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The strut-and-tie models are appropriate to design and to detail certain types of structural elements in reinforced concrete and in regions of stress 
concentrations, called “D” regions. This is a good model representation of the structural behavior and mechanism. The numerical techniques pre-
sented herein are used to identify stress regions which represent the strut-and-tie elements and to quantify their respective efforts. Elastic linear 
plane problems are analyzed using strut-and-tie models by coupling the classical evolutionary structural optimization, ESO, and a new variant 
called SESO - Smoothing ESO, for finite element formulation. The SESO method is based on the procedure of gradual reduction of stiffness con-
tribution of the inefficient elements at lower stress until it no longer has any influence. Optimal topologies of strut-and-tie models are presented in 
several instances with good settings comparing with other pioneer works allowing the design of reinforcement for structural elements.

Keywords: strut and tie models, topology optimization, reinforced concrete structures.

Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões 
onde há alterações geométricas ou concentrações de tensões, denominadas regiões “D”. Trata-se de bons modelos de representação da estru-
tura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica 
para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para 
dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elas-
ticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez 
vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de 
danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas 
de trabalhos científicos pioneiros sobre o assunto.

Palavras-chave: modelo de bielas e tirantes, otimização topológica, concreto armado.
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1. Introduction

In structural engineering, most concrete linear elements are de-
signed by a simplified theory, using the Bernoulli hypothesis. How-
ever, the application of this hypothesis to any structural element 
can lead to over or under sizing of certain parts of the structure. 
This hypothesis is valid for parts of the frame that suffer no in-
terference from rigid regions, such as sections near the columns, 
cavities or other areas where the influence of strain due to shear 
efforts is not negligible.
Thus, there are structural elements or regions for which the as-
sumptions of Bernoulli hypothesis do not adequately represent the 
bending structural behavior and the stress distribution. Structural 
elements such as beams, walls, footings and foundation blocks, 
and special areas such as beam-column connection, openings 
in beams and geometric discontinuities are examples. These re-
gions, denominated discontinuity regions or D-regions, are limited 
to distances of the dimension order of structural adjacent elements 
(Saint Venant’s Principle), in which the shear stresses are appli-
cable and the distribution of deformations in the cross section is 
not linear.
For a real physical analysis about the behavior of these elements, 
the use of the strut-and-tie model, a generalization of the classical 
analogy of the truss beam model, is customary. This analogy was 
shown by Ritter and Morsch at the beginning of the twentieth cen-
tury, associated with a reinforced concrete beam in an equivalent 
truss structure. The discrete elements (bars) represent the fields of 
tensile (rods) and compression (compressed struts) stresses that 
occur inside the structural element as bending effects. This anal-
ogy has been improved and is still used by technical standards 
in the design of reinforced concrete beams in flexural and shear 
force and devising various criteria for determining safe limits in its 
procedures. 
In the 1980s, a Professor at the University of Stuttgart and oth-
er collaborators presented several papers that more adequately 
evaluate these D-regions. The pioneering work by Schlaich et al. 
[1] describes the strut-and-tie model more generally, covering the 
equivalent truss models and including special structural elements.
The analogy used in the strut-and-tie model uses the same idea as 
that of the classical theory in order to define bars representing the 
flow of stress trying to create the shortest and more logical path 
loads. It is a simple model, but the designer’s experience is nec-
essary to select and distribute the elements of the model in order 
to better represent this flow of stresses; the use of more reliable 
and automatic tools is made evident for defining its geometric and 
structural configuration by graphic and visual tools.
Numerical analysis has been providing these tools for years, with 
faster processing, new theories and formulations. Together with 
these tools, Topology Optimization (TO) techniques have been em-
ployed via strut-and-tie models in reinforced concrete structures as 
shown in Ali [2], Liang and Steven [3], Liang et al. [4], Liang et al. 
[5], Liang et al. [6], Liang [7], Reineck [8] and Brugge [9].
TO is a recent topic in the field of structural optimization. However, 
the basic concepts that support the theory have been established 
for over a century, as described Rozvany et al. [10]. The great ad-
vantage of TO, as compared to traditional optimization methods, 
such as shape or parametric optimization, is that the latter are not 
able to change the layout of the original structure, therefore not 

helping the project conceptual framework for designing adequate 
flow stress.
In topological analysis, two methodologies are important: the micro 
and macro approach. The micro approach considers the existence 
of a micro porous structure, depending on its geometry and on 
the volumetric density of a unit cell representative of the material 
properties and its constitutive relations. These properties are rep-
resented by continuous variables, successively distributed in the 
space of the extended fixed domain, which is a region where the 
structure can exist, (Stump, [11]). An example of this group is the 
SIMP (Simple Isotropic Material with Penalization) method, Bend-
søe [12], Rozvany et al. [13] and [10].
In the macro approach, the topology of the structure is modified by 
the insertion of holes in the field. As an example of this TO group, 
ESO (Evolutionary Structural Optimization) can be mentioned, 
which is based on solving the objective function when an element 
is removed from the finite element mesh, and TSA (Topological 
Sensitivity Analysis), based on a scalar function, called derived 
topology, which provides the sensitivity of the cost function when 
a small hole is created for each set point in the problem domain 
(Labanowski et al., [14]).
In order to propose an effective tool for developing a strut-and-tie 
model, this work uses the TO technique called SESO (Smoothing-
ESO) (Simonetti et al., [15]). This technique is a variant of ESO, 
whose philosophy lies in verifying if the element is not really neces-
sary to the structure. The new contribution for the ESO technique 
is the reduction of stiffness until it no longer has any influence. 
That is, the removal of elements is performed smoothly, reducing 
the values of the constitutive element of the array, as if it is in the 
process of damage and is capable of generating ideal members of 
a strut-and-tie model.

2. Evolutionary structural optimization  
 (ESO)

Xie and Steven [16] developed a very simple way to impose modi-
fications on the topology of a structure, using a heuristic gradual 
removal in the mesh of the finite elements, corresponding to the 
regions that do not effectively contribute to a better performance 
of the structure. 
An initial finite element mesh is defined circumscribing the entire 
structure, or extended domain of the design to include the boundary 
conditions (forces, displacements, cavities and other initial condi-
tions). The parameters of interest for optimization are evaluated in 
an iterative process, particularly in this paper, to decrease the weight 
by a maximum stress criterion of the structure. Thus, the stresses of 
each element are evaluated by using the inequality [1a]:

(1a)

(1b)
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where jA  is the area, 0*
jW  is the mean energy of deformation, 

all for elements j,  totalizing m elements, 0*W  is the mean energy 
of deformation of the structure, where “*” represents the point of 
minimization or a basic feasible solution. In short, each iteration 
path has become a new basic solution within a feasible region to 
the linearized problem. In view of eq. [3], the element that has the 
average energy of deformation close to the deformation energy of 
the structure can be said to have its partial derivative equal to zero, 
indicating that a stationary point has been reached.

3. Smoothing evolutionary structural  
 optimization (SESO)

A relaxation condition, a “soft-kill” procedure or Smoothing ESO, is 
applied to the ESO method, in which the elements that should be 
removed by the ESO criterion - following inequality [1a] - are ar-
ranged in n groups and allocated in order of increasing tensions 
being weighted by a function 1)(0 ≤≤ jη . Then, a defined p% of 
these n groups is removed, and the groups that contain the ele-
ments with the least stress (ΓLS domain), and (1-p%) are returned 
to the structure, the ΓGS domain. This removal and return of ele-
ments to the structure is performed by a function, either linear or 
hyperbolic, that weights the rate max

vm vm
es s  within the Γ domain; 

that is, it allows the high-stress elements (closest to max
vm vm
es s  but 

fulfilling the ESO constraint in the ΓGS domain) to be reintegrated 
into the structure at each iteration path. 
The minimization of the objective function is achieved by finding 
a stationary region, and this is achieved when all the terms have 
the value zero gradient vector, that is, if the average energy of 
deformation of the element j 0*

  ( )jW tends to the average energy 
of strain of the structure 0*

  ( )jW , the term ( )*0*01 WW j−  in eq. [3] 
tends to zero. Thus, each term is understood to represent a vector 
element of the discretized structure. Tanskanem [17] also highlights 
the fact that the removal of an element can affect the convergence 
of the optimization procedure, because the criteria for withdrawal in 
the ESO is indicated by the attendance of inequality [1a], which can 
often be extreme, since there are elements that are left in the vicinity 
of this condition, which are numerically excluded, but they have strain 
energy equivalent to the structure; the gradient is thus also zero, but 
it should compose the gradient vector that defines the stationary point 
cited by Tanskanem [17]. Thus, the removal of an element drastically 
may unduly affect the way the optimum; one way to correct this devia-
tion would be the possibility of inserting the element in the structure 
again. In this sense, a variant of the ESO, the BESO - Bidirectional 
Evolutionary Structural Optimization stands out, Querin [18]. SESO 
comes from this mathematically consistent philosophy, weighting the 
Young’s modulus (E), making the strain energy of the element in-
creases, tending to the strain energy of the structure then the gradient 
tends to zero and the direction of the minimum is restored. 
The elements near the limit maximum stress are maintained in the 
structure, defining the procedure for no “hard-kill” withdrawal, but 
so smoothing. The “soft kill” procedure used in the SESO tech-
nique can be interpreted as follows:

(4)
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and svm   are, respectively, the principal Von Mises stress 

of element “e” and the maximum stress effective structure  in itera-
tion “i” , RR is called the rejection ratio, which is an input datum that 
is updated using the evolutionary rate: ER.
In each iteration path, the elements that satisfy the inequality [1a] 
are removed from the structure, Figure [1]. The RR factor is ap-
plied to control the removal process in the structure (0.0 ≤ RR ≤ 
1.0). The same cycle of removing elements by inequality [1a] is re-
peated until there are no more elements that satisfy the inequality 
[1a]. When this occurs, a steady state is reached. The evolutionary 
process is defined by adding the ER. Thus, a new cycle begins, 
until there are no more elements to be eliminated with this new 
RR value. The RR factor will be updated according to equation 
[1b], to obtain an optimal configuration, achieved by controlling a 
performance parameter, called the performance index (PI). This 
procedure is known as “hard kill” and can be interpreted as follows:

(2)
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where ( )D j  is the constitutive matrix of point Ω∈j , 0D   
is the initial constitutive matrix, ii Γ+Γ=Ω  is the structure  
domain,   { / ( / ( )) RR }MAX

i e VM is sΓ = Ω Ω ≥  is the amount of ele-
ments that will not be removed from the structure (solid), and 

  { / ( / ( ))<RR }MAX
i i e VM is sΓ = Ω − Γ = Ω Ω is the set of elements 

that are removed from the structure (creation of void), in the i-th iteration.
In the removal heuristic via ESO, when the element is removed 
from the design domain during the evolutionary process, elements 
that remain in the structure represent a basic solution: the terms of 
the gradient vector are null. As reported by Tanskanen [17], the 
objective function is written in terms of thickness and it can be 
minimized such as: ln[ ({ })] ln[ ({ })]extf W t V t= + , with extW  being 
the work of external forces and V is the total volume. The partial 
derivative of the objective function to thickness t  of element j is 
given by:
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W

W

V

A

t

f jj

j

,...,2,11
*0

*0

*

*



















Figure 1 – Evolutionary algorithm: based 
on element removal from the grid
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due to Eq. [4] in terms of the constitutive matrix can be written in 
terms of thickness, due to the direct linear relation between them. 
In this context, the performance index in Eq. [7], which takes into 
account expression [4] in terms of each thickness and the regulat-
ing function from the SESO procedure, is written as:

(7)
 vm vm

0,max 0,max0 0 0

vm vm

i,max i,max

1 1

σ σ. .
PI= . = .

σ σ
. . . ( )

NE NE

j j j j

j j

A t A t

A t A t j
 

   
      
    

where 0t  is the initial thickness and jt  is the thickness of the thj  
element at the ith iteration. The optimal control is obtained by 
this performance index, because it is a “monitoring factor” in the 
region optimal design. The control for maximizing this parameter 
refers to the minimization of the volume control; hence, if the PI 
falls markedly, it is a strong indication that it underwent a local 
optimum or stationary configuration. However, there is no guar-
antee that this is a global optimum, but a configuration optimal for 
engineering design.

5. Numerical examples

Based on the formulation described in previous sections, a com-
puter system was developed applying the SESO in conjunction 
with the finite element method, using a linear-elastic formulation for 
plane stress state analysis arising from free formulation (Bergan 
and Felippa [19]). Thus, some numerical examples are presented 
for evaluation and comparison of the configurations obtained by 
the classical strut-and-tie models. The optimization parameters RR 
and ER, if not mentioned, are equal to 1% and defined as the regu-
latory function 410)( −=Γη  10-4

 .

5.1 Example 1

In this example discussed by [3], the SESO procedure is applied 
to find the best topology for a bridge deck structure subjected to 
a uniformly distributed load. The design domain and the boundary 
conditions are shown in Figure [3a]. The bridge deck is central and 
it represents a region of non-project domain, which means that it 
cannot be removed with 180-meter long and 4-meter high dimen-
sions, restricting the elements contained on the board. The uniform 
load is applied as concentrated forces, 500 kN per node. The bot-
tom corners of the domain are constrained in the plane, Figure 3a. 
The Young´s modulus of the material is E = 200 GPa, the Poisson’s 
ratio is 0.30 and the thickness is 300 mm. Figure [3b] shows the 
optimal topology obtained by [3], using square finite elements, in-
dicating a well-known “tie-arc” commonly used in the engineering 
design of bridges. 
Figures [3c] and [3d] show the optimum topology obtained with the 
present formulation using a refined mesh with 180x60 elements. 
When designing bridge structures, the designer must consider 
a number of important aspects such as structural performance, 
economy, aesthetic and constructability.
The optimal topology seen in Figure [3c] was obtained due to 
boundary conditions applied to the length of the edges of non-de-
sign domain which determines the bridge deck, while the boundary 
conditions imposed to achieve the optimal configuration shown in 

where GSLS Γ+Γ=Γ ΓLS + ΓGS, 0 ( ) 1jη≤ Γ ≤  is the regulating function that 
weights the value of the rate max

vm vm
es s  within the Γ  domain, and 

this procedure can eliminate the checkerboard problem.
The proposed smoothing can be, for example, performed by ( )η Γ  
using a linear function of the ( ) jη α βΓ = + type or a trigonometric 
function of the ( ) sen( )jη αΓ =  type. Because these two functions 
are continuous, they can be differentiated all over of the Γ domain, 
and they have an image varying from 0 to 1, Figure [2].

4. Performance index for the SESO   
 formulation

The performance index (PI) is a dimensionless parameter that mea-
sures the structural performance efficiency. The problem consists in 
the minimization of the objective function in terms of weight, subject 
to an allowable stress constraint (σproject), which is defined as:

(5)
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where NE  is the total number of finite elements. The PI was pro-
posed by Liang et al. [5] as: 

(6)
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where 0V  and iV  are the initial and ith-iteration volumes, s0,maxó vm  and 
s i,maxó vm  are the initial and ith-iteration maximum Von Mises stresses, 
and 0ρ  and iρ  are the initial and ith-iteration densities, which are 
equal for an incompressible material. The smoothing generated 

Figure 2 – Illustrates the smoothing of the 
volume of the elements removed in iteration i
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Figure [3d] also includes a constraint on the width of the non-de-
sign domain which represents the bridge deck.
The optimal topology design shown in Figures [3c] and [3d] was 
obtained with a final volume of 37.8% and 33.0%, where dark and 
light regions respectively indicate the compressed regions, strut, 
and tensioned regions, tie.  
The optimal settings respectively shown in Figures [3c] and [3d] 
were determined with the same optimization parameters, except 
for the rejection and the evolutionary ratios. Thus, they were de-
fined as RR =1% and ER = 1.05% in Figure [3c] and RR = 1.1% 
and ER = 0.9% in 3d. Note that the proposed algorithm is sensitive 
to the variation of these parameters, boundary conditions and the 
geometry of the element (Simonetti et al., [20]).

5.2   Example 2

The bridge pier shown in Figure [4] is designed to support four 
concentrated loads of 2750 kN transferred from four steel-con-
crete composite girders. The bridge pier is clamped on the foun-
dation. An initial thickness of 15 dm is assumed for this bridge 
pier. The Young’s modulus is 28600 MPaE =  and the Poisson’s 
ratio is 0.15.
The optimal topology obtained and the strut-and-tie model pro-
posed by Liang et al. [6], which used a method called PBO - Per-
formance-Based Optimization, with 125-mm square, four-node, 
plane stress elements. Figure [5a] shows the optimal topology ob-
tained by [6], and Figure [5c] the optimal topology obtained by the 
present formulation, SESO, using a refined mesh 170x90, totaling 
18,064 triangular finite elements, where the lighter areas represent 
the ties. Figure [5b] shows the strut-and-tie model proposed by 
[6]. Table [1] shows the efforts obtained by [6] and by the present 
formulation for all the members shown in Figures [5b] and [5c]. It 
shows a great similarity between the responses obtained by both 
procedures with the same arrangement of bars originating from the 
strut-and-tie model as well as the efforts obtained at each member 
of the bridge pier, which can be designed and detailed following 
normative procedures. 

Figure [5d] shows the main horizontal reinforcement bars extend-
ed to the extremities in a range of 120 cm. Notes that the sum of 
the efforts in ties 1 and 2 is almost the same as that of tie 3. The 
vertical components of the efforts in inclined ties are balanced by 
vertical reinforcement bars which, as auxiliary reinforcements, are 
not displayed in Figure [5d].

5.3 Example 3

This example was reported by Schlaich et al. [1]. It is a simply 
supported deep beam with a large hole, the geometry and load 
(P) of which are presented in Figure [6], which is used as a do-
main extended to the optimization process. The Young’s modulus 
is 20820 MPaE = , the Poisson’s ratio is n = 0.15 and the thick-
ness is 0.4m . The design strength of reinforced concrete is taken 
with values  fyd  = 434 MPa  and  fcd  = 25 MPa. This structure has a 
D-region due to the geometric discontinuity corresponding to the 
cavity imposed by the design. In this case, this region should be 
evaluated using a strut-and-tie model.
For modeling with the present formulation, 13,200 triangular ele-

Figure 3 – (a) Design domain of the bridge (b), Topology optimal proposed by [3], 
(c) and (d) Topology optimal proposed by the present formulation (SESO)

Figure 4 – Design domain of the structure, 
[6], measurements in mm
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ments were used (mesh 150x47). Figure [7a] show the optimal 
design obtained by the SESO formulation and compared with the 
work developed by Liang [7], Figure [7b], and Schlaich et al. [1], 
Figure [7c].
The optimum topology design shown in Figure [7a] was obtained 
with a final volume of 30.3%; dark and light regions respectively 
indicate the compressed regions, strut, and tensioned regions, tie.  
Figure [7b] shows the optimal design presented by [7], who uses 
the ESO optimization method to obtain a final volume of 33%. Fig-
ure [7c] shows the optimal configuration for the strut-and-tie design 
proposed by [1], who uses the strut-and-tie model. The graph in 
Figure [8] shows the monitoring made by this formulation to deter-
mine the optimal topology. The growth of the PI values is plotted 
for each iteration path, and the sharp drop in PI indicates that the 
previous iteration is thus the area of optimal design.

Schlaich et al. [1] proposed strengthening for this structure, ob-
tained with the use of a strut-and-tie model deriving from the com-
bination of the finite element method with a procedure to obtain the 
flow strength, using the method called “load path”. Thus, Figure 
[12] shows the disposition of reinforcement by the authors, [1], to 
strengthen the beam cavity. 
With the indication of optimal topology obtained by the present for-
mulation, a proposal for a strut-and-tie model can be directly pre-
sented. Note the proposed strut-and-tie shown in Figure [9] where 
the dotted and continuous lines indicate, respectively, compressed 
members (C), strut, and tensioned members (T), tie. The efforts at 
the members where the flow stress stand out can be calculated by 
multiplying the average stress values of each member and their re-

Figure 5 – (a) Optimal topology (b) strut-and-tie model, proposed by [6], mm; (c) Optimal topology 
using the present model; (d) Proposed disposition of reinforcement for the present model (mm)

Table 1 – Strut-and-tie forces (kN) for each 
member of the bridge

Member Force [6] Force 
(present model)

 1 2,114 2,192 
2 1,162 1,195 
3 3,363 3,454 
4 -3,470 -3,589 
5 -3,919 -4,083 
6 -3,219 -3,482 
7 -3,363 -3,569 
8 -5,500 -5,964 

Figure 6 – Domain design (mm), [7]
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spective area, given by the product of beam thickness to the width 
of the average flow region.
It is thus possible to calculate the required reinforcement areas in 
the tie region and to evaluate the strength of concrete in each strut. 
Table [2] shows the values of the average efforts obtained at ties. 
The T2 and T4 ties are inclined at 15 and 45 degrees, respectively, 
from the horizontal line. The longitudinal bar which represents tie 
T2 is calculated from the decomposed horizontal portion of its ef-
forts, thus obtaining the required area of reinforcement As2. 
Tie T4 has its representation in the orthogonal mesh, As3, which 
covers the stretch along the edge of the cavity and the in-angle 
encounters struts C3, C8 and C5 at the left end. An additional re-

inforcement As4, at 45 degrees, is proposed covering the in-angle 
encounter struts C2, C5 and C8.
Conforming to the calculation procedures to obtain the representa-
tive reinforcement of ties (Table [2] and Figure [10]), the details of 
these reinforcements are shown in Figure [11], where we can see 
the proposed extension of reinforcement As3.
Table [3] presents the verification of the compression stresses acting 
at strut members where the non-attendance of the ultimate state of 
compression in the concrete is observed at struts C3 and C8.

6. Conclusions

Our aim is to present a numerical formulation for the design of 

Figure 7 – Optimal topologies obtained by a) the present model; 
b) Liang [7], c) Strut-and-tie model proposed by Schlaich et al. [1]

Figure 8 – Performance index versus number 
of iterations for the SESO procedure [19] Figure 9 – Proposed strut-and-tie model
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reinforced concrete structures under the focus of the strut-and-
tie model. 
An alternative topology optimization procedure, called Smooth-
ing Evolutionary Structural Optimization – SESO, was employed 
to this end in conjunction with a FEM formulation in stress plane 
state analysis. The proposed evolutionary procedure uses a tech-
nique which promotes a “smooth” removal of elements from the 
design domain. A priori, an initial extended domain is defined and, 
iteratively, the method seeks an optimal topology configuration in 
which naturally members are set, indicated by strut-and-tie model. 
Thus, the efforts in the members may be evaluated to enable the 
design and reinforcement necessary at each section. In contrast 
to the ESO method [7], the SESO formulation presents optimal 
configurations in the examples, without the side effects of ESO, 
such as the “checkerboard” problem, as previously described in 
[15] and [20].
Three examples shown demonstrated good accuracy with the 
values reported by other authors. A quantification and disposition 
of reinforcements were also proposed for a classic example de-
scribed in the international literature on the subject.

7. Acknowledgements

The authors thank the Department of Structural and Geotech-

nical Engineering, Polytechnic School, University of São Paulo 
(EPUSP), the University of Ouro Preto (UFOP) and (UNESP) São 
Paulo State University for their financial support to this research.

8. References

 [01]  Schlaich, J; Schafer, K; Jennewe, M. Toward a 
  consistent design of structural concrete. PCI-Journal,  

 vol. 32, nr.3, p. 74 – 150, May/June, 1987.
 [02]  ALI, M. Automatic generation of truss model for the 
  optimal design of reinforced concrete structures. 
  Dissertation. Cornell University, Ithaca, NY, USA, 1997.
 [03]  Liang, Q.Q; Steven, G.P. A performance-based 
  optimization method for topology design of continuum  

 structures with mean compliance constraints, 
  Computer Methods in Applied Mechanics and 
  Engineering, 191, 13-14, 1471-1489, 2002.
 [04]  LIANG, Q.Q.; XIE, Y.M., STEVEN, G.P. On equivalent  

 between stress criterion and stiffness criterion in 
  evolutionary structural optimization, Structural 
  Optimization 18,67-13, Springer – Verlag 1999.
 [05]  Liang, Q.Q.; Xie, Y.M., Steven, G.P. “Topology 
  optimization of strut-and-tie models in reinforced 
  concrete structures using an evolutionary procedure”,  

 ACI Structural Journal, Vol. 97, No. 2, pp. 322-330,  
 2000.

2Table 2 – Dimensioning of reinforcement ties (MN, cm ) 

Ties Forces (MN) AS,nec 
2(cm ) 

Tie forces 
(MN) 

Proposed 
reinforcement 

2(cm )

Number
of bars 

T1 1.50 34.60 1.50 As  = 34.601   2 x 5 ø 20 
T2  2.24 51.53 0.966.T2 As  = 49.752   2 x 7 ø 20 

T  auxiliar4    0.01–

–––

–  As4 2 x 2 ø 20 
T4 2.20 50.70 0.707.T4 As  = 35.853   2 x 5 ø 20 

0.707.T4 As  = 35.853   2 x 5 ø 20 

Figure 10 – Schematic representation of the 
reinforcement bars and strut-and-tie model 

using SESO Figure 11 – Proposed disposition of 
reinforcement for the present model



147IBRACON Structures and Materials Journal • 2013 • vol. 6  • nº 1

V. S. ALMEIDA   |   H. L. SIMONETTI   |   L. OLIVEIRA NETO

 [06]  Liang, Q.Q; Uy, B.; Steven, G.P.  Performance-Based  
 Optimization for Strut-Tie Modeling of Structural 

  Concrete. Journal of Structural Engineering, 
  pp. 815p–823, 2002.
 [07]  LIANG, Q.Q. Performance-based Optimization of  

 Structures: Theory and applications, Spon Press, 
  London, 2005.
 [08]  Reineck, Karl-Heinz. Shear and concrete tensile  

 strength in the design concept of strut-and-tie models, 
  Ibracon Structural Journal, vol 3, n.1,p. 1-18, 2007.
 [09] Brugge, M. Generating strut-and-tie patterns for 
  reinforced concrete structures using topology 
  optimization. Computers and Structures, 
  87:1483-1495, 2009.
 [10]  Rozvany, G.I.N.; Bendoe, M.P.; Kirsch, U. Layout 
  optimization of structures, Applied Mechanics Review,  

 v. 48, p. 41-119, 1995.
 [11]  STUMP, F. V. Otimização Topológica Aplicada ao 
  Projeto de Estruturas Tradicionais e Estruturas com  

 Gradação Funcional sujeitas a Restrição de Tensão.   
 Dissertação (Mestrado) - Escola Politécnica da USP,  
 São Paulo, 2006.

 [12]  Bendsøe, M.P. Optimal Shape design as a material  

 distribution problem, Structural Optimization, v. 1, 
  pp. 193-202, 1989.
 [13]  Rozvany, G.I.N.; Zhou, M.; Birker, T. Generalized  

 shape optimization without homogenization, Structural 
  Optimization, v. 4, p. 250-252, 1992.
 [14]  LABANOWSKI, A. FANCELLO, E. A. e NOVOTNY,  

 A.A. SIMP, ESO e TSA: uma análise comparativa de  
 métodos de otimização topológica para elasticidade  
 2d; CILAMCE 2004; Recife; 10/11/2004; 12/11/2004;  
 Publicação: Proceedings of the XXV Iberian 

  Latin-American Congress on Computational Methods  
 in Engineering. CILAMCE 2004.

 [15]  SIMONETTI, H.L., ALMEIDA, V.S., NEVES, F.A Seleção 
  de Topologias Ótimas para Estruturas do Contínuo  

 com minimização de Volume sujeita a restrição de  
 tensão via “Smoothing ESO” (SESO); CILAMCE; 

  Argentina; 2010.
 [16]  Xie, Y.M., Steven, G.P. A simple evolutionary 
  procedure for structural optimization, Computers &  

 Structures, Vol. 49, n. 5, p. 885-896, 1993.
 [17]  Tanskanen P., The evolutionary structural optimization 
  method: theoretical aspects. Comput  Methods  Appl  

 Mech Eng 191:5485–5498, 2002
 [18]  QUERIN, O.M., Evolutionary Structural Optimization  

 stress based formulation and implementation. PhD  
 dissertation, University of Sydney,1997.

 [19]  Bergan, P.G. E Felippa, C.A. A triangular membrane  
 element with rotational degrees of  freedom. Comp.  
 Meths. in  Appl. Mech. Eng., v.50, p.25-69, 1985.

 [20]  SIMONETTI, H.L., ALMEIDA, V.S., NEVES, F.A ,  The  
 influence of geometry on the structural elements of 

  topology via SESO. CILAMCE; Armação de Búzios,  
 2009.

Figure 12 – Proposed disposition of beam 
hole reinforcement (Schlaich et al., [1])

Table 3 – Verification of compression stresses acting on the strut (MN, MPa)

Strut
 

Forces (MN)
  

 (MPa)
 .0.8  f  = 20 (MPa)cd

C3 -3.3 -28  Strengthen
C5 -1.4 -20  Ok 
C6 -1.7 -18.5  Ok 
C7 -5.5 -18.5  Ok 
C8 -2.6 -22  Strengthen


