females (dot line) of P. mediterranea from Ubatuba. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 55 Table III - Persephona mediterranea (Herbst 1794). Abundance of immature and mature groups in Ubatuba during sampling period, by month. Month Absolute frequency of immatures Relative frequency of immature (%) Absolute frequency of mature forms Relative frequency of mature forms (%) Jan 0 0 18 9.28 Feb 0 0 12 6.19 Mar 0 0 3 1.55 Apr 0 0 12 6.19 May 2 1.03 14 7.22 Jun 0 0 1 0.52 Jul 0 0 43 22.16 Aug 0 0 51 26.29 Sep 0 0 8 4.12 Oct 0 0 25 12.89 Nov 0 0 2 1.03 Dec 1 0.52 2 1.03 Total 3 1.55 191 98.45 2. Bathymetric distribution Redundancy Analysis (RDA) indicated that, in the first two axes generated, there was variation in the proportion of data in 95.18% (= 88.02% Axis 1 and Axis 2 = 7.16%) (Figure 5). The adjustment algorithm of the environmental vectors of the RDA proved that the groups of population structure are associated with the three environmental variables (salinity in the bottom - BS, Depth and Phi) (Table IV). Of the three environmental variables with significant correlation, according to the adjustment vectors, the observed order of influence in structuring the community were Phi, BS and depth. The population structure groups in the early stages of gonad development (IMM, IMF, RUF, RUM) were in the center of origin CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 56 of the RDA graph, indicating that these groups are the ones that are less associated with specific abiotic variables, whereas a gradient of gonad maturation for both sexes was observed in the negative direction of the axis 1 of the RDA. A direct association between the environmental variables Phi and BS with the gonad development gradient was observed, whereas depth was negatively associated with this gradient (Figure 5). The highest abundance was obtained in transects at 15 m and 20 m. The environmental factors checked in each transect were represented by their mean value and standard deviation (Figures 6, 7). Figure 5 - Redundancy Analysis (RDA) for P. mediterranea in the Ubatuba region. See Material & Methods for variables and population structure acronyms. *significant variables under the environmental fitting algorithm. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 57 Table IV - Environmental fitting from analysis of redundancy (RDA) showing significant correlated variables. R2 – determination coefficient. See Material & Methods for variables acronyms. Axis 1 Axis 2 R2 p-value BT 0.45 0.9 0.04 0.591 BS -0.67 -0.74 0.39 0.002 Depth 0.2 -0.98 0.25 0.029 Phi -0.8 0.6 0.34 0.008 OM -0.97 -0.23 0.15 0.126 Figure 6 - Mean salinity, surface and bottom temperature variation of six transects from Ubatuba during 2000, by season. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 58 Figure 7 - Granulometric fractions, Organic-matter content (% OM), and phi of each transect. Grain-size classes (%): Black = Class A; Striped = Class B; White = Class C (see Materials and methods for details). CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 59 DISCUSSION Persephona mediterranea was most abundant in the 15 m and 20 m transects, where 68 % of the individuals were captured. This result is consistent with the findings of Bertini & Fransozo (2004) and Bertini et al. (2010), who also collected more exemplars from transects at 15 m at 25 m. The preference for transects with similar sediment characteristics reflects the behavior of leucosids, which often get buried in fine sediment (Bertini et al. 2001, Carvalho et al. 2010). The seasonal distribution indicated that P. mediterranea was most abundant in the winter. Bertini et al. (2001) found that Persephona lichtensteinii Leach, 1817 was more abundant in winter, whereas Persephona punctata (Linnaeus, 1758) was most abundant in the spring. Other authors observed a greater abundance of P. punctata and P. lichtensteinii in the autumn (Carvalho et al. 2010). Thus, we suggest that there is a reasonable variation in the abundance of species of the genus Persephona with respect to temporal variations. The CW50 was slightly greater in males (29.98 mm) than in females (28.80 mm) in a manner similar to that found in the work Bertini et al. (2010), who studied the reproductive period and size of P. mediterranea at sexual maturity. Almeida et al. (2013) studied the relative growth, sexual maturity and reproductive period of three species of the genus Persephona Leach, 1817, including P. mediterranea. The same pattern was observed in other species of Persephona (Carvalho et al. 2010, Almeida et al. 2013), indicating that this is a conservative character in the genus. However, we emphasize that sexual maturity in decapods is subjected to spatial and latitudinal variations according to the different growth rates of individuals and changes in environmental factors that affect the organisms (Annala et al. 1980, CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 60 Hines 1982, 1989, Sampedro et al. 1999, Lestang et al. 2003). Significant differences in the size at which organisms reach sexual maturity may occur between sexes and congeneric species that have different reproductive strategies (Hartnoll 1985, Ramírez-Llodra 2002). The sexual dimorphism found in our data, by which males had larger carapace compared to females, is a common pattern for Brachyura. After reaching sexual maturity, females grow slower, probably due to the energy requirements for egg production (Hartnoll 1982, 2006, Diaz & Conde 1989, Haefner & Spaargaren 1993, Mantelatto & Martinelli 1999, Bertini et al. 2010). When studying sexual maturity, the trade-off between growth and reproduction, processes that compete for energy resources, must be considered (Hartnoll 1985, Haefner & Spaargen 1993, Ramírez-Llodra 2002). Thus, in order for individuals to achieve reproductive success, resources must be properly allocated for it. The reproductive pattern of P. mediterranea is continuous, which can be verified by the presence of individuals in reproductive age and ovigerous females throughout the year. However, in certain months, the reproductive activity is reduced. A similar pattern was observed by Bertini et al. (2010) for P. mediterranea and Almeida et al. (2013) for P. mediterranea and P. punctata, which suggests that the reproductive activity is conservative for the genus Persephona. The pattern of continuous reproduction was also observed in other species on the northern coast of São Paulo, a subtropical region, for instance Callinectes danae Smith, 1869 studied by Costa & Negreiros-Fransozo (1998), Callinectes ornatus Ordway, 1863 by Mantelatto & Fransozo (1999) and Hepatus pudibundus (Herbst, 1785) by Reigada & Negreiros-Fransozo (1999). Subtropical and tropical regions provide favorable conditions for this pattern of continuous reproduction, CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 61 gonad and larval development and nutrition of individuals. However, temperate regions end up restricting the reproductive period of the species, which becomes seasonal following the availability seasonal of resources and variations in temperature (Sastry 1983). The presence of developed female gonads and ovigerous females throughout the year may be an indication that the study area is a region where reproduction takes place and should be protected. Two pieces of evidence support the hypothesis of continuous reproduction in the region: the benefits of the organic matter content of the substrate for the crustaceans, which results in the enrichment of the pelagic trophic system, impacting the benthic system (González-Gurriarán & Olaso 1987), and the position of the ovigerous females in areas under the influence of the dynamics of water bodies, which acts on larval dispersal, directing the larvae to locals that favor the development (Mantelatto 2000). The continuous recruitment pattern is characteristic of individuals with continuous reproduction. However, in this study we observed few numbers of immature individuals (1.55 %). The same was found by Almeida et al. (2013), and Bertini et al. (2010), who attributed the shortage of juveniles to the cryptic habits of P. mediterranea, recruitment in other areas, or ecological distribution. The results presented here may be similar for other species of the genus Persephona along the Brazilian coast, since distributional, structural and reproductive characterization seems conservative. Thus, this study provides practical data for future comparisons of the life history and distribution patterns of P. mediterranea in a newly established marine protected area. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 62 REFERENCES Ab’Sáber AN. 1955. Contribuição à geomorfologia do litoral paulista. Revista Brasileira de Geografia 17 (1): 3-37. Almeida AC, Hiyodo C, Cobo VJ, Bertini G, Fransozo V & Teixeira GM. 2013. Relative growth, sexual maturity, and breeding season of three species of the genus Persephona (Decapoda: Brachyura: Leucosiidae): a comparative study. Journal of the Marine Biological Association of the United Kingdom 01: 1-11. Anderson TW. 1958. Introduction to multivariate statistical analysis, John Wiley & Sons, Inc, 374 p. Annala JH, McKoy JL, Booth JD & Pike RB. 1980. Size at the onset of sexual maturity in female Jasus edwardsii (Decapoda: Palinuridae) in New Zealand. New Zealand Journal of Marine & Freshwater Research 14 (3): 217-227. Atrill MJ, Power M & Thomas M. 1999. Modeling estuarine Crustacea population fluctuations in response to physic-chemical trends. Marine Ecology Progress Series 178: 89-99. Batoy CB, Sarmago JF & Pilapil BC. 1987. Breeding season, sexual maturity and fecundity of the blue crab Portunus pelagicus (L.) in selected coastal waters in Leyte and vicinity, Philippines. Annals of Tropical Research 9: 157-177. Bertini G & Fransozo A. 2004. Bathymetric distribution of brachyuran crab (Crustacea, Decapoda) communities on coastal soft bottoms off southeastern Brazil. Marine Ecology Progress Series 279: 193-200. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 63 Bertini G, Teixeira GM, Fransozo V & Fransozo A. 2010. Reproductive period and size at the onset of sexual maturity of mottled purse crab, Persephona mediterranea (Herbst, 1794) (Brachyura, Leucosioidea) on the southeastern Brazilian coast. Invertebrate Reproduction and Development 54(1): 7-17. Carvalho FL & Couto ECG. 2010. Environmental variables influencing the Callinectes (Crustacea: Brachyura: Portunidae) species distribution in a tropical estuary – Cachoeira River (Bahia, Brazil). Journal of the Marine Biological Association of the United Kingdom 91(4): 793-800. Carvalho FL, Carvalho EAS & Couto ECG. 2010. Comparative analysis of the distribution and morphological sexual maturity of Persephona lichtensteinii and P. punctata (Brachyura, Leucosiidae) in Ilhéus, BA, Brazil. Nauplius 18(2): 109- 115. Castro-Filho BM, Miranda LB & Myao SY. 1987. Condições hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. Boletim do Instituto Oceanográfico 35 (2): 135-151. Choy S. 1988. Reproductive biology of Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae) from the Gower Peninsula, South Wales. Marine Ecology 9: 227-241. Costa TM & Negreiros-Fransozo ML. 1998. The reproductive cycle of Callinectes danae Smith 1869 (Decapoda, Portunidae) in Ubatuba region, Brazil. Crustaceana 71 (6): 615-627. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 64 Curi PR & Moraes RV. 1981. Associação, homogeneidade e contrastes entre proporções em tabelas contendo distribuições multinomiais. Ciência e Cultura 33(5): 712-722. Díaz H & Conde JE. 1989. Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bulletin of Marine Science 45 (1): 148-163. Doornik JA & Hansen H. 2008. An Omnibus Test for Univariate and Multivariate Normality. Oxford Bulletin of Economics and Statistics 70: 927-939. Emmerson WD. 1994. Seasonal breeding cycles and sex ratios of eight species of crab from Mgazana, a mangrove estuary in Transkei, Southern Africa. Journal of Crustacean Biology 14: 568-578. Fylstra D. 1998. Design and use of the Microsoft Excel Solver. Interfaces 28: 29- 55. Goodman, L. 1964. Simultaneous confidence intervals for contrast among multinomial populations. Annals of Mathematical Statistics 35(2): 716-725. Gonzáles-Gurriarán E & Olaso I. 1987. Cambios espaciales y temporales de lós crustáceos decápodos de la plataforma continental de Galicia (NW de España). Investigación Pesquera 51: 323-341. Haedrich RL, Rowe GT & Polloni PT. 1975. Zonation and faunal composition of epibenthic populations on the continental slope south of New England. Journal of Marine Research 33: 955-960. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 65 Haefner JR. PA & Spaargaren DH. 1993. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.). I. weight and volume relationships. Journal of Crustacean Biology 13(3): 523-531. Hakason L & Jansson M. 1983. Principles of lake sedimentology. Germany, Springer-Verlag, 315 p. Hartnoll RG. 1982. Growth. In: Bliss DE & Abele LG (eds.), The biology of Crustacea: embryology, morphology and genetics. Vol. 2, Academic Press, New York, pp 111-196. Hartnoll RG. 1985. Growth, sexual maturity and reproductive output. In: Wenner AM (ed.), Crustacean issues: factors in adult growth. Vol. 3, AA Balkema, Rotterdan, pp. 101-128. Hartnoll RG. 2006. Reproductive investment in Brachyura. Hydrobiologia 557: 31- 40. Hecker B. 1990. Variation in megafaunal assemblages on the continental margin south of New England. Deep-Sea Research 37 (1): 37-57. Hines AH. 1982. Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69: 309-320. Hines AH. 1989. Geographic variation in size at maturity in brachyuran crabs. Bulletin of Marine Science 45(2): 356-368. Johnson PT. 1980. Histology of the blue crab Callinectes sapidus: a model for Decapoda. New York, Praeger Publishers, 440 p. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 66 Lestang S, Hall NG & Potter IC. 2003. Influence of a deep artificial entrance channel on the biological characteristics of the blue swimmer crab Portunus pelagicus in a large microtidal estuary. Journal of Experimental Marine Biology and Ecology 295: 41-61. Levene H. 1960. Robust Tests for Equality of Variances. In: I. Olkin (ed.), Contributions to Probability and Statistics, Stanford Univ. Press, pp. 278-292. Magliocca A & Kutner AS. 1965. Sedimentos de fundo da Enseada do Flamengo, Ubatuba, SP. Contribuições do Instituto Oceanográfico 198: 1-15. Mahiques MM. 1995. Dinâmica sedimentar atual nas enseadas da região de Ubatuba, Estado de São Paulo. Boletim do Instituto Oceanográfico 43 (2): 111- 122. Mahiques MM, Tessler MG & Furtado VV. 1998. Characterization of energy gradient in enclosed bays of Ubatuba region, South-eastern Brazil. Estuarine, Coastal and Shelf Science 47: 431-446. Mantelatto FLM & Fransozo A. 1999. Characterization of the physical and chemical parameters of Ubatuba Bay, northern coast of São Paulo State, Brazil. Revista Brasileira de Biologia 59 (1): 23-31. Mantelatto FLM & Martinelli JM. 1999. Carapace width-weight relationships of Callinectes ornatus (Brachyura, Portunidae) from Ubatuba Bay. Iheringia, Série Zoologia 87: 111-116. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 67 Mantelatto FLM. 2000. Allocation of the portunid crab Callinectes ornatus (Decapoda: Brachyura) in Ubatuba Bay, northern coast of São Paulo State, Brazil. Crustacean Issues 12: 431-443. Mardia KV. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika 57: 519-530. Mardia KV. 1980. Tests of univariate and multivariate normality. In: P.R. Krishnaiah (ed.), Handbook of Statistics, 1: 279-320. Martínez G, Scarabino F & Delgado E. 2009. New records of the brachyuran crabs Hepatus pudibundus (Aethridae) and Persephona mediterranea (Leucosiidae) in their southernmost Western Atlantic distribution. Pan-American Journal of Aquatic Sciences 4(3): 279-282. Melo GAS. 1996. Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. Plêiade/FAPESP, São Paulo, 603 p. Microsoft. Microsoft Excel. Redmond, Washington: Microsoft, 2010. Computer Software. Negreiros-Fransozo ML & Fransozo A. 1995. On the distribution of Callinectes ornatus Ordway, 1863 and Callinectes danae Smith, 1869 (Brachyura, Portunidae) in the Fortaleza Bay, Ubatuba, Brazil. Iheringia, Série Zoologia 79: 13-25. Odebretch C & Castello JP. 2001. The Convergence Ecosystem in the Southwest Atlantic. In: Seeliger, U & B Kerjve (eds.). Coastal Marine Ecosystems of Latin America, Springer 147-165. CAPÍTULO 2. ECOLOGY OF P. mediterranea IN A PROTECTED ÁREA PEREIRA, RT. 2014 68 Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH & Wagner H. 2012. Vegan: Community Ecology Package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan. Pinheiro MAA & Fransozo A. 2002. Reproduction of the speckled swimming crab Arenaeus cribrarius (Brachyura: Portunidae) on the Brazilian coast near 23°30’S. Journal of Crustacean Biology 22 (2): 416-428. Pinheiro MAA, Fransozo A & Negreiros-Fransozo ML. 1996. Distributi