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ABSTRACT

Escovopsis is a group of fungi that inhabit the colonies of fungus-growing ants. The
study of this fungal genus has been based on several assumptions that became dogmas. For
instance, i) many fungi associated with attines were treated as Escovopsis, without taxonomic
support, ii) the genus was considered a specialized mycoparasite of the attines” mutualistic
fungi, and iii) it was thought that the genus coevolved with attines based on the assumption
of its parasitic lifestyle. However, for many years the Escovopsis taxonomy, its relationship
with the ants and its phylogeographic distribution were almost an empty space for the
scientific community. In addition, the origin of the genus was never addressed. Therefore,
the main objective of this study was to build the systematics of the Escovopsis and shed light
on its origin, evolution, diversification, and phylogeographic distribution. Three manuscripts
are the result of this study and are presented here as chapters. The first manuscript presents
the description of two new Escovopsis species (published in MycoKeys). The second
manuscript brings the reassessment of the Escovopsis taxonomy, provides a suitable
taxonomic and phylogenetic framework for the systematics of the genus, and describes two
new Hypocreaceae genera (submitted to IMA Fungus). The third manuscript shows the
origin, evolution, phylogeographic distribution and the trait adaptations experienced by
Escovopsis since its entry in fungus-growing ant colonies. This study fills an important gap
in the taxonomy, systematics, and evolution of Escovopsis and related genera which certainly

will help researchers to better understand the evolution of the attines’ system.

Key-words: Hypocreales, Taxonomy, Phylogeny, Symbiosis, Evolution



RESUMO

Escovopsis € um interessante grupo de fungos que habita as coldnias das formigas
atineas. O estudo desse fungo se baseou em diversos pressupostos que, por muito tempo, se
tornaram dogmas. Por exemplo, i) varios fungos associados a essas formigas foram tratados
como Escovopsis, porém sem nenhum suporte taxonémico, ii) o género foi considerado um
micoparasita especializado da associacdo formiga - fungo cultivado, e iii) acreditou-se que 0
género co-evoluiu com as atineas, pois parasita o parceiro fangico dessas formigas desde a
origem da associacdo. No entanto, a taxonomia de Escovopsis, bem como sua relacdo com
as formigas e sua distribuicao filogeografica foram quase um espaco vazio paraa comunidade
cientifica. Além disso, a origem do género nunca foi abordada. Nesse contexto, o objetivo
deste estudo foi construir a sistematica do género Escovopsis e angariar evidéncias sobre sua
origem, evolucdo, diversificacdo e distribuicdo filogeografica. Trés manuscritos sdo o
resultado deste estudo e sdo apresentados como capitulos. O primeiro manuscrito traz a
descricdo de duas novas espécies de Escovopsis (publicado na MycoKeys). O segundo
manuscrito apresenta a reavaliagdo da taxonomia de Escovopsis, fornece um marco
taxonémico e filogenético robusto para a sistematica do género e descreve dois novos géneros
dentro da familia Hypocreaceae (submetido na IMA Fungus). O terceiro manuscrito mostra
a origem, evolucdo, distribuicdo filogeografica e as adaptacfes experimentadas pelo género
desde seu ingresso nas colénias das atineas. Este estudo preenche uma lacuna importante na
taxonomia, sistematica e evolucdo de Escovopsis e géneros proximos e, certamente, ajudara

0s pesquisadores a compreender melhor a evolucdo do sistema das formigas atineas.

Palavras-chave: Hipocreales, Taxonomia, Filogenia, Simbiose, Evolucédo
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Introduction

Sixty-five million years ago, after the massive extinction of the dinosaurs, fungus-
growing ants (subfamily Myrmicinae, Attini tribe, Attina subtribe, “the attines™) started
producing their own food. Finding food is a constant and demanding struggle to organisms,
and sometimes it leads them to certain death. Thus, the emergence of fungus-growing
behaviour was not only a safer way to deal with lack of food, but directly influenced the
evolutionary success of the attines and established the beginning of one of the most

interesting and complex insect-fungus associations we know on earth.

Fungiculture performed by attine ants can be divided into five types: i) the
fungiculture practiced by the genera in the basal attines, Cyphomyrmex, Mycetophylax,
Mycocepurus, Apterostigma auriculatum group that grow fungi from the tribe Leucocoprinae
(Agaricaceae); ii) the fungiculture practiced by species of the Apterostigma pilosum group
that cultivate fungi of the Pterulaceae family, named coral fungi; iii) the fungiculture
practiced by ant species of the Cyphomyrmex rimosus group, which cultivate yeasts (in
Leucocoprinae); iv) the fungiculture practiced by the genera Trachymyrmex and
Sericomyrmex that cultivate other fungi in Leucocoprinae, and v) the fungiculture of leaf-

cutting ants, which cultivate Leucoagaricus gongylophorus.

Attine ants are restricted to the American continent and comprise 17 genera with more
than 250 species phylogenetically divided into Neoattini and Paleoattini. The genera Atta and
Acromyrmex, in the Neoattini group (more derived clades) are known as leaf-cutting ants,
and they are important crop pests, because the large amounts of fresh plant material they
collect to feed their fungal partner. In return, the fungal cultivar L. gongylophorus produces

vesicles called gongylidia which are used by the ants as food source. On the other hand, the
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less derived attini genera, known as non-leaf-cutting ants (comprising ant genera in both
Neoattini and Paleoattini) use other substrates like seeds, insect carcasses, and dry plant
material to nourish their fungal partners. In addition, for millions of years attines have been
introducing into their colonies a great diversity of microorganisms along with the substrates
they collect and also microorganisms attached to their bodies. Consequently, complex

symbiotic networks made their way slowly in attine colonies.

Though several symbiotic relationships have been described between the
microorganisms living in the attine ant fungus garden, the mutualism between attines and the
fungi they cultivate is the backbone of this ecosystem. With the constant entrance of
microorganisms into the colonies, attine’s environment is prone to parasites that are able to
take advantage of the system. Indeed, ecological factors suggest that several parasites could
have arrived at the fungus-farming ant colonies. However, the genus Escovopsis
(Ascomycota: Hypocreales, Hypocreaceae) was proposed as the only and specialized parasite

in this system.

Due to the ecological importance that a parasite represents within the attine system,
many studies turned their efforts to the study of the FEscovopsis-mutualistic fungus
interaction. However, the study of this diverse and interesting group of fungi has been based
on several assumptions that became dogmas, since its discovery. For instance, it was
proposed that: i) all fungi producing brown conidia found in attine colonies belong to
Escovopsis. However, the Escovopsis taxonomy was almost an empty space for the scientific
community and most that we know about its taxonomy was raised by non-taxonomic studies;
i1) the genus is a specific and specialized mycoparasite. Nonetheless, our knowledge on the

parasitic mechanisms used by Escovopsis to overcome the fungal cultivar defences and the



13

ant colonies barriers is still limited. The conclusion that Escovopsis is a parasite was based
on the evaluation of few strains from one of the 26 clades of the genus; and iii) Escovopsis
had coevolved with the attines and their mutualistic fungi. However, the origin of Escovopsis
i1s a complete mystery, as it is its phylogenetic relationship with the attine and the fungal

cultivars.

Under this scenario, this study aimed to build the systematics of the Escovopsis
showing its origin, diversification, and phylogeographic distribution. To reach this goal we
used the following approach: 1) increase the number of Escovopsis strains in our collection,
i1) standardize the taxonomy of the genus to access its morphological features, iii) create a
phylogenetic framework to perform the Escovopsis tree of life, iv) combine the taxonomic
and phylogenetic analysis to build the Escovopsis systematics, v) estimate the origin of the
genus, vi) evaluate its relationship with the ants, and vii) unravel its phylogeographic
distribution.

The first two years, we gathered a collection of 365 strains [153 strains already
deposited in the Laboratory of Fungal Ecology and Systematics (LESF - UNESP, Rio Claro,
SP) and 212 obtained in this study]. In addition, we carried out an in-depth study of the
taxonomy of this genus to know more about its taxonomic and to plan a strategy to
standardize it. The main issues of the Escovopsis taxonomy were presented in the paper
“More pieces to a huge puzzle: Two new Escovopsis species from fungus gardens of
attine ants” which is the first chapter of this thesis. This study introduced Escovopsis clavata
and E. multiformis within a well detailed taxonomic and phylogenetic framework, and

emphasized the non-standardized taxonomy and the phylogenetic incongruities of the genus.
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Some suggestions to reach a better view of the Escovopsis systematics were proposed in this
paper.

Moving on to which was suggested in that study, we sequenced five molecular
markers (ITS, LSU, tefl, rpbl, and rpb2) to start building the phylogenetic tree of life of
Escovopsis. Our results suggested that the Escovopsis clade is composed by more than one
genus. Based on these results we raised the hypothesis that: If more than one genus is living
in attines fungus garden, then it would suppose the possibility that more than one fungus
would have co-evolved with the attines colonies in a multiparasitism relationship. To answer
these questions, we aimed to build the most comprehensive phylogenetic tree of Escovopsis
and infer the divergence time of the genus to access its evolutionary history and to shed light
on our hypothesis. This part of the study was developed at Emory University, Department of
Biology, O. Wayne Rollins Research Center, Atlanta, USA.

We assembled samples from LESF and from Dr. Nicole M. Gerardo’ Laboratory
(Emory University, Atlanta, USA) and carried out the broadest phylogenetic analysis of the
genus Escovopsis. This analysis comprehended a total of 584 strains from different regions
across America (Argentina, Brazil, Ecuador, Panama, and Costa Rica) spanning several
biomes. The results supported our previous hypothesis that Escovopsis comprehends more
than one genus. Then, we reassessed the taxonomy of Escovopsis by using standardized
parameters including a select and informative set of morphological characters and a
comprehensive multilocus phylogeny which is explained in the manuscript *"*Fungi of the
strong conidial form™ in attine ant colonies: taxonomic and phylogenetic reassessment
of the genus Escovopsis”. This manuscript was submitted to IMA Fungus and is presented

here as the second chapter.
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The reassessment of Escovopsis and the comprehensive phylogeny of the genus
provided the ground to estimate the origin of the genus as well as its phylogenetic relationship
with the attines and its phylogeographic distribution. Our findings support that the origin of
Escovopsis and the beginning of the attine fungus domestication correspond in time.
However, Escovopsis appears to have reached the ant colonies of just few attine genera
during the last 38 million of years, along with the plant material collected to nourish the
fungus gardens. These results are presented in the manuscript "Digging into the past of a
fungus-growing ant guest: origin and evolution of Escovopsis”, which is presented here
as the third chapter. Interesting fungal trait adaptations and hypothesis about the origin and

the evolutionary history of the genus are discussed in this manuscript.
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Overall thesis conclusion

Fungiculture by attine ants have fascinated scientists since its discovery about 150
years ago. In addition to the economic importance of some attine species, colonies of these
social insects are models to study evolution and symbiosis. Parasites directly influence the
evolution of ecosystems, so that the discovery of Escovopsis was of great importance to
understand the evolution of the fungus-growing ants’ environment. The lack of a
standardized taxonomy as well as an unresolved phylogeny of Escovopsis, studies on its
origin, evolution, and ecology (lifestyle) have clouded our understanding of the impact of
this fungus in the evolution of fungus-growing ants. By providing grounds for the systematics
of Escovopsis, inferring its origin and raising hypothesis on its evolution, this study not only
provides a stable foundation from which to build future research on the taxonomic diversity,
ecology and the evolutionary history of the genus, but raises a different point of view on the
evolution of the Escovopsis-attine ant symbiosis. We hope to open new windows for

discussion to understand the evolution of both Escovopsis and the attine ants' ecosystem.
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