Buzzi, Claudio Aguinaldo [UNESP]Llibre, JaumeMedrado, João Carlos da Rocha2014-05-202014-05-202007-11-15Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B. V., v. 335, n. 2, p. 1335-1346, 2007.0022-247Xhttp://hdl.handle.net/11449/33824For a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.1335-1346engPeriodic orbitsQuadratic vector fieldsReversibilityPeriodic orbits for a class of reversible quadratic vector field on R-3Artigo10.1016/j.jmaa.2007.02.011WOS:000248854000042Acesso abertoWOS000248854000042.pdf66828677607174450000-0003-2037-8417