T d t A F a b a A R R A A K L P P D E 1 i a f d a d b f [ t t t t m a h 0 Journal of Analytical and Applied Pyrolysis 119 (2016) 242–250 Contents lists available at ScienceDirect Journal of Analytical and Applied Pyrolysis journa l h om epage: ww w.elsev ier .com/ locate / jaap hermal behavior, spectroscopic study and evolved gas analysis (EGA) uring pyrolysis of picolinic acid, sodium picolinate and its light rivalent lanthanide complexes in solid state .L.C.S. do Nascimentoa, J.A. Teixeiraa, W.D.G. Nunesa, F.X. Camposa, O. Treu-Filhoa, .J. Cairesb, M. Ionashiroa,∗ Instituto de Química, Universidade Estadual Paulista, CP 355, 14801-970 Araraquara, SP, Brazil FACULDADE DE CIÊNCIAS, UNESP—Univ., Estadual Paulista, Campus Bauru, Departamento de Química, Bauru, SP 17033-260, Brazil r t i c l e i n f o rticle history: eceived 16 October 2015 eceived in revised form 18 January 2016 ccepted 23 January 2016 vailable online 15 February 2016 eywords: a b s t r a c t Synthesis, characterization, and thermal behavior of light trivalent lanthanide picolinate (La–Gd, except Pm) as well as the thermal behavior of picolinic acid and its sodium salt were investigated employing elemental analysis, complexometry, differential scanning calorimetry (DSC), simultaneous thermo- gravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), X-ray power diffractometry, and evolved gas analysis (EGA) for TG-DSC coupled to FTIR. All the synthesized compounds were obtained in the anhydrous state and the thermal decomposition in dynamic dry air atmosphere ight trivalent lanthanides icolinate yrolysis ensity functional theory (DFT) volved gases analysis (EGA) occured in a single step or two consecutive steps with formation of the respective oxides, CeO2, Pr6O11 and Ln2O3 (Ln = La, Nd to Gd). In dynamic dry nitrogen atmosphere the thermal decomposition occured in two or three consecutive steps and mass loss was observed up to 1000 ◦C. The EGA data allowed the identification of gaseous products evolved during pyrolysis and oxidative decomposition. The results of density functional theory (DFT) and FTIR also provided information on the ligand’s denticity. © 2016 Elsevier B.V. All rights reserved. . Introduction The pyridine 2-carboxylic acid, usually known as picolinic acid s a pyridine derivative compound with a carboxylic acid group t position 2 carbon of pyridine ring. It is an essential substance or the metabolic process present in several foods of the human iet and also a safe and inexpensive pharmaceutical with chelating ctivity for metal ions [1]. It is a natural product of l-tryptophan egradation or synthesized form l-tryptophan, via a sequent side ranch of the kynurenine pathway [1,2], this acid has been studied or many pharmacological applications, presenting antimicrobial 1,3,4], antiviral, cytotoxic and apoptotic activities [5] and inhibi- ion of HIV-1 [6] among other caracteristics. The extant literature includes studies that have examined he association of the picolinic N-oxide forming with bivalent ransition metals ions [7] and trivalent lanthanide ions [8,9]. Fur- hermore, lanthanide complexes with picolinic acid forming a ixed-ligand compound, with 2,6-pyridine dicarboxylic acid [10] nd glutaric acid [11] were investigated. After a literature review, ∗ Corresponding author. E-mail address: massaoi@yahoo.com.br (M. Ionashiro). ttp://dx.doi.org/10.1016/j.jaap.2016.01.010 165-2370/© 2016 Elsevier B.V. All rights reserved. no systematic study of thermal behavior of the lanthanide picoli- nates (except the lanthanum, praseodymium and neodymium) was found [12]. Few research papers describe the synthesis of similar compounds. Some of them investigate the coordination properties of europium complex with picolinic acid [13]; the crystal structure, magnetic and photoluminescent properties of the neodymium and samarium compounds [14]; the magnetic and spectral properties of the La (III), Nd (III), Sm (III) and Eu (III) compounds [15]; and the preparation and characterization of some rare earth picolinate complex [16]. Thus the present paper aims to investigate the thermal behavior of picolinic acid and its sodium salt, as well as to prepare solid-state compounds of light trivalent lanthanide picolinates and to char- acterize and investigate by means of complexometry, elemental analysis, X-ray diffractometry, infrared spectroscopy (FTIR), theo- retical calculation based on density functional theory, simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC) in dry air and N2 atmospheres, differential scanning calorimetry (DSC) also in both atmospheres and TG-DSC coupled to FTIR. dx.doi.org/10.1016/j.jaap.2016.01.010 http://www.sciencedirect.com/science/journal/01652370 http://www.elsevier.com/locate/jaap http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaap.2016.01.010&domain=pdf mailto:massaoi@yahoo.com.br dx.doi.org/10.1016/j.jaap.2016.01.010 lytical 2 f s t h c m h [ s s f p e g c i a w t n c d w d r u n i o o d i d t h 5 a s c t s e O c t fl w f m 5 t w w t t A.L.C.S. do Nascimento et al. / Journal of Ana . Materials and methods The picolinic acid, C6H4NO2 with 99.5% purity was obtained rom Sigma and was used without further purification. An aqueous olution of sodium picolinate 0.1 mol L−1 was prepared by neu- ralization of an aqueous solution of picolinic acid with sodium ydroxide solution 0.1 mol L−1. Aqueous solutions of lanthanide hlorides 0.1 mol L−1 were prepared from the corresponding etal oxides (except for cerium) by treatment with concentrated ydrochloric acid, following the procedure described. Gigante et al. 17]. Cerium (III) was used as its chloride and 0.1 mol L−1 aqueous olution of this ion was prepared by direct weighing of the salt. The solid-state lanthanide picolinates were prepared by ynthetic route using urea. Stoichiometric calculations were per- ormed to obtain 1 g of the compounds. For all of them a slow recipitation in homogeneous medium was made using slight xcess of urea as neutralizing agent, except for the europium and adolinium compounds, in which the addition of urea was stoi- hiometric. Aqueous solutions of lanthanide chlorides were added n 400 mL beaker, with their respective amounts of picolinic acid nd then solid urea was added to solution. The beakers were sealed ith perforated aluminum foil, and kept in a forced air circula- ion oven at 90 ◦C. At this temperature, urea decomposes slowly, eutralizing picolinic acid, leading to the slow precipitation of the ompounds. The precipitates were then filtered and washed with istilled water until elimination of chloride ions (qualitative test ith AgNO3/HNO3), dried at 50 ◦C in a forced circulation air oven uring 24 h and kept in a desiccator over anhydrous calcium chlo- ide. Europium and gadolinium compounds were also prepared sing slight excess of urea, however binary compounds were ot obtained, probably due to increase of the solubility with the ncrease of atomic number of the lanthanides and with slight excess f urea occurs an increase in the solution pH, favoring the formation f basic picolinates. Metal ions and picolinate contents in the compounds were etermined from TG curves obtained in air atmosphere. The metal ons contents were also determined by complexometry with stan- ard EDTA solution, using xylenol orange as indicator, after igniting he compounds to the respective oxides and their dissolution in ydrochloric acid solution [18,19]. The X-ray powder patterns were obtained by using a Siemens D- 000 X-ray diffractometer, employing CuK� radiation (� = 1.541 Å) nd setting of 40 kV and 20 mA. Hydrogen, carbon and nitrogen contents were determined by toichiometric calculations, based on the mass losses of the TG urves obtained in air atmosphere, since the thermal decomposi- ion of the compound leads to formation of residues with known toichiometry (oxides). Microanalysis was also used in order to stablish the stoichiometry from CE instruments an EA 1110CHNS- Elemental Analyzer. Simultaneous thermogravimetry and differential scanning alorimetry (TG-DSC) curves were obtained in a TG-DSC STARe sys- em, from Mettler Toledo. The purge gas was both dry air and N2, ow rate of 50 mL min−1. A heating rate of 10 ◦C min−1 was adopted, ith samples weighing about 10.4 mg. Alumina crucibles were used or recording the TG-DSC curves. The DSC curves were obtained using a DSC Q10 from TA instru- ents. The purge gas was both dry air and N2, flow rate of 0 mL min−1. Heating rates of 5 and 10 ◦C min−1 were adopted for he picolinic acid and its sodium salt, respectively, with sample eighing about 2 mg. Aluminum crucible with perforated cover as used for recording the DSC curves. The detection of the gaseous products was carried out coupling he TG-DSC Mettler Toledo furnace gas outlet to a FTIR spectropho- ometer Nicolet equipped with a gas cell and DTGS KBr detector. The and Applied Pyrolysis 119 (2016) 242–250 243 gaseous products from the thermal decomposition were carried towards the gas cell (heated at 250 ◦C) by a stainless steel trans- fer line (120 cm, 3 mm internal diameter, heated at 200 ◦C) purged with dry air and N2 gas (both, 50 mL min−1). The FTIR spectra were recorded with 16 scans per spectrum at a resolution of 4 cm−1. 2.1. Computational details The quantum chemical approach used to determine the molec- ular structures was Becke three parameter hybrid theory [20] using the Lee–Yang–Par (LYP) correlation functional [21], and the basis sets used for calculations were: [4s] for H (2S) [22], [5s4p] for C (3P), N (4S) and O (3P) [22], [10s6p] and [17s11p7d] for La (2D) [23]. The diffuse functions for the lanthanum atom (2D) were calculated according to the procedure described in [22] and these values are: �s = 0.00669534, �p = 0.079333735, �d = 0.096432865. In order to better describe the properties of the compound in the implementation of the calculations, it was necessary to include polarization functions [22,23] for all atoms of the compound. The polarization functions are: �p = 0.33353749 for H (2S), �d = 0.72760279, �d = 0.35416230 and �d = 0.36059494 for C (3P), N (4S) and O (3P) respectively, and �f = 0.36935391 for La (2D) atoms. The role of a basis set is a crucial point in theoretical studies of metal complexes, since the description of the configuration of the metal in the complex differs from the neutral state. The per- formed molecular calculations in this study were done using the Gaussian 09 routine [24]. The theoretical infrared spectrum was calculated using a har- monic field [25] based on C1 symmetry (electronic state 1A). Frequency values (not scaled), relative intensities, assignments, and description of vibrational modes are presented. The crystal geome- try of the La(C6H4NO2)3 was proposed based on Ref. [26] and it was optimized using Berny Algorithm [27]. The calculations of vibra- tional frequencies were also implemented to determine whether an optimized geometry constitutes minimum or saddle points. The principal infrared active fundamental modes assignments and descriptions were done by the GaussView 5.0.8 W graphics routine [28]. 3. Results and discussion 3.1. Picolinic acid The TG-DSC and DSC curves of picolinic acid in dynamic dry air and nitrogen atmospheres are shown in Fig. 1 as a–b and a*–b*, respectively. In both atmospheres the TG-DSC curves show total mass loss in a single step between 110–173 ◦C and an endother- mic event at 120 ◦C (air) or 127 ◦C (N2), attributed to sublimation, followed by two endothermic peaks at 142 and 170 ◦C (air) or 141 and 170 ◦C (N2), attributed to melting and thermal decomposition of the compound, respectively, and the last two thermal events in agreement with Allan et al. [29]. Sublimation fallowed by melting was observed when sample of the compound was heated in a glass tube. In both atmospheres the DSC curves also show two endother- mic peaks at 138 and 200 ◦C (air) or 139 and 213 ◦C (N2), attributed to melting and thermal decomposition of the compound, respec- tively. The difference in the melting and thermal decomposition temperatures observed in the TG-DSC and DSC curves, is due to the experimental conditions that were not the same, as previously reported [30]. 3.2. Sodium picolinate For sodium picolinate the TG-DSC and DSC curves in dynamic dry air and nitrogen atmospheres are shown in Fig. 2 as a–b and 244 A.L.C.S. do Nascimento et al. / Journal of Analytical and Applied Pyrolysis 119 (2016) 242–250 Fig. 1. (a) TG-DSC curves of picolinic acid in dynamic dry air [5.006 mg] and (a*) nitrogen [5.308 mg] atmospheres. (b) DSC curves of picolinic acid in dynamic dry air [2.171 mg] and (b*) nitrogen [2.744 mg] atmospheres. F *) nitr a a a 1 g t o 3 3 t a g e a l b ig. 2. (a) TG-DSC curves of sodium picolinate in dynamic dry air [5.495 mg] and (a ir [2.240 mg] and (b*) nitrogen [2.889 mg] atmospheres. *–b*, respectively. There was mass loss between 40–230 ◦C (air) nd 45–240 ◦C (N2), corresponding to an endothermic peak at 15 ◦C with loss of 0.8 H2O, in both atmospheres. The TG curve sug- ests that the dehydration occurs in three overlapping steps, with he first and the third processes occurring slowly and the second ccurring quickly. In air atmosphere the anhydrous compound is stable up to 50 ◦C and above this temperature the mass losses occur between 50–480 ◦C and 480–760 ◦C, with loss of 28.90% and 28.89%, respec- ively corresponding to exothermic peaks at 450 and 470 ◦C. These re attributed to oxidation of the organic matter and/or of the aseous products evolved during the thermal decomposition and xothermic peaks at 715 ◦C with shoulder at 645 and 695 ◦C ttributed to oxidation of the carbonaceous residue. The total mass oss up to 760 ◦C is in agreement with the formation of sodium car- onate as residue. The formation of carbonate was also confirmed ogen [5. 417 mg] atmospheres. (b) DSC curves of sodium picolinate in dynamic dry by test with hydrochloric acid solution on the final residue of the TG-DSC curves. For N2 atmosphere the anhydrous compound is stable up to 360 ◦C and the mass losses occur between 360–485 ◦C and 485–800 ◦C, with loss of 30.30% and 24.28%, corresponding to a small endothermic peak at 450 ◦C attributed to the decomposition. No thermal event corresponding to the second mass loss is observed in the DSC curve, although the mass loss is still being observed up to 800 ◦C. The sharp endothermic peak at 298 ◦C, without mass loss in the TG curve is attributed to fusion of the compound. For both atmospheres the DSC curve show two endothermic peaks at 99.7 with shoulder at 109.3 ◦C and 298.3 ◦C (air) or 99.3 ◦C with shoulder at 109.3 and 298.0 ◦C (N2) attributed to dehydration and melting of the compounds. The dehydration enthalpy found was 15.0 and 15.8 kJ mol −1, as well as the fusion enthalpy was 14.6 and 15.8 kJ mol−1, respectively. A.L.C.S. do Nascimento et al. / Journal of Analytical and Applied Pyrolysis 119 (2016) 242–250 245 Table 1 Analytical and thermoanalytical (TG)* data in dry air atmosphere for the Ln(L)3 compounds. Ln = lanthanides, L = picolinate. Compound Metal oxide (%) L (Lost) (%) C (%) N/ % H/ % Final Residue Calc. EDTA TG Calc. TG Calc. EA TG Calc. EA TG Calc. EA TG La(L)3 32.34 32.4 31.52 67.76 68.48 42.79 42.96 42.24 8.32 8.29 8.41 2.4 2.42 2.43 La2O3 Ce(L)3 33.99 33.81 34.2 66.01 65.8 42.69 42.5 42.55 8.3 8.47 8.27 2.39 2.45 2.38 CeO2 Pr(L)3 33.56 33.73 33.77 66.44 66.23 42.62 42.77 42.63 8.29 8.64 8.26 2.39 2.3 2.38 Pr6O11 Nd(L)3 32.95 32.76 32.66 67.05 67.34 42.34 42.67 42.52 8.23 8.45 8.27 2.37 2.25 2.38 Nd2O3 Sm(L)2 33.74 33.99 34.16 66.26 65.84 41.84 41.67 41.57 8.13 7.85 8.08 2.35 2.42 2.34 Sm2O3 Eu(L)3 33.31 33.42 33.25 66.69 66.75 41.71 41.48 41.75 8.11 8.32 8.12 2.34 2.42 2.34 Eu2O3 Gd(L)3 34.62 34.38 34.15 65.38 65.85 41.29 41.64 42.22 8.03 8.32 8.09 2.31 2.25 2.33 Gd2O3 * TG in dry air atmosphere, Ln = lanthanides, L = picolinate. 3 3 T o a i i a r p 3 a a p L o w Fig. 4. Theoretical 3D structure of La(C6H4NO2)3 compound. Table 2 Spectroscopic data for sodium picolinate and compounds with some light trivalent lanthanide metal ions considered in this work. Compounds �as (COO−) cm−1 �s (COO−) cm−1 ��cm−1 NaL 1564 s 1390 s 174 La(L)3 1651 s 1338 s 313 Ce(L)3 1652 s 1340 s 312 Pr(L)3 1654 m 1340 m 314 Nd(L)3 1655 m 1342 m 313 Sm(L)3 1657 m 1343 m 314 Eu(L)3 1659 m 1344 m 315 Gd(L)3 1659 m 1345 m 314 L = picotinate; s = strong; m = medium. �as (COO−) = antisymmetric carboxyl stretching frequency. � (COO−) = symmetric carboxyl stretching frequency. Fig. 3. X-ray powder diffraction patterns of the compounds. .3. Lanthanide complexes .3.1. Analytical results The analytical and thermoanalytical (TG) data are shown in able 1. Calculation based on mass losses observed in the TG curves f the lanthanum to gadolinium compounds, except promethium re in agreement with the formation of the respective oxides, and n agreement with the literature data [31–35]. From these results, t could be established the stoichiometry of the compounds, which re in agreement with the general formula Ln(L)3, where Ln rep- esents light trivalent lanthanides (La to Gd, except Pm) and L is icolinate. .3.2. XRD The X- ray diffraction powder patterns, Fig. 3, show that ll the compounds have crystalline structure and La, Ce, Pr nd Sm, with evidence for formation of isomorphous com- ound. The crystallinity of these compounds follows the order: a = Ce > Pr = Sm > Nd > Gd > Eu. The difference in the crystallinity f these compounds must be due to the precipitation conditions hich were not controlled. s �� = difference between �as (COO−) and �s (COO−) frequencies. 3.3.3. Infrared vibrational spectroscopy and theoretical calculations The bands observed in FTIR spectra for sodium picolinate and the metal ions considered in this work are shown in Table 2 and FTIR spectra are shown in supplementary material (Fig. 1S). The bands centered at 1564 cm−1 and 1389 cm−1 were assigned to antisym- metric (�as COO−) and symmetric (�s COO−) carboxyl stretching frequencies, respectively [36]. The values of �� (�as COO− − �s COO−) for the synthesized compounds are much larger than those ones calculated for the sodium salt, suggesting that the coordina- tion is carried out through the carboxylate group of the picolinate in a monodentate mode [37], in agreement with Tamer et al. [26]. 2 lytical f i c t t t p o a o r l i t r t m F a t r p 3 a r o i ( r o c d ( t p 3 T t n p e b 4 c a 4 ( t 4 46 A.L.C.S. do Nascimento et al. / Journal of Ana The calculation of the density functional theory was performed or the La(C6H4NO2)3 compound. The optimized structure is shown n Fig. 4, as representative of the other compounds. The minimum alculated energy was −5.982 × 106 kcal mol−1, corresponding to he structure of Fig. 4. The conformation of the molecule suggests hat the two picolinates act as monodentate ligands in relation to he carboxylate group and the third picolinate in a bidentate mode robably due to steric hindrance. The optimized molecular structure data suggest that linkage also ccurs by the nitrogen atom of the pyridine ring when picolinate cts as monodentate, i.e., the coordination of the ligand to the metal ccurs by both nitrogen and oxygen atoms forming a chelate. As a esult of this coordination, the electron density in the picolinate igand shifts toward the pyridine N atom, leading to some increase n the CN stretching vibration wavenumber. This shift is attributed o either an inductive effect or a combination of inductive effect and esonance, and leads to an increase in the double bond character of he carbonyl group and a shift of the stretching wavenumber of CO oiety to a higher value [26]. The comparison of experimental (most stable) and theoretical TIR spectra are presented in Fig. 5a and b, respectively. There is great similarity between the experimental and theoretical spec- rum and bond lengths and angles are in agreement with the values eported in the literature, since the calculations are based on com- lex in gaseous state. .3.4. Thermal analysis (TG-DSC and EGA) The simultaneous TG-DSC curves of the compounds in dry air nd nitrogen atmospheres are shown in Fig. 6(a–g) and Fig. 7(a–g), espectively. These curves show that all the compounds were btained in the anhydrous state and that the mass losses occur n a single (Ce), two (La, Pr, Nd, Sm and Eu) or three (Gd) steps air) and two (Ce) or three (La, Pr to Gd) steps (N2) sometimes, cor- esponding to endothermic and exothermic peaks, but sometimes ccurring without thermal events. These curves also show that the thermal stability of these ompounds (I), as well as the final temperature of the thermal ecomposition (II), in both atmospheres, follows the order: (I) Pr > La = Nd = Sm > Eu > Gd > Ce II) Gd > Eu > Sm > Nd > Pr > La > Ce The thermal behavior of the compounds in air atmosphere is not he same in N2 one, thus the TG-DSC curves in each atmosphere are resented separately. .3.5. TG-DSC in oxidative atmosphere The TG-DSC curves of the compounds are shown in Fig. 6(a–g). he thermal decomposition of the anhydrous compounds show hat similarity of TG profiles is observed for lanthanum, eodymium, samarium and europium. On the other hand, cerium, raseodymium and gadolinium display TG profiles characteristic of ach compound. Thus, the features of each of these compounds are discussed ased on their similarity. . Lanthanum, neodymium, samarium and europium ompounds The TG-DSC curves of the compounds are shown in Fig. 6(a, d, e nd f). The first mass loss that occurs through a fast process between 00–480 ◦C (La), 400–485 ◦C (Nd), 400–510 ◦C (Sm) and 390–490 ◦C Eu), with loss of 60.40%, 60.42%, 61.80% and 62.93% corresponding o a large and sharp exothermic peak at 470 ◦C, 480 ◦C, 470 ◦C and 60 ◦C, respectively. The exothermic peak is attributed to oxidation and Applied Pyrolysis 119 (2016) 242–250 of the organic matter and/or of gaseous products evolved during the thermal decomposition, with the formation of carbonaceous residue and a derivative of carbonate, probably the corresponding dioxycarbonate, La2O2CO3, as already observed for other com- pounds with trivalent lanthanides [38]. Test with hydrochloric acid solution on sample heated up to the temperature of formation of the derivative of carbonate, as indicated by the TG-DSC curves, confirmed evolution of CO2 and presence of carbonaceous residue. The last step that occurs through a slow process, between 480–695 ◦C (La), 485–755 ◦C (Nd), 510–770 ◦C (Sm) and 490–790 ◦C (Eu), with loss of 8.08%, 6,92%, 4,04% and 3,82% corresponding to small exothermic peak followed by on indicium of endothermic event at 590 ◦C and 670 ◦C (La), 530 and 600 ◦C (Nd) and 575 ◦C and 625 ◦C (Sm), respectively, attributed to oxidation of the car- bonaceous residue and thermal decomposition of the derivative of carbonate. The total mass loss up to 695 ◦C (La), 755 ◦C (Nd), 770 ◦C (Sm) and 790 ◦C (Eu) is in agreement with the formation of the respective oxides, Ln2O3 (Ln = La, Nd, Sm, Eu). 5. Cerium compound The TG-DSC curves of the compound are shown in Fig. 6(b). These curves show that the anhydrous compound is stable up to 350 ◦C, and above this temperature the thermal decomposition occurs through a fast process and in a single step with loss of 65.80%, corresponding to an exothermic peak at 430 ◦C. The large and sharp exothermic peak is attributed to oxidation of the organic matter and/or of the gaseous products evolved during the thermal decomposition, as well as the heat contribution through oxidation reaction of Ce(III) to Ce(IV). The total mass loss up to 490 ◦C is in agreement with the for- mation of cerium (IV) oxide, CeO2, as final residue (Calc. = 66.01%, TG = 65.80%). The smaller thermal stability as well as the final temperature of thermal decomposition of the cerium compound is attributed to the oxidation reaction of Ce(III) to Ce(IV) and of the organic matter and/or of the gaseous products evolved during the thermal decom- position. This behavior had already been observed for other cerium compounds [39]. 6. Praseodymium compound The TG-DSC curves of the compound are shown in Fig. 6(c). These curves show that the anhydrous compound is stable up to 405 ◦C, and above this temperature the thermal decomposition occurs in two consecutive steps between 405–475 ◦C and 475–750 ◦C with loss of 62.22% and 4.01%, respectively. The large and sharp exother- mic peak, corresponding to the first mass loss is attributed to the oxidation of organic matter and/or of the gaseous products evolved during the thermal decomposition, with the formation of carbonaceous residue and a derivative of carbonate. No ther- mal event corresponding to the second mass loss is observed in the DSC curves, probably because in this step the oxidation of the carbonaceous residue (exo) and the thermal decomposition of the carbonate derivative (endo) are not sufficient to produce a thermal event. Calculations based on the total mass loss up to 750 ◦C is in agreement with the formation of praseodymium oxide, Pr6O11, as final residue (Calc. = 66.44%, TG = 66.23%). 7. Gadolinium compound The TG-DSC curves of the compound are shown in Fig. 6(g). These curves show that the anhydrous compound is stable up to 380 ◦C, and the thermal decomposition occurs in three consecu- A.L.C.S. do Nascimento et al. / Journal of Analytical and Applied Pyrolysis 119 (2016) 242–250 247 tal of t l a r 4 o e c o t d s m T Fig. 5. Comparative experimen ive steps, between 380–450 ◦C, 450–520 ◦C and 520–910 ◦C, with oss of 44.06% and 18.58% and 3.21%, respectively. These curves lso show that the first two steps occur through a fast process, cor- esponding to endothermic and exothermic peaks at 430 ◦C and 75 ◦C, respectively, attributed to the thermal decomposition and xidation of the organic matter and/or of the gaseous products volved during the thermal decomposition, with the formation of arbonaceous residue and carbonate derivative. In the last step where in the mass loss occurs slowly and with- ut thermal event in the DSC curve. Mass loss is attributed to the hermal decomposition of the carbonate derivative (endo) and oxi- ation of the carbonaceous residue (exo), where the net heat is not ufficient to produce a thermal event. The total mass loss up to 910 ◦C, is in agreement with the for- ation of gadolinium oxide, Gd2O3, as final residue (Calc. = 65.38%, G = 65.85%). FTIR and theoretical IR spectra. 7.1. TG-DSC in inert atmosphere The TG-DSC curves of the compounds are shown in Fig. 7(a–g). These curves show that the thermal stability of the lanthanum, praseodymium, neodymium and samarium compounds is the same in both atmospheres (air, N2). For the cerium, europium and gadolinium compounds the thermal stability is slightly higher in N2 than in air atmosphere. These curves also show a great similarity in the TG curves of these compounds, except for cerium, however the similarity in the DSC curves is observed for praseodymium and neodymium or europium and gadolinium, while lanthanum and samarium display DSC profiles characteristic of each compound. Thus, the features of each of these compounds are discussed based on the similarity of the TG curves. 248 A.L.C.S. do Nascimento et al. / Journal of Analytical and Applied Pyrolysis 119 (2016) 242–250 Fig. 6. TG-DSC curves in dry air atmosphere of: (a) La(L)3, 10.469 mg; (b) Ce(L)3, 10.499 mg; (c) Pr(L)3, 10.453 mg; (d) Nd(L)3, 10.447 mg; (e) Sm(L)3, 10.445 mg; (f) Eu(L)3, 10.482 mg; (g) Gd(L)3 10.502 mg. L = nicotinate. Fig. 7. TG-DSC curves in dry N2 atmosphere of: (a) La(L)3, 10.425 mg; (b) Ce(L)3, 10.443 mg; (c) Pr(L)3, 10.390 mg; (d) Nd(L)3, 10.404 mg; (e) Sm(L)3, 10.321 mg; (f) Eu(L)3, 10.418 mg; (g) Gd(L)3 10.592 mg. L = nicotinate. A.L.C.S. do Nascimento et al. / Journal of Analytical Fig. 8. FTIR spectra from gaseous products evolved during the thermal decom- p c 8 T 3 p a f a e t C 9 c b 4 6 3 5 a 8 ( m 4 a o m f Antimicrob. Agents 29 (2007) 460–464. osition of picolinic acid and neodymium compound as representative of all the ompounds. . Cerium compound The TG-DSC curves of the compound are shown in Fig. 7 (b). hese curves show mass losses in two consecutive steps, between 55–800 ◦C. The first step, occurring up to 490 ◦C and through a fast rocess, with loss of 52.75%, corresponds to an endothermic peak t 475 ◦C and is attributed to the thermal decomposition with the ormation of carbonaceous residue. The second step, between 490 nd 800 ◦C, occurs slowly, with loss of 12.77%. It correspond to an ndothermic peak at 800 ◦C and is attributed to the pyrolysis of he carbonaceous residue, with the formation of cerium (IV) oxide, eO2, as final residue. . Lanthanum, praseodymium to gadolinium compounds The TG-DSC curves of the compounds are shown in Fig. 7(a, –g). These curves show mass losses in three consecutive steps, etween 400–500 ◦C, 500–675 ◦C and 675–880 ◦C (La); 405–485 ◦C, 85–680 ◦C and 680–935 ◦C (Pr); 400–495 ◦C, 495–675 ◦C and 75–960 ◦C (Nd); 400–495 ◦C, 495–680 ◦C and 680–995 ◦C (Sm); 95–480 ◦C, 480–670 ◦C and 670–1000 ◦C (Eu) and 390–500 ◦C, 00–715 ◦C and 715–1000 ◦C (Gd), with losses of 45.63%, 10.28% nd 11.48% (La); 46.89%, 10.25% and 9.66% (Pr); 48.86%, 9.04% and .67% (Nd); 52.05%, 6.75% and 8.07% (Sm); 46.88%, 9.01% and 10.04% Eu); 48.66%, 6.72% and 7.84% (Gd), corresponding to endother- ic peaks at 475 ◦C, 665 ◦C, 825 ◦C (La); 465 ◦C, 560 ◦C, 865 ◦C (Pr); 70 ◦C, 560 ◦C, 900 ◦C (Nd); 460 ◦C, 950 ◦C (Sm); 450 ◦C, 890 ◦C (Eu) nd 445 ◦C, 965 ◦C (Gd). In all the compounds, the first mass loss ccurs through a fast process corresponding to a sharp endother- ic peak, and is attributed to the thermal decomposition, with the ormation of carbonaceous residue. and Applied Pyrolysis 119 (2016) 242–250 249 The last two steps, that occur slowly corresponding to endother- mic peaks or without thermal event are attributed to the pyrolysis of the carbonaceous residue, with the formation of the respective oxides, Pr6O11, Ln2O3 (Ln = La, Nd, Sm and Eu). For gadolinium com- pound, mass loss continues to be observed up to 1000 ◦C. 9.1. Evolved gas analysis (EGA) The gaseous products evolved during the thermal decomposi- tion of picolinic acid and its sodium salt as well as of the compounds synthesized in this work were monitored by FTIR. The main gaseous products were pyridine and CO2 for picolinic acid or pyridine and CO and CO2 for the other compounds, in both atmospheres. The FTIR spectra of the gaseous products evolved during the thermal decomposition of picolinic acid and neodymium picolinate as rep- resentative of all the compounds are shown in Fig. 8. 10. Conclusion From the TG, complexometry and elemental analysis results a general formula could be established for the synthesized com- pounds. The X-ray power patterns showed that all the compounds have a crystalline structure, with evidence of isomorphism between lan- thanum and cerium or praseodymium and samarium compounds. The experimental infrared spectroscopic data suggest that the picolinate acts as a monodentade with respect to the carboxylate group, suggesting that the N atom of the pyridine ring also par- ticipates in the coordination towards the metal ions. However, the calculation of the density functional theory and theoretical IR spec- troscopic data suggest that the ligand acts as a monodentade with respect to the carboxylate group in two of the three bonds, and the third as a bidentade mode probably due to steric hindrance. The simultaneous TG-DSC and DSC curves provided previously unreported information concerning the thermal stability and ther- mal decomposition of these compounds in dynamic dry air and N2 atmosphere. Although, the thermal behavior of the compounds is dependent on the nature of the metal ion, the gaseous prod- ucts evolved during the thermal decomposition of the picolinate (sodium salt) and its compounds studied in this work were the same, i.e, pyridine, carbon monoxide and carbon dioxide, in both atmospheres. For the picolinic acid in both atmospheres only pyri- dine and carbon dioxide were also detected. Acknowledgments The authors thanks FAPESP (Proc. 2013/09022-7), CNPq and CAPES Foundations (Brazil) for financial support. This research was supported by resources supplied by the Center for Scientific Com- puting (NCC/GridUNESP) of the Sao Paulo State University (UNESP), Instituto de. Quimica de Araraquara, UNESP Campus de Araraquara and CENAPAD-UNICAMP. Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jaap.2016.01.010. References [1] H. Tomioka, T. Shimizu, Y. Tatano, Effects of picolinic acid on the antimicrobial functions of host macrophages against Mycobacterium avium complex, Int. J. [2] R.S. Grant, S.E. Coggan, G.A. Smythe, The physiological action of picolinic acid in the human brain, Int. J. Tryptophan Res. 2 (2009) 71–79. [3] S. Cai, K. Sato, T. Shimizu, S. Yamabe, M. Hiraki, C. Sano, et al., Antimicrobial activity of picolinic acid against extracellular and intracellular Mycobacterium http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://dx.doi.org/10.1016/j.jaap.2016.01.010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0005 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0010 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 2 lytical [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Compounds. Part B, 5th ed., Wiley, New York, 1997, pp. 58–61. [37] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227–250. [38] F.J. Caires, L.S. Lima, D.J.C. Gomes, A.C. Gigante, O. Treu-Filho, M. Ionashiro, Thermal and spectroscopic studies of solid oxamate of light trivalent lanthanides, J. Therm. Anal. Calorim. 111 (2013) 349–355. 50 A.L.C.S. do Nascimento et al. / Journal of Ana avium complex and its combined activity with clarithromycin, rifampicin and fluoroquinolones, J. Antimicrob. Chemother. 57 (2006) 85–93. [4] E. Blasi, R. Mazzolla, L. Pitzurra, R. Barluzzi, F. Bistoni, Protective effect of picolinic acid on mice intracerebrally infected with lethal doses of Candida albicans, Antimicrob. Agents Chemother. 37 (1993) 2422–2426. [5] J.A. Fernandez-Pol, D.J. Klos, P.D. Hamilton, Antiviral, cytotoxic and apoptotic activities of picolinic acid on human immunodefi ciency virus-1 and human herpes simplex virus-2 infected cells, Anticancer Res. 21 (2001) 3773–3776. [6] A. Ramautar, M. Mabandla, J. Blackburn, W.M.U. Daniels, Inhibition of HIV-1 tat-induced transactivation and apoptosis by the divalent metal chelators, fusaric acid and picolinic acid-Implications for HIV-1 dementia, Neurosci. Res. 74 (2012) 59–63. [7] S.A. Boyd, R.E. Kohrman, D.X. West, Transition metal ion complexes of 2-picolinate N-oxide, J. Inorg. Nucl. Chem. 38 (1976) 607–608. [8] Boyd S.A., Kohrman R.E., West D.X., Inorg. Nucl. Chem. Letters. Pergamon Press, Printed in Great Britain, 1976, 12, 603–608. [9] S. Lis, Z. Piskuła, M. Kubicki, The structure and spectroscopy of lanthanide(III) complexes with picolinic acid N-oxide in solution and in the solid state, Mater. Chem. Phys. 114 (2009) 134–138. 10] D. Xu, Y. Xu, N. Cheng, X. Zhou, Y. Shi, Q. He, Synthesis, characterization, and biological studies of lanthanide complexes with 2,6-pyridine dicarboxylic acid and �-picolinic acid, J. Coord. Chem. 63 (2010) 2360–2369. 11] P.I. Girginova, F.A. Almeida Paz, P.C.R. Soares-Santos, R.A. Sá Ferreira, L.D. Carlos, V.S. Amaral, et al., Synthesis, characterisation and luminescent properties of lanthanide-organic polymers with picolinic and glutaric acids, Eur. J. Inorg. Chem. (2007) 4238–4246. 12] L. Moyne, G. Thomas, Etude thermogravimtrique des picolates et dipicotates de lanthane, praséodyme et néodyme, Anal. Chim. Acta 29 (1963) 66–69. 13] Y.J. Park, B.H. Lee, W.H. Kim, Y. Do, Investigation of coordinational properties of Europium(III) complexes with picolinic acid using Eu(III) excitation spectroscopy, J. Colloid Interface Sci. 209 (2000) 268–270. 14] W. Li, X.-L. Wang, X.-Y. Song, L.-C. Li, D.-Z. Liao, Z.-H. Jiang, Crystal structures, magnetic and photoluminescent properties of one-dimensional lanthanide complexes with picolinate ligand, J. Mol. Struct. 885 (2008) 1–6. 15] P. Press, G. Britain, Chemistry A, 34, Pergamon Press, Great Britain, 1972, pp. 1851–1855. 16] N.B. Keck, N.J. Hornung, W.G. Bos, The preparation and characterization of some rare earth picolinate complexes, J. Inorg. Nucl. Chem. 36 (1974) 1521–1525. 17] A.C. Gigante, D.J.C. Gomes, L.S. Lima, F.J. Caires, O. Treu-Filho, M. Ionashiro, Synthesis, thermal properties and spectroscopic study of solid mandelate of light trivalent lanthanides, Thermochim. Acta. 536 (2012) 6–14. 18] H.A. Flaschka, EDTA Titrations and Introduction to Theory and Practice, 2nd ed., Pergamon Press Oxford, 1967. 19] M. Ionashiro, C.A.F. Graner, J. Zuanon Netto, Titulacão complexométrica de lantanídeos e ítrio, Ecl. Quim. 8 (1983) 29–32. 20] A.D. Becke, Density-functional thermochemistry: III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648. 21] C. Lee, C. Hill, R.G. Parr, Developement of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785–789. 22] O. Treu-Filho, J.C. Pinheiro, E.B. da Costa, J.E.V. Ferreira, A.F. de Figueiredo, R.T. Kondo, et al., Experimental and theoretical study of the compound [Pd(dmba)(NCO)(imz)], J. Mol. Struct. 829 (2007) 195–201. 23] O.T. Filho, J.C. Pinheiro, R.T. Kondo, Designing Gaussian basis sets to the theoretical study of the piezoelectric effect of perovskite (BaTiO3), J. Mol. Struct. Theochem. 671 (2004) 71–75. and Applied Pyrolysis 119 (2016) 242–250 24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. MontgomeryJr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision A.02., 2009. 25] D. Goodson, S.K. Sarpal, P. Bopp, M. Wohsberg, Influence on Isotope Effect Calculatlons of the Method of Obtaining Force Constants From Vibrational Datat, 1982, 64. 26] Ö. Tamer, D. Avci, Y. Atalay, Synthesis, x-ray structure, spectroscopic characterization and nonlinear optical properties of Nickel (II) complex with picolinate: A combined experimental and theoretical study, J. Mol. Struct. 1098 (2015) 12–20. 27] H.B. Schelegel, New Theoretical Concepts for Understanding Organic Reactions, in: J. Bertran (Ed.), Academic, The Netherlands, 1989. 28] R. Dennington, T. Keith, J. Millam, GaussView, 2015, Version 5.0.8. 29] J.R. Allan, W.C. Geddes, C.S. Hindle, A.E. Orr, Thermal analysis studies on pyridine carboxylic acid complexes of zinc (II), Thermochim. Acta 153 (1989) 249–256. 30] D.Q.M. Craig, Mike Reading Thermal Analysis of Pharmaceuticals, CRC Press—Taylor & Francis Group, 2007, pp. 35. 31] A.M.G. Hussein, Rare earth metal oxides: formation, characterization and catalytic activity Thermoanalytical and applied pyrolysis review, J. Anal. Appl. Pyrolysis 37 (1996) 111–149. 32] A.M.G. Hussein, Formation of praseodymium oxide from the thermal decomposition of hydrated praseodymium acetate and oxalate, J. Anal. Appl. Pyrolysis 29 (1994) 89–102. 33] T.A.D. Colman, D.J.C. Gomes, F.J. Caires, O.T. Filho, R.D.C. da Silva, M. Ionashiro, Synthesis, evolved gas analysis (EGA) during pyrolysis and spectroscopic study of light lanthanide nicotinate insolid state, J. Anal. Appl. Pyrolysis 111 (2015) 132–139. 34] R. Łyszczek, Thermal investigation and infrared evolved gas analysis of light lanthanide(III) complexes with pyridine-3,5-dicarboxylic acid, J. Anal. Appl. Pyrolysis 86 (2009) 239–244. 35] R. Łyszczek, A. Ostasz, A. Bartyzel, A. Lipke, Thermal, spectroscopic and luminescence investigations of lanthanide(III) coordination polymers based on V-shaped 4,4′-sulfonyldibenzoic acid, J. Anal. Appl. Pyrolysis 115 (2015) 370–378. 36] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0015 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0020 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0025 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0030 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0035 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0045 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0050 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0055 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0060 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0065 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0070 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0075 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0080 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0085 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0090 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0095 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0100 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0105 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0110 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0115 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0130 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0135 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0145 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0150 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0155 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0160 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0165 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0170 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0175 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0180 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0185 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 http://refhub.elsevier.com/S0165-2370(15)30268-0/sbref0190 Thermal behavior, spectroscopic study and evolved gas analysis (EGA) during pyrolysis of picolinic acid, sodium picolinate... 1 Introduction 2 Materials and methods 2.1 Computational details 3 Results and discussion 3.1 Picolinic acid 3.2 Sodium picolinate 3.3 Lanthanide complexes 3.3.1 Analytical results 3.3.2 XRD 3.3.3 Infrared vibrational spectroscopy and theoretical calculations 3.3.4 Thermal analysis (TG-DSC and EGA) 3.3.5 TG-DSC in oxidative atmosphere 4 Lanthanum, neodymium, samarium and europium compounds 5 Cerium compound 6 Praseodymium compound 7 Gadolinium compound 7.1 TG-DSC in inert atmosphere 8 Cerium compound 9 Lanthanum, praseodymium to gadolinium compounds 9.1 Evolved gas analysis (EGA) 10 Conclusion Acknowledgments Appendix A Supplementary data References