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ABSTRACT

It will be presented the principles behind the use of the Standard Model Effective Field Theory as
a consistent method to parametrize New Physics. The concepts of Matching and Power Counting
are covered and a Covariant Derivative Expansion introduced to the construction of the operators
set coming from the particular integrated UV model. The technique is applied in examples
including the SM with a new Scalar Triplet and for different sectors of the 3-3-1 model in the
presence of Heavy Leptons. Finally, the Wilson coefficient for a dimension-6 operator generated
from the integration of a heavy J-quark is then compared with the measurements of the oblique
Y parameter.

Keywords: Covariant Derivative Expansion, Standard Model Effective Field Theory, 3-3-1 Models,

Triplet Scalar, Oblique Parameters.
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RESUMO

O Modelo Padrão Efetivo é apresentado como um método consistente de parametrizar Física
Nova. Os conceitos de Matching e Power Counting são tratados, assim como a Expansão em
Derivadas Covariantes introduzida como alternativa à construção do conjunto de operadores
efetivos resultante de um modelo UV particular. A técnica de integração funcional é aplicada
em casos que incluem o MP com Tripleto de Escalares e diferentes setores do modelo 3-3-1 na
presença de Leptons pesados. Finalmente, o coeficiente de Wilson de dimensão-6 gerado a partir
da integração de um quark-J pesado é limitado pelos valores recentes do parâmetro obliquo Y.

Palavras-Chave: Expansão em Derivadas Covariantes, Modelo Padrão Efetivo, Modelos 3-3-1,

Tripleto Escalar, Parâmetros Oblíquos.
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PREFACE

Some time ago I lived the circumstance of having to search for a place on a map. I was with Prof.

Pleitez. After a few minutes we were not even close to realize where we were or about the point

we were trying to reach. Then he told me something that I will probably never forget - “This is

the problem with the maps, you never know where you are going”.

Well, the purpose of a map should be exactly the opposite, of course. It is true, in fact, that

some of them may require a small experience as a scout. However, the point about my supervisor’s

conclusion was that it remounted me a memory of my first year in college. At that time I was

used to think about Physics exactly as a map, but a map made from a previous knowledge on the

treasure. The treasure of Higgs phenomenology, of dark matter, neutrino and flavor physics, etc.

After studying the topic of the present work I have realized about our problem that day. The

scale of that map was not the approprite one. The place we were looking for was not too close, but

not too far. Most of those symbols and lines were indeed not necessary, and we did not need the

information about places that we were not able to reach in any case. At the other hand if the map

had only our current street and something about the neighbor, it would be still useless. What we

needed was a map in an intermediary scale, a simplified one, an effective map.

The present work is about maps and is my ackowledgment to Prof. Vicente Pleitez.
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CHAPTER 1

THE METHOD IN HIGH ENERGY PHYSICS

The title of this chapter remounts a complex and diverse area that will not be entirely, or even

approximately, covered by the present work. It has been chosen, however, because the set of

elements defining a methodology for particle physics will contain (i) a complete quantum field

theory (or UV, for short), (ii) how to extract predictions from it and (iii) and how to connect it with

the experiment.

Here, these three topics are introduced in a specific form. The starting point consists in a

technique for simplifying the computation from the UV model, redefining it like an Effective Field

Theory (EFT). It will be seen that the use of an EFT must preserve the overall of quantum field

theory paradigms and it can be better considered as a tool, a very consistent one, appropriate

for many branches of theoretical physics. In High Energy Physics this technique will play an

important role in the context where new degrees of freedom do not emerge asymptotically in the

experiments, what is the current status of the measurements coming from the Large Hadron

Collider since the discovery of the Higgs boson.

The construction of an EFT may be performed by two approaches of integration - functional

methods or Feynman diagrams - followed by two views of matching - subtraction or integration

by regions. The term integration, or to integrate a model, express the procedure of cutting a

heavy sector of the model out of the set of external particles. As mentioned, it follows from the

phenomenological fact that new physics have not emerged in this form yet. The term matching

express the correspondence into the both modes of describing the physical process - At a given

scale the EFT implies the same predictions as the UV complete theory.

The content of the Chapter 2 covers one combination of the points above. The purpose is to

present a technique of integration that rewrites the UV theory directly into its Effective form

by preserving the original symmetries. The method is called Covariant Derivative Expansion,

a concept revealing its own meaning. The presentation is supported by two recent works of B.

Henning et al. ([32] and [33]) and it involves the task of writing a series from the non-local

components of the UV theory after the heavy particles have been integrated out. The series must

preserve the covariant derivative intact.

The functional that must be expanded consists of the first quantum correction to the Effective

Action of both theories. These determinants are a more general result than those from a perturba-

tive expansion and they will be called Log corrections, in contrast to the term 1-loop corrections.

Since the generators of one-particle-irreducible graphs are the fundamental objects for defining

the analytical structure of a theory, the matching is performed by equating the Effective Actions,

denoted by Γ, and solving to the so-called Wilson coefficients. It will be seen that the equations
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CHAPTER 1. THE METHOD IN HIGH ENERGY PHYSICS

are defined order-by-order, what permits the construction of the EFT in a systematic manner. In

addition, the matching equations emerge with an important conceptual meaning - the Wilson

coefficients, ci, receives contributions from the difference of ΓUV and ΓEFT Log corrections. Since,

by definition, the EFT must agree with the UV in the soft region of momentum scales, the ci is

corrected at this level with the information about the heavy line in the hard region. By matching

through subtraction is meant to perform the Log computation in both theories and then to identify

the difference between them. At the other, during the match through integration by regions,

the many loop integrals are computed already considering q2 ∼Λ inside the integrand, with Λ

denoting a heavy scale. The methods are equivalent and must lead to the same results.

In the literature the combination of Feynman diagrams plus subtractions is present, for

example, in the work about QCD corrections to weak interactions of Buchalla et. all in [8].

For integration by regions it can be mentioned the textbook of J.Donoghue et. al, [21]. To the

functional approach plus integration by regions it follows the recent work of Fuentes-Martin

et.al, [28]. As mentioned before, the second article of B.Henning et al. [33] presents the last

combination, i.e. functional methods followed by the subtraction, but does not contain a final

expression to the case where both light and heavy particles run into the loops. The Chapter 2

propose a complement to this topic.

1.0.1 Renormalizability

The Top-Down approach described above is confirming the statement that the effective the-

ory comprises the principles of a quantum field theory and is in fact addressing any possible

controversy about non-renormalizability. The EFT composes an alternative on searching for

New Physics through the virtual effects of particles that cannot be produced as free states, and

explores how they may enhance the Standard Model parameters. The Chapter 3 develops three

fundamental results that may support these assertions - the Operator Product Expansion, the

Weinberg Theorem and the Decoupling Theorem.

The presentation about infinities and renormalizability will not intend to saturate or repeat

the original fonts, namely the works of Bogolyubov and Shirkov [5], Peskin and Schroeder [42]

and more recently Matthew Schwartz [49]. The aim is to explore the total of components behind

the EFT technique, thus composing a consistent chain.

The acceptance of the presence of infinities is specially a consequence of a better conceptual

comprehension of the theory. If the computation of a divergent loop resulted in a non-analytical

piece on the external momentum, this would require an insertion of a non-local term in the

Lagrangian, thus violating the locality of the theory. The Weinberg theorem will prove, however,

that any divergent piece emerging from the theory must be proportional to polynomials in the

external momenta, what is translated into the locality of the counterterms. The presence of

divergent terms with a non-analytical structure on the external momenta could be, perhaps,

a better definition of non-renormalizability. The fact of having to include terms consistently,

4



although an indefinite number of times, which are suppressed by the completion scale of the

theory and that can handle with the divergences is, at the most, a practical issue. If such an

infinite, but discrete, set of operators are proposed a priori, this final theory, of no definite form

and preserving the symmetries of its complete version, would still be predictive.

It is important to remark that the presence of infinities occurs at the very beginning in

quantum field theory. By placing a harmonic oscillator to every point in space-time, for example,

at the same time an infinity amount of energy is associated to the universe [49]. The result must

not be inconvenient since every measurement in nature is only meaningful once it is performed

through a comparison, a difference. Every number should correspond a variation.

At some cases, to perform a variation (or subtraction) can be something trivial, like estimating

the position of a body from some reference point. However, this variation in quantum field theory,

although very systematic, is not direct. It must occur for every parameter and fields through

the renormalization procedure. The variables performing the subtraction are the counterterms

and rely on the above mentioned feature of the theory - the infinities appears as polynomials in

the external momenta, a property connected to the local aspect of the quantum theory. During

the renormalization procedure the choice for the subtraction scale must be done, and the final

result is independent from it. It is important to emphasize that to state that some piece of the

Lagrangian is independent of the renormalization scale is not to say that the couplings does

not depend on the physical scale. What is being changed, in truth, is the starting point, the

reference where the subtraction was chosen to be performed. That is equivalent to say that the

first measurement of the fine-structure constant α could have been done at a larger scale than

∼ me - This single measurement would be sufficient to provide exactly the same predictions of

QED. In other words, the renormalization group equations does not come from a hypothesis

of independence of a physical process on the energy, but from the independence of the object

(correlation functions) associated with the given process under the change of the scale that defines

its components (couplings and operators). A Green’s function is invariant under translation as a

physical process will also be. Finally, the functional form of a running coupling on the energy

scale as well as its Landau pole can contribute to define the properties of a given phenomena.

1.0.2 Top-down approach and Precision Observables

The previous discussion may clarify the question about when the perturbative analysis is impor-

tant. The answer is - when the scale of the process computed is not exactly the scale where the

coupling constant were extracted. If it was, only the tree-level computation would be necessary,

although this would not mean that there would not be a subtraction present. The subtraction for

tree-level exact results was implicit during the fitting of the constants with the data.

The renormalization group equations will then perform the sum of corrections at once and

will transfer them to the couplings, leaving the last task of computing a tree-level matrix element.

The point about this discussion, therefore, is that the matching procedure provides the boundary

5



CHAPTER 1. THE METHOD IN HIGH ENERGY PHYSICS

conditions for solving the RGE. The running of the Wilson coefficients will be associated with

the many corrections from the light-particles present in the renormalizable sector of the theory,

namely the Standard Model. These assertions reveal the advantage of working in a top-down

approach. It is clear since the starting point that the aim of making an effective model is nothing

more than simplifying the analysis of the original UltraViolet theory. By the correspondence

principle one extracts the couplings at the heavy scale that can be run down to the electroweak

scale. The final set of operators will then be considered for an arbitrary number of process and

through a tree-level analysis.

According to the Decoupling Theorem, the error committed on working exclusively in a Stan-

dard Model framework must be proportional to 1
ma , being m a heavy-scale and a approximately

two. The aim of raising an SMEFT is exactly to reduce this error by including new local inter-

actions suppressed by the same power. What is going to be shown in the Chapter 3, therefore,

precedes the matching procedure and can be summarized as follows - (i) Consider the initial UV

complete theory as a large set of interactions containing those of the Standard Model as a subset,

i.e.

ΓUV =ΓSM +ΓSM+H (1.1)

where H is meant to be a heavy sector. (ii) To explore the consequences of proposing a low-energy

version of the UV model consisting in the SM theory with changed couplings and masses, emerged

by cutting out ΓH from the graphs generated by ΓUV :

ΓUV →ΓSM (1.2)

such that the 1LPI graph, i.e. 1PI graphs in the light-fields, generated by Γ(n)
UV will be

Γ(n)
UV =Γ(n)

SM
×

[
1+O

(
1

ma

)]
(1.3)

The first task is to prove that exists a simplified theory at low energies which is able to provide

the same results as the complete theory, at some level of precision. Next, the error is inserted

as local operators into the low-energy renormalizable theory, representing the value of the

coupling constant in the heavy scale. Since the exchange of light particles involves renormalizable

couplings, the coefficients will be run down to the low-energy scale through these light corrections.

One comment, the differential equation will also be coupled, which corresponds a dependence of

the anomalous dimension for the higher-dimension operators on the SM parameters.

Finally, the Decoupling Theorem confirms that the purpose of constructing an EFT is not

of defending the use of non-renormalizable theories as a final description of the nature, but to

develop a technique for studying it. The SM is, by hypothesis, a renormalizable low-energy sector

of a more complex complete theory.
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The present work develops the principles discussed above. The Part II consist of a literature

review about the functional methods of matching and fundamentals of Effective Field Theories.

The Part III contains the introduction of gauge theories with spontaneously symmetry breaking,

where the 3-3-1 models with Heavy leptons have been chosen as the main example. The choice

was motivated by the possibility of exploring features that are not present in the Standard

Model. Apart from that, it is in general alleged that these theories present a pattern of symmetry

breaking following strictly the path 3⊗3⊗1 → 3⊗2⊗1 → U(1), which includes the Standard

Model. Thus, a SMEFT can be extracted from it, leading to a entire connection with the rest of

the work. The Chapter 5 apply the results of Part II to a set of models, including some specific

sectors of the 3-3-1HL. The defined set of Wilson coefficients must be run down and face some

Electroweak Precision Observables in Chapter 6, thus informing about how far the experimental

measurements are from being sensible to the theories at the loop level.
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CHAPTER 2

THE COVARIANT DERIVATIVE EXPANSION

Consider an UltraViolet complete theory (UV for short) formulated in order to present two sectors

separated by different scales. The light sector can be generically denoted by φ and the heavy

sector by Φ. The generating functional is expressed like [53]

ZUV [JΦ, Jφ]=
∫

DΦDφei
∫

x(LUV [Φ,φ]+Jφφ+JΦΦ) (2.1)

On what follows the Effective Action for the Light-UV theory is given by the following

Legendre transform

ΓL,UV [φ]=−i log ZUV [JΦ = 0, Jφ]−
∫

x
Jφφ (2.2)

i.e. the source for heavy fields must be equal to zero. In other words the sector Φ are not allowed

to emerge as external particles and the solution for Γ can be obtained through the saddle-point

approximation by expanding the integrand around the classical solutions:

δSUV [Φ,φ]
δΦ

∣∣∣
JΦ=0

= 0,
δSUV [Φ,φ]

δφ
= 0 (2.3)

such that ΓL,UV [φ]≡ΓL,UV [Φ[φ],φ] after the replacement of Φ[φ] as an implicit functional of the

light fields. The UV Effective Action expressed in terms of background fields at the Log order is

given by

ΓUV [φ,Φ]= SUV [φ,Φ]+ iα logdet
(
δ2SUV

δ(φ,Φ)2

)
(2.4)

2.1 Locality

The concept of locality will be present in some of the most important steps of the matching

procedure and defines, for example, the correct mode of performing the loop counting in the

Effective and in the Light-UV theory.

Consider a theory for two scalar fields defined by the Lagrangian [49]:

L =−1
2
φ

(
2+M2)

φ− 1
2
π

(
2+m2)

π+ λ

2
φπ2 (2.5)

The equations of motion for φ, when applied back to L , may convert it into a theory for the light

fields π. In other words,
δS
δφ

= 0 → −(
2+M2)

φ+ λ

2
π2 = 0 (2.6)

where the solution may be given in terms of the Green functions to the Klein-Gordon operator(
2+M2)

x Gφ
xy = δxy (2.7)

11



CHAPTER 2. THE COVARIANT DERIVATIVE EXPANSION

and here the continuous index is a shorthand for the variables defining functions and operators

or, for example, δxy ≡ δ(x− y). Besides, the upper index denote the dependence on M and will be

omitted on what follows. The above expression implies

φx = λ

2
〈Gxyπ

2
y〉 ≡

λ

2

∫
y
Gxyπ

2
y (2.8)

where it was used a shorthand notation (by [48]) that will frequently be evoked along this work -

Repeated space-time indices inside brackets < ...> are being integrated over the total volume. By

plugging Eq.(2.8) back into Eq.(2.5), it follows

L = −λ
2

8
〈Gxzπ

2
z〉

(
2+M2)

x 〈Gxyπ
2
y〉−

1
2
π

(
2+m2)

π+ λ

4
〈Gxyπ

2
y〉π2

x

= λ2

8
π2

x〈Gxzπ
2
z〉−

1
2
π

(
2+m2)

π (2.9)

and, thus, the function L on a particular x is now being simultaneously affected by the total

field configuration from the integral inside the brackets. This new quality is what defines the

Lagrangian as a non-local object. The Fourier transform of Gxy is given by

Gxy =
∫

dqe−iq(x−y)Gq
Eq.(2.7)→ Gxy =

∫
dq

e−iq(x−y)

−q2 +M2 (2.10)

by abbreviating dq ≡ dq
(2π)4 . In a more symbolic form, Eq.(2.7) can be rewritten as1

Gφ
xy =

(
2+M2)−1

x δxy (2.11)

It is known from the Feynman rules in coordinate space that, at tree-level, the momentum

running in Eq.(2.10) must collapse into the momenta p2 of the external particles. Thus, motivated

by the scenario where 2∼ p2 ¿ M2, the r.h.s. may be expanded [49] into local terms through

Gφ
xy =

1
M2

(
1− 2

M2 +
( 2

M2

)2
−·· ·

)
x
δxy (2.12)

which turns even more spurious when the propagator runs inside loops. As it will repeatedly

explored, to force this expansion is in fact what is behind the necessity of a consistent matching

procedure.

Finally, the replacement of φ by the respective e.o.m. solution encodes its influence to the

Green function. The field is out of the set of asymptotic particles, but is certainly present through

virtual effects.

2.2 On the Effective Action

The Effective Action will always be denoted by the Greek letter Γ. In order to perform the

Legendre transformation in the beginning of this chapter it is first needed to solve the set of
1Or O−1O ≡ 1, for a generic operator O . Formally, it is equivalent to O−1

x Ax ≡
∫

y Gxy Ay, where OxGxy = δxy.

12



2.2. ON THE EFFECTIVE ACTION

classical equations in terms of the sources and then replace the solutions in the functional

generator formula, commonly obtained in the saddle point approximation. The classical result for

the Effective Action (i.e. the first term in the expansion) is composed by the classical action given

in terms of the field-sources, here denoted by the sub-index ‘c’, like in φc and ψc [48]. The aim of

this section is to provide both a qualitative and formal explanation about the Effective Action as

a generating functional and its role during the construction of Effective Field Theories.

It may be assumed as known the quality of Γ[φ] as the generator of amputated one-particle

irreducible (1PI) diagrams. In a theory composed by a single self-interacting field, this means

that the corrections coming from the Log in Eq.(2.4), diagrammatically, are represented by loops

without external lines and such that it cannot be decomposed into independent graphs through a

single cut of propagator.

The saddle-point approximation [48], commonly adopted in order to solve a closed form to the

functional generators, consists in a Taylor expansion on the Action made by assuming that the

leading contribution to integrals like
∫

x e−a(x) is given by the region around the minimum of a(x).

Therefore, the procedure is an independent method compared with a perturbation expansion for a

quantum field theory. In other words, the Log may enclose simultaneously the quantum correction

in different orders of the small parameter of the theory, i.e. it can associate different n-point

functions. This assertion will turn clearer when the Universal Formula for the determinant

computation is presented (see Section 2.3).

It is still important to distinguish about two concepts already present at this point. Again,

from the Effective Action definition it can be seen that it corresponds to an object that can

be written in an arbitrarily higher dimension on the classical fields. The term ‘effective’ here

is rather clear - its components are in fact what is connected with physical processes, whose

effect is weighted by the coefficient of the correspondent n-point function. In summary, the set of

higher-dimension operators defines a set of physical processes. A given operator is accompanied

by a coefficient informing the importance (or suppression) of the correspondent scattering, for

example. In this sense, the Effective Action is an object able to provide physical intuition about the

considered phenomena. Along this work there will be rarely found mention to Feynman diagrams,

but it might be important to include some comments. The Effective Action generate n-point

functions containing exclusively internal lines or, equivalently, amputated Green’s function. Thus,

the diagrams are composed by dots and propagators running in loops. By integrate out a field, i.e.

by replacing it into the theory through the solution of its classical equation of motion, the field

will then be forbidden to represent asymptotic degrees of freedom. This new theory must be called

UV-Light and its respective ΓLUV will generate 1-Light Particle Irreducible diagrams (or 1-LPI,

for short) - Irreducible graphs only on the light internal lines. Therefore, in this framework ΓLUV

may generate diagrams containing heavy internal lines. This may be seen, for example, from the

first term of Eq.(2.9). One Effective Field Theory consists on bringing the 1LUV theory into a local

description of the interactions. Here, the respective action for the EFT will again generate dots

13



CHAPTER 2. THE COVARIANT DERIVATIVE EXPANSION

(a) (b)

FIGURE 2.1. In a λφ3 theory, for example, the effective action can generate the 4-point
function (a) but not (b), where • and ◦ denote an insertion of one and two external
lines, respectively.

(a) (b)

FIGURE 2.2. In a λφ4 theory, the determinant can generate a set of 4-point functions
containing graphs of different order in perturbation theory. Above, the • and ◦
denote an insertion of one and two external lines, respectively.

(a) (b)

FIGURE 2.3. The Effective Action for the 1LUV of Eq.(2.9) may generate the 4-point
functions above, where the dashed and full lines represent the propagation of the
light π and the heavy φ, respectively.

(a) (b)

FIGURE 2.4. One effective vertex (b) from the local expansion of the LUV theory (a).

and loops, although the former is commonly considered sufficient for a well accurate analysis.

In an Effective Theory for π’s of the Eq.(2.9) only the classical term, or the linear contribution

on the Wilson coefficients, are present. The n-point function in this approximation will be

represented only by cn, in reference to the operator On, and a box 2 (or ⊗).

14



2.2. ON THE EFFECTIVE ACTION

(a) (b)

FIGURE 2.5. In a theory containing self- or mixed interactions of light-fields, the 1LUV
(a) and the EFT (b) may present the above graphs. The 2 represents an effective
vertex;

2.2.1 On the sign of determinant for real, complex scalars and fermions

Along the development of an Universal Formula to the first quantum correction of the Effective

Action, the authors in [32] first sought for a general expression2 related to graphs which include

solely heavy lines. The first step consisted in defining a generic expression for the Log piece:

Γ(1)
UV = icsTr log(−P2 +m2 +Ux) (2.13)

with Pµ ≡ iDµ = i∂µ+Aµ the covariant derivative and U(x) a function representing constant

configurations of light fields. One important point observation, therefore, relies on the extraction

of the constant cs, holding the information about the specie of particles being integrated. The

following lines are intended to treat this topic and concern fermions, real and complex scalars.

The Eq.(2.13) is derived from the first correction to the generating functional on the saddle

point approximation. For a theory containing real and spinor fields [48], it implies the expression

eiSeff[Φ,Ψ†,Ψ]|c =
∫

DΦDΨ†DΨeiS[Φ,Ψ†,Ψ] (2.14)

In fact this expression is already assuming the final result for the Effective Action which will be

fully demonstrated in the coming text. The action in the r.h.s. must be rotated to the Euclidean

space and then expanded through

S = S
∣∣∣
c
+

〈
η† δS
δΨ†

∣∣∣
c

〉
+

〈 δS
δΨ

∣∣∣
c
η
〉
+

〈δS
δΦ

∣∣∣
c
ρ
〉

+1
2

{〈
ρx

δS
δΦxδΦy

∣∣∣
c
ρ y

〉
+2

〈
η†

x
δS

δΨ†
xδΨy

∣∣∣
c
ηy

〉
+2

〈
ρx

δS
δΦxδΨy

∣∣∣
c
ηy

〉
+2

〈
η†

x
δS

δΨ†
xδΦy

∣∣∣
c
ρ y

〉}
+·· · (2.15)

where ρ ≡Φ−Φc and η ≡Ψ−Ψc. The sub-index ‘c’ stands for the fields on the solution of the

classical equations of motion, which eliminate the first derivatives. Moreover, the factor of two

inside the brackets accounts for the second derivative of mixed terms. As mentioned before,

repeated space-time indices inside < ·· · > are being integrated over.

2The notation will be consistently preserved.
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CHAPTER 2. THE COVARIANT DERIVATIVE EXPANSION

It was left implicit in Eq.(2.15) that the action is defined in Euclidean space. At the end of a

functional integration, the fields must be rotated back to Minkowski variables, what in summary

will imply an overall multiplication by the factor −i. The extraction of cs concerns only the second

line and for real scalars it should come from

eiSeff =
∫

DΦ exp
[
−i

∫
x

1
2
Φ

(−P2 +M2 +Ux
)
Φ

]
(2.16)

When the expansion (2.15) is performed the corrections are in fact being integrated over Euclidean

(or ‘bar’) variables, such that

SE =
∫

x

1
2
Φ

(
−P

2 +M2 +Ux

)
Φ (2.17)

Note that the minus sign is preserved in the definition just to follow −P2 ⊃−(i∂µ)2 = ∂2 =−∂2
. By

replacing the expansion SE = SE|c + 1
2 < ρx

δ2SE
δΦxδΦy

ρ y >+·· · back into Eq.(2.16):

e−SE = e−SE |c ×
∫

DΦ exp
[
−1

2
〈ρx

δ2SE

δΦxδΦy
ρ y〉

]
(2.18)

Since
∫

DΦ e−
1
2 〈ΦAΦ〉 = (detA)−

1
2 = exp[−1

2Tr log A], after rotating the expressions back to Minkowski

space the Effective Action at loop order must be given by

eiSeff = eiS|c × exp
[
−1

2
Tr log(−P2 +M2 +Ux)

]
(2.19)

or

Seff = S
∣∣
c +

i
2

Tr log(−P2 +M2 +Ux) (2.20)

which leads to cs = 1
2 (real scalars). It turns out that this half factor, just in front of the trace,

originates from the Taylor expansion instead of the Lagrangian. Thus, although the procedure for

complex scalars must follow in the same way, now the Taylor coefficient acquires an additional

factor of two from mixed terms, as already recorded in Eq.(2.15). From
∫

DΦ†DΦ e−〈Φ
† AΦ〉 =

(detA)−1, it follows that cs = 1 (complex scalars).

Finally, the constant for fermions must consider the inverse relation for a Gaussian integration

of Grassmann fields, i.e.
∫

DΨ†DΨ e−〈Ψ
† AΨ〉 = (detA). Moreover, this result would still lead to

Seff = S
∣∣
c − iTr log(− /P +M+Fx) (2.21)

where Fx is denoting constant light fields. In order to convert the above result into the desired

quadratic form of Eq.(2.20) one may resort to the invariance of this trace under flipping the signs

of gamma matrices:

S(1)
eff = − i

2
Tr[log(−i /D+M+Fx)+ log(−i /D+M+Fx)]

= − i
2

Tr[log(−i /D+M+Fx)+ log(i /D+M+Fx)]

= − i
2

Tr
[
log

(
/D2 + (M+Fx)2 − i[ /D,Fx]

)]
(2.22)
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Proceeding according to the notation in [33], from the identity /D2 = D2 − i
2σ

µνG′
µν and G′

µν ≡
[Dµ,Dν], it follows that

S(1)
eff =− i

2
Tr

[
log

(
D2 +M2 +Uferm

)]
(2.23)

where

Uferm ≡− i
2
σµνG′

µν− i[ /D,Fx]+2MFx +F2
x (2.24)

and cs =−1
2 (fermions).

2.3 Evaluating the Functional Determinant - On the Universal Formula

The task of determining the first quantum corrections for the Effective Action involves a solid

comprehension to the meaning of a functional trace. One complete treatment on this topic was

developed by the authors HLM3 in [32] and, for completeness, it will be summarized in this

subsection.

In a general case, the loop correction consists of

Tr f (x̂, q̂) (2.25)

where the hats refer to the operators form. The representation for the arguments will recline on

the choice of a basis, either in momentum or position space. To the former case, the trace can be

defined as

Tr f (x̂, q̂)=
∫

dq tr 〈q| f (x̂, q̂)|q〉 (2.26)

with the small ‘tr’ now accounting exclusively for internal indices. The representation q̂ in the

position basis is given by q̂ = i∂x, thus corresponding the commutation relation

[x̂, q̂]=−i (2.27)

Moreover, the plane wave convention follows from the product 〈x|q〉 = e−iq·x. By proceeding with

the notation of HLM, the differentials must always hide the 2π4 factor like dq ≡ d4q
2π4 and dx ≡ d4x.

Finally, the representation for x̂ and q̂ on the aforementioned basis is such that

〈x| f (x̂, q̂)= f (x, i∂x), 〈q| f (x̂, q̂) (2.27)= f (−i∂q, q) (2.28)

Next, a complete set of position eigenstates4, 1= ∫
x |x〉〈x|, is inserted in Eq.(2.26), what implies

Tr f (x̂, q̂) =
∫

dxdq tr 〈q|x〉〈x| f (x̂, q̂)|q〉

=
∫

dxdq tr eiq·x f (x, i∂x) e−iq·x (2.29)

3Abbreviation for B. Henning, X. Lu and H. Murayama;
4Remark that, analogously, the identity for the discrete case arises like I=∑

i |ei〉〈ei |, from the set of generators
{ei} defining an orthonormal basis of a n-dimensional vectorial space.
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From the Baker-Campbell-Hausdorff formula, the momentum operator is in fact being translated

into5 i∂x → i∂x + q. By flipping the momentum sign, the final result may be written as

Tr f (x̂, q̂)=
∫

dxdq tr f (x, i∂x − q) (2.30)

The Effective Field Theory, under development, is marked by the matching procedure, one

equation that must in general reveal a piece like δ2SUV
δΦ2 , noted in HLM as the term defining the

set of Wilson coefficients coming from the exclusive case of heavy fields running in the loops. This

portion can be expressed like

S(1)
eff ⊃ icsTrlog(−P2 +m2 +Ux) (2.31)

whose components were already presented in Section (2.2.1). From Eq.(2.29) it is translated into

S(1)
eff ⊃ ics

∫
dxdq tr eiq·x log(−P2 +m2 +Ux) e−iq·x

= ics

∫
dxdq tr log

[−(Pµ− qµ)2 +m2 +Ux
]

(2.32)

One interesting approach for treating the above expression was proposed by Mary Gaillard

in [29] and reproduced in [32] with the intent of reaching a closed formula. The author in [29]

proposed a general matrix-valued function g, dependent on the derivatives (∂p,∂x) and under the

initial condition

g(0,0)= 1 (2.33)

such that its expansion around (0,0) would be given by

g = 1+ g(1)|0 + g(2)|0 +·· · (2.34)

Once g−1 acts in the right, it is in fact acting on the identity. Moreover, since the g(i)’s are at least

of first order in derivatives, it follows that it should be equal to the unit. On acting in the left,

the situation would not be different. The expansion of g leaves total derivatives of the operator,

what should vanish by the boundary conditions of the integrand. Thus, only g(0,0) acts, and the

insertion of g in both sides of Eq.(2.32) is trivial. At the end, the function is assumed with the

form

g ≡ eP·∂q (2.35)

5This follows from the analyticity of f (x̂, q̂), resulting that the BCH formula may in fact be applied on the identity
vicinity, being sufficient to verify only eiq·x̂ q̂ e−iq·x̂;
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or ∫
eP·∂qAe−P·∂q =

∫
eP·∂qA(e−P·∂q I)

=
∫

eP·∂qA

=
∫ (

1+ (P ·∂q)n

n!

)
A, n ≥ 1

=
∫
A+F∣∣∞−∞

=
∫
A (2.36)

By applying the Gaillard procedure to Eq.(2.32), the task converts into simplifying the

expression

S(1)
eff ⊃ ics

∫
dxdq tr eP·∂q log

[−(Pµ− qµ)2 +m2 +Ux
]

e−P·∂q (2.37)

by requesting the BCH formula once more:

eB Ae−B =
∞∑

n=0

1
n!

Ln
B A, where LB A ≡ [B, A] (2.38)

The first component, (Pµ− qµ), may be translated after one brief observation:[
P ·∂q, qµ

] = P ·∂qbqµ− qµP ·∂q

= Pνδ
ν
µ+ qµP ·∂q − qµP ·∂q

= Pµ (2.39)

and, thus

eP·∂q (Pµ− qµ)e−P·∂q =
∞∑

n=0

1
n!

(LP∂q )nPµ−
∞∑

n=0

1
n!

(LP∂q )nqµ

=
∞∑

n=0

1
n!

(LP∂q )nPµ −
(
qµ+

∞∑
n=1

1
n!

(LP∂q )nqµ

)
(2.40)

where the last sum can be rewritten as
∞∑

n=1

1
n!

(LP∂q )nqµ
(2.39)= Pµ+

∞∑
n=2

1
n!

(LP∂q )n−1Pµ

= Pµ+
∞∑

n=1

1
(n+1)!

(LP∂q )nPµ (2.41)

and, in Eq.(2.40),

eP·∂q (Pµ− qµ)e−P·∂q = −qµ+
∞∑

n=1

1
n!

(LP∂q )nPµ−
∞∑

n=1

1
(n+1)!

(LP∂q )nPµ

= −qµ+
∞∑

n=1

n
(n+1)!

(LP∂q )nPµ (2.42)
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The sum can still be simplified via
∞∑

n=1

n
(n+1)!

(LP∂q )nPµ =
∞∑

n=0

n+1
(n+2)!

(LP∂q )n+1Pµ

=
∞∑

n=0

n+1
(n+2)!

(LP∂q )n(LP∂q Pµ)

= −
∞∑

n=0

n+1
(n+2)!

{
Ln

P∂q

[
Dν,Dµ

]}
∂qν (2.43)

where it has been considered

LP∂q Pµ = PνPµ∂qν +Pν(∂qνPµ)−PµPν∂qν

= [
Pν,Pµ

]
∂qν (2.44)

since Pµ is momentum-independent. Finally, by strictly following the HLM notation, all the

momentum derivatives inside LP∂q can be placed to the right, what implies

eP·∂q (Pµ− qµ)e−P·∂q = −qµ−
∞∑

n=0

n+1
(n+2)!

{
Ln

Pα

[
Dν,Dµ

]}
∂n

qα∂qν

= −qµ−
∞∑

n=0

n+1
(n+2)!

[
Pα1 ,

[
· · ·

[
Pαn ,

[
Dν,Dµ

]]]] ∂n

∂qα1 · · ·∂qαn

∂qν

≡ −(
qµ+ G̃νµ∂qν

)
(2.45)

where G̃νµ is thus referring a general form to the field-strength.

The same analysis can proceed for the simpler case of the U component inside the determi-

nant:

eP·∂qUe−P·∂q =
∞∑

n=0

1
n!

[
Pα1 ,

[
· · ·

[
Pαn ,U

]]] ∂n

∂qα1 · · ·∂qαn

≡ Ũ (2.46)

These previous expressions permit to represent S(1)
eff in a simplified form

S(1)
eff = ics

∫
dxdq tr log

[
−(

qµ+ G̃νµ∂qν
)2 +m2 +Ũ

]
≡

∫
dxL (1)

eff (2.47)

where the second line remark that the correction can be expressed equivalently in terms of a

Lagrangian.

For moving to the Log calculation, the prescription first consists in convert it into an integral

over m2, i.e.

L (1)
eff = ics

∫
dqdm2 tr

[
−(

qµ+ G̃νµ∂qν
)2 +m2 +Ũ

]−1
(2.48)

and then to expand the squared terms:

L (1)
eff = −ics

∫
dqdm2 tr

[
∆−1 +{

q,G̃∂q
}+ (G̃∂q)2 −Ũ

]−1

= −ics

∫
dqdm2 tr

{
∆−1

[
1+∆[ −(G̃∂q)2 −{

q,G̃∂q
}+Ũ

]]}−1
(2.49)
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where the omitted Lorentz indices are contracted according to Eq.(2.48). Moreover, ∆≡ (q2−m2)−1

and may be considered as the variable for a matrix expansion like(
A−1(1− AB)

)−1 = (1− AB)−1 A

=
∞∑

n=0
(AB)n A (2.50)

which converts the quantum correction to the effective Lagrangian into a sum of integrals, or

L (1)
eff =−ics

∞∑
n=0

In (2.51)

where6

In ≡
∫

dqdm2 tr
[
∆

[ −(G̃∂q)2 −{
q,G̃

}
∂q +Ũ

]]n
∆ (2.54)

Above it was also considered the identity7

{
qµ,G̃νµ∂ν

}= {
qµ,G̃νµ

}
∂ν+ G̃νµ

[
qµ,∂ν

]
(2.55)

and, from
[
qµ,∂ν

]=−δµν and the antisymmetry of G̃µν, it follows that
{
qµ,G̃νµ∂ν

}= {
qµ,G̃νµ

}
∂ν.

Thus, the effective Lagrangian at Log level is represented by the expression of Eq.(2.51).

There, the In consists basically in operations on ∆. As it will be recurrently emphasized, a series

expansion is always present during the matching procedure and must be truncated up to the

desired order in the fields dimension after a power counting at the level of G̃νµ and Ũ, both

containing higher-dimension operators (or HDO’s for short). In other words, the L (1)
eff is a series of

In, which turns out to be a series in HDO’s. By interrupting the sum at some order in the fields,

it is established a number n for Eq.(2.51), implying a set that in fact composes the theory. One

example - It is known a priori that G̃νµ and Ũ are at least linear in the light fields. Then, if the

expansion is chosen to cease at dim-6 operators, it follows that no In will contribute for n > 6.

2.3.1 Evaluation of Integrals

The formula Eq.(2.51) implies the task of calculating seven integrals. In this section the main

tools for achieving this are completely developed. The final result will be, as presented by HLM,
6There is one additional information behind the integral after the power series conversion of the log. Being Fx the

primitive of fx, i.e. fx = ∂xFx, the transformation is in fact given by

F(m2)−F(m2
0)=

∫ m2

m2
0

dm2 f (m2) (2.52)

and m0 can be chosen such that F(m2
0)= 0. In the context, Fx = log(a+ x), the primitive of 1

a+x . Since the final result
must given in terms of a truncated series, the integrand becomes fx ' gx, or∫ m2

m2
0

dm2 g(m2)=G(m2)−G(m2
0) (2.53)

such that Fx ' Gx. In other words, the primitive for the truncation must still be zero in the inferior limit of the
integral;

7The lower-upper convention for Lorentz indices will not be followed henceforth;
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one Universal Formula for the matching of quantum corrections from process involving only

heavy internal lines. As demonstrated in last section, this formula must not entail the total set

of operators behind a loop calculation, since it does not include process with light internal lines.

However, from its simplicity and clarity it might be sufficient in some contexts. The next part of

this work will turn this argument clear through some examples of application.

The reason of only seven integrals has been mentioned before and is justified by the truncation

of the series up to dimension-six operators. Since the functions inside In are at least linear in the

fields, it follows that it must be interrupted at n = 6.

Although apparently n = 6 is a small number, the final amount of integrals may be large and

arduous to be computed. In HLM all the fundamental elements to for this task were presented

and the result for I1 completely described. Here this result will be complemented with three new

integrals, the most complex ones related with I2.

The choice for what integrals to consider is motivated by the presence of different techniques

during the computation, including, for instance, counting of divergences, subtraction scheme, Wick

rotation, Gamma functions and master integrals, etc. In summary, it is important to identify the

complete set of conceptual and technical manipulations which compose the method for treating

these objects before the task of writing a final expression.

As mentioned, the first criteria corresponds the counting of divergences and the integration

on m2 can be very informative on this part. For n ≥ 1 it automatically arises like∫
dm2∆p = ∆

p−1

p−1
, p ≥ 2 and ∆= (q2 −m2)−1 (2.56)

where p is at least of order two, since the effect of a q derivation is to increase the ∆ degree:

∂qµ∆
k =−2k× qµ∆k+1 (2.57)

Next, the counting is performed for the integral in q which, due to momentum derivatives,

must arise like ∫
d4q ∆kq2a (2.58)

where a ∈N and, in Euclidean space∫
d4q∆kq2a ∝ i(−1)k+a

∫ ∞

0
dq

q3+2a

(q2 +m2)k
, where q = q2

0 +q2

= i
(−1)k+a

2

∫ ∞

m2
du

q2(a+1)

uk

= i
(−1)k+a

2

∫ ∞

m2
du

(u−m2)(a+1)

uk

= i
2

a+1∑
j=0

(
a+1

j

)
(−1)k+a+ j(m2) j

∫ ∞

m2
du

u(a+1− j)

uk (2.59)

which is convergent whenever k+ j− (a+1)> 1 and, since its minimum occurs for j = 0, it follows

k > 2+a (2.60)
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The above expression is a central criteria and will be constantly required. By looking at the

definition of In of Eq.(2.54), the object inside the brackets is operating on the outside ∆ with

an arbitrary number of q-derivatives. The counting can be directly made by first excluding one

propagator from the integral on m2 effect, as Eq.(2.56). If at some point the integrand for q is

in the form of ∆k such that k > 2, from Eq.(2.57), by applying (2a) additional derivatives over ∆

implies the final power k̃ ≡ k+2a > 2+2a > 2+a, and the integrand remains convergent. This

last conclusion is therefore sufficient to conclude that no divergence should be found in In for

n > 2. Moreover, even for I2 all the pieces with derivatives must imply k with a minimum k = 4

with a = 1, such that only the coefficient for trU2 must be regulated. This and other examples are

completely worked in Appendix (A.3).

The integral I1 was completed calculated in HLM and here only one of its components were

chosen to be registered. Nevertheless, the rest of divergent terms will be calculated in detail,

namely I0 and I2, thus supplementing the evaluation section of [32]. The finite part will consist,

in general, of systematic application of the master integrals and here the equivalent pieces

present in I2 will saturate the examples at this topic.

2.3.1.1 Evaluating I0

From the formula Eq.(2.54) it is clear that I0 is a constant factor and does not play any role in

the theory although it can be one important object of illustration. It follows that

I0 =
∫

dqdm2∆ (2.61)

For this sort of function it is adequate to first perform the integral on the variable q, calculated

in Appendix A.1 and given by Eq.(A.21). Thus8

I0 =
∫

dm2
[

i
(4π)2 m2

(
log

(
m2

µ2

)
−1

)]
= i

(4π)2

{
m4

2
logm2 − m4

2
(logµ2 +1)− m4

4

}
= i

(4π)2

{
−3

4
m4 + m4

2
log

m2

µ2

}
(2.63)

2.3.1.2 Evaluating I1

To recapitulate, the I1 is given by9

I1 ≡
∫

dqdm2 tr ∆
[ −(G̃∂q)2 −{

q,G̃
}
∂q +Ũ

]
∆ (2.64)

8From ∫ b

a
x log x = x2

2
log x

∣∣∣b
a
− x2

4
(2.62)

9Along the rest of the work the notation A has been chosen for denoting any matrix under internal indices.
However, for simplicity this must not be followed in this chapter;
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where

G̃νµ ≡
∞∑

n=0

n+1
(n+2)!

[
Pα1 ,

[
· · ·

[
Pαn ,

[
Dν,Dµ

]]]] ∂n

∂qα1 · · ·∂qαn

(2.65a)

Ũ ≡
∞∑

n=0

1
n!

[
Pα1 ,

[
· · ·

[
Pαn ,U

]]] ∂n

∂qα1 · · ·∂qαn

(2.65b)

and Pµ = iDµ.

By assuming that m2 commutes with the fields present both in G and U, the trace can be

completely separated from the integrals, thus resulting in just a factor to the operators. The

generalization for non-commuting m2 was performed by [22] and, for simplicity, will not be

reproduced here. The authors in [32] then start with Ũ by noting that

[∂xµ + A,U] = (∂xµb+A) U −U (∂xµ + A)

= (∂xµU)+ [A,U] (2.66)

such that, whenever the internal indices are retained in a single commutator, the trace operation

results a total derivative and therefore must vanish10. Thus, from Eq.(2.65), only n = 0 must

remain in the series such that

I1 ⊃
∫

dqdm2 tr ∆Ũ∆

= tr U ×
∫

dqdm2∆2

(2.56)= tr U ×
∫

dq∆

= tr U × I0
1 (2.67)

and, finally, from Eq.(A.21)11:

I1 ⊃ i
m2

(4π)2

(
log

(
m2

µ2

)
−1

)
× tr U (2.68)

The authors then move to the anti-commutator piece which, for being a linear function with a

commutator, must also be zero, leaving the final term to be

I1 ⊃−
∫

dqdm2 tr ∆ G̃µσG̃νσ
∂2

∂qµ∂qν
∆ (2.69)

The above formula may provide the first example of power counting. The evaluation of I1,

as well as any other integral, has been truncated to include operators only up to dim-6 in the

fields. During the expansion, it is important to emphasize that the covariant derivative must be

counted as dim-1 object, a condition for achieving a covariant formula. Thus, Gνµ is dim-2 and,

from Eq.(2.65a), both G̃ must cease at n = 2, i.e.

G̃µσ = 1
2

Gµσ+ 1
3

[
Pα,Gµσ

] ∂

∂qα
+ 1

8

[
Pα2 , [Pα1 ,Gµσ]

] ∂2

∂qα1∂qα2

+O(dim5) (2.70)

10This will certainly not be the case for the product of traceless terms;
11The following result differs in sign with [32], but is correct in their Universal Formula;
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such that the product G̃2, up to dim-6, implies:

G̃µσG̃νσ∂
2
µν =

{
1
4

GµσGνσ∂
2
µν+

1
16

Gµσ

[
Pα2 , [Pα1 ,Gνσ]

]
∂2
α1α2

∂2
µν+

1
9

[Pα,Gµσ][Pβ,Gνσ]∂2
αβ∂

2
µν+

+ 1
16

[
Pα2 , [Pα1 ,Gµσ]

]
Gνσ∂

2
α1α2

∂2
µν

}
(2.71)

where it was made implicit that ∂µ stands for 4-momentum indices. Moreover, the O(P5) vanish

since they are odd under the integrated momentum12.

From the criteria for convergence of Eq.(2.60) all the terms with four derivatives would

correspond at most to k = 5 and a = 2, being therefore convergent. Thus, only the dim-4 operator

above must present a regulated coefficient. The next result is similarly presented in HLM and

here reproduced for a matter of fixing the notation for the Appendix. Thus,∫
dqdm2∆∂2

µν∆
(2.56)= 2gµν

∫
dq

(
−1

2
∆2 + 1

3
q2∆3

)
(A.15)= 2gµν

(
−1

2
(iA2)+ 1

3
(iA2)

)
= −i

gµν
3

A2 (2.72)

It must be noted that the replacement qµqν → q2

4 gµν must only be performed at the stage of

integration. From Eq.(A.15) the A2 is given by

A2 =
Γ

(
ε
2
)

(4π)2

(
4πµ2

m2

) ε
2

(2.73)

which can be expanded into

A2 = 1
(4π)2

(
2
ε
+ψ(2)+ log

(
4πµ2

m2

))
(2.74)

Since in the MS scheme the pole is subtracted along with log(4π) and the Euler-Mascheroni

constant γ present in ψ(2)= 1−γ, it follows, finally, that

A2
MS→ 1

(4π)2

(
1− log

(
m2

µ2

))
(2.75)

or

I1 ⊃ i
(4π)2

1
12

(
1− log

(
m2

µ2

))
× tr (GµνGµν) (2.76)

After the I1 analysis, the authors of HLM simplify the above results through systematic

application of the covariant derivative properties that are partially reproduced in Appendix A.2.

12For Lorentz violating dim-5 operators, see [6].
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2.3.1.3 Evaluation of I2

This section intents to extract the last divergent part of the formula for dim-6 operators in an

effective Lagrangian at quantum level. From Eq.(2.54) the I2 can be expressed like,

I2 ≡
∫

dqdm2 tr ∆
[ −(G̃∂q)2 −{

q,G̃
}
∂q +Ũ

]
∆

[ −(G̃∂q)2 −{
q,G̃

}
∂q +Ũ

]
∆ (2.77)

By power counting under the dim-6 criteria the following items can be selected

I2 ⊃
∫

dqdm2 tr
{
∆ (G̃∂q)2 ∆

{
q,G̃

}
∂q ∆− (2.78a)

−∆ (G̃∂q)2∆ Ũ∆+ (2.78b)

+∆ {
q,G̃

}
∂qb ∆ (G̃∂q)2 ∆+ (2.78c)

+∆ {
q,G̃

}
∂qb ∆

{
q,G̃

}
∂q ∆− (2.78d)

−∆ {
q,G̃

}
∂qb ∆ Ũ ∆− (2.78e)

−∆ Ũ ∆
{
q,G̃

}
∂q ∆− (2.78f)

−∆ Ũ ∆ (G̃∂q)2 ∆+ (2.78g)

+∆ Ũ ∆ Ũ ∆

}
(2.78h)

In summary, only one term must be neglected a priori, namely, (G̃∂q)2(G̃∂q)2, for producing

operators of, at least, dim-8. On the task of extracting divergences it is worthy to argue the above

items in separate:

a. The criteria Eq.(2.60) must be applied after the observation of Eq.(2.56), i.e. the mass

integration, that is equivalent to exclude one of the ∆’s during the counting. For dim-6

implies that only the n = 0 in the series of both G̃ is being taken into account. From

Eq.(2.57), the final power for the propagators must be k = 5, while a = 2. Therefore, the

term is convergent;

b. Here, by power counting, both the n = 0,1 in the expansion for Ũ must be taken. For n = 1,

however, the integral of q has an old integrand and a vanishing result. For n = 0, the

counting leads to a = 1 and k = 4 and no divergence will be present here;

c. The same conclusions for the first line are made to this case;

d. This is a potentially divergent term that will require a more particular treatment over the

anti-commutator piece. From power counting, the series for both G̃ must run for m,n ∈ [0,1],

simultaneously13. For (m,n)= (0,0), the integrand presents a = 2 and k = 4, thus breaking

13A requirement from the parity on q and disallowance of dim-5 operators;
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the convergence criteria. Nevertheless, explicitly it is given by

2.78d = ∆ {q,G}∂qb ∆
[
qµGνµ∂

ν ∆
]

= ∆ {q,G}∂qb ∆
[−2Gνµqµqν ∆

]
= 0 (2.79)

as a consequence of the Gνµ antisymmetry. This result might suggest one incorrect conclu-

sion that the anti-commutators would always vanish for the same field-strength property.

To elucidate it, the complete case for (m,n) = (1,1) is treated in Appendix A.3 and may

provide an useful intuition on the application of the series expansion during the matching.

For completeness, here a = 1 and k = 4, i.e. the integral is finite;

e. This is also a potentially divergent piece. From power counting, the powers to be analyzed

where m,n ∈ {0,1} in the G̃ and Ũ series. Here, if m+n is an odd number they should vanish

from the parity of q14. For (m,n)= (1,1), the convergence criteria reads with a = 2, k = 5,

the coefficient is finite and has been computed in Appendix A.3 . The term for (m,n)= (0,0)

vanishes from Gνµ anti-symmetry;

f. Equivalent to the previous case;

g. Equivalent to item 2.78b;

h. Finally, this is the term that could render divergences. Again, from q-parity, each term in

the series must run simultaneously. The (m,n)= (0,0) is certainly divergent, since a = 0 and

k = 2. For (m,n)= (1,1), it follows a = 1 and k = 4, thus corresponding a finite coefficient.

Therefore, to the total I2, only the Wilson coefficient for tr(U2) must be renormalized, what is

extracted straightforwardly from the identities of Appendix A.1 and results:

I2 ⊃ tr(U2)×
∫

dqdm2 ∆3

(2.56)= tr(U2)
2

×
∫

dq∆2

(A.14a)= i
tr(U2)

2
× A2 (2.80)

Finally15,

I2 ⊃ i
2(4π)2

(
1− log

(
m2

µ2

))
× tr(U2) (2.81)

14If the number of momentum and derivatives is odd then, by simple counting in the power of q, the total integrand
emerges like an odd function;

15The result does not agree with the universal formula in HLM, but is corrected in [53];
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2.3.2 The Universal Formula

The previous section presented the totality of Wilson coefficients whose divergences were regu-

larized and then subtracted via the MS scheme. In order to recapitulate, the work on those

integrals involves the search for a final expression to the quantum correction of the Effective

Action whenever it can be expressed in the form

S(1)
eff ⊃ icsTrlog(−P2 +m2 +Ux) (2.82)

which in general corresponds to non-mixed terms of heavy particles in the original UV theory.

It is worthy to note the above choice for the symbol Seff instead of Γ. Such conversion will be

clarified in the next section.

Along the derivation, a power-counting over the fields was consistently performed and the

series truncated at dimension-six operators, one condition that will be made clear at the next

chapter. From the definition of a Covariant Derivative Expansion, Pµ = iDµ was preserved intact

along the derivation and counted like an one-dimensional field. At the other hand, the piece Ux,

an arbitrary function of SM fields, can assume order one or two, depending on the nature of the

correspondent vertex. Furthermore, the mass matrix m2 has been presumed to commute with

both U and the field-strength.

On what follows, the formula is presented including the notation and results registered in the

updated version [33]. The finite coefficients are assumed to be correct and have been reproduced

in subsequent extensions like [28] and [53]. Finally,

L (1)
eff ⊃ cs

(4π)2 tr
{

m4

2

[
3
2
− log

(
m2

µ2

)]
+m2

[(
1− log

(
m2

µ2

))
U

]
+

+m0
[

1
2

(
1− log

(
m2

µ2

))
U2 − 1

12

(
1− log

(
m2

µ2

))
GµνGµν

]
+

+ 1
m2

[
1

12
[
Dµ,U

]2 − 1
12

UGµνGµν− 1
6

U3 + 1
60

[
Dµ,Gµν

]2 − 1
90

Gν
µGρ

νGρ
ν

]
+

+ 1
m4

[
1
24

U4 − 1
12

U
[
Dµ,U

]2 + 1
120

[
Dµ,

[
Dµ,U

]]2 + 1
60

[
Dµ,U

]
[Dν,U]Gµν+

+ 1
40

U2GµνGµν+ 1
60

[
U ,Gµν

][
U ,Gµν

]]+
+ 1

m6

[
1

20
U2 [

Dµ,U
]2 − 1

60
U5 + 1

30
U

[
Dµ,U

]
U

[
Dµ,U

]]+
+ 1

m8

[
1

120
U6

]}
(2.83)

where it is important to remark the minus sign in the definition of Eq.(2.51).

One important conclusion immediately extracted from the above expression is invariance

under the symmetry of the original Lagrangian. As a brief review, for a theory based on arbitrary

fields Ψ and symmetric under the transformation

Ψ→Ψ′ =VΨ (2.84)
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the covariant derivative is defined such that

(DµΨ)→ (DµΨ)′ =V (DµΨ) or Dµ→ D′
µ =V DµV−1 (2.85)

The commutator of these objects defines de gauge-field strength

[
Dµ,Dν

]∝ Fµν and, from Eq.(2.85), Fµν→ F ′
µν =V FµνV−1 (2.86)

At this point, therefore, the presence of a trace over the internal indices is sufficient to demon-

strate the invariance of Eq.(2.83) under V :

tr[V AV−1]= trA (2.87)

Apart from that, the Universal Formula express the real meaning of quantum corrections to

the Effective Action. Although the independent powers for the heavy mass exclusively represents

a 1-loop computation, it may be noted that the arbitrary function U is present at different levels

of the expansion. This function is what in fact contains the small perturbative parameter and,

therefore, the formula contain corrections associated with different n-point functions.

As emphasized during the power counting, the covariant derivative is necessarily of dimension

one and the function U can be of dim-2, for example, in the scalar sector. In this context, the

formula breaks in an even more simplified version. The most complete case, at the other hand,

will certainly occur with trilinear vertex of scalars, what forces the presence of couplings with

positive dimension and these functions to be of order one.

Despite of its closed and model-independent form, the UF is limited to the case where the

internal lines defining the Effective Action contain exclusively the same field. Nevertheless, a

priori there is not a decisive argument that could avoid the additional Wilson coefficients coming

from mixed heavy and light internal lines. This scenario motivated the authors of HLM to update

their original work into a new version including this topic, namely in [33] and improved in [28]

and [53]. As it can be seen, therefore, it has been a very recent and interesting topic of discussion.

The next section is centered on the matter of mixed corrections and the attempt of performing

a similar matching through a covariant expansion.

2.4 Evaluating the Functional Determinant - On the Mixed Terms

The last section has tried to elucidate some technical aspects behind the computation of a

functional determinant, but did not clarify the conceptual meaning behind the term Effective

Theory. One example is the constant lack of consistency on calling the Log correction as an

action. The present section develops a more formal presentation to the logical path before the

construction of an EFT and its correct connection with Effective Actions. To achieve this task it is

important to consider the general case where corrections from both light and internal lines are

equally present.
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It has been shown that the first term defining the Effective Action is just composed by the

classical action, i.e. by the functional which defines the theory. Thus, the action is already a

generator functional. Although the One-Particle Irreducible graphs are fundamental elements for

the analytical properties of a given model, they do not comprise the overall set of n-point functions

present in the S-matrix - the classical action can be considered for a tree-level analysis, i.e. for

representing any type of process exclusively through tree-level diagrams. The Log correction,

therefore, will be used as a source of more accurate predictions, then including in the description

the independent elements of the ultraviolet structure of the theory. The 1PI are generated by

the Effective Action and the Effective Theory will be constructed by taking advantage on the

theoretical strength of this functional generator.

The Lagrangian for the EFT is by definition written as a general series over a set of operators.

Their coefficients are just weights on that specific process represented by the matrix element. If

the series is defined a priori this would be a model independent Effective Theory, a bottom-up

proposal emerged from principles that will follow a previous knowledge or a primary assumption

about the particular phenomena. In many contexts this effective proposal is considered sufficient

to the specific analysis - All the operators, for example, that could be generated through Log cor-

rections are then assumed to be out of the current precision. However, the quantum correction to

the EFT Effective Action can be computed with no restriction. Analogously, this would correspond

to improve the predictions in higher orders for the Wilson coefficients, turn them more accurate.

Here, however, the treatment follows a different direction. The Effective Theory will be built

from a previous hypothesis on the Ultra-Violet (UV for short) complete model. The purpose is

still to raise a series of higher-dimension operators, but now from a different perspective - The

hypothesis of a UV complete model, more general than the SM, is necessarily accompanied by

the phenomenological fact that any new heavy field, with independent properties, has appeared

asymptotically in the experiments. Since these UV versions are in general more complicated,

it is important to develop a technique to simplify their analysis. By considering them entirely

during the computation of a particular process would represent a large step compared with the

experiments achievement, apart from the expected complexity likely to be required. The EFT at

this level arises as one attempt to reach new physics information in a more gradual manner. This

will define a method and the Effective Actions the most important tool.

From the Decoupling Theorem (see Chapter 3) it is known a priori that if a theory intrinsically

contains a heavy sector, this can be eliminated of the complete model by just cutting these heavy

lines out of any graph, i.e. by considering exclusively its renormalizable low-energy sector. The

procedure consists in a redefinition of fields and couplings of the low sector and - the most

important feature - is such that the error committed decreases with the heavy scale. Now,

assuming one particular UV theory is to assume the Standard Model as this low-energy model.

Since the Effective Action is related with the ultraviolet property of the complete theory, it is

therefore the adequate object to translate any information about these heavy particles to inside
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the constant couplings of these first corrections. Thus, to propose dim-6 operators is to propose

a representation to the error committed in assuming the Standard Model as a final theory for

describing process at intermediary energy scales.

The composition of LEFT must change as the matching between the Effective Actions ΓEFT

and ΓLUV is done in different order from the saddle-point expansion. These previous sentences

are then stating a clear separation into an Effective Theory and a Light-UV Theory. The latter,

however, will be definitely present during the rise of the former, following a type of recursive

construction.

In summary, there are present two important and distinct concepts for the method:

• ΓLUV: The Effective Action for the Light-UV model, i.e. the theory where heavy degrees of

freedom are disallowed to appear as external fields, is constructed by following the steps:

1. Make the Effective Action for the UV theory, including all the fields at the same level

and by following, for example, the method of saddle point approximation for extracting

corrections, expanding all the fields around their background.

2. Afterwards, replace the heavy fields by their classical, and non-local, solution. At this

context, there will not be an expansion into local terms.

3. In this sense, the Effective Action at classical level16 for the theory of Eq.(2.5) will just

be given by Eq.(2.9).

4. The final and unique model is still the UV theory, but the Effective Action may be

represented exclusively by a particular set of fields. The first correction for ΓLUV

will not be constructed from the Lagrangian in Eq.(2.9) but from the correspondent

correction for the effective action of the complete Eq.(2.5). Again, after this resolution,

the heavy fields are then replaced by their classical and non-local representation.

• ΓEFT: The matching is performed at the level of Effective Actions and, therefore, the

Effective Field Theory must emerge recursively, according to the desired level of accuracy

for the Wilson coefficients. In other words, each level for the matching, either at classical or

at quantum level, will imply different and independent theories.

1. The first theory, i.e. the starting point, will certainly be present in any of the improved

versions and is defined by equating the Γ(0)
EFT[φ] with Γ(0)

LUV[Φ̂c[φ],φ] when the classical

fields Φc are made local Φc → Φ̂c, employing the notation from [53]. Since Γ(0) is just

the classical action, the theory of S(0)
eff will be the local version of SLUV ≡ Γ(0)

LUV. In

the example of Section 2.1, the L (0)
eff is given by Eq.(2.9) after the insertion of the

expansion Eq.(2.12). This theory may be represented, for instance, as the SM plus n

16i.e. with no determinants;
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higher-dimension operators:

L (0)
eff =LSM +

n∑
i=1

c(0)
i Oi (2.88)

Regardless its origin, L (0)
eff must be phenomenologically constrained and theoretically

explored at any order in its coupling constants .

2. The next theory will certainly entail the previous one but now including a new set of

operators apart from additional contributions to the zeroth coefficients. Since this will

be considered the ultimate effective theory, it can be written without superscript:

Leff ≡L (0)
eff +L (1)

eff =LSM +
n∑

i=1

(
c(0)

i + c(1)
i

)
Oi +

p∑
j=n+1

c(1)
j O j (2.89)

As mentioned before, L (1)
eff is obtained recursively by equating the quantum correction

Γ(1)
LUV[Φc[φ],φ], expanded into local terms after the Trace computation and truncated

by power counting, with the equivalent Γ(1)
EFT[φ], which now includes a determinant of

δ2S(0)
eff

δφ2 , i.e. the quantum correction to the Effective Action of the theory L (0)
eff .

The formal clarification, the consequences and points on how the matching is performed will

be treated in detail along the next section.

2.4.1 The Matching Procedure

Before moving to the first application of matching by functional methods, one final procedure

must also be developed and, if possible, by involving the same transparent steps as those behind

the universal formula. The work [33] was dedicated to address this topic and, although it has

been later extended by the authors in [28] and [25], here most of their method must be preserved,

apart from one unpretentious attempt to leave the formulas with a simpler aspect. It will be seen

that the task of performing a Covariant Derivative Expansion, i.e. of matching while maintaining

the covariant derivative intact, is achieved through the expansion of the 1LUV Effective Action

into a series of local operators after the Trace computation, being the truncation defined according

to a power counting fixed a priori.

On what follows, first it will be done a brief but complete presentation of the entire set of

Wilson coefficients from the formalism developed in [33]. At this point, the review is general but

covers in particular the Chapter 3 of the referred article. Once the coefficients related to the

Universal Formula are fully identified, the focus are then directed to the additional terms, there

called mixed terms, by manifest reasons. At this point it will be argued that the final form of

mixed operators remains in a sense obscure in their work, with a general trace that, although

correct, is exhibited without a consistent support.

The present section is in fully agreement on the incontestable importance of all the concepts

and results presented in [33], apart from their accuracy. Here, however, is aimed to find the
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same universality as in Eq.(2.83), via one additional formula, preserving at the same time the

conceptual richness contained in both HLM articles.

The Matching procedure may be considered as the Correspondence Principle for Effective

Theories - The Ultra-Violet complete model and its Effective variant must agree at some scale µ.

In general the matching scale is assumed to be determined by the mass of the particles that

were integrated out of the UV theory, since it is being considered excessively heavy to emerge as

external degrees of freedom. The procedure consists on equating both theories represented by

their respective Effective Actions. If the ϕ is chosen to represent the complete set of Standard

Model fields, i.e. those present as asymptotic particles, then Φ will be denoting the counterpart, a

set of fields running exclusively through virtual processes. In the context of this Standard Model

Effective Field Theory the actions will be represented by

SUV [ϕ,Φ] = SSM[ϕ]+SΦ[ϕ,Φ] (2.90a)

SEFT [ϕ] = SSM[ϕ]+∑
i

ci(µ) Oi[ϕ] (2.90b)

At µ= M, the heavy scale, the ‘Light’ version of the UV must define the EFT, order-by-order, at

the level of Effective Actions:

Γ(0)
EFT [ϕ] = Γ(0)

L,UV [ϕ], at µ= M (2.91)

Γ(1)
EFT [ϕ] = Γ(1)

L,UV [ϕ], at µ= M (2.92)

The UV Effective Action, at the Log order is given by

ΓUV [ϕ,Φ]= SUV [ϕ,Φ]+ iα logdet
(
δ2SUV

δ(ϕ,Φ)2

)
(2.93)

and, by definition, is being expressed in terms of background fields.

The ΓL,UV is then constructed after ΓUV and through the replacement of Φ as an implicit

functional of the light fields, from the solution of the classical equation of motion

δSUV [ϕ,Φ]
δΦ

∣∣∣∣
Φc[ϕ]

= 0 (2.94)

Here it will be chosen a representation for Φc motivated by both the notation in [33] and the

general aspect of phenomenologically relevant Lagrangians, with a tree-level piece like

LUV ⊃ 1
2
Φ OΦ Φ + 1

2
ϕ Oϕ ϕ − ΦBϕ + QΦ (2.95)

where QΦ, a ‘quartic’ operator may depend on N-power of heavy fields, with N ∈ [3,4]. The

operator OΦ may also be a function of the light fields, OΦ =OΦ(ϕ) and, as one example, in the

case of a Scalar Fields it would be

OΦ ≡ [∆Φ]−1 − A(ϕ), ∆Φ ≡ [P2 −M2]−1 (2.96)
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As before, Pµ ≡ iDµ. The equation defining the classical Φc, Eq.(2.94), is chosen to be solved

linearly, discarding the contribution from Q, which results in

Φc[ϕ]= [
OΦ

]−1
Bϕ (2.97)

The Effective Action for the LUV , the fundamental object behind the construction of a

Effective Theory, will be given by

ΓL,UV [ϕ]=ΓUV [ϕ,Φc[ϕ]] (2.98)

At the EFT side the Effective Action requires a thorough conceptual analysis. The action

in Eq.(2.90b) is the final representation of a theory which is being constructed recursively and,

therefore, remains as an symbolic object. At the quantum level , the correspondent Effective

Action is given by the familiar formula

ΓEFT [ϕ]= SEFT [ϕ]+ iα logdet
(
δ2SEFT [ϕ]

δϕ2

)
(2.99)

Since the Wilson coefficients are determined after the local expansion of ΓL,UV , order-by-order, the

inclusion of the Log term in the equation for the still undetermined c(1)
i ’s is only meaningful once

it contains only the zeroth-order action, S(0)
EFT , emerged after the tree-level matching. It is crucial

to remark that in terms of the action for the EFT - instead of the Effective Action - the upper-index

is denoting the order in which the matching and the Wilson coefficients were extracted. That is

to say that the theory is being constructed by steps and following SEFT = S(0)
EFT +S(1)

EFT +·· · . The

logical significance of Eq.(2.99) is acquired by

ΓEFT [ϕ] = SEFT [ϕ]+ iα logdet

(
δ2S(0)

EFT [ϕ]

δϕ2

)
(2.90)= SSM[ϕ]+

N∑
i=1

ci(µ) Oi[ϕ]+ iα logdet

(
δ2S(0)

EFT [ϕ]

δϕ2

)

= SSM[ϕ]+
p∑

m=1

(
c(0)

m + c(1)
m

)
Om[ϕ]+

N∑
j=p+1

c(1)
j O j[ϕ]

+iα logdet

(
δ2S(0)

EFT [ϕ]

δϕ2

)
(2.100)

where the split of the Wilson coefficients is just turning explicit that the matching at quantum

level can originate a new set of operators. Finally, at zeroth-order the Effective Action for the

EFT is given by

Γ(0)
EFT [ϕ]= S(0)

EFT = SSM[ϕ]+
p∑

m=1
c(0)

m Om[ϕ] (2.101)

and, at the Log order,

Γ(1)
EFT [ϕ]=

N∑
i=1

c(1)
i Oi[ϕ]+ iα logdet

(
δ2Γ(0)

EFT [ϕ]

δϕ2

)
(2.102)
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where N ≥ p. Note, therefore, that the presence of S(1)
EFT in the above expression provides the

equation for the Log correction of the EFT, such that the matching Γ(1)
EFT [ϕ]=Γ(1)

L,UV [ϕ], is now

represented by

N∑
i=1

c(1)
i Oi[ϕ]+ iα logdet

(
δ2Γ(0)

EFT [ϕ]

δϕ2

)
= iα logdet

(
δ2SUV [ϕ,Φ]
δ(ϕ,Φ)2

∣∣∣∣
Φc[ϕ]

)
(2.103)

which must be solved for c(1)
i once the r.h.s is expanded through a covariant series of local terms.

Having found the corrections to c(0)
i , and possible new operators, the EFT is then redefined and

corresponds a new and independent theory, more accurate than that raised by the tree-level

matching.

The Effective Field Theory is, in general, experimentally constrained only at linear order

on the final ci. That is to say that the action defining the final EFT is explored like a classical

generator functional. Thus, the n-point function behind the process of interest is given by the

correspondent Feynman diagram with a single dot, usually expressed like ⊗, i.e17

δnSEFT

(δφ)n ≡ ci ⊗ for Oi =ϕ1 · · ·ϕn (2.106)

The reason for not considering higher perturbative corrections on ci, for a specific process,

is comprehensible - given the observable, the matching at quantum level is assumed to be

sufficient precise, and the loop corrections including light particles can be summarized from the

Renormalization Group Equations. The ci(M) provide the initial condition to the RGE, which

then provide their appropriate evolution to the scale where the matrix element 〈Oi〉 is in fact

evaluated.

As clarified in the Section 3.1, the separation into high and low energy regimes for coefficients

and operators, respectively, is one of the most important step composing the method for investigate

phenomenology via the EFT approach. Here, it corresponds to the fact that the information about

the propagation of the heavy particles is all contained in the Wilson coefficients to the local

operators. The evaluation of 〈Oi〉 is usually performed by non-perturbative methods and, even

for classical processes18, like Kaon decays, still retain large uncertainties.

The task of running ci(M) down to the scale µ is motivated by the following hypothesis -

The improvement of non-perturbative techniques in the determination of the matrix element

〈Oi〉 will not be sufficient to fully explain the particular anomaly being analyzed. The possible

17The Feynman rule can be more transparent in the momentum space:

δnSEFT
δφ1 · · ·δφn

∝ ci
n∏

i=2
δ(xi − x1) (2.104)

which converts into

G(n)
p ∝ ci

∫
dx e−ip·x n∏

i=2
δ(xi − x1)= ciδ

(
n∑

i=1
pi

)
(2.105)

where a≡ (a1, · · · ,an) and the final delta is therefore representing the momentum conservation;
18Here, by classical it is meant historically relevant;
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disagreement between observable and theory should be explained by a precise determination

of the Wilson coefficients. The persistence of a anomaly might be a sign of New Physics and

the current ∆I/2 rule from the QCD corrections for meson decays is one of the most important

examples of this philosophy [21].

The main topic of this section consists on solving the Eq.(2.103) to the c(1)
i , what involves one

additional step related to the fact that now δ2SUV [ϕ,Φ]
δ(ϕ,Φ)2 is an Hessian matrix including field indices,

i.e.

H ≡ δ2SUV [ϕ,Φ]
δ(ϕ,Φ)2 =

(
δ2S
δΦδΦ

δ2S
δΦδϕ

δ2S
δϕδΦ

δ2S
δϕδϕ

)
(2.107)

In the Appendix of [33], however, the authors have shown one important identity that permits

H to be written as a sum of two independent logarithms, what finally provides a very logical

meaning to the form of Eq.(2.103). It follows:

logdet

(
δ2SUV [ϕ,Φ]
δ(ϕ,Φ)2

∣∣∣∣
Φc[ϕ]

)
= logdet

(
δ2SUV [ϕ,Φ]

δΦ2

∣∣∣∣
Φc[ϕ]

)
+ logdet

δ2Γ(0)
L,UV [ϕ]

δϕ2

 (2.108)

where Γ(0)
L,UV [ϕ]= SUV [ϕ,Φ[ϕ]]. Thus, the matching equation, at Log level, converts into

N∑
i=1

c(1)
i Oi[ϕ] = iα logdet

(
δ2SUV [ϕ,Φ]

δΦ2

∣∣∣∣
Φc[ϕ]

)
+

+iα

logdet

δ2Γ(0)
L,UV [ϕ]

δϕ2

− logdet

(
δ2Γ(0)

EFT [ϕ]

δϕ2

) (2.109)

The above equation implies a strong simplification on the procedure. The first line can be

promptly identified with the matter of the previous section and its relative operators will then be

extracted from the Universal Formula of Eq.(2.83). The correspondent coefficients was denoted

by the authors of [33] like ci,heavy, since they are connected with diagrams including only heavy

internal lines.

The second term, inside the brackets in Eq.(2.109), is a new object and the correspondent

Wilson coefficients were called ci,mixed by HLM. Here, none of these terminology will be adopted,

despite of their importance in a conceptual level. Notwithstanding, the main question to be

addressed is what is the real difference between these two similar Logs.

As has been stated recurrently, the determination of ci is done through a local expansion of

Γ(0)
L,UV in Eq.(2.109) up to some predetermined power in the fields. The Γ(0)

EFT is originated by a

power counted truncation performed at the linear level. Notwithstanding, now the expansion,

made a posteriori, is in a non-linear context. This justify the fact that the difference inside the

brackets does not trivially vanishes - Γ(0)
L,UV is intact a priori and only expanded as the argument

of a Log function. The correspondent series will certainly contain the Γ(0)
EFT piece, but in such a

way that the cancellation still have operators on the desired field dimension. In summary, the
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power counting at the quantum level is independent of that performed linearly, what in these

terms sounds like a reasonable statement.

The precise cancellation of common terms and the counting in this framework can be explicitly

achieved by considering a generic representation for the UV Lagrangian as Eq.(2.95). The classical

Effective Action for the LUV corresponds simply to the action SUV [ϕ,Φ[ϕ]], or:

Γ(0)
L,UV =

∫
x

(
1
2
Φc OΦ Φc + 1

2
ϕ Oϕ ϕ − ΦcBϕ + QΦc

)
(2.110)

and, from Eq.(2.97), it follows that

Γ(0)
L,UV =

∫
x

(
1
2
ϕ Oϕ ϕ − 1

2
Bϕ

[
OΦ

]−1
Bϕ + QΦc

)
(2.111)

The series to be truncated during the raising of Γ(0)
EFT usually comes exclusively from

[
OΦ

]−1,

since the QΦc is expected to break the adopted power counting up dim-6. Here this truncation

will be denoted like: [
OΦ

]−1 =O
Φ
(0) +OΦ(1) (2.112)

where the ‘bar’ in the r.h.s is referring to local operators. The O
Φ
(0) is the part that saturates the

power counting during the matching at tree-level and OΦ(1) is the reminiscent non-local part that

might be present to the power counting during the Log matching.

Since the importance of ΓL,UV is based entirely on providing one equation for the Effective

Theory construction, the inverse operator can be replaced by ‘bar’ operators without loss of

generality. In other words
[
OΦ

]−1 can always be expanded exactly into local and non-local

operators via a recursive formula. For example, if A(ϕ)= 0 in the representation of Eq.(2.96):

[OΦ]−1 =∆Φ 1= −
[

1
M2 + P2

M2
1

M2 −P2

]
2= −

[
1

M2 + P2

M2

(
1

M2 + P2

M2
1

M2 −P2

)]
:
n= −

[
1

M2 + P2

(M2)2 +·· ·+ (P2)n−1

(M2)n + (P2)n

(M2)n
1

M2 −P2

]
= − 1

M2

(
1+ P2

M2 +·· ·+ (P2)n−1

(M2)n−1

)∣∣∣∣
local

+ (P2)n

(M2)n
1

P2 −M2 (2.113)

where it also has been assumed commutation into D and M components.

In order to simplify the analysis, the quartic self-interaction term QΦc will be assumed to not

enter at this level of the matching. Thus, from the previous arguments, the Eq.(2.111) can be

rewritten as

Γ(0)
L,UV =

∫
x

(
1
2
ϕ Oϕ ϕ − 1

2
Bϕ

[
O
Φ
(0) +OΦ(1)

]
Bϕ

)
(2.114)

At the other hand, the Γ(0)
EFT , by definition, corresponds to the same form, although containing

the ‘zeroth-order’ piece, i.e.

Γ(0)
EFT =

∫
x

(
1
2
ϕ Oϕ ϕ − 1

2
Bϕ O

Φ
(0) Bϕ

)
(2.115)
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Back to the brackets of Eq.(2.109), it follows that

N∑
i=1

c(1)
i Oi[ϕ] ⊃ iα

logdet

δ2Γ(0)
L,UV [ϕ]

δϕ2

− logdet

(
δ2Γ(0)

EFT [ϕ]

δϕ2

)
= iα

{
Trlog

(
Oϕ− [

H(0) +H(1)
])−Trlog

(
Oϕ−H(0)

)}
(2.116)

where H(i) is now denoting the Hessian matrix of 1
2 Bϕ OΦ(i) Bϕ over light-fields, i.e. H [.]= δ2

δϕ2 [.].

Note that minus sign has been factorized out of the bracket. Moreover, the sum of the first term

is then exploring the fact that H is a linear application19.

Next, the trace of the light operator can be subtracted through the identity

N∑
i=1

c(1)
i Oi[ϕ] ⊃ iα

{
Trlog

(
1− [

Oϕ
]−1 [

H(0) +H(1)
])−Trlog

(
1− [

Oϕ
]−1

H(0)

)}
≡ iα

{
Trlog

(
1− [

A(0) +A(1)
])−Trlog

(
1−A(0)

)}
(2.117)

and for future references the definition of A(i) must be registered explicitly:

A(i) ≡
[
Oϕ

]−1
H

[
1
2

Bϕ OΦ(i) Bϕ

]
(2.118)

The power counting will finally be made transparent through a series for the logarithm:

N∑
i=1

c(1)
i Oi[ϕ] ⊃ iαTr

∑
p

1
p

{
A

p
(0) −

[
A(0) +A(1)

]p
}

(2.119)

The cancellation of A(0), remembering that these are the diagrams coming exclusively from the

EFT, can then be directly identified after a binomial expansion of the last bracket:

N∑
i=1

c(1)
i Oi[ϕ] ⊃ iαTr

∑
p

1
p

{
A

p
(0) −

p∑
k=0

(
p

k

)
A

p−k
(0) A k

(1)

}

= −iαTr
∑
p

1
p

{
p∑

k=1

(
p

k

)
A

p−k
(0) A k

(1)

}
(2.120)

The above formula is the final complement to the matching at the log-level and was introduced

in [33] in a generic form, without mentioning the dependence of the coefficients. It is important

to mention that the binomial may be expressed in its canonical formula once the operators

A(i) commute. In a more specific case, the binomial coefficients are informing the number of

combinations to the non-commuting objects, like for example:

(A+B)4 ⊃ 6A2B2 or 6A2B2 → A2B2 + ABAB+BA2B+ AB2 A+BABA+B2 A2 (2.121)

19Consider f (x) and g(x) two functions of multi-variables x, then:

H
[
α f (x)+βg(x)

]=αH [ f (x)]+βH [g(x)]

for constants α and β.

38



2.4. EVALUATING THE FUNCTIONAL DETERMINANT - ON THE MIXED TERMS

Thus, although in a compact form, the result of Eq.(2.120) can be very arduous to compute, even

for the simplest dim-6 criteria.

In summary, the final formula to the matching at log-level will be given by

N∑
i=1

c(1)
i Oi[ϕ]= iαTr log

(
δ2SUV [ϕ,Φ]

δΦ2

∣∣∣∣
Φc[ϕ]

)
+ iαTr

∑
p

1
p

{
p∑

k=1

(
p

k

)
A

p−k
(0) A k

(1)

}
(2.122)

The first trace will be computed through the Universal Formula Eq.(2.83) and represents the set

of process containing heavy internal lines only. The second piece, from its complexity, requires

additional comments:

• The trace is complementing the set of operators from processes containing both light and

heavy internal lines inside the loop;

• The only simplification that has been done on the UV theory concerns the omission of

quartic self-interactions represented by QΦ in Eq.(2.95). In fact these terms will be more

suppressed at this level, since the derivatives are being taken, a posteriori, in the Higgs

fields. The Wilson coefficients dependent on the QΦ parameters are then being left to the

first part of the matching, with heavy-lines only. Nevertheless, in order to be complete,

the dependence in λΦ corresponds to an additional piece in the Hessian H(1) and does not

imply any change in the derivation of Eq.(2.122);

• As it was mentioned for Eq.(2.96), the generic operator OΦ may still contain a function on

the light fields, so-called A(ϕ). Remembering that

OΦ ≡ [∆Φ]−1 − A(ϕ), ∆Φ ≡ [P2 −M2]−1 (2.123)

In the framework where A(ϕ) 6= 0, the expansion of [OΦ]−1 will require one additional step

given by

[OΦ]−1 = 1
P2 −M2 − A

' ∆Φ+∆Φ A ∆Φ+·· · (2.124)

where the ∆ operator, which includes the covariant derivative, is opened on the right.

The two terms in the above series are usually sufficient and, then the local expansion of

Eq.(2.113) can be taken. All the steps for the derivation of Eq.(2.120) follows in the same

way, although now the O
Φ
(1) is complemented with terms in the form O

Φ
(1) ⊃ ∆Φ(0) A ∆Φ(1) +

∆Φ(1) A ∆Φ(0) +∆Φ(1) A ∆Φ(1).

• Since the main purpose of the present work is to clarify the light-heavy matching as

represented in Eq.(2.122), the A(ϕ) parameters will not be included at this level and their

contribution to the Wilson coefficients will be left exclusively to the Universal Formula
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application. Notwithstanding, the previous item was completely covered by [33], [28] and

[25] for the example of the Electroweak Theory with a Triplet Scalar. In order to compare

their results with those coming from the application of the formula Eq.(2.122), the model

will also be treated in the Chapter 5.

2.4.2 Summary

In their presentation of mixing terms, the authors of HLM chose a subtraction a posteriori, made

inside the functional trace, what may render a lack a clarity. Here it was intended to separate

the pieces at the beginning, resulting in a series that can then be used in an algorithmic form. In

summary,

• It was first supposed a generic Lagrangian to the UV theory, in Eq.(2.95), considering

both tre-level pieces as quartic self-interactions. Although the aspect resembles the scalar

case, at principle no additional complexity should be found in the fermionic case, already

discussed in Appendix of [33];

• The formula for subtraction at the Log-level, Eq.(2.109), was then applied for both the

generic UV and the EFT action;

• The LUV theory was split into local and non-local parts according to the definition of the

EFT at tree-level. This marks where the series must be recovered;

• The Log is expanded and the linear local piece is extracted. The Eq.(2.120) is the final

expression.

Comments on the last section:

• It is not necessary to carry two calculations, the Eq.(2.120) is already including the subtrac-

tion;

• The Hessian matrix is also unique, for both local or non-local parts, what will be illustrated

in Chapter 5 and can actually be noted in the definition of Eq.(2.118). Thus, even the

Hessian is carried just once;

• When the operators O contains additional functions of the light fields they may be replaced

by the series:

[OΦ]−1 = 1
P2 −m2 − A

=
∞∑

n=0

[
1

P2 −m2 A
]n 1

P2 −m2 (2.125)
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2.4.3 On the Meaning of the Subtraction

During these computations some questions must arise in a very natural way: (i) Why is this

subtraction needed since the UV theory is known? or in other terms - (ii) Since the real purpose

is to integrate out a heavy field, what results in the ΓL,UV theory, why it is not sufficient to just

plug this non-local object into the equation for the Effective Action, Eq.(2.93), and perform the

local expansion a posteriori? Finally, (iii) what is the importance of the matching?

All of these questions are very logical. In fact, one starts with the UV theory and extracts

the 1PI generator functional at the Log-level via the Effective Action. Every step can be done

once and for all, resulting in a sum of operators informing on the significance for a given physical

process. The answer for the above questions relies on a single statement - The Effective Action

has the status of a Generating Functional, not of a Theory. This consists in an independent and

very different perspective.

The Effective Theory will assume the complete set of operators generated by the Effective

Action, at leading or Log-level, as the action of a new and independent model, valid and very

precise at low-energies according to a definite scale. For being a new model, the associate

generator functional of 1PI vertex is given by the usual Log correction, of Eq.(2.99). Thus, if

this theory was emerged by the LUV only, its Log correction would result in coefficients for the

n-point functions which was in reality counted twice. The subtraction is preventing this double

counting and making the process consistent.

The previous paragraph can cover the question (i) and leads to a rectification of question (ii) -

The procedure of integrating out a field does not resolve the ‘real purpose’ to the construction

of an EFT, but the necessity of calculating complex processes, often involving a large number of

particles or events. If it is then feasible to propose a theory with a reduced number of degrees of

freedom, it is certain that this would be technically significant.

Finally, the third question is reached. This new theory is by definition an approximate variant

of something more universal. It is therefore required a correspondence principle, some coherent

argument that guarantees its limit of validity - the principle is the matching procedure.
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CHAPTER 3

FUNDAMENTALS OF EFFECTIVE FIELD THEORIES

One of the most important tools during the extraction of physical predictions from a quantum

field theory is the set of differential equations composing the renormalization group, and not

only for practical purposes, but for its conceptual relevance. The running coupling analysis is a

fundamental part of the applicability of Effective Field Theories. The EFT Lagrangian is defined

after the replacement of the set composed by non-local product of operators for a sum of local

terms whose coefficients will carry all the information about the original small distance of a

heavy particle propagation. As mentioned before, the renormalization procedure is based in a

fundamental principle which can be stated in many equivalent forms, and in this work it will

be chosen as - any measurement in physics consist on variations. In other words, a number

may not have any meaning unless it is giving through a comparison and such that the final and

relevant physical result do not depend on the reference for the subtraction. This invariance on a

‘translation of references’ is what gives origin to the renormalization group equations and results

in a strong simplification of calculations in perturbation theory.

For illustrating these statements, consider a generic interaction in the form

Sint ⊃ eχχσ (3.1)

Here, a mention to the physical nature of the fields χ and σ is not necessary. Assume that the

coupling constant e has been measured at some reference scale p2
0 from the fitting of a particular

set of data to the scattering χχ→ χχ. The S-matrix element is associated with the time-ordered

correlation function S(4) ∼ 〈Ω|T{χ(x1)χ(x2)χ(x3)χ(x4)}|Ω〉, with |Ω〉 and χ the vacuum and fields

in the interacting scenario, respectively. For perturbative QFT this object is better to be rewritten

in terms of correlation functions in the free theory, like

S(4) ∼ 〈0|T{χ0(x1)χ0(x2)χ0(x3)χ0(x4) eiSI [χ0,σ0]}|0〉 (3.2)

where SI denotes the interacting action and the sub-index zero the free fields operators. The

operators on the external points create the free asymptotic particles while, diagrammatically,

the fields on SI represent internal lines connecting these points. In other words, the interaction

can be represented by a set of free fields allowed to virtually play a role during the short amount

of time that the process occurs. By considering the reduced notation S(4) ∼ 〈eiSI 〉 the simplest

non-trivial term from the interaction with σ is the tree-level piece

S(4) ∼ (ie)2
∣∣∣
p0
〈(χχσ)x(χχσ)y〉 ≡ (ie)2

∣∣∣
p0
〈−〉 (3.3)
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where the small line is just denoting a tree-level computation. The higher-order terms in the

expansion of SI will correspond to Feynman diagrams, for example, from all the products of

1-loop interactions such that, by factorizing e2, can be represented like:

S(4) ∼ (ie)2
∣∣∣
p0

[〈−〉+ (ie)2〈◦〉+ (ie)4〈◦×◦〉+ ·· ·+ (ie)2n〈◦× · · ·×◦〉]≡ (ie)2
∣∣∣
p0
〈leading log〉

∣∣∣p0

p
(3.4)

Along the summation of the first loops, the fields will get rescaled such that the matrix element

may contain a dependence in the reference scale p0. Suppose the process occurs on the physical

scale p2 and that the dependence of the brackets on the subtraction scale can be written like

〈leading log〉
∣∣∣p0

p
∼ 1

1− e2

12π2 log
(

p2

p2
0

) ×〈−〉
∣∣∣
p

(3.5)

where again 〈−〉
∣∣∣
p

is just representing a simple matrix element of a tree-level diagram. It is clear

that if the first measurement of e had been performed in a different value p̄0, instead of p0, the

correspondent change in e(p̄) would be compensated by a change in the log, such that the total

S(4), would remain invariant on the particular choice of reference1.

The Renormalization Group Equations emerge as technique for summing logs in a direct

manner, by taking advantage of this feature - physical quantities will not depend on the choice of

subtraction point. In general, for representing this arbitrariness for the renormalization scale, the

symbol µ is preferred instead of p0 [49]. By replacing Eq.(3.5) in Eq.(3.4), S(4) can be represented

like

S(4) ∼ (
ie(p2)

)2 〈−〉
∣∣∣
p

(3.6)

with the effective coupling constant absorbing the rescaling factor. Thus, the solution of the RGE’s

will correspond to an efficient way to perform perturbative corrections, turning the predictions

more accurate. It is certain, therefore, that if the physical scale of the process was the same of

the first measurement, i.e. p0, there would be no need for calculating corrections. In fact, as it

will be treated in more detail, once the renormalization parameters for the fields involved in

the desired process are known, there is no necessity for calculating loops at all - It is sufficient

to solve the set of differential equations composing the RGE. The final problem will consist on

calculating the remaining tree-level matrix element, what is straightforward if the assumption of

free fields at asymptotic times holds, but challenging when one uses a theory of quarks to create

and annihilate mesons, for example.

Finally, this introductory discussion is clearly supported by the QED and the electric charge,

but the same principles and interpretation are valid for other scenarios. The EFT can then be

viewed as technique that explores this philosophy. As mentioned, the solution of the differen-

tial equation for the coupling constants will require a initial, or boundary, condition. In the

EFT approach, for example, the form of extracting this information can define two different

1Although this effective coupling is invariant under a change of the subtraction scale it is in fact dependent on the
subtraction scheme (see [15], [52]);
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perspectives - if the extraction is made via an experimental measurement the Effective Theory is

being constructed in a bottom-up approach such that the new operators are inserted by following

the experimental hints. At the other hand, if a complete theory is assumed a priori, the initial

condition is extracted via a correspondence principle which states that the both theories must

match at a decoupling scale. The procedure in this case will provide the initial condition for the

coefficients by following the hints of the complete theory.

+ Power counting only makes sense if the higher-dimension terms in the expansion are in fact

gradually suppressed. This is a property that requires a proof. Here, supported by the work of

John Collins in [14] it will be treated the elements for demonstrating the validity of this criteria.

If it can be shown that the heavy particle can decouple of the theory, whose effects are given by

powers of its mass (decoupling theorem), any prediction coming from these vertices will certainly

be equally suppressed.

The predictive strength of the EFT must count still with one important aspect of non-

renormalizable theories - the locality of the counterterms. This condition can be translated

into pattern of the divergences which arises a polynomial in the external momenta. In other

words, a given vertex can be renormalized through a derivative interaction, associated with a

new divergent vertex and, thus, with a new counterterm etc.. By considering one infinity, but

countable, set of derivative interactions the EFT is renormalized, such that any new prediction

turns gradually smaller according to the dimension of the respective operator.

+ On what follows, the heavy mass will be generically denoted by “m”. Any light mass will

receive the correspondent index. It has been present in any step of the previous chapter that the

making of an EFT occurs through a local expansion of the operators inside the Effective Action

for the Light-UV theory. All the information about the heavy field propagator must be contained

in an operator like in Eq.(2.125)

[OΦ]−1 = 1
P2 −m2 − A

=
∞∑

n=0

[
1

P2 −m2 A
]n 1

P2 −m2 (2.125)

The correlation functions generated by ΓLUV will contain products of operators on the light fields

at different space-time points, connected through this functional propagator. The matching will

then be performed, in covariant form, by an operator product expansion, such that the subtraction

with the ΓEFT contributions implies an explicit step of how the information about the presence of

a heavy particle is being retained.

Along the construction of the EFT it is fundamental that the global symmetry of the renormal-

izable sector of the expansion is still preserved by its higher-dimension elements. In general, this

feature is present from the integration of gauge-bosons and singlets of the original UV theory, one

aspect that produce simplifications, like for the RGE of Wilson coefficients of conserved currents.
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CHAPTER 3. FUNDAMENTALS OF EFFECTIVE FIELD THEORIES

3.1 The Operator Product Expansion

The expansion of the effective action for the so-called Light-UV theory during the matching

procedure condense the information about the heavy fields into the coefficients of local operators.

This method summarizes the role of the Operator Product Expansion. This section introduces the

topic and follows the presentation by Peskin & Scroeder [42] and Collins [14].

The clearest technical benefit of making an EFT from a Top-Down approach consists in

rewriting the a set of more complex interactions into a single vertex of a new action. one

additional motivation comes from the experimental fact that new heavy degrees of freedom, once

the scale of the process is not sufficient to produce it on-shell, will propagate by virtual lines with

a short range, of order (x− y)∼ 1
m . Suppose, for example, a process consisting in the scattering of k

light fields, here represented like {
∏k

i φ(yi)} and yi denoting the asymptotic region. The S-matrix

piece is extracted from a series of matrix elements connecting these external fields with the

interacting points. This connection may be given by a product of operators Oa,Ob separated by a

distance x such that:

Gab (x; {yk})= 〈
Oa(x)Ob(0)

k∏
i=1

φi
〉

(3.7)

According to Wilson’s hypothesis, this product may be replaced by a sum of local operators

defining a basis and preserving the same global symmetry of the original product. The coefficients

of this linearly independent operators must retain the information about the small distance x.

These sentences may be converted into

Gab (x; {yk})= 〈
Oa(x)Ob(0)

k∏
i=1

φi
〉 → ∑

n
cab

n (x)
〈
On(0)

k∏
i=1

φi
〉≡∑

n
cab

n (x) Gn({yk}) (3.8)

Looking in the opposite direction, this new basis of local operators could have been assumed in

the original Lagrangian a priori, once the criteria of small distance is valid. Any computation

from this new theory should then follow the same basic premises that have led to Eq.(3.4), this

time for the coefficients cab. Both the matrix elements and the c’s are defined according to a

renormalization scale. The knowledge of the variables at a given subtraction point will provide

an initial condition for solving the renormalization group equations.

As mentioned before, the solution for the RGE’s provides a direct computation of higher-order

terms in perturbation theory, generally expressed as a direct log summation. The solution must

give a form for the an effective coupling cab.

The bare Green’s function for the original product can be given by

G(0)
ab (x; {yk})= 〈

O(0)
a (x)O(0)

b (0)
k∏

i=1
φ(0)

i
〉

(3.9)

with the index indicating bare fields. The relation with the renormalized Gab can be written like

G(0)
ab = Z

k
2 ZaZbGab (3.10)
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3.1. THE OPERATOR PRODUCT EXPANSION

with Z′s the field-strength for the respective field. The invariance of the bare functions on the

subtraction scale µ will lead to the differential equation:

µ
dG(0)

ab

dµ
= 0→ Z

k
2 ZaZb

{
k
2
µ

Z
dZ
dµ

+ µ

Za

dZa

dµ
+ µ

Zb

dZb

dµ
+µ∂µ+µ∂g

∂µ
∂g

}
Gab = 0 (3.11)

with Zi denoting the possible combinations of field-strength coming from the operators. Analo-

gously, the coupling constant g is representing the presence of all the light-fields behind these

corrections.

By definition, the anomalous matrix and the β-function are given by

γ j ≡ µ

Z j

dZ j

dµ
, β(g)=µdg

dµ
(3.12)

what provides the usual representation for the Callan-Symanzik equation:(
µ∂µ+β∂g + k

2
γ+γa +γb

)
Gab(µ)= 0 (3.13)

The same derivation may be performed for Gn, such that(
µ∂µ+β∂g + k

2
γ+γn

)
Gn(µ)= 0 (3.14)

It is common that the operators can mix via log corrections through one anomalous dinesion

matrix γi j. In this context, the Callan-Symanzik equations is better represented by a general

form for the coefficients. In short notation, consider the OPE written like:

G i j = cn
i jGn (3.15)

with a sum in repeated indices. Besides,

[
µ∂µ+β∂g

]
Gab =−k

2
γGab −

[
γaiδ jb +γb jδia

]
G i j (3.16)

and [
µ∂µ+β∂g

]
Gn =−k

2
γGn −γnpGp (3.17)

From Eq.(3.15) in Eq.(3.16):

[
µ∂µ+β∂g

]
(cn

abGn)=−k
2
γ(cn

abGn)− [
γaiδ jb +γb jδia

]
(cn

i jGn) (3.18)

or

Gn
[(
µ∂µ+β∂g

)
cn

ab
] = −cn

ab
[(
µ∂µ+β∂g

)
Gn

]− k
2
γ(cn

abGn)− [
γaiδ jb +γb jδia

]
(cn

i jGn)

(3.17)= cn
abγnpGp − [

γaiδ jb +γb jδia
]
(cn

i jGn) (3.19)

and, finally, (
µ∂µ+β∂g

)
cn

ab = c j
abγ jn − cn

ibγai − cn
a jγb j (3.20)
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CHAPTER 3. FUNDAMENTALS OF EFFECTIVE FIELD THEORIES

The operators in the product are commonly found to be currents from a global symmetry also

preserved by On, what implies a zero anomalous matrix. Therefore, the renormalization group

equations can be summarized like

(
µ∂µ+β∂g

)
cn

ab = c j
abγ jn (3.21)

Since the initial product which gave origin to the local set of operators is general, the indices ab

can just be hidden. Moreover, the Wilson coefficients will depend explicitly on µ or implicitly via

the coupling constants, such that the derivatives inside the brackets can be replaced by a total

derivative. By redefining the γ by its transpose, it follows a reduced representation for the RGE:

µ
dci(µ)

dµ
= 1

16π2γi j c j (3.22)

where the 1
16π2 factor represents the first-log correction. The anomalous matrix will be determined

from the renormalization of every operator inside the basis and will depend on the subtraction

scale through the constant couplings. However, as explained in Chapter 6, these matrix are in

general assumed to be fixed at the electroweak scale and their couplings do not run. The matrix

equation of Eq.(3.22) can be solved in a first approximation by disentangling the correlated

coefficients, fixing them at µ=Λ, the heavy-scale, and solving for ci. The procedure results in2

ci(mW )= ci(Λ)−∑
j

1
16π2γi j c j(Λ) log

(
Λ

mW

)
(3.25)

a solution that will be repeatedly used in Chapter 6. The total anomalous dimension matrix for

the Standard Model Effective Field Theory, at dim-6, has been computed in [1], [34] and [35].

3.2 The Weinberg Theorem

This section presents a fundamental theoretical element behind the use of Effective Field Theories

- The locality of the counterterms and how it serves as strong support for the consideration of

non-renormalizable theories as a predictive tool. The proof is given by the Weinberg’s theorem

and is fully presented in J.Collins [14]. Here the essential aspects of the proof will be presented by

2For completeness, the solution to d y
dx = ay+b can be achieved by first assuming y= eβ(x)−b

a , which corresponds to

d y
dx

= eβ(x) or
β̇

a
eβ(x) = eβ(x) →β(x)−β(x0)= a(x− x0) (3.23)

such that

y(x) = eβ(x0)+a(x−x0) −b
a

= y(x0) ea(x−x0) + b
a

[
ea(x−x0) −1

]
(3.24)

In the present case: x = logµ, y(x0) = ci(Λ), a = 1
16π2 γii , b = ∑

j 6=i
γi j

16π2 c j(Λ), and the exponential expanded at
first-order in a.
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3.2. THE WEINBERG THEOREM

including Collins notation and during the development a classification of quantum field theories

renormalizability must be performed.

The kernel for Weinberg’s theorem involves the observation that the degree of divergence

δ(Γ)≥ 0 of a 1PI graph Γ, with no subgraphs, can be gradually reduced by one unit through the

application of a derivative ∂ in the external momenta, i.e.:

δ(∂Γ)= δ(Γ)−1 (3.26)

which implies that ∂λ with λ= δ(Γ)+1 may leave ∂λ(Γ) finite. By defining R(Γ) equals to the sum

of the 1PI Γ with its counterterms C(Γ), it follows that

R(Γ)=Γ+C(Γ)→ ∂R(Γ) = ∂Γ+∂C(Γ)

= ∂Γ+C(∂Γ)

= R(∂Γ) (3.27)

where the second equality is equivalent to assert that since ∂R(Γ) corresponds to a finite term,

then ∂C(Γ) is actually renormalizing ∂Γ, and therefore can be made equal to C(∂Γ). To ensure the

commutation relation ∂C(Γ)= C(∂Γ) implies C(Γ) as a polynomial of degree δ(Γ) on the external

momenta. In fact,

R(∂Γ)= ∂Γ+∂C(Γ)→ R(∂λΓ)= ∂λΓ+∂λC(Γ) (3.28)

Thus, since λ= δ(Γ)+1 make ∂λΓ finite, it follows that

∂λC(Γ)= 0 (3.29)

and C(Γ) is a polynomial of order δ(Γ).

This introduction may sound trivial but the complete argument requires the analysis of Γ

when it includes divergent sub-diagrams 1PI, which has been entirely treated in Collins (Chapter

5).

The meaning of Weinberg’s theorem will lead to a set of important conclusions for the analysis

of a field theory renormalizability. Again, by following J.Collins, if Γ is a one-particle irreducible

graph with degree of divergence δ(Γ), it follows that its mass dimension d(Γ) plus the dimension

of its correspondent couplings, here denoted ∆(Γ), is such that

d(Γ)= δ(Γ)+∆(Γ) (3.30)

i.e. given the specific vertex, the degree δ(Γ) associated with the integrals is connected with the

mass dimension of couplings. The counterterms, being polynomials in the external momenta, can

then be written through new couplings and derivatives with a correspondent dependence on the

fields according to the particular Γ. In other words, if C is the counterterm to Γ, then

δ(C)+∆(C)= d(Γ) (3.31)
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where δ(C) is the number of derivatives and ∆(C) the mass dimension of the couplings. Once the

order of the polynomial is the degree of divergence of Γ, the maximum number of derivatives is

given by δ(Γ), such that

∆(C) = d(Γ)−δ(C)

≥ d(Γ)−δ(Γ)=∆(Γ) (3.32)

Thus, if the couplings do not have a negative mass dimension, this aspect must be preserved by

the couplings of the counterterms. The importance of this statement remounts Eq.(3.30)

δ(Γ)= d(Γ)−∆(Γ) (3.33)

Since d(Γ) must be fixed by the particular process, i.e. n-point function, of interest, the insertion

of internal lines in the 1PI graph with couplings of negative dimension will turn the graph

increasingly divergent. At the order hand, d(Γ) must decrease by recovering the LSZ reduction

formula ([49]):

δ4(
∑

p)Γ ∼
b∏

i=1

∫
d4xi e±pi xi2i · · ·

f∏
j=1

∫
d4 yj e±p j yj /∂ j · · ·

s∏
k=1

∫
d4zke±pk zk2k · · ·×

×〈ψ1 · · ·ψ f B1 · · ·Bbφ1 · · ·φs〉 (3.34)

which implies:

d(Γ) = 3
2

f +b+ s−2b−3 f −2s+4

= 4−
(

3
2

f +b+ s
)

(3.35)

If the couplings have positive mass dimension, from Eq.3.33, the Γ will be finite after some

number of couplings insertions (relevant interactions). At the other hand, couplings with null

dimension may present divergent n-point functions for some values of n (marginal). Finally, as

stated before, couplings with negative dimension may turn the graph arbitrarily divergent. For

illustrating this, one example from M. Schwartz can be picked [49]:

L =−1
2
φ(2+m2)φ+ g

4!
φ22φ2 (3.36)

with [g]=−2. The first loop for Γ(4) will present, from Eq.(3.35),

d(Γ(4))= 4−4= 0 (3.37)

and ∆(g2)=−4, implying δ(Γ(4))1-loop = 4. This could be directly confirmed, once δ comes from the

integral:

→ I =
∫

d4k
k4

k4 → δ(Γ(4))1-loop = 4 (3.38)
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By inserting new couplings in Γ(4):

→ ∆(Γ)= (g−2)4 =−8 or
∫

(d4k)3 (k2)4

(k2)6 → δ(Γ(4))3-loop = 8 (3.39)

which could have been shown through d(Γ(4))= 0→ δ(Γ(4))3-loop = 0+8.

The relevant consequence of the above discussion can be read from Eq.(3.32). The countert-

erms must preserve the renormalizability of the theory, once they are limited by the dimension

of the n-point graph. If the original Lagrangian contain couplings up to null mass-dimension,

the theory will preserve its functional form, with a definite number of counterterms. In the

non-renormalizable scenario, the counterterms must preserve the global and discrete symmetries

of the starting theory, thus permitting to count the number of new interactions emerging. From

the above example, ∆(Γ) = g2 = −4. In order to preserve the φ-parity, the non-renormalizable

interactions inserted corresponds to ∆(C) ∈ {−4,−2,0}, what will certainly lead to new divergences,

renormalized systematically by the same procedure.

In summary, the set of counterterms for a non-renormalizable theory, although infinite,

is definitely countable and with well-defined local properties. Their insertion a priori in the

Lagrangian would compose a theory with a valuable predictive power. Nevertheless, the use

of N.R. theories remains under the hypothesis that there must be a finite and closed theory

up to some scale. To consider N.R. models it is not a manner to abandon the important field

theory paradigms and claims, but, instead, it is a part of a strong reasonable technique to find

New physics directions gradually, avoiding the common complexity of the Ultra-Violet theories.

According to this principle the next section will show that the N.R. sector inserted into the SM is

indeed suppressed by powers of the UV completion scale.

3.3 The Decoupling Theorem

Among the theoretical apparatus previously discussed, perhaps the most related to the perspective

present in this work is the Decoupling Theorem [2].

The Operator Product Expansion reveals about the procedure and the validity on transforming

a non-local product of operators into a single local operator. The unique assumption - the distance

x where the interaction occurs is around to zero compared with the masses involved (free-

fields scale). Process involving hard-momentum scattering are examples of application and the

Decoupling Theorem must explore the opposite scenario. The distance x of interaction is small

because it corresponds to the duration of propagation of a highly off-shell particle, too massive

compared with the physical scale. The perspective of the OPE follows equivalently and Wilson

coefficients are defined from the extraction of the heavy lines from the totality of 1PI graphs.

Although the theorem will not be fully demonstrated here, a chosen example must certainly

contain the necessary components for this. The presentation follows the work of John Collins
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([14] - Chapter 8) and is based in the demonstration by T. Appelquist and J. Carazzone [2], who

originally stated the theorem like:

“For any 1PI Feynman graph with external momenta are small relative to m, then

apart from coupling-constant and field-strength renormalization the graph will be

suppressed by some power of momentum m relative to a graph with the same number

of vector mesons but no internal fermions”

The specific nature of the fields involved is irrelevant to the result. According to J.Collins,

whenever the physical scale is smaller than the masses from a specific sector of the full theory,

these degrees of freedom may simply be eliminated through the rescaling of fields and couplings

of the renormalizable sub-set of operators, composing the so-called effective Lagrangian. The

error is proportional to the power 1
ma with a close to two. In summary the complete theory is

simplified into its renormalizable sub-sector including only light fields.

On what follows, the principles supporting the theorem are developed through the same

model chosen by J.Collins, namely, the φ3 theory including a heavy scalar in dimension-six

space-time. The main purpose is to illustrate the suppression factor representing the error in

considering a low-energy renormalizable version for light-fields, in comparison with the result for

the same process computed in the complete theory. The example may also contain two aspects

about renormalizability contained in the previous section.

The chosen model contains two scalars, assumed to be one light, ϕ, and one with a heavy

mass, Φ. The procedure involves to rewrite a simplified renormalizable version of the complete

model including only one light rescaled field and a new subset of parameters. The theorem will

ensure that a particular process involving only light-fields, at low-energies, can be equivalently

predicted by this low-effective theory, whose accuracy must differ from the prediction of from the

full theory only by powers of 1
ma , a > 0.

The constant couplings in both theories have positive or null mass dimension. Thus, for a

Green’s function whose d(Γ) is negative, the insertion of internal lines cannot change their overall

degree of divergence. The possible divergent subdiagrams will be renormalized by the same

counterterms defined a priori, during the renormalization of the initial Lagrangian, constant in

its form. It is then clear the importance for proving the decoupling: If the final contribution from

a graph with d(Γ)< 0, including a divergent subdiagram with heavy-lines, results to be the finite

part of the subdiagram times the overall convergent diagram plus a finite piece suppressed by
1

ma , then the low-energy effective theory would give the same result, unless the suppressed term.

The previous paragraph will be clarified in detail. Despite the fact of consider a specific

case, the followed steps will just reproduce the arguments of J.Collins [14] in his complete

demonstration of the decoupling theorem. As mentioned before, the model consist in the φ3 theory

at dimension six. The chosen graph will be the Γ(4) at second order, with a subgraph of heavy

lines, like in Fig.3.1(a). The process also include, at first order, the graph of Fig.3.1(b). These
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(a)

+

(b)

FIGURE 3.1. The Effective Action for the 1LUV of Eq.(2.9) may generate the 4-point
function (figure 5) where the dashed line represents the propagation of the heavy
Φ.

diagrams will be first computed in the context of the full theory:

L = (∂ϕ)2

2
+ (∂Φ)2

2
−m2

ϕ

ϕ2

2
−m2Φ

2

2
−µ3− d

2

[
gϕ

ϕ3

3!
+ gΦ

ϕΦ2

2

]
+counterterms (3.40)

The subdiagram in Fig.3.1(a) must be renormalized and leads to

Γ(3) ∼ ∼ I(3) = (igΦ)3
∫

ddk
(2π)d

1
k2 −m2

1
(k− p)2 −m2

1
(k+ p)2 −m2 (3.41)

or,

I(3) = −2(gΦ)3
∫ 1

0

∫ 1−x

0
dxdy

∫
dk

[
x(k2 −m2)+ y((k+ p)2 −m2)+ (1− x− y)((k− p)2 −m2)

]−3

= −2(gΦ)3
∫ 1

0

∫ 1−x

0
dxdy

∫
dq

[
q2 −∆]−3

(3.42)

where ∆= m2 −m2
ϕ[(x+ y)− (x− y)2]. Finally, from Appendix A.1:

I(3) = −2(gΦ)3
∫ 1

0

∫ 1−x

0
dxdy I0

3

= i(gΦ)3

(4π)3

∫ 1

0

∫ 1−x

0
dxdy Γ

( ε
2

)(
4πµ2

∆

) ε
2

= i(gΦ)3

(4π)3

∫ 1

0

∫ 1−x

0
dxdy

(
2
ε
− log

(
∆

4πµ2

)
−γ

)
(3.43)

In the MS subtraction scheme, the divergence would be canceled by the counterterm

δ(3)
Φ = g3

Φ

(4π)3

(
−1
ε

)
(3.44)

and the renormalized vertex would be given by

R(Γ(3)) = − i(gΦ)3

(4π)3

(
γ

2
+

∫ 1

0

∫ 1−x

0
dxdy log

(
m2 −m2

ϕ[(x+ y)− (x− y)2]

4πµ2

))

∼ − i(gΦ)3

(4π)3

(
γ

2
+ 1

2
log

(
m2

4πµ2

)
−

m2
ϕ

4m2

)
(3.45)
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The above result is useful both for the definition of the counterterm as for the identification of

a finite term that vanishes in the limit m →∞. The original problem, however, consists in the

computation of the 4-point function in Fig.3.1.

Analogously to Eq.(3.35), in six dimensions the mass dimension of a correlation function is

given by

d(Γ)= 6−
(

3
2

f +b+ s
)

(3.46)

Since the coupling constants are dimensionless, the graphs of Fig.3.1 have overall divergence

degree equals to δ(Γ(4))=−2. Thus, the Fig.3.1(b) must be UV finite. Moreover, no divergences

must arise from the subdiagram in 3.1(a) when the diagram for the counterterm of Eq.(3.44) is

also considered. For simplicity, the graph of Fig.3.1(b) will be just denoted like:

Γ[3.1(b)]= g4
ϕ×

∫
k

I4(k; p) (3.47)

such that the graph including the counterterm will be given by

Γ[δΦ]= g3
ϕ

g3
Φ

(4π)3

(
−1
ε

)
×

∫
l
I4(l; p) (3.48)

Next, the complete Fig.3.1(a) must be computed and the integral on k follows like in the previous

way, resulting into

Γ[3.1(a)]= g3
ϕ

g3
Φ

(4π)3 ×
∫

l
I4(l; p)×

∫
dx x

[
Γ

( ε
2

)
·
(

4πµ2

∆

) ε
2
]

(3.49)

where m →∞ has been considered for neglecting the momentum p inside the heavy loop. In the

above expression, ∆≡ [l2(x2 − x)+m2], with l in Minkowski space. Finally, it can be written like

Γ[3.1(a)]= g3
ϕ

g3
Φ

(4π)3 ×
∫

l
I4(l; p)×

[
1
ε
−

∫
dx x

(
γ+ log

(
∆

4πµ2

))]
(3.50)

The divergent term exactly cancels with the contribution from the counterterm, as expected.

Apart from that, one additional step for the analysis about the renormalizability of a theory

consists on proving that the insertion of divergent subdiagrams in an generic 1PI convergent

graph cannot change its degree of divergence. This present example will serve to illustrate

this situation. However, the objective here is to verify that that the finite piece will in fact be

suppressed by powers of 1
ma in the limit m →∞, the hypothesis of the decoupling theorem. In

fact, after the subtraction from the counterterm, the renormalized expression can be summarized

like:

R(3.1(a)) = −g3
ϕ

g3
Φ

(4π)3×
{[

γ

2
+ 1

2
log

(
m

4πµ2

)]∫
l
I4(l; p) −

−
∫

dx x
∫

l
I4(l; p)× log

[
l2

m2 (x2 − x)+1
]}

(3.51)
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At this point the first observation is that the finite term of Eq.(3.45) is entirely present as a

coefficient in the first line. Thus, the task is to identify the factor of suppression in the second

line. After one integration by parts, it can be put in the form∫
dx x log

[
l2

m2 (x2 − x)+1
]
→ 1

2

∫ 1

0
dx

x2(2x−1)× l2

l2(x− x2)−m2 (3.52)

such that

R(3.1(a)) = −g3
ϕ

g3
Φ

(4π)3×
{[

γ

2
+ 1

2
log

(
m

4πµ2

)]∫
l
I4(l; p) −

−1
2

∫
dx x2(2x−1)

∫
dd l

(2π)d
l2

[l2 fx −m2][l2 −m2
ϕ]4

(3.53)

with fx ≡ x− x2. As usual, the integral on momentum can be simplified via the introduction of

Feynman parameters, like:
1

ABn =
∫ 1

0

nyn−1

[(1− y)A+ yB]n+1 (3.54)

which implies ∫
dd l

(2π)d
l2

[l2 fx −m2][l2 −m2
ϕ]4

→ 4
∫ 1

0
d yy3

∫
l

l2

l2 gxy −∆y
(3.55)

where now ∆y ≡ m2
ϕy+m2(1− y) and gxy ≡ y+ fx(1− y). After a change of variables3, the second

line of Eq.(3.53) follows

R(3.1(a))⊃ ig3
ϕ

g3
Φ

4(4π)6 ×
(

1
m2

)∫ 1

0
dx

∫ 1

0
d y

x2(2x−1)y3

[y+ (x− x2)(1− y)]4[y(zϕ−1)+1]
(3.57)

where zϕ ≡ m2
ϕ

m2 . For zϕ ∼ 0 the integrals result in∫ 1

0
dx

∫ 1

0
d y

x2(2x−1)y3

[y+ (x− x2)(1− y)]4[y(zϕ−1)+1]
zϕ→0∼ 5

36
− 1

6
log(zϕ) (3.58)

In summary, the factor of suppression is smaller than two by the log term.

R(3.1(a)) = −g3
ϕ

g3
Φ

(4π)3×
{[

γ

2
+ 1

2
log

(
m

4πµ2

)]∫
l
I4(l; p) −

− i
4(4π)3

(
1

m2

)(
5

36
+ 1

6
log

(
m2

m2
ϕ

))
(3.59)

Thus, from the results of Eq.(3.45) and the first line of Eq.(3.59), it can be seen that a theory

containing only the light-fields and a redefinition of the self-interaction coupling gϕ like

gϕ→ g∗
ϕ = gϕ− (gΦ)3

(4π)3

(
γ

2
+ 1

2
log

(
m2

4πµ2

))
(3.60)

3The change of variables leads to

4
∫ 1

0
d y y3 g

−( d
2 +1)

xy

∫
u

u2

(u2 −∆y)5
(3.56)
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would imply the same results as the original one, with an error suppressed by the factors

of a heavy-mass. The complete demonstration for the Decoupling Theorem is evidently more

general and complex than this single example here, but it is based on the same principles.

Every parameter of the original Lagrangian may be redefined - including those like the mass

parameter related with divergent 1PI graphs with divergent subdiagrams - and such that the

error committed will vanish in the limit m →∞. The suppression factor is slightly smaller than

two, compensated by a large log including the infrared regulator, i.e. the light mass. By proving

that the infrared structure of the original theory cannot overcome its mass suppression, the

heavy particle must in fact decouple. When the experiments are performed in a regime which

does not reach the large scale, all the process can be equivalently described by the simplified

model:

L = (∂ϕ∗)2

2
−m∗2

ϕ

ϕ∗2

2
−µ3− d

2

[
g∗
ϕ

ϕ∗3

3!

]
+counterterms (3.61)
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CHAPTER 4

THE 3-3-1 MODEL WITH HEAVY LEPTONS

4.1 Introduction

The new gauge-structure defining the electroweak sector of 3-3-1 models [44], namely SU(3)L ⊗
U(1)X , can render important phenomenological consequences and has been object of attention

along the last years. Among some recent analysis, it can be mentioned those based on the context

of collider [13] and low-energy physics [10–12, 17, 36, 50], WIMPs [39, 47] and different possible

extensions [16].

The model has a total of six versions, two of which filling the lepton content with a conjugate of

standard particles, thus defining the minimal 3-3-1 (see [27] and references therein). The present

work is a brief review of the variant including new Heavy-Leptons [19, 40, 45, 46], here denoted

like 3-3-1HL. It will be shown that a different particle content may be defined according to a

discrete variable β limited to a set of four possible values [13, 20]. The total Lagrangian, divided

into boson and fermion sectors, is then explored by first introducing the totality of β-independent

terms. At this point it is expected to conclude about the presence of stable charged particles,

as stated in [13]. These features arise whenever only the universal potential is considered, i.e.

when the scalar self-interactions are assumed to be defined exclusively from some generic terms

present in all versions of the model. The omission of β-specific interactions will retain the mixing

from the potential following the same pattern as that present in the gauge-fixing Lagrangian.

Next, the complete case is developed and a method that explore our previous knowledge on the

gauge-dependent sector is introduced in order to simplify the search for the mass eigenstates.

The review composes the first part of a work in progress that intends to apply a general

integration method for these sort of models, resulting in an Effective Theory that might be

directly tested through precision observables. Thus, the first task involves the development of a

consistent notation followed by a systematic classification of the interactions among new and

standard terms. Those pieces that can generate 6-dimension operators at tree and loop-level

must be ultimately selected. Apart from that, one exclusive assumption is consistently considered

along this analysis - The first breaking scale must be much larger than the second one, with the

notation translated into u À vρ,vη.

Finally, the same steps of the authors in [7] along their presentation of the Standard Model are

freely followed. Like any gauge theory with spontaneous symmetry breaking, the total Lagrangian

is composed by the gauge-kinetic interactions of scalars and fermions, self-interactions of bosons

and a Yukawa, and the chapter has been organized according to this structure.
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4.2 Gauge Structure and Scalars in the 3-3-1HL

The root of electroweak interactions is expressed by the structure of the covariant derivative. In

the context of a SU(3)L ⊗U(1)X gauge group it can be represented like:

Dµ = ∂µ+ igWµ ·I+ igX XW0
µ I (4.1)

where the bold letter express a simple vector A≡ (
A1, A2, · · · , A8)

and Ia = λa

2 are the generators

of SU(3). By expanding the gauge piece of Dµ explicitly it can be divided into complex (or

non-diagonal) and real interactions

D(CC)
µ = i

g
2


0 W1

µ − iW2
µ W4

µ − iW5
µ

W1
µ + iW2

µ 0 W6
µ − iW7

µ

W4
µ + iW5

µ W6
µ + iW7

µ 0

 (4.2a)

and

D(NC)
µ = i


g
2

(
W3
µ +

W8
µp
3

)
+ gX XW0

µ 0 0

0 g
2

(
−W3

µ +
W8
µp
3

)
+ gX XW0

µ 0

0 0 − gp
3

W8
µ + gX XW0

µ

 (4.2b)

The assertion that the fields presented in Eq.(4.2a) will be associated with charged currents

would be a first sign on how to construct both the particle content of the theory and the pattern

of the symmetry breaking. Nevertheless, as it is shown in Section 4.2.1, there are in effect two

different variants of the model where Neutral Currents may also reside in non-diagonal vertices.

The following representation to the fermionic fields is going to be considered:

• Leptons ψα:
(
(να lα) Eα

)ᵀ
L

, (1,3, Xψ)

• Quarks Q i:
(
(di ui) Ji

)ᵀ
L

, (3,3, XQ)

• Quarks Q3:
(
(u3 d3) J3

)ᵀ
L

, (3,3, X3)

• uR
a : (3,1, 2

3 )

• dR
a : (3,1,−1

3 )

• lR
α : (1,1,−1)

• JR
i : (3,1, XJ)

• JR
3 : (3,1, XJ3)

• ER
α : (1,1, XE)
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where α = [
e,µ,τ

]
, a = [1,2,3] and i = [1,2]. The brackets inside the triplets are denoting that

these are in reality doublets of SU(2) or, implicitly, that the gauge group will follow a hierarchy

under the symmetry breaking such that, in one of its steps, these objects compose a new symmetric

Lagrangian comprising the Standard Model. Apart from that, some of the hypercharges were

omitted and their derivation left to the following subsection.

The above mentioned hierarchy is endowing the model with a new scale represented by

the letter u and present for the breaking of SU(3)L ⊗U(1)X into SU(2)L ⊗U(1)Y . The scale

is introduced via the vacuum expectation value of a new neutral scalar χ0 singlet of SU(2),

composing the triplet

χ=
((
χV χU)

χ0
)ᵀ

The next sections will discuss that the 3-3-1HL must also include two additional scalar

triplets which may appear in an intermediate scale via Higgs interactions. Nevertheless, for a

matter of clarity and driven by a current phenomenology that disallow new degrees of freedom to

show up at low energies, the task of separating the model into standard and new exotic sectors

will be performed by considering only the first breaking. In other words, the classical electroweak

symmetry breaking can be placed aside, enclosed in a LSM function. Thus, here the primary

focus is about an universe ruled by nine interactions, where five of them are mediated by massive

and four by massless vector particles. The former acquire their masses when χ0 presents a v.e.v.

〈χ0〉 = u, or 〈χ〉∝ (0 0 u)ᵀ, leading the theory to L331 →LSM +NP.

Inside the set of nine SU(3)L⊗U(1)X generators, the following four leave the vacuum unbroken

and may define a basis for the group SU(2)L ⊗U(1)Y [12]

T1〈χ〉 =T2〈χ〉 =T3〈χ〉 = (βT8 + X I)〈χ〉 = 0 (4.3)

From our knowledge on the SM symmetry breaking it can be extracted a connection between

electromagnetism and weak interactions represented by the so called Gell-Mann-Nishima relation

Q=T3 + Y2 (4.4a)

where, in the present case,
Y

2
=βT8 + X I (4.4b)

i.e. a diagonal generator for the SM symmetry group defining the particles hypercharge and the

respective conserved currents.

The Eq.(4.4b) introduces a new and decisive variable. The parameter β may completely

alter the model phenomenology and is an element of a set limited to four numbers, namely{±p3 ,± 1p
3

}
. As presented in [13], this set is generated by a series of factors which includes the

integer nature of the electric charge for asymptotic states and the positiveness for variables

of mass. For illustration, this section is concluded with the demonstration of some results and

identities in the context of β=−p3 (or Xχ =−1). This version contains a single charged heavy

61



CHAPTER 4. THE 3-3-1 MODEL WITH HEAVY LEPTONS

lepton and the previous relations may provide us, for example, the charges of exotic quarks inside

the triplets.

Since the quarks J are singlet of SU(2), it follows

Q3 =


u3

d3

J3

 → QQ3 =


2
3

−1
3

qJ3

 (4.5)

∴
2
3

= (T3)11 −
p

3 (T8)11 + X3

= X3 (4.6)

The J3 electric charge will then be given by

qJ3 =−
p

3 (T8)33 + 2
3
= 5

3
(4.7)

The gauge boson (W4 − iW5), for instance, will couple with the current

jµ(uJ) ≡ u3Lγ
µJ3L

thus corresponding to a particle charged by (−1). Similarly,

jµ(dJ) ≡ d3Lγ
µJ3L

coupled to the so-denoted U-boson and whose charge, in this case, must be equal to (−2).

By considering the three SU(2) subalgebras of SU(3) defined by the raising and lowering

operators:

I± = T1 ± iT2p
2

, I3 =T3 (4.8)

J± = T4 ± iT5p
2

, J3 =
p

3
2
T8 − T3

2
(4.9)

L± = T6 ± iT7p
2

, L3 =
p

3
2
T8 + T3

2
(4.10)

and also the gauge bosons (note the changes on the signs for V and U compared with W):

W± = W1 ∓ iW2
p

2
, V± = W4 ± iW5

p
2

, U±± = W6 ± iW7
p

2
(4.11)

the charged sector of Dµ can be expressed in a short notation as

D(CC)
µ = ig(W+I++W−I−+V−J++V+J−+U−−L++U++L−) (4.12)

In order to obtain the interactions in the conjugate representation the raising and lowering

operators are just changed in sign:

D∗(CC)
µ =−ig(W+I−+W−I++V−J−+V+J++U−−L−+U++L+) (4.13)
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It is common to present the quark representations with a minus sign in the definition of Q i, in

general, aiming to recover the exact aspect of the SM Lagrangian. Nevertheless, such phase

insertion does not have any phenomenological implications.

• Note: To find the Gell-Mann-Nishima relation to the fields in conjugate representation it

must be recovered that the conjugation of the generators T3 and T8 is defined as

T∗
3 =−T3, T∗

8 =−T8 (4.14)

and, therefore,

Q=−T3 +
p

3T8 + X I (4.15)

Consider, for example, XQ and qJi :

QQ i =


−1

3
2
3

qJi

 → 2
3

= (−T3)22 +
p

3 (T8)22 + XQ

= 1
2
+ 1

2
+ XQ

Thus,

∴ XQ =−1
3

→ qJi =
p

3 (T8)33 − 1
3
=−4

3
(4.16)

Now the diagonal terms of the covariant derivative, those corresponding to the neutral current

interactions, are

D(NC)
µ = ig(T3W3 +T8W8)+ igX X IW0 (4.17)

After the first breaking by 〈χ〉, W0 will mix with W8 and can be rotated into the mass eigenstates

by (
W0

W8

)
=

(
cx −sx

sx cx

)(
B

Z′

)
(4.18)

which implies

D(NC)
µ = igT3W3 + igT8(Bsx +Z′cx)+ igX X I(Bcx −Z′sx)

= i(gW3W3 +gBB+gZ′ Z′) (4.19)

where it has been defined

gW3 ≡ gT3, gB ≡ gT8sx + gX X Icx, gZ′ ≡T8cx − gX X Isx (4.20)

The mixing between B and W3 after the second symmetry breaking can also be anticipated

without loss of generality (
B

W3

)
=

(
cw −sw

sw cw

)(
A

Z

)
(4.21)
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or, finally,

D(NC)
µ = i(gA A+gZ Z+gZ′ Z′) (4.22)

where,

gA ≡ swgW3 + cwgB, gZ ≡ cwgW3 − swgB (4.23)

In order to require that electromagnetic interactions be reproduced, it follows

gA = eQ (4.24)

or

eQ= gT3sw + gT8sxcw + gX X Icxcw (4.25)

The Eq.(4.25) when applied for different quarks and leptons may result in some important

relations to the coupling constants. For instance, to the quark-d1 (qd =−1
3 , XQ =−1

3 ):

− e
3
=−

(
g
2

sw + g
2
p

3
sxcw

)
− gX

3
cxcw (4.26)

From the following Eq.(4.28) and by assuming e = gsw:

− e
3
=−

( e
2
− e

2

)
− gX

3
cxcw → gX cxcw = e

or, finally, if g′ = e
cw

,

gX cx = g′ (4.27)

which connects the hypercharge sectors of the Standard Model and the 3-3-1HL. Besides, from

the results of the next section, derived for a generic version of the model, it can be shown that

the Eq.(4.27) is in fact independent of β. It must be observed, however, that the same relations

raised in the context of the Standard Model were considered, what is to assert both angles and

couplings as equivalent.

By repeating the use of Eq. (4.25) to the case of neutrinos (qν = 0, Xψ = 0) it follows that

g
2

sw + g
2
p

3
sxcw = 0 → sx =−

p
3 tanθw (or sx =βtanθw) (4.28)

which provides a connection between the Weinberg angle and the mixing on the first breaking.

From the identities proved in the next section it is straightforward to obtain the general formula

inside the brackets.

Here the rotation of (B,W3) into (A, Z) is in reality neglecting the mixing with Z′ emerged

after the second breaking. This assumption is also motivated by the large difference between the

scales, u À v.

64



4.2. GAUGE STRUCTURE AND SCALARS IN THE 3-3-1HL

The Eqs. (4.28) and (4.27) will also induce a set of simplified expressions for the Z and Z′

couplings. For instance,

gZ = gT3cw − (gT8sx + gX X Icx)sw
(4.27)= gT3cw − (gT8sx + g′X I)sw
(4.28)= gcwT3 +

p
3 g tanθwswT8 − g′swX I

= gcwT3 +
p

3 g
s2

w

cw
T8 − g

s2
w

cw
X I

= gcwT3 + g
s2

w

cw
(
p

3T8 − X I)

= gcwT3 + g
s2

w

cw
(T3 −Q)

= g
cw

(T3 −Qs2
w) (4.29)

i.e. the well-known coupling of Z with the SM particles. The fourth and sixth equality sign

consider g′ = g tanθw and Eq.(4.15), respectively, and the identity is β-independent. A similar

expression can also be achieved for Z′ through

gZ′ = gT8cx − gX X Isx

(4.27)= gT8cx − g′

cx
X Isx

= g(T8cx − tanθw tanθxX I)
(4.28)= g

cx
(T8c2

x +
p

3 tan2θwX I) (4.30)

The relation (4.29) also exhibits the massless nature of Z after the first breaking

g
cw

((T3)33 −0∗ s2
w)= 0

i.e. there is no coupling with the neutral scalar in χ.

Thus, the section may be concluded with the total covariant derivative expressed under a

simplified notation,

Dµ = I∂µ+ i[g(W+I++W−I−)+gZ Z+ eQA]+
+i[g(V−J++V+J−+U−−L++U++L−)+gZ′ Z′] (4.31)

The first line reproduces exactly the Standard Model contribution and will make simpler the task

of dividing the 3-3-1HL into SM and New Physics elements.

As mentioned previously, this work discuss how the different sectors of the Lagrangian will

connect the new degrees of freedom with the standard fields at tree- and loop-level. In order to

be consistent and provide an independent review, some of the main aspects of the model can

be registered, being however substantially supported by previous works like [13], [44] and [12].

When the context allows, the first breaking SU(3)L ⊗U(1)X → SU(2)L ⊗U(1)Y is considered with

priority. In the next section some identities for a general 3-3-1HL version are extracted.
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4.2.1 Particle Content in Different Versions

First, recall the electric charge operator:

Q=T3 +βT8 + X I (4.32)

First consider to find the β-dependence of the electric charges. From the first line of Dµχ, for

example, it follows qχ1 = 1+ qχ2 = qV , which can also justify why the first entry of χ has been

defined as χV . Besides, the second line would give qU = qχ2 , and is denoted like χ2 ≡ χU .

The neutral third component of χ implies Xχ = βp
3

, i.e.

qχV = qV = 1
2
+ β

2
p

3
+ βp

3

=
p

3
2
β+ 1

2
→ qU =

p
3

2
β− 1

2
(4.33)

By repeating this simple procedure to the quarks and leptons representations one obtain

their respective hypercharges. For example, the value of XQ , defined in conjugate representation,

will be given by

XQ = 1
6
+β 1

2
p

3
→ q j i =

1
6
+
p

3
2
β (4.34)

or, for the triplet in fundamental representation,

X3 = 1
6
− β

2
p

3
→ q j3 =

1
6
−
p

3
2
β (4.35)

As mentioned before, the electric charges of the new gauge bosons, as well as the Z′ mass,

prevent β of assuming any possible value [13], restricting it to the set

β ∈
[
± 1p

3
,±

p
3

]
(4.36)

From Eq.(4.34) and Eq.(4.35) it is clear the effect of a ± sign for quarks is merely of inverting the

electric charges into different representations. For |β| =p
3 the possible values are qJ ∈ [−4

3 , 5
3
]

and for |β| = 1p
3

, qJ ∈ [−1
3 , 2

3
]
.

Similarly, for the leptons:

ψα :


να

lα
Eα


L

→ Xψ =−
(

1
2
+ β

2
p

3

)
(4.37)

or

qE =−
(1
2
+
p

3
2
β
)

(4.38)
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Thus, depending on the selected β among the four possible values, the model may include from

neutral to doubled charged heavy leptons:

qE = [−2,−1,0,+1] for β=
[p

3 ,
1p
3

,− 1p
3

,−
p

3
]

(4.39)

From phenomenological reasons the heavy neutral particles must also be analyzed in detail.

The Section 4.2.2 resolve, in the context of Scalars, that the most general potential can be

formulated regardless the sign of β, i.e. it is sufficient to consider each of the two possible

modulus. Thus, in the remaining of this work those models with β= [−p3 ,− 1p
3

]
are taken with

priority.

Finally, the general hypercharge of triplets and anti-triplets can be summarized like:

• Leptons ψα:
(
1,3,−

(
1
2 +

β

2
p

3

))

• Quarks Q i:
(
3,3, 1

6 +
β

2
p

3

)

• Quarks Q3:
(
3,3, 1

6 −
β

2
p

3

)
• uR

a :
(
3,1, 2

3
)

• dR
a :

(
3,1,−1

3
)

• JR
i :

(
3,1, 1

6 +β
p

3
2

)

• JR
3 :

(
3,1, 1

6 −β
p

3
2

)
• lR

α : (1,1,−1)

• ER
α :

(
1,1,−

(
1
2 +β

p
3

2

))

where α= [
e,µ,τ

]
, a = [1,2,3] and i = [1,2].

As a brief comment on the Scalar triplets, the gauge-fixing Lagrangian, discussed in Section

4.2.4, in general is defined from the kinetic sector of the Scalars and contain terms proportional

to their product with a correspondent gauge boson. For example, the first line of the product Dµχ

contains the sum ∂µχV +uV such that its squared will produce the bilinear uV∂χV . Therefore,

the following notation intends to leave explicit how the gauge-structure of the model will connect
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the Scalars with Vector Bosons:

χ =


χV

χU

u+H+iχgp
2

 ,
(
1,3,

βp
3

)
(4.40a)

ρ =


ρW

vρ+Hρ+iρgp
2

ρ−U

 ,
(
1,3,

1
2
− β

2
p

3

)
(4.40b)

η =


vη+Hη+iηgp

2
η−W

η−V

 ,
(
1,3,−

(
1
2
+ β

2
p

3

))
(4.40c)

where the minus sign indicates that their charges are in opposite sign as those defined in Eq.(4.33).

As will be repeatedly explored, when these connections are not broken by β-dependent terms,

they may control the pattern of scalar mixing and correspond to residual symmetries that avoid

the heavy leptons to decay. These features, along with their phenomenological consequences, have

been addressed by the authors in [13], and here it must be complemented by exposing the vertices

allowed by the gauge symmetry that could create decaying channels into the light asymptotic

fields. Therefore, the complete set of elements for the potential are considered and a Z2 symmetry

is not assumed a priori. It can be demonstrated that the pattern of scalar mixing present in the

incomplete and universal1 potential eliminates the totality of tree-level interactions, leaving the

heavy-lepton stable.

4.2.2 Self-Interactions of Scalars

Here is examined the algebraic path followed by the symmetry breaking of a generic potential

which may conduce the gauge theories to their correct spectra. It starts by presenting some

aspects of this sector in the Standard Model, where:

V (Φ)=µΦ†Φ+λ(Φ†Φ)2 (4.41)

and

Φ=
(
ϕ+

g
ϕ0+iϕ0

gp
2

)ᵀ
(4.42)

The subindex ‘g’ on some of the above fields is referring to the Goldstone bosons. In fact, an

intermediate step along the development of the Goldstone theorem is supported by the condition

that the vacuum of the theory is located on the point where one of the neutral fields, namely ϕ0,

assume a value different from zero. This Vacuum Stability Condition (VSC) will correspond to

one or a set of equations that, when applied back to Eq.(4.41), cancel the mass terms for these

‘g’ degrees of freedom. The contribution to the mass of this particles will be gauge-dependent
1The term ‘universal’ refers to the components present in all versions of the model.
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and comes from the insertion of a gauge-fixing Lagrangian. That is what was called the path for

identifying these massless particles, effectively traced by the theorem.

The vacuum expectation value (v.e.v) is usually denoted by v, such that the vacuum condition

can be read like
∂V (Φ)
∂ϕ0

∣∣∣〈ϕ0〉=v
= 0 (4.43)

The minimum point represented as 〈ϕ0〉 = v denotes that the derivative is being taken on the

fields vacuum expectation value. The ϕ0 is then expanded around its v.e.v, ϕ0 = v+H, and the

above condition rewritten as:

∂H
∂φ0

∂V
∂H

∣∣∣〈H〉=0
= 0, or, shortly, ∂HV

∣∣∣
H=0

= 0 (4.44)

The potential V (H) is a polynomial and the Eq.(4.44) implies, therefore, that its linear term on H

must vanish, or

µ+λv2 = 0 (4.45)

which enable to rewrite Eq.(4.41) like

V (Φ)=λ
(
Φ†Φ− v2

2

)2

(4.46)

Thus, the zeroth order term vanishes inside the brackets, leaving only the Higgs with a mass

term in the function.

The VSC defines a set of equations which will lead to the correct mass matrix coming from

the potential. This is seen, for example, in the simplest one dimensional case of the SM. The

rotation to the mass eigenstates must also include the contribution coming from quadratic mixed

terms present in the gauge-kinetic scalar Lagrangian. These terms are strictly correlated to the

gauge-fixing piece, whose treatment leads to the correct mass of the Goldstone bosons. Finally,

the Goldstone theorem is essentially based on the vacuum stability and reveal, as a corollary,

that these mass matrices, i.e. those coming from the potential and the gauge-fixing, must reside

in orthogonal subspaces. On what follows, this result is treated in detail.

By focusing on the potential, it might be important to consider the whole spectra of scalar

fields. In order to the standard quarks and leptons acquire their masses, two additional triplets

are introduced with the following components:

β= −
p

3 : ρ =
(
Φρ

ρ++U

)
(1,3,1), η=

(
Φ̃η

η+V

)
(1,3,0) (4.47)

where Φρ and Φ̃η are just denoting that these fields have a similar structure to the doublet in

Eq.(4.42) and its conjugate. The expansion of χ0 around its v.e.v, χ0 = u+H, introduces the new

heavy Higgs, H. As a matter of counting, it will be properly identified those eight scalar fields

which are connected, as additional degrees of freedom, to the vectors V±,U±±,W±, Z′ and Z .
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It has been emphasized in (4.2.4) that the choice of a specific gauge can be made independently

for each gauge interaction. Through their couplings with the SM gauge bosons, the fields in

Φρ and Φ̃η settle a pattern of mixing that will be followed by the composition of the potential

presented below. Thus, it may be more elucidative to keep developing the model under an arbitrary

gauge. For β=−p3 ,

ρ =


ρ+W

(vρ+Hρ)+iρgp
2

ρ++U

 , η=


(vη+Hη)+iηgp

2
η−W
η+V

 (4.48)

and finally introduce the most general β-independent potential [12]

V (χ,ρ,η) = µχχ
†χ+λχ(χ†χ)2 +µηη†η+λη(η†η)2 +µρρ†ρ+λρ(ρ†ρ)2 +

+λρη(ρ†ρ)(η†η)+λρχ(ρ†ρ)(χ†χ)+ληχ(η†η)(χ†χ)+
+λρη(ρ†η)(η†ρ)+λρχ(ρ†χ)(χ†ρ)+ληχ(η†χ)(χ†η)+
+
p

2ζ(εi jkρ
iη jχk +h.c.) (4.49)

The first two entries of each triplet define a SU(2) doublet, such that any of the above terms are

SU(3),SU(2),U(1)X ,U(1)Y invariant. In addition, from the definitions of Eq.(4.40), there can also

exist a set of new terms added to Eq.(4.49), in the context of specific values for β. In other words,

depending on the specific model being regarded, new elements might emerge to the potential.

4.2.3 Vacuum Stability Condition

In this framework, the vacuum stability condition is given by

∂V (χ0,ρ0,η0)
∂χ0

∣∣∣〈χ0〉=u
= 0,

∂V (χ0,ρ0,η0)
∂ρ0

∣∣∣〈ρ0〉=vρ
= 0,

∂V (χ0,ρ0,η0)
∂η0

∣∣∣〈η0〉=vη
= 0 (4.50)

where ρ0 and η0 denote the neutral component of the respective triplet. The relations above are

translated into

∂HV (H,Hρ,Hη)
∣∣∣
H=0

= 0, ∂Hρ
V (H,Hρ,Hη)

∣∣∣
Hρ=0

= 0, ∂Hη
V (H,Hρ,Hη)

∣∣∣
Hη=0

= 0 (4.51)

i.e. the coefficient of linear terms must vanish. For illustration, a geometrical picture can be

drawn to the potential vacuum as follows. First, rewrite Eq.(4.49) as

V (χ,ρ,η) = V |ρ,η=0 +V |χ,η=0 +V |χ,ρ=0 +
+λρη(ρ†ρ)(η†η)+λρχ(ρ†ρ)(χ†χ)+ληχ(η†η)(χ†χ)+
+λρη(ρ†η)(η†ρ)+λρχ(ρ†χ)(χ†ρ)+ληχ(η†χ)(χ†η)+
+
p

2ζ(εi jkρ
iη jχk +h.c.) (4.52)

The first line of Eq.(4.52) is composed by the three functions defining the scenario where the

symmetry breaking occur independently, i.e. when just one of the triplets are present in the theory.
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The V |ρ,η=0, for instance, comprises the piece regarding solely the breaking SU(3)L ⊗U(1)X →
SU(2)L ⊗U(1)Y . The vacuum condition to it provides

∂H
(
V |ρ,η=0

)∣∣∣
H=0

= 0 → µχ+λχu2 = 0 (4.53)

Now, when the VSC is also assumed for the second and third terms of the first line, it implies

∂Hρ

(
V |χ,η=0

)∣∣∣
Hρ=0

= 0 → µρ+λρv2
ρ = 0 (4.54a)

∂Hη

(
V |χ,ρ=0

)∣∣∣
Hη=0

= 0 → µη+ληv2
η = 0 (4.54b)

When both Eq.(4.53) and Eq.(4.54) are taken, it is in fact being assumed that the points

(χ0,ρ0,ϕ0) = [
(u,0,0), (0,vρ,0), (0,0,vη)

]
are either local or global minimum of V (χ,ρ,η), along

with the point (u,vρ,vη). Thus, the vacuum could be described by the following ellipsoid

x2 + y2 + z2 + xy+ xz+ yz− (e2 +u2)
u

x−
(e2 +v2

ρ)

vρ
y−

(e2 +v2
η)

vη
z+ e2 = 0 (4.55)

where e2 = uvρ+vρvη+uvη
2 and (x, y, z) ∈ [

(u,0,0), (0,vρ,0), (0,0,vη), (u,vρ,vη)
]

defines a subset of

possible solutions.

Finally, by applying Eq.(4.51) simultaneously to the total potential it follows the final equa-

tions

∂HV
∣∣∣
H=0

= 0 → µχ+λχu2 +
v2
η

2
ληχ+

v2
ρ

2
λρχ−

vρvη
u

ζ= 0 (4.56a)

∂Hρ
V

∣∣∣
Hρ=0

= 0 → µρ+λρv2
ρ+

u2

2
λρχ+

v2
η

2
λρη−

uvη
vρ

ζ= 0 (4.56b)

and

∂Hη
V

∣∣∣
Hη=0

= 0 → µη+ληv2
η+

u2

2
ληχ+

v2
ρ

2
λρη−

uvρ
vη

ζ= 0 (4.56c)

As will be detailed, these three conditions are sufficient to leave the model with a well defined

mass spectrum to the scalars.

4.2.4 Gauge-Fixing Lagrangian

The gauge interactions of the scalars come from the invariant kinetic term

Ls ⊃ (Dµχ)†(Dµχ) (4.57)

For β=−p3 , the scalar can be defined as

χ=
(
(χ−g χ−−g ) χ0

u+iχgp
2

)ᵀ
(4.58)

and the g index emphasizes that those states are exactly the Goldstone bosons in the context

of a single breaking scale. The Gell-Mann-Nishima relation of Eq.(4.4a) also promptly implies

Xχ =−1.
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The covariant derivative (4.31), in matrix form, is given by

Dµ = I∂µ+ i
gp
2


0 W+ V−

W− 0 U−−

V+ U++ 0

+ i diag



−e g( 1

2+s2
w)

cw
g

(
cx

2
p

3
−p

3 tgwtgx

)
−2e g(− 1

2+2s2
w)

cw
g

(
cx

2
p

3
−p

3 tgwtgx

)
0 0 g

(
− cxp

3
−p

3 tgwtgx

)



A

Z

Z′


(4.59)

where ‘diag’ requires the vector inside the brackets to define a diagonal 3×3 matrix. The Eq.

(4.31) provides a direct representation whence can be seen how the gauge interactions play with

the isospin components of the triplets, aside from the manifest separation into the SM and New

Physics terms, one of the main purposes of this work. Nevertheless, in this section the complete

vertices concerning scalars and vectors are searched, and the expansion in Eq. (4.59) can make

their identification simpler.

From the complete result of Eq.(4.57) only the terms that will be indeed related in the coming

analysis must be selected. First, they include those canceled out by the gauge-fixing Lagrangian.

Since each factor in Dµχ is at least linear in the fields, it can be set up the quadratic parts plus

all the χ0
u dependent ones, which yield mass to the gauge bosons and introduce the new physical

Higgs H. This corresponds to

(Dµχ)†(Dµχ) = 1
2

(∂χ0
u − i∂χ0

g − in33χ
0
uZ′)(∂χ0

u + i∂χ0
g + in33χ

0
uZ′)+

+(∂χ−g + i
g
2
χ0

uV−)(∂χ+g − i
g
2
χ0

uV+)+

+(∂χ−−g + i
g
2
χ0

uU−−)(∂χ++g − i
g
2
χ0

uU++)+
+O (non-quadratic terms) (β=−

p
3 ) (4.60)

where n33 ≡ g
(
− cxp

3
−p

3 tgwtgx

)
. The final vertices will be given by:

(Dµχ)†(Dµχ) = (∂χ0
u)(∂χ0

u)+ (∂χ0
g)(∂χ0

g)+ (∂χ−g )(∂χ+g )+ (∂χ−−g )(∂χ++g )+

+ g2

4
χ0

uχ
0
uV−V++ g2

4
χ0

uχ
0
uU−−U+++ n2

33

2
χ0

uχ
0
uZ′Z′+n33(∂χ0

g)χ0
uZ′+

+i
g
2

(∂χ+g )χ0
uV−− i

g
2

(∂χ−g )χ0
uV++ i

g
2

(∂χ++g )χ0
uU−−− i

g
2

(∂χ−−g )χ0
uU+++

+O (non-quadratic terms) (β=−
p

3 ) (4.61)

The gauge-fixing factor ξGB may be defined independently for each gauge-boson and the

entire analysis will be considered in the arbitrary t’Hooft gauge. The total Lagrangian to the

scalars is given by

Ls = (Dµχ)†(Dµχ)+ (Dµη)†(Dµη)+ (Dµρ)†(Dµρ) (4.62)

and accounts for the gauge-bosons acquisition of mass. At this point it appears one of the possible

arguments to explain the absence of connection with the SM through non-diagonal interactions.

First, designate the pairs 12,13,23 of the triplet entries in Eq.(4.40) as the first, second and

third doublets, respectively. Now, since the generators I± will act only in the first doublet, the
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above Lagrangian always present the vertices with the 3-component in pairs of exotic particles,

forbidding all the tree-level contributions.

From Eq.(4.61) one quadratic mixed term is extracted as

Ls ⊃ u
g
2

(∂χ+V )V−−u
g
2

(∂χ−V )V+ (4.63)

These interactions, in general, are related to a transversal propagator for the gauge-bosons and

can be equivalently replaced via the insertion of a gauge-fixing Lagrangian. Apart from that, the

scalars involved in the second breaking will also contribute to the mass of V and U , including a

similar momentum-dependent vertex

Ls ⊃ vη
g
2

(∂η−V )V+−vη
g
2

(∂η+V )V− (4.64)

The Goldstones will be identified after the rotation of the correlated degrees of freedom inside

χ and η. To the above case, it can be achieved via the orthogonal matrix

RV
ηχ =

1
uη

(
u −vη
vη u

)
, uη =

√
u2 +v2

η (4.65)

or (
u, −vη

)
∂

(
χV

ηV

)
V− →

(
uη, 0

)
∂

(
χV

ηV

)
V− (4.66)

where (
χV

ηV

)
= RV

ηχ

(
χV

ηV

)
(4.67)

From Eq.(4.66) the χV can be identified as the Goldstone of the theory. The procedure thus

described follows from the group structure and is independent of β. In Section 4.2.7 it will be seen

that the rotation Eq.(4.67) defines a larger block diagonal matrix that plays an important role on

the diagonalization of the total mass matrix. After the insertion of additional self-interactions,

the potential acquires a new structure of mixing that differs from the gauge-fixing mass matrix.

However, one may consistently make use of a general consequence of the Goldstone theorem

which constrains these two components to lie on orthogonal subspaces, and then verify that the

previous knowledge about the rotation of Mξ can simplify the procedure of finding the total mass

matrix, Ms, diagonal.

In the context of Eq.(4.52), the new matrix on the basis
(
χV ηV

)
will appear likeµχ+λχu2 + v2

η

2 ληχ+
v2
η

2 ληχ+
v2
ρ

2 λρχ
uvη
2 ληχ+vρζ

uvη
2 ληχ+vρζ µη+ληv2

η+ u2

2 ληχ+ u2

2 ληχ+
v2
ρ

2 λρη

 (4.68)

which can be simplified by applying the VSC of Eq.(4.56) to

V (χ,ρ,η)⊃
(
χ∗V η∗V

) v2
η

2 ληχ+
vρvη

u ζ
uvη
2 ληχ+vρζ

uvη
2 ληχ+vρζ u2

2 ληχ+
uvρ
vη
ζ

(
χV

ηV

)

= λV
2

(
χ∗V η∗V

)(
v2
η uvη

uvη u2

)(
χV

ηV

)
(4.69)
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where
λV

2
= ληχ

2
+ vρζ

uvη
(4.70)

The matrix in Eq.(4.69) can also be directly diagonalized via RV
ηχ, leading to

λV

2

(
χ∗V η∗V

)(
0 0

0 u2
η

)(
χV

ηV

)
→ m2

η =λV u2
η (4.71)

The Goldstone theorem is then being manifest. The quadratic mass coming from the gauge-

fixing Lagrangian is

M2
ξ = ξV

(
u2 −uvη

−uvη v2
η

)
→ M2

ξ ·
(

v2
η uvη

uvη u2

)
=O (4.72)

and its orthogonality to the matrix in Eq.(4.69) has been registered.

4.2.5 Gauge-Boson Masses

The gauge-dependent mass matrix is sufficient to exhibit the gauge-boson masses which, for

completeness, are presented here as extracted from the Scalar Lagrangian:

m2
W = g2

4
v2, m2

V = g2

4
u2
ρ, m2

U = g2

4
u2
η, m2

Z = g2

4c2
w

v2 (4.73)

In order to be general one distinguish the U and V masses above. However, on the assumption

u À vρ,vη, their values would be equal and different of the Z′ via a β dependent factor. For

β=−p3 it follows

m2
Z′ = g2

3
u2c2

x (β=−
p

3 ) (4.74)

The bilinears for neutral vectors are given by

Ls ⊃−g
cxp
3
∂χgZ′− g

vρ
2cw

∂ρgZ+ g
vη

2cw
∂ηgZ (4.75)

corresponding, after the Lg. f . insertion, to the correct ξ-dependent Z, Z′ propagators and a new

mass matrix to the scalars:

M2
ξ

∣∣∣
Z,Z′=

 ξZ
4c2

w

(
v2
η −vηvρ

−vηvρ v2
ρ

)
0

0ᵀ ξZ′ u2

3 c2
x

 (4.76)

on the basis
(
ηg,ρg,χg

)
. It can be verified that the above result is in fact orthogonal to the P

matrix presented in the next section.
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4.2.6 Scalar Masses

This section is introduced by approaching the masses for the remaining scalars. The expansion

of Eq.(4.52) reveals the pattern of mixing between the charged particles and a result similar to

Eq.(4.71) must arise. For the U-type scalars on the basis
(
χU ρU

)
it followsµχ+λχu2 + v2

ρ

2 λρχ+
v2
η

2 ληχ+
v2
ρ

2 λρχ
uvη
2 λρχ+vηζ

uvη
2 λρχ+vηζ µρ+λρv2 + u2

2 λρχ+ u2

2 λρχ+
v2
η

2 λρη

 (4.77)

such that, with the help of Eq.(4.56), it can be simplified to

λU

2

(
χ∗U ρ∗U

)(
v2
ρ uvρ

uvρ u2

)(
χU

ρU

)
→ λU

2
= λρχ

2
+ vηζ

uvρ
(4.78)

or
λU

2

(
χ∗U ρ∗U

)(
0 0

0 u2
ρ

)(
χU

ρU

)
→ m2

ρ =λU u2
ρ (4.79)

where the rotation matrix is given by

RU
ρχ =

1
uρ

(
u −vρ
vρ u

)
→ uρ =

√
u2 +v2

ρ (4.80)

To conclude the non-diagonal sector, there are those scalars coupled with the SM gauge

bosons:
λW

2

(
η∗W ρ∗W

)(
v2
ρ vρvη

vρvη v2
η

)(
ηW

ρW

)
→ λW

2
= λρη

2
+ uζ

vρvη
(4.81)

or
λW

2

(
η∗W ρ∗W

)(
0 0

0 v2

)(
ηW

ρW

)
→ m2

ρW
=λW v2 (4.82)

Equivalently,

RW
ρη =

1
v

(
vη −vρ
vρ vη

)
→ v =

√
v2
ρ+v2

η (4.83)

where (
ηW

ρW

)
= RW

ρη

(
ηW

ρW

)
(4.84)

From the beginning of this review, the Z′ has been assumed to not mix with Z and Photon, a

claim justified from the hierarchy between the breaking scales. one may expect, therefore, the

same pattern to be also present in the neutral scalar sector. On what follows this feature is

identified in detail.

First consider the mass matrix of pseudo-scalars on the following basis

(
ηg ρg χg

)
P


ηg

ρg

χg

 (4.85)
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such that the entries of P are given by
1
2 (µη+ληv2

η+ u2

2 ληχ+
v2
ρ

2 λρη) uζ
2

vρζ
2

uζ
2

1
2 (µρ+λρv2

ρ+ u2

2 λρχ+
v2
η

2 λρη) vηζ
2

vρζ
2

vηζ
2

1
2 (µχ+λχu2 + v2

η

2 ληχ+
v2
ρ

2 λρχ)


(4.86)

or, simply,

P= uζ
2


vρ
vη

1 vρ
u

1 vη
vρ

vη
u

vρ
u

vη
u

vρvη
u2

≈ uζ
2


vρ
vη

1 0

1 vη
vρ

0

0 0 0

= λP

2


v2
ρ vρvη 0

vρvη v2
η 0

0 0 0

 (4.87)

The second signal is representing the absence of contribution from the low-energy breaking to

the Z′ mass and must not be understood as a formal limit. The constant is given by

λP = uζ
vρvη

(4.88)

Thus the pseudo-scalars are diagonalized to their mass eigenstates by the same matrix RW
ρη

that the standard charged scalars. Finally, the potential introduces a single pseudo-scalar, here

denoted ρP , such that

ρP : m2
P =λP v2 (4.89)

The presence of this particle is β-independent.

The real scalars follow a similar analysis. In the basis

(
Hη Hρ H

)
S


Hη

Hρ

H

 (4.90)

and after the Eq.(4.56) insertion, the S entries are

S=


ληv2

η+ζ uvρ
2vη

λρη
vηvρ

2 − uζ
2 0

λρη
vηvρ

2 − uζ
2 λρv2

ρ+ζ uvη
2vρ

0

0 0 λχu2 +ζ vηvρ
2u

 (4.91)

The above result includes that, in the context of u À vρvη, the third non-diagonal elements are

small compared with the remaining and thus give a neglected contribution to the eigenvalues.

Their original values are:

S13 : ζ
vρ
2

− vη
u

(µη+ληv2
η)−λρη

v2
ρvη
2u

(4.92)

S23 : ζ
vη
2

− vρ
u

(µρ+λρv2
ρ)−λρη

v2
ηvρ
2u

(4.93)
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The matrix S can be diagonalized by

RS =


cs −ss 0

ss cs 0

0 0 1

 (4.94)

and their simplified eigenvalues are:

m2
Hη

= 1
vηvρ

(ληv3
ηvρ+λρv3

ρvη)

= ληv2
η+λρv2

ρ (4.95)

m2
Hρ

= 1
vηvρ

(ληv3
ηvρ+λρv3

ρvη+uζ(v2
ρ+v2

η))

= ληv2
η+λρv2

ρ+uζ
(v2
η+v2

ρ)

vηvρ
(4.96)

m2
H

= 2λχu2 +ζvηvρ
u

(4.97)

Note, therefore, an approximate relation between the scalar and pseudo-scalar masses:

m2
Hρ

= m2
Hη

+m2
P (4.98)

Thus, as in the Standard Model, the Vacuum Stability Condition prevents the mass terms

of some charged scalars to arise in the potential, leaving their contribution exclusively in the

gauge-fixing Lagrangian. In the previous discussion one identified this feature occurring for

the version-independent 3-3-1HL potential and the VSC leading the model to a correct scalar

spectrum. Nevertheless, it has not been mentioned yet about the allowed β-dependent pieces,

like for example

V (χ,ρ,η)
∣∣∣
β=−p3

⊃ Vχ
ρη ≡λχρη(χ†η)(ρ†η)+h.c. (4.99)

which could connect the scalars
(
ηW ,ρW

)
with

(
χV ,ηV

)
. Along the rest of this work it will be

verified that the omission of a term like Eq.(4.99) may imply a complete dissociation of the

charged exotic sector with standard particles at tree-level, leaving the Yukawa interactions as the

ultimate chance to connect them. In Section (4.2.8) this possibility is disclosed and one conclude

that assuming Eq.(4.99) equal to zero is equivalent to assume a discrete symmetry for this variant

of the 3-3-1HL.

4.2.7 The Potential for particular models

As mentioned previously, the term λ
χ
ρη(χ†η)(ρ†η) could a priori be included in the potential2 for

β=−p3 , creating a leading order connection with the SM from one additional mixing between

the four charged scalars.

2For β=+p3 the new term is similar to Eq.(4.99), with ρ↔ η.
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First, the mass matrix will emerge in the basis like
(
ηW ρW ηV χV

)
after this insertion:

M2
V =


λW
2

(
v2
ρ vρvη

vρvη v2
η

)
λ
χ
ρη

(
uvρ vηvρ
uvη v2

η

)

λ
χ
ρη

(
uvρ uvη
vηvρ v2

η

)
λV
2

(
u2 uvη
uvη v2

η

)
 (4.100)

The determinant of M2
V above is in fact zero, a necessary condition to leave the theory with a

well-defined spectrum.

The gauge-fixing Lagrangian also contributes with a gauge-dependent squared mass-matrix

with:

M2
ξ =


ξW

(
v2
η −vρvη

−vρvη v2
ρ

)
O

O ξV

(
v2
η −uvη

−uvη u2

)
 (4.101)

As mentioned before, one important consequence of Goldstone theorem requires that these

two matrices must lie in orthogonal subspaces, such that

M2
V ·M2

ξ = 0 (M2
ξ ·M2

V = 0) (4.102)

This can be checked directly by requesting a simple identity for matrix products. Consider a

general even n×n matrix:

M=
(
M1 M2

M3 M4

)
(4.103)

where Mk are n
2 × n

2 . Then, it follows that

A ·B=
(
(A1 ·B1 +A2 ·B3) (A1 ·B2 +A2 ·B4)

(A3 ·B1 +A4 ·B3) (A3 ·B2 +A4 ·B4)

)
(4.104)

which can be proved by considering a single element

Mi j ∈



M1, i ∈ [1, . . . n
2 ], j ∈ [1, . . . n

2 ]

M2, i ∈ [1, . . . n
2 ], j ∈ [ n

2 +1, . . .n]

M3, i ∈ [ n
2 +1, . . .n], j ∈ [1, . . . n

2 ]

M4, i ∈ [ n
2 +1, . . .n], j ∈ [ n

2 +1, . . .n]

(4.105)

and the general rule for matrix products, (A ·B)i j = AikBk j +AilBl j, with k ∈ [1, . . . n
2 ] and l ∈

[ n
2 +1, . . .n]. For instance, if (i j) ∈M2 then (A ·B)i j = (A1 ·B2 +A2 ·B4)i( j− n

2 ).

Finally, the Eq.(4.104), for B2 =B3 = 0, implies

A ·B=
(
(A1 ·B1) (A2 ·B4)

(A3 ·B1) (A4 ·B4)

)
(4.106)

and the demonstration of Eq.(4.102) follows straightforwardly.
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• The result of Eq.(4.104) can be also extended for odd matrices, and to the 3×3 case we

register one useful identity. First, consider the generic matrix

M=
(
M1 m2

mᵀ
3 m4

)
(4.107)

where m are two-dimensional vectors and m4 is a c-number. Thus,

A ·B=
((
A1 ·B1 +a2 ·bᵀ

3
)

(A1 ·b2 +a2b4)(
aᵀ

3 ·B1 +a4bᵀ
3
)

aᵀ
3 ·b2 +a4b4

)
(4.108)

Now, define the total squared mass

M2
s ≡M2

V +M2
ξ (4.109)

From Eq.(4.102) it follows that

M2
s ·M2

ξ =M2
ξ ·M2

s = (M2
ξ)2 (4.110)

i.e. these matrices must commute: [
M2

s ,M2
ξ

]
= 0 (4.111)

and, therefore, there must be a matrix U able to diagonalize them simultaneously. Apart from

that, as already seen the matrix

D=


1
v

(
vη −vρ
vρ vη

)
O

O 1
uη

(
u vη

−vη u

)
 (4.112)

is such that

DM2
ξD

ᵀ =X2
ξ (4.113)

with X2
ξ

diagonal. Thus, from Eq.(4.111), it follows that D
[
M2

s ,M2
ξ

]
Dᵀ = 0, or[

M
2
s ,X2

ξ

]
= 0, where M

2
s ≡DM2

sD
ᵀ (4.114)

i.e. the rotation of the total mass matrix by D will commute with the diagonal mass matrix of the

Goldstone bosons. In terms of components the above result can be written as∑
k

(M
2
s )ik(X2

ξ)k j =
∑
k

(X2
ξ)ik(M

2
s )k j (4.115)

or ∑
k

[
(M

2
s )ikδk j(X2

ξ) j j −δik(M
2
s )k j(X2

ξ)ii

]
= 0 (4.116)

and, finally,

(M
2
s )i j

{
(X2

ξ)ii − (X2
ξ) j j

}
= 0 (4.117)
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Thus, the M
2
s must emerge into a block diagonal form, whose dimension will agree with the

number of eigenvalues inside X2
ξ

with multiplicity one.

The second step consists on finding a matrix D to diagonalize M
2
s and, in general, simple to

define. Again, from Eq.(4.114), the matrix X2
ξ

would remain block-diagonal after a rotation by D,

such that

(DD)M2
ξ(DD)ᵀ =X2

ξ and (DD)M2
s (DD)ᵀ =X2

s (4.118)

with X2
s diagonal.

In other words, the matrix that can simultaneously diagonalize the total and the gauge-

fixing mass matrices is being constructed by parts, after claiming a general Goldstone theorem

corollary. It is certainly necessary to look only at the total M2
s . However, the direct identification

of the Goldstone bosons becomes clear and definitive through these steps since one requires the

gauge-dependent sector to play a role during the process.

The conclusions can be applied in this particular case, from Eq.(4.100) and Eq.(4.101). The X2
ξ

was previously obtained and is given by

X2
ξ =


ξW

(
v2

0

)
O

O ξV

(
0

u2
η

)
 (4.119)

and, from Eq.(4.117), one must expect (D)M2
s (D)ᵀ to contain a 2×2 block. In fact,

(D)M2
s (D)ᵀ =


ξW v2 (

λW
2 v2 λ

χ
ρη v uη

λ
χ
ρη v uη

λV
2 u2

η

)
ξV u2

η

 (4.120)

The central matrix can be diagonalized after the insertion of a new D, such that

D=


1

1
y

(
a1 λ

χ
ρη v uη

λ
χ
ρη v uη a4

)
1

 (4.121)

a1 ≡ 1
2

λW

2
v2 − λV

2
u2
η−

√(
λW

2
v2 − λV

2
u2
η

)2
+ (2λχρη v uη)2

 (4.122)

a4 ≡ 1
2

λV

2
u2
η−

λW

2
v2 +

√(
λW

2
v2 − λV

2
u2
η

)2
+ (2λχρη v uη)2

 (4.123)

y ≡
√

(λχρη v uη)2 +a2
1 (4.124)
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and, finally,

X2
s ≡ (DD)M2

s (DD)ᵀ =


ξW v2 (

m2
ρW

m2
η

)
ξV u2

η

 (4.125)

where

m2
ρW

≡ 1
2

λW

2
v2 + λV

2
u2
η−

√(
λW

2
v2 − λV

2
u2
η

)2
+ (2λχρη v uη)2


m2
η ≡ 1

2

λW

2
v2 + λV

2
u2
η+

√(
λW

2
v2 − λV

2
u2
η

)2
+ (2λχρη v uη)2


In summary, the β-independent potential follows a mixing pattern in precise accordance with

the SU(2) subalgebras, i.e. by pairs of the scalars entailed by the same gauge-interactions. In

the notation of Eq.(4.40) it corresponds to
(
χV ηV )

,
(
χU ηU)

and
(
ρW ηW)

. When this pattern is

broken by the insertion of specific allowed terms, the physical fields inside these pairs can be

connected through an additional rotation, leaving the gauge-sector unchanged.

The previous analysis on the additional term in the potential holds for |β| =p
3 . In addition,

from Eq.(4.40), for |β| = 1p
3

one of the triplets ρ or η has the same hypercharge as χ. The authors

in [51] introduce a new non-Z2 piece in the context of neutral heavy leptons, i.e for β = − 1p
3

,

where χ and η share the same X . These new contributions are given by

V (χ,ρ,η)
∣∣∣
β=− 1p

3

⊃ Vχη ≡µχηχ†η+ληχη(χ†η)(η†η)+λρχη(χ†η)(ρ†ρ)+λχχη(χ†η)(χ†χ)+h.c. (4.126)

In this version of the model, the gauge-boson V has electric charge equals to zero. The above

expression presents a linear term in the complex neutral field χ0
V , whose coefficient must be

zero in order to leave V (χ,ρ,η) with a lower limit at 〈χ0
V 〉 = 0. This condition converts into the

equation:

µχη+ληχη
v2
η

2
+λρχη

v2
ρ

2
+λχχη

u2

2
= 0 (4.127)

Nevertheless, the bilinear (χ†η) in Eq. (4.126) turns factorized by the r.h.s of the above

expression, implying that the µχη portion along with the mixing terms for the charged scalars(
χU ηW

)
will vanish. The Eq.(4.126) is rewritten like

Vχη =ληχη(χ†η)(η†η)
∣∣
v2
η=0 +λ

ρ
χη(χ†η)(ρ†ρ)

∣∣
v2
ρ=0 +λ

χ
χη(χ†η)(χ†χ)

∣∣
u2=0 +h.c. (4.128)

and emphasize that the notation excludes only the quadratic v.e.v’s, preserving the trilinear

interactions.

Thus far the exotic sector is still connected to the SM particles through tree-level interactions

with real Higgs bosons. There will still be remaining bilinears involving the real scalars and the
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neutral
(
χV ,ηV

)
:

Vχη ⊃ 1p
2

(
λ
η
χηuvη ηV Hη+λρχηuvρ ηV Hρ+λχχηu2 ηV H+h.c.

)
+

+ 1p
2

(
λ
η
χηv2

η χV Hη+λρχηvηvρ χV Hρ+λχχηuvη χV H+h.c.
)

(4.129)

For real λ′s, these couplings mix the Higgs sector with the real part of the V-scalars, here denoted

as
(
χr

V ,ηr
V

)
.

The gauge-fixing Lagrangian to the complex neutral boson V will arise similarly to Eq.(4.63)

and Eq.(4.64), now with complex conjugates. Thus, on the basis
(
χr

V ηr
V Hη Hρ H

)
, only the first

block of Mξ differs from zero and is equal to the result of Eq.(4.72):

MξV =

ξV

(
u2 −uvη

−uvη v2
η

)
O

O O

 (4.130)

The contribution from V (χ,ρ,η) is given by

MV

∣∣∣
β=− 1p

3

=
(
Mχη M2

M
†
2 S

)
where M2 ≡

p
2

(
λ
η
χηuvη λ

ρ
χηuvρ λ

χ
χηu2

λ
η
χηuvη λ

ρ
χηuvρ λ

χ
χηu2

)
(4.131)

and Mχη is defined from Eq.(4.69). In order to build an invertible matrix D for the diagonalization

of Mξ, one can fill it with the rotation matrices as presented in Eq.(4.65) and Eq.(4.94). Finally,

from the previous discussion, by applying a rotation for the total mass matrix M =MξV +MV

through D results a block-diagonal matrix, here represented by 4×4, that can be fully diagonalized

after the insertion of an additional D.

4.2.8 Self-Interactions of Gauge Bosons

The self-interactions of the gauge-bosons are mediated by

Lg.b. =−1
4

Wµν ·Wµν− 1
4

W0
µνWµν

0 (4.132)

where Wµν =
(
W1
µν,W2

µν, · · · ,W8
µν

)
, and

Wa
µν = ∂µWa

ν −∂νWa
µ + gf akiWk

µW i
ν (4.133)

or, in a simplified notation,

Wa
µν = ∂µWa

ν −∂νWa
µ − gTr

[
Fa ·Wµν

]
(4.134)

with (Fa)i j = f ai j the structure constants, and (Wµν)i j ≡Wµ

i Wν
j .

Before perform the sum in Eq.(4.132), a set of transformations to the non-diagonal fields may

be applied: (
W4 (W6)

W5 (W7)

)
= 1p

2

(
1 1

−i i

)(
V+qV (U+qU )

V−qV (U−qU )

)
(4.135)
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(
W1

W2

)
= 1p

2

(
1 1

i −i

)(
W+

W−

)
(4.136)

and, finally, 
W0

W3

W8

=


−sx cxcw −cxsw

0 sw cw

cx sxcw −sxsw




Z′

A

Z

 (4.137)

One important feature of Lg.b. is the absence of Z′ interactions with standard vectors at tree-

and loop-level. On the other hand, the charged bosons will couple with SM at loop-level and, for

illustration, the vertices for VW and the triple V ZA are:

VW : Lg.b. ⊃− g2

2

(
V−
ν V+νW−

µ W+µ+V−
µ W−µV+

ν W+ν−2V+
µ W−µV−

ν W+ν
)

(4.138)

V ZA : Lg.b. ⊃ g2

4
(p

3 sx(1−2s2
w)+ cwsw(1−3s2

x)
)×

×
(
V−
ν AνV+

µ Zµ+V+
ν AνV−

µ Zµ−2AνZνV+
µ V−µ

)
(4.139)

Additional Feynman rules can be extracted from [13].

4.3 Fermions in the 3-3-1HL

This section is a brief description of the fermions in the 3-3-1HL. Among four possible versions,

those models with |β| = 1p
3

might require a special attention. This because they introduce heavy

quarks and leptons with the same electric charges as the standard particles (see Eq.(4.34) -

Eq.(4.38)), corresponding a new pattern of mixing among different generations and then to a

large set of original vertices at leading order [45]. Their fermion content can be summarized like:

• β=− 1p
3

:


- Three additional neutral heavy leptons (or right-handed neutrinos);

- Two additional flavors for D quarks;

- One new flavor for U quarks.

• β= 1p
3

:


- Three additional heavy leptons with the electron charge;

- Two additional flavors for U quarks;

- One new flavor for D quarks.

4.3.1 Gauge interactions of the Fermions

The gauge interactions for fermions may be better represented in a short notation if their

left-handed triplets are written like

ψL
α =

(
Lα Eα

)
L

; QL
i =

(
qi Ji

)
L

; QL
3 =

(
q3 J3

)
L

(4.140)
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where the index α= [
e,µ,τ

]
, i = [1,2], and the boldface is just indicating the separation between

SM doublets and exotic singlets. The right-handed fields follow the usual notation for the SM,

i.e. qR
a , lR

α for quarks and leptons, JR
a ,ER

α for the new particles. Thus, the total gauge-kinetic

Lagrangian can be written as

Lkin = i
{ ∑
α=e,µ,τ

ψ
L
α /DψL

α+
∑

i=1,2
Q

L
i /DQL

i +Q
L
3 /DQL

3 +
∑

a=1,2,3
d

R
a /DdR

a + ∑
a=1,2,3

uR
a /DuR

a + ∑
i=1,2

J
R
i /DJR

i + J
R
3 /DJR

3∑
α=e,µ,τ

l
R
α /DlR

α + ∑
α=e,µ,τ

E
R
α /DER

α

}
(4.141)

and each field associates its correspondent covariant derivative.

The following identity might be useful during the task of dividing the 3-3-1 interactions into

SM and New Physics::

(
a† b∗

)(
A x
x† z

)(
a
b

)
= a†Aa+a†xb+b∗x†a+b∗zb (4.142)

such that the 2×2 matrix A for the covariant derivative will be given by

A= DSM + igZ′
2×2 (4.143)

Apart from that, it can be defined define a vector of gauge bosons

xµ∝ gp
2

(
Vµ Uµ

)ᵀ
where the proportionality corresponds to the complex number i, for both x and x†. The b compo-

nent represents the new heavy degrees of freedom, like in the field definition of Eq.(4.140). By

applying Eq.(4.142) in Eq.(4.141) it follows

Lkin = i
{
L

L
α /DLL

α+qL
a /DqL

a + l
R
α /DlR

α +d
R
a /DdR

a +uR
a /DuR

a

}
+

+i
{
L

L
α igZ′ /Z′LL

α+L
L
α /xEL

α+E
L
α /x†LL

α+E
L
α( /∂+ igZ′ /Z′+ igZ /Z+ ieQ /A)EL

α

}
+

+i
{
qL

i ig∗
Z′ /Z′qL

i +qL
i /x∗JL

i + J
L
i /xᵀqL

i + J
L
i ( /∂+ ig∗

Z′ /Z′+ ig∗
Z /Z+ ieQ /A)JL

i

}
+

+i
{
qL

3 igZ′ /Z′qL
3 +qL

3 /xJL
3 + J

L
3 /x†qL

3 + J
L
3 ( /∂+ igZ′ /Z′+ igZ /Z+ ieQ /A)JL

3

}
+

+i
{
E

R
α /DER

α + J
R
i /DJR

i + J
R
3 /DJR

3

}
(4.144)

and note:

• The first bracket corresponds to the SM gauge kinetic piece and the meaningless difference

in this piece due to the conjugate representation has been ignored. Thus, all the indices are

running through the total three generations;
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• The second contains the interactions for the heavy leptons, in addition to a tree-level term

with Z′;

• The third contains new exotic quarks and the Z′ at tree-level. After the rotation of SM

fields to their mass eigenstates, the matrix components of gZ′ give rise to flavor changing

currents due to a distinct coupling with the third generation. The couplings must take into

account the properties of the Gell-Mann matrices under conjugation and indices cover the

first two generations;

• The fourth bracket, in the fundamental representation, is similar to the previous line;

• The last bracket contains the right-handed exotic fields. The leptonic indices cover the three

generations while the following term contains the first two heavy quarks;

• The breaking of SU(3)L ⊗U(1)X does not lead exactly to a theory invariant under SU(2)L ⊗
U(1)Y , unless the mass of the vectors inside the doublet x are equal, valid only in the limit

u À vη,vρ.

Moreover, the next section discuss the presence of β-dependent Yukawas that mix standard

and exotic fermions, thus expanding the first line into additional tree-level contributions. The

Eq.(4.144) can be symbolically written as

Lkin =L SM
kin +L

EL
kin +L

JαL
kin +L

J3L
kin +L R

kin (4.145)

A brief digression on the described vertices - The present chapter composes the first part

of a work that intends to cover the complete integration of these new heavy fields. Thus, the

method will result into an effective version of the Standard Model raised through the 3-3-1 gauge

structure. As one example, the only gauge-interactions generated at leading order are those with

Z′. In the next chapter, it must also be explored the contributions of mixed terms involving exotic

fields, loop-suppressed in the expansion of dimension-six operators. Thus, the complete set of

terms involving x only contribute at this level, concealing the interactions with the non-diagonal

gauge bosons. The one-loop sector of this Effective Theory will contain only the electromagnetic

covariant derivative, i.e. the U(1) invariant piece, apart from the interactions with Z. The terms

with three exotic particles must be discarded. Finally, as mentioned in the previous paragraph,

for specific β-dependent interactions, the model suppression is reduced from the appearance of

linear vertices on the heavy quarks.

4.3.2 Yukawa Lagrangian

The last section discussed the division of Yukawa interactions into those pieces independent of

the 3-3-1HL version and those only valid for a particular value of β. In the general case, the
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interactions are extracted from

LY =
(
λd

i,a Q
i
Lη

∗da
R +λd

3,a Q
3
Lρda

R +λu
i,a Q

i
Lρ

∗ua
R +

+λu
3,a Q

3
Lηua

R +λ j
i,k Q

i
Lχ

∗Jk
R +λ j

3,3 Q
3
LχJ3

R +
+λd∗

i,a d
a
Rη

ᵀQ i
L +λd∗

3,a d
a
Rρ

†Q3
L +λu∗

i,a ua
Rρ

ᵀQ i
L +

+λu∗
3,a ua

Rη
†Q3

L +λJ∗
i,k J

k
Rχ

ᵀQ i
L +λJ∗

3,3 J
3
Rχ

†Q3
L

)
+(

λl
a,b ψ

a
Lρlb

R +λE
a,b ψ

a
LχEb

R +λl∗
a,b l

a
Rρ

†ψa
L +λE∗

a,b E
b
Rχ

†ψa
L

)
(4.146)

where it was tried to unify the notation presented in [44], [12] and [27]. The indices run as

a,b = 1,2,3 and i,k = 1,2. On what follows it is clarified the reason for changing the lepton

notation.

There are a few important comments about the above β-independent Yukawa. Note that both

the heavy leptons and the new exotic quarks couples only with the first breaking triplet χ. If the

Scalar, Vector and Kinetic Lagrangian cannot connect the high sector with the SM at leading

order, the forced absence of mixing between the χ components and standard scalars may compel

the new physics to emerge always by pairs of exotic fields, leaving the heavy leptons stable.

One additional form to contour this feature is by considering the complete set of allowed

Yukawa terms in the framework of specific versions. For the leptons:

• ψLρER and ψLχlR :

The total hypercharge for these terms is X = 1
2 −β

p
3

2 and would be invariant for β= 1p
3

, i.e.

in the version with a neutral U gauge boson and where the heavy leptons have the same

charge as the electron. The (Ee) mixing creates decay channels Eα→ SM via Eq.(4.144).

• ψLηER :

Since Xψ = Xη, the total hypercharge is equal to the H.L. electric charge, or X = qE, which

is neutral for β=− 1p
3

. Apart from that, V is the complex neutral gauge-boson and the SM

portal comes from the mixing with neutrino, (Eν).

Since both triplets are in the fundamental representation, terms with conjugated scalars are

forbidden for the gauge symmetry.

These additional lepton interactions appeared in the context of |β| = 1p
3

, where the new

quarks have the same electric charges as the standard fermions. For |β| = p
3 , however, the

quarks J have exotic charges and cannot mix with the U or D type. Thus, whenever the β-

dependent interactions are omitted from the potential, one may not expect new decay channels

for the leptons in these type of 3-3-1 models. Since the Yukawa is the last component of the total

Lagrangian, from Eq.(4.39) these stable particles would be electrically charged with −2 or +1.

Similarly, new vertices can also be extracted for the quarks. The remaining LY components

are finally classified in terms of the β sign:
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• β=+ 1p
3

:

LY ⊃ λ
χu
i,a Q

i
Lχ

∗ua
R +λχd

3,a Q
3
Lχda

R +λρJ
i,k Q

i
Lρ

∗Jk
R +

λ
ηJ
i,3 Q

i
Lη

∗J3
R +λρJ

3,3 Q
3
LρJ3

R +ληJ
3,i Q

3
LηJ i

R +h.c. (4.147)

• β=− 1p
3

:

LY ⊃ λ
χd
i,a Q

i
Lχ

∗da
R +λχu

3,a Q
3
Lχua

R +λρJ
i,3 Q

i
Lρ

∗J3
R +

+ληJ
i,k Q

i
Lη

∗Jk
R +λρJ

3,i Q
3
LρJ i

R +ληJ
3,3 Q

3
LηJ3

R +h.c. (4.148)

As before, the indices run as a = 1,2,3 and i,k = 1,2.

There is one important remark on the Yukawa components above - By returning to the high-

energy scenario where the symmetry breaking is given exclusively by χ, there will still be one

generation of standard leptons and quarks that acquire mass from their mixing with the new

heavy fields. In other words, the two first terms of Eq.(4.148), for example, is breaking the

SU(3)L ⊗U(1)X directly into U(1)q leaving the bottom and the top-quark massive along with Ji

and J3. On the basis (u c t J3) this feature can be illustrated as:
a14

O a24

a34

a∗
14 a∗

24 a∗
34 a44

→


0

0

mt

mJ


Thus, the theory suggests that a mass hierarchy might be originated from the presence of at least

two distinct breaking scales.

The splitting of LY into SM and new terms is almost trivial, in the sense that only the

mass Lagrangian of U and D quarks will contribute to the standard part. Notwithstanding, the

diagonalization matrices VU
L and VU

R , in order to consent with the recent Higgs phenomenology,

might strongly constrain the parameters of these new Higgs sector. In the universal 3-3-1HL,

i.e. in the context of only β-independent processes, the exotic quarks Ji, for i = [1,2], must mix

through a similar pattern as the standard quarks.

4.4 Conclusions

In this brief presentation of the 3-3-1HL components it was intended to arrange a detailed

separation between Standard terms and New Physics in order to prepare a model integration.

In other words, one focused on the task of select the totality of pieces that must compose a set

of effective operators generated at tree- and loop-level. It has been stressed the importance of

the variable β to define a particle content and paid a special attention on an universal context
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defined by the β-independent vertices. Since, in principle, there is not a strong reason for a

specific 3-3-1HL choice, it has been claimed that the first step to test its original gauge-structure

is by considering those processes present in all possible variants of the model. In this scenario

the Yukawa sector, for example, is loop-supressed due to the exclusive presence of exotic mixed

terms3.

The work intended to be complementary to the review section of [13] and it was considered

the most general scalar self-interactions by including new β-specific allowed terms, as present in

[51]. Finally, one concluded that the omission of these particular contributions is equivalent to

assume a discrete symmetry for the variant where |β| =p
3 , leaving the theory in the presence of

stable particles.

3Namely, by vertices in pairs of new fields.
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CHAPTER 5

MATCHING IN THE FUNCTIONAL FORMALISM

Once developed the concepts and results supporting the Covariant Derivative Expansion, this

chapter intends to provide the first examples of application and comparison with different

approaches adopted before.

The previous part of the present work has brought a good amount of new concepts and

techniques that must be accompanied by some specific applications. The present chapter will

mark a progressive transition, from a review to a minor set of original results. By ‘minor’ it refers

to a small improvement on the examples already present in the main adopted references.

The method behind the construction of an EFT was proposed by defining the matching

procedure at tree- and quantum-level. This was performed in two independent scenarios. In the

simplest one, the quantum corrected Wilson coefficients were extracted by an Universal Formula,

thus called for having been raised in a model independent form and without focusing on any

particular statistics. The formula applies whenever the covariant propagator assumes a standard

form but is still limited to the case where only the same heavy fields are present in the internal

lines. The generalization for heavy and light fields follows directly, although it requires the power

counting to be performed depending on the particular context. This condition comes from the

various combinations of operators found during the expansion of the Ligth-UV theory into a local

Lagrangian. A Covariant Derivative Expansion consists essentially in preserving the covariant

derivative untouched during this expansion.

As mentioned before, the case of mixed Wilson coefficients was recently a theme of intense

debate in the literature, like in [28] and [53]. The necessity of these terms is present, for example,

during the classical matching for the QCD corrections to meson decays, completely developed

in [8] and that persists as one important example for the strength of the Effective Field Theory

approach to the theoretical analysis of precision observables.

The EFT methodology is equally encompassed by perturbative corrections to the Wilson

coefficients coming from the light fields and mediated by the Renormalization Group Equations.

The running analysis requires the choice of an operator basis, what occurs according to different

criteria. In general, only in the framework of a theory generating multiple coefficients at tree-

level that the choice for the complete Warsaw basis of the SMEFT at dim-6 [31] is required. The

examples present in this chapter are most related with Higgs phenomenology and Electroweak

Precision Observables, whose analysis may be performed for the smaller subset of Bosonic

operators of Table 5.1, assuming the remaining Wilson coefficients equal to zero at the electroweak

scale.
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Table 5.1: The set of dimension-six Bosonic operators. The basis must be complemented by CP-odd
operators treated in the Appendix A.4. (see [32])

OH = 1
2 (∂µ|H|2)2

OT = 1
2 (H†←→D µH)2

OR = |H|2|DµH|2
OD = |D2H|2
O6 = |H|6

OGG = g2
s |H|2Ga

µνGa,µν

OWW = g2|H|2Wa
µνWa,µν

OBB = g′2|H|2BµνBµν

OWB = 2gg′H†τaHWa
µνBµν

OW = ig(H†τa←→D µH)DνWa
µν

OB = ig′YH(H†←→D µH)∂νBµν

O3G = 1
3! gs f abcGaµ

ρ Gbν
µ Gcρ

ν

O3W = 1
3! gεabcWaµ

ρ Wbν
µ W cρ

ν

O2G =−1
2 (DµGa

µν)2

O2W =−1
2 (DµWa

µν)2

O2B =−1
2 (∂µBa

µν)2

5.1 Triplet Scalar

One of the most interesting models picked by HLM as an application source of the CDE technique

consists in the Electroweak Theory supplemented with a triplet scalar. This model was chosen in

the subsequent works [28] and [25]. In this section it will be considered with the aim of exploring

the total formula for the Wilson coefficients and to compare the use of Eq.(2.122) with the results

in HLM.

From a phenomenological point of view the model also offers a set of contributions to precision

observables, perhaps the most important those related with the T oblique parameter. A careful

analysis is left to the Chapter 5.

In the context of an Electroweak Triplet Scalar, the UV Lagrangian is given by

L [Φ,H]= tr
[
(DµΦ)†(DµΦ)

]
−m2tr

[
Φ†Φ

]
+2κH†ΦH−2η|H|2tr

[
Φ†Φ

]
− 1

2
λΦtr2

[
Φ†Φ

]
(5.1)

where Φ=φaτa is a real triplet with YΦ = 0, τa = σ2

2 and σa the Pauli matrices. The Covariant

Derivative is defined as DµΦ= [Dµ,Φ]= (Dµφ
a)τa, since Φ transforms in the adjoint representa-

tion1. From tr(τaτb)= δab

2
, the Eq.(5.1) can be rewritten in a more direct form

L [Φ,H]= 1
2

(Dµφ
a)2 − 1

2
m2φaφa +2κH†τaHφa −η|H|2φaφa − 1

4
λΦ

[
φaφa

]2 (5.4)

1In fact,

Φ → Φ′ = UΦU−1

=
(
eiα jτ

j
τae−iα jτ

j )
φa →

(
τa + iα jε

jacτc
)
φa (5.2)

such that
τcφ

c → τc
(
φc + iα j(T

j)caφa
)

or ~φ→ (I+ iα jT
j)~φ (5.3)

where ~φ= (φ1,φ2,φ3) and T i the SU(2) generators in the adjoint representation.
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For comparison with the results in [33], it is important to connect their notation with that

introduced in the Chapter 2, which is achieved through

LUV = 1
2
~φᵀ(P2 −m2 − A)~φ + ~φ ·~B − 1

4
λΦ(~φ ·~φ)2 (5.5)

with

A = 2η|H|2 and ~B = 2κH†~τH (5.6)

The classical equation of motion defining ~φc is then providing

δSUV

δ~φ

∣∣∣∣
c
= 0 → ~φc =−[Oφ]−1~B (5.7)

such that, by neglecting quartic terms, at this moment, the Effective Action at leading order can

be expressed like2

Γ(0)
L,UV [H] ⊃ 1

2
~Bᵀ[Oφ]−1~B−~Bᵀ[Oφ]−1~B

= −1
2
~Bᵀ[Oφ]−1~B (5.8)

The EFT Effective Action at tree-level is constructed by the dim-6 local expansion of Γ(0)
L,UV . Since

~B is of dim-2 in the Higgs field, the series must also break at dim-2 terms, i.e.

[Oφ]−1 = 1
P2 −m2 − A

(2.124)⊃ − 1
m2

[
1+ P2

m2

]
+ A

m4 (5.9)

and, by replacing it in Eq.(5.8):

Γ(0)
EFT [H]= 1

2m2
~B ·~B+ 1

2m4
~B · (P2 − A)~B+dim-8 (5.10)

From the property

τa
i j ⊗τa

kl =
1
2

(
δil ⊗δ jk −

1
2
δi j ⊗δlk

)
(5.11)

the ~B ·~B may be converted into

BaBa = 4κ2(H†τaH)(H†τaH)

= κ2|H|4 (5.12)

and, analogously, Ba ABa = 2ηκ2|H|6. By recovering the notation Pµ = iDµ, it follows that ~B·P2~B =
~B · (−D2)~B = (Dµ

~B)2. Moreover, from the properties of covariant derivatives in A.2:

DµBa = 2κDµ(H†τaH)

= 2κ
[
(DµH†)τaH+H†τa(DµH)

]
(5.13)

2The space-time integral is implicit;
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which, from Eq.(5.11), will lead to3

(DµBa)(DµBa)= 2κ2
{

2|DµH|2|H|2 + 1
2

[(DµH†)H−H†(DµH)]2
}

(5.15)

By defining H†←→D H ≡ [(DµH†)H−H†(DµH)] and the operators OT = 1
2 (H†←→D H)2, OR = |DµH|2|H|2

and O6 = |H|6, the tree-level EFT will be given by

S(0)
EFT = κ2

2m2 |H|4 + κ2

m4 (OT +2OR)− ηκ2

m4 O6 (5.16)

5.1.1 Matching at the Log-Level

This section proposes to apply the Universal Formula for the Triplet Scalar action. As developed

in the last chapter, the formula was derived for the log in the matching equation strictly connected

with heavy fields inside the loop, which in this context is given by

N∑
i=1

c(1)
i Oi[ϕ]⊃ iαTr log

(
δ2SUV [ϕ,Φ]

δΦ2

∣∣∣∣
Φc[ϕ]

)
= i

2
Trlog[−P2 +m2 +U] (5.17)

where now

U = A+λΦ[~φᵀ
c~φc +2~φc~φ

ᵀ
c ] (5.18)

and the notation for Eq.(2.83) is recovered, with cs = 1
2 . Next, since U is at least order two in

the fields, the formula provides terms up to the order 1
m2 . Moreover, φc is of dim-2, such that the

brackets in Eq.(5.18) will enter only in the m2 and m0 lines.

• The first piece is for tr U , or

L (1)
EFT ⊃ m2

(
1− log

(
m2

µ

))
trU (5.19)

where

trU = trA+λΦtr[~φᵀ
c~φc +2~φc~φ

ᵀ
c ] (5.20)

As a comment on notation, all the capital letters without an arrow are 3×3 matrices, in

contrast with the vectors. Thus, ~B~Bᵀ is a normal matrix product such that tr[~B~Bᵀ]= BaBa.

To the above case ~φc = (φ1,φ2,φ3)ᵀ and the trace over the brackets can be rewritten like

tr[~φᵀ
c~φc +2~φc~φ

ᵀ
c ]= 5~φᵀ

c~φc (5.21)

or, finally,

trU = trA+5λΦtr[[OΦ]−1~B] · [[OΦ]−1~B] (5.22)

3For example, the first term of the expansion corresponds to

(DµBa)(DµBa)⊃ [(DµH†)τa
i jH][H†τa

kl (DµH)]= (DµH†)(DµH)|H|2 − 1
2

[(DµH†)H][H†(DµH)] (5.14)
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and the expansion of the second term is settled to stop at dim-6 operator, i.e.

[[OΦ]−1~B] · [[OΦ]−1~B]= 1
m4 BaBa + 2

m6 [Ba(P2Ba)− ABaBa] (5.23)

From Eq.(5.14),

tr[Ba(P2Ba)]= 2κ2(OT +2OR), tr[BaBa]= κ2|H|4, tr[ABaBa]= 2ηκ2O6 (5.24)

Since trA = 6η|H|2 it follows that

trU = 6η|H|2 +5
λΦ

m4

[
κ2|H|4 − 4ηκ2

m2 O6 + 4κ2

m2 (OT +2OR)
]

(5.25)

• The next piece is trU2. From power counting only the terms below must contribute:

trU2 ⊃ tr[A2 +2AλΦ[~φᵀ
c~φc +2~φc~φ

ᵀ
c ]]

= trA2 +10Aφa
cφ

a
c

= trA2 + 10
m4 ABaBa +O(dim-8)

= 12η2|H|4 + 20
m4λΦηκ

2O6 (5.26)

• Next, the first trace involving field-strength. For remind, Gµν = [Dµ,Dν], where Dµ =
∂µ− igWa

µTa, being Ta the generators on the respective representation of the fields under

application, i.e. the adjoint in the actual context. In other words, [Dµ,Dν] = −igWa
µνTa

where

Wa
µν = ∂µWa

ν −∂νWa
µ + gεabcWb

µW c
ν (5.27)

Finally,

trGµνGµν = −g2Wa
µνWb,µνtr(TaTb)

−2g2(Wa
µν)2 (5.28)

since (TaTb)= 2δab.

• tr[Dµ,U]2: Again, from power counting, only the A inside the definition of U must contribute.

Besides, since A is a singlet, [Dµ, A]→ ∂µA, or

tr[Dµ,U]2 = 12η(∂µ|H|2)2

= 24ηOH (5.29)

• tr(UGµνGµν)⊃−g2 AWa
µνWb,µνtr(TaTb), or

tr(UGµνGµν)⊃−4ηg2(Wa
µν)2|H|2 ≡OWW (5.30)
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• trU3:

trU3 ⊃ trA3 = 24η3O6 (5.31)

• tr[Dµ,Gµν]2:

tr[Dµ,Gµν]2 = tr([Dµ,Gµν][Dα,Gαν])

= −g2[Dµ,Wa
µν][Dα,Wb,αν] tr[TaTb]

= −2g2[Dµ,Wa
µν]2 ≡ 4g2O2W (5.32)

• Finally, tr(Gν
µGρ

νGµ
ρ):

tr(Gν
µGρ

νGµ
ρ) = ig3Wa,ν

µ Wb,ρ
ν W c,µ

ρ tr(TaTbT c)

= −g3εabcW
a,ν
µ Wb,ρ

ν W c,µ
ρ ≡−6g2O3W (5.33)

The above results can then be collected in a final expression through Eq.(2.83):

L (1)
EFT = cs

(4π)2

{
6ηm2|H|2 +5λΦ

κ2

m2 |H|4 −10ηλΦ
κ2

m4 O6 +20λΦ
κ2

m4 (OT +2OR)+6η2|H|4 +

+ g2

6
(Wa

µν)2 +2
η

m2 OH + g2 η

3m2 OWW −4
η3

m2 O6 + g2

15m2 O2W − g2

10m2 O3W

}
(5.34)

with cs = 1
2 and at µ= m.

5.1.2 Wilson Coefficients from Mixed Loops

The derivation of Eq.(2.120) was supported by a very general definition of ‘light-fields’, denoted

by ϕ, comprising the entire set of Standard Model particles. The Hessian matrix present in Ai

in reality is counting with contributions of all interactions present in the SM. This is coherent,

since those results are present in the scenario with both heavy and light fields running in the

loops. Notwithstanding, the computation of this large matrix can be a very arduous task and the

choice of which sector to include in the analysis is something commonly done in practice. The

main argument behind this selection might be related with the search of operators which were

already produced at tree-level. As it must be discussed in detail on the following sections, the

Wilson coefficients generated at leading order will be significant at the level of running them

down to low-energy scales and will be presented inside a pre-selected subset of the SMEFT

operator basis. Therefore, on what follows the analysis of mixed terms will focus specifically on

Higgs operators and thus consider only the H sector as the light-fields. For simplicity, the quartic

and self-interactions of heavy fields will be left out of the computation, being their influence

represented by the previous results.

The UV theory will usually contain tri- or quartic interactions, such the operator Oϕ inside

Eq.(2.116) may be accompanied by a new Hessian over the SM action. Here this additional matrix

will be denoted like
δ2

SM

δϕ2 →Oϕ+Hλ (5.35)
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with a clear reference of the Higgs self-couplings. The inverse [Oϕ]−1 in the definition of A(i) in

Eq.(2.118) must then be shifted by

[Oϕ]−1 → [Oϕ+Hλ]−1 (5.36)

which, according to Eq.(2.125), will expand like

[Oϕ+Hλ]−1 =∆ϕ−∆ϕHλ∆
ϕ+·· · (5.37)

and for the coming computations these first two parts must saturate the dim-6 criteria.

The main purpose of this section concerns the application of Eq.(2.120), registered below,

what goes in a algorithmically mode.

N∑
i=1

c(1)
i Oi[ϕ] ⊃ iαTr

∑
p

1
p

{
p∑

k=1

(
p

k

)
A

p−k
(0) A k

(1)

}
(5.38)

As mentioned before the Eq.(2.116) is a exact representation of the subtraction and H(1)

can actually differ in form from its local counterpart H(0) when quartic self-interactions of

heavy-fields are included. Nevertheless, these terms are more suppressed at this part of the

matching than in the previous one, with exclusive heavy fields, and can be assumed to not enter

on the computation. This implies that the both matrices are equivalent in their dependence with

light-fields, i.e. with

A(i) ≡
[
Oϕ

]−1
H

[
1
2

Bϕ OΦ(i) Bϕ

]
(5.39)

and the derivations can then be taken once, independent if it is for local or non-local operators.

The steps to determine Eq.(5.38) can be summarized like:

• Computation of H(i) ≡H
[

1
2 Bϕ OΦ(i) Bϕ

]
:

A Hessian matrix for complex-valued functions g(za, zb) is given by4(
∂2

za za
∂2

za zb

∂2
zb za

∂2
zb zb

)
→

(
δ2

HH† δ2
HH

δ2
H†H† δ2

H†H

)
(5.40)

where the second one is the functional representation for the present case.

The Bϕ, as defined in Eq.(5.6), is given by ~Bϕ = 2κH†~τH, thus converting H(i) into5

H(i) = 4κ2

(
τaO(i)(H†τaH)+ (τaH)O(i)(H†τa) (H†τa)ᵀO(i)(H†τa)

(τaH)O(i)(τaH)ᵀ (τa)ᵀO(i)(H†τaH)+ (H†τa)ᵀO(i)(τaH)ᵀ

)
(5.44)

4In order to convert it into the real-components of z = x+ i y, the Wirting derivatives ∂z = 1
2 (∂x − i∂y) and

∂z = 1
2 (∂x + i∂y) must be applied;

5For clarity, the notation considers the usual product with line-vectors on the right and column-vectors on the left,
implying a final 2×2 matrix. Apart from that, the operator will commute with the Higgs fields through two integration
by parts. In fact, the derivatives are performed a priori, at the level of action. For instance,

if S[φ]=
∫

x
φP2φ, thus

∂S
∂φy

=
∫

x
δxyP2φ+φP2δxy = 2

∫
x
δxyP2φ (5.41)
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• Definition of O(i):

From Eq.2.112 the definition of O
Φ
(0) remounts the local-expansion of [OΦ]−1 up to dim-6

operators at tree-level. For the purpose of this section, the series is given by Eq.2.113

[OΦ]−1 =− 1
M2

(
1+ P2

M2 +·· ·+ (P2)n−1

(M2)n−1

)∣∣∣∣
local

+ (P2)n

(M2)n
1

P2 −M2 (5.45)

and ran up to n = 2, which implies:

O
Φ
(0) = − 1

m2

(
1+ P2

m2

)
, OΦ(1) = (P2)2

(m2)2
1

P2 −m2 (5.46)

• Computation of [Oϕ]−1:

As asserted before, for comparison with HLM6, the SM Higgs self-interactions was the

sector of light fields chosen to be explored here, i.e.

LSM ⊃ H†(P2 −m2
H)H− λ

4
(H†H)2 (5.47)

where mH has been taken as a matter of convenience with the notation and can be set to

zero at the end of the calculation.

The presence of λ will shift Oϕ by a Hessian denoted as Hλ and given by

Hλ = 2

(
(H†H)I+HH† H∗Hᵀ

HHᵀ (H†H)I+H∗Hᵀ

)
(5.48)

such that Oϕ→Oϕ+Hλ in the formula for A(i). By recovering Eq.(2.125)

[O ]−1 = 1
P2 −m2 − A

=
∞∑

n=0

[
1

P2 −m2 A
]n 1

P2 −m2 (2.125)

at first order in λ it implies

[Oϕ]−1 → 1
P2 −m2

H
+ λ

4
1

P2 −m2
H

Hλ
1

P2 −m2
H

(5.49)

As one example for H(i), the last entry is determined like:

(H†~τH)OΦ(i)(H
†~τH)= (H∗

kτ
c
k jH j)O

Φ
(i)(H

∗
l τ

c
l pHp) (5.42)

such that

δHaH∗
b

= 2δHa (τc
b jH j)O

Φ
(i)(H

∗
l τ

c
l pHp)

= 2
[
τc

baOΦ(i)(H
∗
l τ

c
l pHp)+ (τc

b jH j)O
Φ
(i)(H

∗
l τ

c
la)

]
δH†H = 2

[
(τc)ᵀOΦ(i)(H

†τcH)+ (H†τc)ᵀOΦ(i)(τ
cH)ᵀ

]
(5.43)

6The abbreviation ‘HLM’ may refer either to [32] or to [33], since both compose a work on the general topic of
SMEFT;
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• Computation of A(i):

Finally, from the above expression it follows that

A(i) =∆H H(i) +
λ

4
∆HHλ ∆

H H(i) (5.50)

In order to estimate in which point the series Eq.(5.38) should be interrupted, the power

criteria cannot be used yet. The reason is that, once the Covariant Derivative is still present

inside a functional trace, from the method presented in Section 2.3, Dµ must acquire a shift

D → D + q and thus does not correspond to a dim-1 object. Nevertheless, it is still possible to

conclude that both Ai will be at least of dim-2, such that:

iαTr
∑
p

1
p

{
p∑

k=1

(
p

k

)
A

p−k
(0) A k

(1)

}
= iαTr

{
A(1) +

1
2

[
2A(0)A(1) +A 2

(1)

]
+

+1
3

[
3

(
A 2

(0)A(1) +A(0)A
2
(1)

)
+A 3

(1)

]
+dim-8

}
(5.51)

Before continuing with the examples, some comments could prevent any apparent peculiarity

over all these steps. At principle, it may seem that this entire algorithm are comparable in

complexity with the Feynman diagrams approach. It may be emphasized, however, that these

corrections are being performed in a covariant mode and can cover a large set of process from the

single criteria of dimension-6 operators.

For comparison and illustration, here it must be traced the first and second elements of the

series Eq.(5.51), with the results present in [33] properly identified:

• Tr [A(1)]:

From Eq.(5.50) it follows that

A(1) =∆H H(1) +
λ

4
∆HHλ ∆

H H(1) (5.52)

where H1 is given Eq.(5.44) and

OΦ(1) = (P2)2

(m2)2
1

P2 −m2 (5.46)

The first contribution implies

Tr
[
∆HH(1)

]
= Tr

[
∆HH H†H

(1)

]
+Tr

[
∆HH HH†

(1)

]
⊃ 4κ2

m4 Tr
[
∆Hτa

{
(P2)2

P2 −m2 (H†τaH)
}
+∆H(τaH)

(P2)2

P2 −m2 (H†τa)
]

= 4κ2

m4 Tr
[
∆H(τaH)

(P2)2

P2 −m2 (H†τa)
]

(5.53)

where the first piece vanish by the traceless Pauli matrices. The above result is precisely

what [33] defined as SK . The next step consist in the functional trace and will be performed

in the next section.
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The second contribution is given by

λ

4
Tr

[
∆HHλ ∆

H H(1)

]
= λ

4
Tr

[
∆HH H†H

λ ∆H H H†H
(1) + ∆HH HH

λ ∆H H H†H†

(1) +

+ ∆HH H†H†

λ ∆H H HH
(1) + ∆HH HH†

λ ∆H H HH†

(1)

]
(5.54)

where the Hλ components are written in Eq.(5.48). Considering one term

λ

4
Tr

[
∆HHλ ∆

H H(1)

]
⊃ λ

4
Tr

[
∆HH H†H

λ ∆H H H†H
(1)

]
= 2λκ2Tr

[
∆H [(H†H)I+H H†]×

×∆H[τaO(1)(H†τaH)+ (τaH) O(1) (H†τa)]
]

(5.55)

or7

λ

4
Tr

[
∆HHλ ∆

H H(1)

]
⊃ 2λκ2

m4 Tr
[
∆H [(H†H)I+H H†]∆H[(τaH)

(P2)2

P2 −m2 (H†τa)]
]

(5.56)

thus corresponding to the piece denoted as S1 by [33] in their Eq.(D7)8. All the results must

certainly be equivalent. The only difference between the techniques explored here and that

of HLM concerns the stage where the subtraction is chosen to be done - In [33] it has been

performed at the level of the Trace computation and here at the level of the Log expansion,

finally summarized through a series (namely Eq.(2.120)).

For concluding the examples, the first crossed piece of Eq.(5.51) may also be drawn:

• Tr [A(0)A(1)]:

Tr[A(0)A(1)] ⊃ Tr
[
∆HH(0) ∆

H H(1)

]
= Tr

[
∆HH H†H

(0) ∆H H H†H
(1)

]
+Tr

[
∆HH HH

(0) ∆H H H†H†

(1)

]
+

+ Tr
[
∆HH H†H†

(0) ∆H H HH
(1)

]
+Tr

[
∆HH HH†

(0) ∆H H HH†

(1)

]
(5.57)

Before to proceed, it may important to remark that ∆H is a open operator, acting to the

right, while the H is closed. Next, from the first piece,

Tr[A(0)A(1)] ⊃ 16κ4 Tr
[
∆H{τaO(0)(H†τaH)+ (τaH) O(0) (H†τa)}×

×∆H {τaO(1)(H†τaH)+ (τaH) O(1) (H†τa)}
]

⊃ 16κ4

m6 Tr
[
∆H{(τaH)

(
1+ P2

m2

)
(H†τa)}×

×∆H{(τaH)
(

(P2)2

P2 −m2

)
(H†τa)}

]
(5.58)

As a last explanation, the above expression presents a higher suppression compared with

the expected 1
m2 due to the presence of the dim-1 constant κ. Finally, it corresponds the

term S2 in [33].
7Unlike the previous result, the Pauli matrices will not imply a vanishing term in this expression, due the product

with HH†;
8With the difference of the factor cs, still not included in the expression;
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5.1.2.1 Functional Traces

In order to complete one example of computation for the Wilson coefficients in mixed diagrams,

the functional trace will be performed on the result of Eq.(5.56):

Tr
[
A(1)

] ⊃ 2λκ2

m4 Tr
[
∆H [(H†H)I+H H†]∆H[(τaH)

(P2)2

P2 −m2 (H†τa)]
]

⊃ 2λκ2

m4 Tr
[
∆H |H|2∆H[(τaH)

(P2)2

P2 −m2 (H†τa)]
]

(5.59)

In Section 2.3 it has been developed the formal technique of computation of a functional trace,

resulting into an integral over momenta and space-time coordinates in the form

Tr f (x̂, q̂)=
∫

dxdq tr f (x, i∂x − q) (5.60)

where at the r.h.s the trace runs over internal indices and dq ≡ dq4

(2π)4 . For the common cases in

this section, it converts into

Tr
[ 1

P2 −m2 B
]

→
∫

dxdq tr
[ 1

(P − q)2 −m2 B
]

(5.61)

At this stage, the covariant expansion is defined from the series on local terms of the denominator,

like

[ 1
(P − q)2 −m2 B

]
→ [

P2 −2q ·P + q2 −m2]−1
B = ∆̄[

1+ ∆̄(P2 −2q ·P)
]−1

B (5.62)

with ∆̄≡ (q2 −m2)−1. Since the operator inside the brackets is not acting on ∆̄, it follows that

[ 1
(P − q)2 −m2 B

]
→ ∆̄

∞∑
n=0

[
∆̄(2q ·P −P2)

]n
B (5.63)

which will then be used for power counting. By replacing it in Eq.(5.59):

Tr
[
A(1)

] ⊃ 2λκ2

m4

∫
dxdq tr

[(
(∆̄H)2∆̄Φ

)
×

∞∑
n=0

[
∆̄H(2q ·P −P2)

]n

b |H|2 ×

×
∞∑

m=0

[
∆̄H(2q ·P −P2)

]m

b ×

× [
(τaH)

∞∑
p=0

[
∆̄Φ(2q ·P −P2)

]p
(Pµ− qµ)4(H†τa)

]]
(5.64)

where the symbol b is just remarking that the operators associate with the light Higgs act on

the right. By picking the zeroth order components of the series and, from the dim-6 criteria, the
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2q2P2 of (P − q)4, one of the generated operators is9

Tr
[
A(1)

] ⊃ 4λκ2

m4

∫
dxdq

(
q2(∆̄H)2∆̄Φ

)
× tr

[|H|2(τaH) P2(H†τa)
]
+ c.c.

= 4λκ2

m4

∫
dx I(2)

Φ × [|H|2(P2H†τa) · (τaH) + |H|2(H†τa) · (τaP2H)
]

= −3λκ2

m4

∫
dx I(2)

Φ × |H|2[
(D2H†) ·H + H† · (D2H)

]
(5.66)

where Pµ→ iDµ and the last piece of Eq.(5.54) was included in the second line. The I(2)
Φ is one

element of a set of master integrals registered for a large number of cases in [53]. In the MS

scheme it is given by

I(2)
Φ ≡

∫
dq

(
q2

(q2 −m2
H)2(q2 −m2

Φ)

)
= 1

4

(
3
2
− log

m2
Φ

µ2

)
(5.67)

where µ is the renormalization scale and and the Higgs mass was already set to zero. To conclude,

the operator part of the result can be rewritten in terms of the generators for the chosen CP

conserving basis of bosonic operators:

|H|2[
(D2H†) ·H + H† · (D2H)

] → −2(OH +OR) (5.68)

as demonstrated in Appendix (A.2). Finally,

Tr
[
A(1)

]= 3λκ2

2m4

(
3
2
− log

m2
Φ

µ2

)∫
dx (OH +OR) (5.69)

5.2 Comments on the Triplet Case

The treatment about the constant cs was not discussed up to this point, since it requires an

additional comment. As mentioned before, in the case where mixed fields are coupled, a rotation

is performed at the level of the Gaussian integration, and then the cs is identified. This allow

the above results to receive cs = 1, as in the case of complex scalars demonstrated in Section

2.2.1, and which disagree with the choice in HLM. A rotation must also be performed in order to

disentangle vertex including mixed statistics. This feature is present in Yukawa interactions, for

example, and has been discussed in detail in [33].

9For illustration, the trace on internal indices in this case follows

tr[(τaH)(H†τa)] = ∑
i=1,2

(τaH)i(H
†τa)i

= (H†τa) · (τaH)

= 3
4
|H|2 (5.65)

since
∑
τaτa = 3

4 ;
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5.3 Theories with Kinetic Mixing of Gauge-Bosons

Influenced by HLM, this section starts a new set of applications of the results in the Chapter 2.

The theory presents a kinetic-mixing term with U(1)Y from a new heavy U(1) boson, denoted by

Kµ and mass m:

L ⊃−1
4

BµνBµν− 1
4

KµνKµν+ 1
2

m2KµKµ− λ

2
BµνKµν (5.70)

From Aµν = ∂µAν−∂νAµ some identities can be directly recovered, like:

KµνBµν = (∂µKν−∂νKµ)Bµν

= ∂µ(KνBµν)−Kν∂µBµν+Kµ∂νBµν−∂ν(KµBµν) (5.71)

and, by eliminating total derivatives:

KµνBµν = 2Kµ(∂νBµν) (5.72)

Now, to the squared terms it is useful to continuing from Eq.(5.71):

KµνKµν = 2Kµ(∂νKµν)

= 2Kµ(∂ν∂µKν−∂ν∂νKµ) (5.73)

such that

L ⊃ 1
2

Kµ(gµν(∂2 +m2)−∂µ∂ν)Kν+ 1
2

Bµ(gµν∂2 −∂µ∂ν)Bν−λKµ(∂νBµν) (5.74)

thus reproducing the generic representation of Eq.(2.118):

LUV ⊃ 1
2
Φ OΦ Φ + 1

2
ϕ Oϕ ϕ − ΦBϕ + QΦ (2.118)

with Bϕ a function of light fields, here given by Bϕ→λ(∂νBµν). It is also possible to conclude that

the computation of the determinant will lead to cs = 1
2 , similarly to the case of real scalars.

The procedure of integrating out Kµ follows the usual prescription, namely, to replace in

Eq.(5.70) the solution of the classical equation of motion

δSUV [B,K]
δK

∣∣∣
Kc[B]

= 0 (5.75)

or

(gµν(∂2 +m2)−∂µ∂ν)Kν =λ(∂νBµν) (5.76)

i.e. the Proca equation with a conserved source jµ =λ(∂νBµν). By taking one derivative

∂µKµ = λ

m2 ∂µ jµ = 0 (5.77)
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providing a second equation for Kµ
c as:

(∂2 +m2)Kµ
c = jµ (5.78)

The UV theory at the classical solution can then be rewritten like

LLUV ⊃ 1
2

jµ(∂2 +m2)−1 jµ+ 1
2

Bµ(gµν∂2 −∂µ∂ν)Bν− jµ(∂2 +m2)−1 jµ

= 1
2

Bµ(gµν∂2 −∂µ∂ν)Bν− 1
2

jµ(∂2 +m2)−1 jµ (5.79)

and reproducing the generic form of Eq.(2.111). Here, at dim-6, the tree-level piece for the

Effective Lagrangian emerges from the first term in the expansion of the non-local operator, and

results in:

LEFT = 1
2

Bµ(gµν∂2 −∂µ∂ν)Bν+ λ2

m2 O2B (5.80)

with O2B ≡−(∂νBµν)2.

The absence of loop contributions may be seen directly from the non-invariance of triple-

gauge couplings. Technically, this may be seen from U = 0 and Gµν = [∂µ,∂ν]= 0 in the Universal

Formula of Eq.(2.83).

5.4 Integrating the Z′ of the 3-3-1HL

The subject of gauge-bosons can be continued now by considering the new neutral weak-boson of

the 3-3-1HL. Motivated by the notation of [31], the subset of interactions considered here can be

given by:

L331 ⊃ 1
2

Z′
µ

(
gµν∂2 +m2 −∂µ∂ν)Z′

ν+ qa /Pqa −
3∑

a=1
ga

Z′
[
qaγ

µqa
]

Z′
µ (5.81)

here, for simplicity, only the left-handed sector will be consider and the index L was made implicit.

Moreover, the matrix notation for the coupling gZ′ was altered to a simple number since the first

two entries of T8 is proportional to the identity. The index a is then for assigning the fields in

the fundamental or conjugated representation. Indeed, it originates from this distinction the

presence of Flavor Changing Neutral Currents in these sort of 3-3-1 models. Since g∗
Z′ 6= gZ′ ,

the first two generations will acquire a coefficient distinct from the third one, such that, after

the second symmetry breaking, the rotation to the mass-eigenstates results will not retain the

interactions diagonal.

The couplings can also be estimated in terms of the weak-coupling g and according to the

3-3-1HL variant, i.e. to the particular choice of β. In the Chapter 4 it was demonstrated that (see

Eq.(4.30))

g∗
Z′ =−g

(
cx

2
p

3
+ tanθw tanθx

(
1
6
+ β

2
p

3

))
; gZ′ = g

(
cx

2
p

3
− tanθw tanθx

(
1
6
− β

2
p

3

))
(4.30)
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Moreover, the angle θx is related to the weak-angle through Eq.(4.28), i.e.

sx =βtanθw, and β ∈
[
± 1p

3
,±

p
3

]
(4.28)

Thus, by replacing it into the Z′ coupling, it follows that

g∗
Z′ =−g[0.64, 0.27, 0.33, 1.19]; for β=

[
−
p

3 ,− 1p
3

,
1p
3

,
p

3
]

,respectively. (5.82)

with s2
w = 0.231 at µ= mZ (MS, see [41]). To the fields in the fundamental representation, the

values are reversed along the sign of β.

5.4.1 At tree-level

The tree-level integration follows similarly to the case of Section 5.3. The classical equation

δS331

δZ′
∣∣∣
Z′

c[q,q]
= 0 (5.83)

corresponds to

Z′
µ = [∂2 +m2]−1 ∑

a
ja
µ, → ja

µ = ga
Z′[qaγµqa] (5.84)

After replacing it back into Eq.(5.81):

LL,331 ⊃ qa /Pqa − 1
2

∑
a,b

[
ja
µ[∂2 +m2]−1 jµ,b

]
(5.85)

The field-dimension of jµ is three. Thus, at dim-6 the operator must be truncated at the first

order. The EFT at tree-level results in:

L (0)
EFT ⊃ qa /Pqa − 1

2
1

m2

∑
a,b

c(0)
abQab; (5.86)

where, from Grzadkowski at al.[31] notation, Qab = [qaγµqa][qbγ
µqb] and c(0)

ab = ga
Z′ gb

Z′ .

5.4.2 At Loop-Level: Mixed Terms

The Z′ may also be taken as a source of application for the matching at the log-level involving

mixed heavy-light particles. The formula was computed in Section 2.4 and is based in objects like

A(i) ≡
[
Oϕ

]−1
H

[
1
2

Bϕ OΦ(i) Bϕ

]
(2.118)

where ϕ and Φ denotes light and heavy fields, respectively, and [Oϕ]−1 is, for the overall La-

grangian representations, a light covariant propagator. Apart from that, the indices (i) indicates

(0) local or (1) non-local operators, such that O (0) is the truncated part during the tree-level
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matching of the heavy propagator expansion, while the O(1) is the remaining non-local term. The

power-counting is performed through

N∑
i=1

c(1)
i Oi[ϕ]⊃−iαTr

∑
p

1
p

{
p∑

k=1

(
p

k

)
A

p−k
(0) A k

(1)

}
(5.87)

Finally, the light operators Bϕ are given by the current

Bϕ→ ja
µ = ga

Z′[qaγµqa] (5.88)

where q are quark doublets and gZ′ the coupling constant. For simplifying the notation, here

only one generation will be considered, what implies

A(i) ≡ [ /P]−1 H

[
1
2

jµ O Z′
(i) jµ

]
(5.89)

From the tree-level integration it is also clear that the truncated O (0) is defined by

[O Z′
]−1 → O

Z′

(0) =
1

m2 (5.90)

which implies from Eq.(2.113)

[O Z′
]−1 → O Z′

(1) =
∂2

m2
1

(∂2 −m2)
(5.91)

The Hessian matrix follows similarly to the Scalar Triplet case, despite the fact that the

current is already a gauge-covariant object. From the linearity of the trace, for illustration only

the operators coming from the first entry of H will be considered:

H(i) ⊃
1
2
δ2

qq = g2
Z′

[
γµO(i)(qγµq)+ (γµq)O(i)(qγµ)

]
(5.92)

The first term in the series Eq.(5.87) consists of A(1), i.e.

A(1) ⊃
g2

Z′

m2

{
/P

P2

[
γµ

p2

(p2 −m2)
(qγµq)+ (γµq)

p2

(p2 −m2)
(qγµ)

]}
(5.93)

where now the small p ≡ i∂. To the trace,

Tr[A(1)]⊃ 4
g2

Z′

m2 Tr
{

Pµ

P2

[
p2

(p2 −m2)
(qγµq)

]}
(5.94)

where trγµγν = 4gµν has been used. The next step involves the functional trace and the prescrip-

tion of Eq.(5.61)

Tr[A(1)] ⊃ 4
g2

Z′

m2

∫
dxdk

{
∆

∞∑
n=0

[∆(2k ·P −P2)]n(Pµ−kµ)×

×∆Z′ ∞∑
m=0

[∆
Z′

(2k · p− p2)]m(pµ−kµ)2(qγµq)
}

(5.95)
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and, as before ∆
Z′

= [k2 −m2
Z′]−1 and ∆= [k2]−1. At the zeroth-order in the series expansion it

can be seen that the total covariant acting on an invariant term will leave a total derivative and

must vanish. The only even integral in the integrated momentum is

Tr[A(1)]⊃ 4
g2

Z′

m2

∫
dxdk

{
∆∆

Z′
kµkν[2pν(qγµq)]

}
(5.96)

and, again, since after integration kµkν→ gµν, the final result converts into a total derivative of

the current.

The previous result may be interpreted as a zero correction to the quark masses, as well as

those from the remaining terms10. The derivative over the quark fields inside O(i) reveals that

every correction should be proportional to the fermion mass, which remains zero at the end.

The next term for the series in Eq.(5.87) will be partially performed as one attempt to verify

the type of integrals present during the matching and the information in fact translated to the

Wilson coefficients during the subtraction. The product is given by

c(1)
abQab ⊃Tr[A(0)A(1)] (5.98)

The A(0) is can be constructed as in Eq.(5.93), via the replacement O(1) →O(0). By taking the first

product in A(0)A(1), it follows that

Tr[A(0)A(1)]⊃
g4

Z′

m4 Tr
{

/P
P2γµ(qγµq)

/P
P2γν

p2

(p2 −m2)
(qγνq)

}
(5.99)

To perform the functional trace, again only the zeroth-order element of each propagator expansion

will be taken:

Tr[A(0)A(1)]⊃
g4

Z′

m4

∫
dxdktr

{
∆

2
∆Z′( /P − /k)γµ(qγµq)( /P − /k)γν(p−k)2(qγνq)

}
(5.100)

Now the above expression contains different degrees of divergence. This degree can be count from

the number of momentum in the numerator like

#k ∈ {0,2,4} and thus δ(Γ(4))= #k+4−6 or δ(Γ(4)) ∈ {−2,0,2} (5.101)

The result reproduces the degree of divergence of the diagrams in Fig. In summary, the subtraction

discussed in Chapter 2 involving the quantum corrections to the Effective Theory and to the

Light-UV theory indeed presents different regions for the integrated momenta, from the low-,

where the Z′ lines can just be cut-off, to the hard- region where the heavy lines must be activated.
10For completeness, the second trace for A(i) can also be performed:

Tr[A(1)]⊃Tr
g2

Z′

m2

{
/P

P2
[
(γµq)O(1)(qγ

µ)
]}→Tr

{
Pνγν(γµq)[O(1)(qγ

µ)]
} = Pν(γν)ab(γµq)b[O(1)(qγ

µ)]a

= Pν(γν)ab(γµ)bi qi[O(1)q] j(γ
µ) ja

= Pν(γµγνγµ) ji qi[O(1)q] j

or
Tr

{
Pνγν[(γµq)O(1)(qγ

µ)]
}=−2Pν[qγνO(1)q] (5.97)
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(a) (b) (c)

FIGURE 5.1. The degree of divergence of the above graphs are in fact present in the
mixed heavy-light matching formula.

5.5 The J-quarks in the 3-3-1HL

The Chapter 4 tried to elucidate the circumstances when the 3-3-1HL model may comprise the

Standard Model. After the triplet χ acquire a vacuum expectation value, the SU(3)L ⊗U(1)X

symmetry breaks into SU(2)L ⊗U(1)Y due to a there called β-independent scalar interactions, i.e.

a potential whose form is present in all possible variants of the model. It has also been shown that,

in this single breaking scenario, the non-standard particles, apart from the previous neutral Z′,
completely decouples with the SM at tree-level, a consequence of the pattern of gauge interactions

settled by the structure of SU(3). Under these assumptions, the criteria of separation

L331 =LSM +LSM+NP (5.102)

is then satisfied and the Universal Formula developed in Chapter 2 appropriate for the 3-3-1HL

integration.

It has also been argued that the β-independent scenario, the same of considering a Z2

parity, is a reasonable assumption once one is primarily interested on testing this new SU(3)

gauge-structure.

The Section 3.3 has developed one of the basic principles for defining the EFT technique, valid

whenever the complete theory intrinsically presents very separated energy scales. At a first level

the integration of the 3-3-1HL would imply a redefinition of the renormalizable SM like

L331 =LSM +O
(

1
ua

)
(5.103)

with rescaled fields and couplings. Here u denotes de heavy scale.

As soon the experiments reach larger scales, the suppressed part must start to be filled

with higher-dimension operators. The aim of this section is to accomplish part of this task, now

through the integration of the heavy J-quarks in the conjugated representation, independently of

the specific model, i.e. regardless the value of β.

As mentioned before, the quarks Ji are singlets of SU(2)L and charged under hypercharge

according to the coupling g∗
B with the field Bµ. The Covariant Derivative is given by

/P = i /D = i( /∂+ ig∗
B /B) (5.104)
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where, in terms of the original couplings

g∗
B = gp

3
sx + gX

(
1
6
+ β

2
p

3

)
cx = g′

(
1
6
+ β

p
3

2

)
(5.105)

and θx the 3-3-1HL mixing angle. To the application of the Universal Formula, Eq.(2.83), the

vertex

J i( /P −m)J i (5.106)

is better to be rewritten after the trick of Section 2.2.1, namely

− iTrlog(− /P +m) → − i
2

Trlog[D2 +m2 +UJ] (5.107)

where now UJ ≡− i
2σ

µν[Dµ,Dν]. For the Abelian case [Dµ,Dν]= ig∗
BBµν. Thus, the total compo-

nents for the application of the Eq.(2.83) are done. Since UJ is of dim-2 in the fields, the sum

must break at 1
m2 . From tr[σµν]= 0, the m2 piece vanishes. In fact, any piece with a single UJ

must vanish. In the m0 term, the U2
J term also vanishes by the antisymmetry of Bµν

11. The

remaining operator is just proportional to the kinetic term:

L (1)
EFT ⊃ cs

(4π)2

g∗2
B

12

(
1− log

(
m2

µ2

))
BµνBµν (5.108)

At dim-6 operators, the triple interaction vanishes by the antisymmetry of Bµν
12, as well as

the pieces containing UJ . The single contribution comes from

L (1)
EFT ⊃ cs

(4π)2

g∗2
B

m2
O2B

30
(5.109)

where O2B ≡−1
2 (∂µBµν)2.

11Here, trU2
J ∝ tr[σαµσβν]BαµBβν = 4[gαβgµν+ gανgµβ]BαµBβν = 0;

12Unlike in the non-Abelian case, where tr[WµνWναWαµ] = Wa
µνWb

ναW c
αµ × tr[TaTbT c]. Here, BµνBναBαµ =

−BνµBµαBαν = 0
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PRECISION OBSERVABLES

The last part of the work is dedicated to apply not only the formulas developed in the previous

chapters, but mainly the conceptual ideas contributing to the strength of Effective Field Theories.

The source taken is the Lagrangian raised after the integration of the heavy quarks in the

3-3-1HL. It will be seen that, although a single Wilson coefficient has been generated, its

effects can be translated into many distinct observables through the mixing implied by the

anomalous dimension matrix. After running down the operators to the electroweak scale, a linear

combination of the coefficients may define an observable basis, following the Elias-Miró et al.

terminology [24]. In other words, a linear combination will affect the same observable such that,

as the experimental measurements acquires more precision, more narrow become the correlations

among the many parameters of the original UV model. This methodology will be verified through

the new class of oblique parameters presented by Barbieri et al. [4] and currently measured at

per-mille level [3].

6.1 Operator Mixing and Anomalous Matrix

This Section provides a brief review about the origin of the anomalous matrix and the consequent

operator mixing, and is supported on the historical example of the QCD corrections to the Fermi

operator O1 (see [8], [49]-Chap. 31):

O1 = [cLγ
µbL]x[dLγ

µuL]x (6.1)

where ‘x′ indicates a local product and the brackets a color contraction. This operator is then

complementing a low-energy Lagrangian given by:

L =−1
4

F2
µν−

1
4

(Ga
µν)2 +∑

q
q(i /D−mq)q−∑

n
CnOn (6.2)

The introduction of the operator in Eq.(6.1) is clearly motivated by the phenomenology of hadronic

process like B → D decays, supposed to be well represented by the channel b → cud. As mentioned

before, a theory which creates and annihilates quarks applied for hadronic process will in general

imply large uncertainties from the matrix elements evaluation. Therefore, any attempt to make

the perturbative computation more precise is proper to be considered.

At tree-level the Low-energy Lagrangian is given by:

L =Lkin −C1O1 (6.3)
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with C1 = 4 GFp
2

VcbV∗
ud in terms of CKM matrix elements. The Chapter 3 has shown that the

matching procedure constitute a form of adding information from a heavy particle (or, of the

complete theory) to the Wilson coefficients. Thus, the matching at 1-loop will complement these in-

formations through higher-order process involving the integrated particles. This task is, therefore,

independent of the running analysis for the effective operators. as clarified before, the running

will sum up perturbative corrections that, in the case of the EFT, originates from the many

exchange of light-particles. The matching, i.e. the equivalent of a Correspondence Principle, will

provide the initial condition to the set of renormalization group equations. Therefore, a clearly

benefit of the matching procedure is that, since the renormalization of the operators is already

performed in this context, it may directly provide the anomalous matrix to be used during the

running analysis.

Back to the QCD corrections, the first step, that of the matching, is fully performed in many

textbooks and articles, like in Buchalla et al. [8], Peskin and Schroeder [42] and J. Donoghue et

al. [21]. In the last case the authors have also provided an example of matching by integration by

regions. In the case of M.Schwartz [49], the procedure is performed like detailed in Chapter 2,

namely, by equating the full computation, including a W-line, with the EFT calculation including,

as the effective vertex, only the Wilson coefficient at tree-level.

The problem of QCD corrections to heavy-quark channels is the first to illustrate an oper-

ator mixing. The many gluons exchange will generate O2 = [cLγ
µuL][dLγ

µbL] such that the

Lagrangian after the 1-loop matching will turn into

L =Lkin −C1Z1O1 −C2Z2O2 (6.4)

with the operator strength Zi = 1+ δi. It is important to emphasize that the renormalized

operators Oi are already depending on the renormalized fields. Again, the boundary conditions to

the renormalization group equations of the Ci ’s are extracted from matching at the subtraction

scale µ̃= mW and are given by:

C1 = G

[
1− αs

2π

(
1
2

log
µ̃2

m2
W

+ 3
4

)]
(6.5a)

C2 = G

[
3αs

2π

(
1
2

log
µ̃2

m2
W

+ 3
4

)]
(6.5b)

with G just denoting the tree-level coefficient. At the matching scale, the log function above

must vanish. In general, these expressions are written preserving these functions in order to

represent the summation performed by the RGE. However, the above results are not functions of

µ, but numbers defined before the correspondence principle - the EFT and the UV must agree at

µ̃= mW
1.

Now, the normalization of the effective operators were already given by the computation of

QCD corrections in the context of the EFT. Here the highlighted sentence is just to clarifying that
1All the couplings α,G are indeed dependent on the renormalization scale;
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the running analysis is in fact independent of the matching procedure, although this last one will

already imply the extraction of the anomalous matrix. From [49], the operator-strength resulted

in

Z1 = 1+ αs

2πε

(
3

C2

C1
− 11

3

)
, Z1 = 1+ αs

2πε

(
3

C2

C1
− 11

3

)
(6.6)

Since the quark-fields defining Oi were already the renormalized fields, in terms of bare fields,

the vertex can be given by:

CiZiOi → CiZi

Z2
q

[q(0)γµq(0)][q(0)γµq(0)] (6.7)

Being the bare fields independent on the renormalization scale, the group equations can be

summarized like

µ
d

dµ

(
Ci

Zi

Z2
q

)
= 0 (6.8)

To solve it in detail, first consider Zi = 1
Ci

(
Ci + αs

2πε
(
3C j − 11

3 Ci
))

. Thus

µ
d

dµ

(
Ci

Z2
q
+ αs

2πε

(
3C j − 11

3
Ci

)
1

Z2
q

)
= 0 (6.9)

∴
µ

Z2
q

dCi

dµ
=−Ciµ

d
dµ

1
Z2

q
−µ d

dµ

[
αs

2πε

(
3C j − 11

3
Ci

)
1

Z2
q

]
(6.10)

the first term in the r.h.s, at order αs corresponds to

−Ciµ
d

dµ
1

Z2
q

= −4Ci

Z3
q

β(αs)
3πε

= 4Ciαs

3πZ3
q
+O(α2

s ) (6.11)

where it has been used β(αs)∼−εαs +O(α2
s ). Finally,

µ
dCi

dµ
= 4αs

3πZq
Ci − β

2πε

(
3C j − 11

3
Ci

)
= 4αs

3πZq
Ci + αs

2π

(
3C j − 11

3
Ci

)
= αs

2π
(−Ci +3C j

)
(6.12)

and in the last equal sign Zq at tree-level has been taken. The above equation will then represent

the mixture between C1 and C2 via:

µ
dCi

dµ
= γi jC j → γi j = αs

2π

(
−1 3

3 −1

)
(6.13)

The previous discussion has tried to elucidate the methodology behind the extraction of the

anomalous matrix. In fact, γi j will appear from any light particle exchange which is able to
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Table 6.1: The set of dimension-six Bosonic operators. The basis must be complemented by CP-odd
operators treated in the Appendix A.4. (see [32])

OH = 1
2 (∂µ|H|2)2

OT = 1
2 (H†←→D µH)2

OR = |H|2|DµH|2
OD = |D2H|2
O6 = |H|6

OGG = g2
s |H|2Ga

µνGa,µν

OWW = g2|H|2Wa
µνWa,µν

OBB = g′2|H|2BµνBµν

OWB = 2gg′H†τaHWa
µνBµν

OW = ig(H†τa←→D µH)DνWa
µν

OB = ig′YH(H†←→D µH)∂νBµν

O3G = 1
3! gs f abcGaµ

ρ Gbν
µ Gcρ

ν

O3W = 1
3! gεabcWaµ

ρ Wbν
µ W cρ

ν

O2G =−1
2 (DµGa

µν)2

O2W =−1
2 (DµWa

µν)2

O2B =−1
2 (∂µBa

µν)2

correct a given operator. The total matrix for the entire basis of the Standard Model Effective

Field Theory, at dimension-six has been presented in the literature as, for example, in the Jenkins

et al. work [34], [35] and [1], or for the subset of bosonic-operators in Elias-Miró et al. [24].

In the Chapter 3, the running equation for the Wilson Coefficients, at leading-order, was

obtained like

ci(mW )= ci(m)− 1
16π2

∑
j
γi j c j(m) log

(
m

mW

)
(6.14)

and represents the translation of the coupling at the heavy scale m to the electroweak scale mW .

Since the total basis of the SMEFT is too large to turn the above relation simple to be considered,

some plausible assumptions can be adopted [32]. First, a coefficient that was generated from

a loop with a heavy particle is likely to give a negligible correction for a formula representing

loop corrections from light particles (i.e. a two-loop size correction). In other words, the index “j”

can be closed to the coefficients generated at tree-level only. Second, if on the other hand ci was

generated at tree-level a loop correction is likely to be negligible and as a first approximation

ci(m) ∼ ci(mW ). The use of Eq.(6.14) is then motivated by the attempt to improve loop-level

results from tree-level terms2, a perspective that reduces γi j into a smaller sub-basis.

For models whose phenomenology is centered in Higgs physics, it is common to adopt the set

of Bosonic operators of Table 6.1. This set can also be complemented by a few of CP-odd operators

discussed in Appendix A.4.

The Standard Model with a Triplet Scalar introduced in Chapter 5 is indeed closed in this

subset and can be taken for illustrating the use of Eq.(6.14). Following the aforementioned

criteria, from Eq.(5.16), the operators generated at tree-level were

S(0)
EFT = κ2

2m2 |H|4 + κ2

m4 (OT +2OR)− ηκ2

m4 O6 →Otree ∈ {OT ,OR ,O6} (5.16)

which reduce the index ‘j’ for three values. At one-loop level it was generated

O1−loop ∈ {OT ,OR ,O6,OH ,O2W ,O3W } (6.15)
2It is also motivated whenever the observable has been measured with high precision;
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In the work of J.Elias-Miró et al. [23] the authors have registered the anomalous matrix for the

operators of Table 6.1, from which one can conclude that only cH must be corrected, from cH and

cT (see Table 7 in [24]):

cH(mW )= 2η− 1
16π2

[
3
2

(2g2 + g′2 −4λ)
2κ2

m2 + (8λ−6g2 − 3
2

g′2)
2κ2

m2

]
log

(
m

mW

)
(6.16)

since cH(m) = 2η. Besides, (λ, g′, g) are quartic Higgs coupling, the hypercharge and the weak

coupling, respectively. For simplification, once the coefficients for mixed heavy-light loops were

not fully computed, only the results from Eq.5.34 were considered.

6.2 Running the Wilson Coefficients - Considerations

It has been argued hitherto that the equations for running the Wilson coefficients down to

the electroweak scale may be reduced depending on the specific process under consideration.

Equivalently, some elements inside the set of 59 dim-6 operators of the SMEFT, listed in [31],

can just be assumed a priori to not provide any measurable effect. The operators of Table 6.1, for

instance, are privileged in the sense that they can serve to test the electroweak symmetry sector.

In the example for the running of the Triplet Scalar operators only the correlations between

coefficients generated at tree-level into those at loop level was accounted. However, this simplifi-

cation must in fact depend on the precision level for the observable and on what follows it will be

relaxed. Moreover, since the running corresponds to the sum many light particles exchange, the

anomalous matrix must depend on the Standard Model parameters in a very intricate form, as

can be noted in Eq.(6.16). These couplings are still scale dependent. Notwithstanding, the values

of the SM couplings at high energies are in general not considered and their running has already

not entered in the solution of the renormalization equations.

Finally, the equation considered for the running analysis, namely Eq.6.14, was achieved at the

leading log, one valid simplification whenever the difference between the UV and the electroweak

scale is not very large. Usually, m ∼O(TeV ).

6.3 J-quarks and Electroweak Precision Observables

This Section presents a brief introduction on how to constrain the UV model parameters through

Electroweak Precision Observables. In the last chapter the integration of the J-quark resulted in

two contributions. The first is a consequence of a single loop inside the gauge-boson propagator,

and was given by:

LEFT ⊃ cs

(4π)2

g∗
B

2

12
BµνBµν (6.17)

at the heavy scale Λ= m and with

g∗
B ≡ gp

3
sx + gX cx

(
1
6
+ β

2
p

3

)
= g′

(
1
6
+ β

p
3

2

)
(6.18)
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and θx the 3-3-1HL mixing angle. At dimension-six there was also a single operator, namely O2B:

LEFT ⊃ cs

(4π)2

g∗
B

2

m2
O2B

30
(6.19)

On what follows the meaning of the kinetic term must be addressed. Next, motivated by the

analysis of J.Elias-Miró et.al [24], the single Wilson coefficient c2B must be tested under a new

class of oblique parameters.

Despite the fact that just one dimension-six operator was generated during the integration

of J-quarks, the coupling evolution, down to the electroweak scale, may spread the information

about their presence to different classes of observables. On what follows, it is presented a brief

review on the analysis introduced by J.Elias-Miró et al. in [24], whose anomalous matrix for the

set of operators below was entirely computed:

Odim-6 ∈ {OH ,OT ,OW ,OB,O2W ,O2B,OWW ,OWB,OBB,O3W } (6.20)

Based on their results, some coefficients like cB or cWB, zero at Λ∼ m may assume a non-zero

value at µ∼ mW . These coefficients are then two-loop suppressed and will produce reasonable

bounds as the observables related to them turn more precise.

The analysis will follow a general assumption that the Wilson coefficients must not exceed

their respective bounds. The c2B, for example, is directly associated with a new class of oblique

parameters, namely Y, associated with higher-order corrections of the Bµ propagator. The bounds

on cY are currently measured at the per-mille level [4], as well as those from different Electroweak

Precision Observables (EWPO for short), like the remaining oblique parameters S, T, U and

Triple Gauge Couplings. Notwithstanding, since the propagation of cY into different W.C’s occurs

only through γi j, its direct bound may be considered sufficiently strong to constrain the J mass.

Thus, here the running is performed as a matter of illustration.

In the work of J.Elias-Miró et al. the authors have defined a new class of constants by

considering, instead of a single Wilson coefficient, a linear combination of the overall terms

that may contribute to a particular observable. Preserving their notation, the method can be

represented like

(obs)i = κi +wi j c j ≡ κi + ĉi (6.21)

The κi sum up the Standard Model part. The ĉi represents any possible disagreement and

comprises, linearly, the total of Wilson coefficients enhancing the same observable. The authors

have called these ‘hat’ numbers observable couplings composing an observable basis. These

redefinitions permit to obtain the correct anomalous matrix for the hat coefficients and each

operator in this basis can be directly bounded from the ‘strength’ of its coupling. In other words,

the wi j will define a basis transformation from γi j into a new γ̂i j. As illustrated in [24], the
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Table 6.2: The column c2B of the anomalous dimension matrix for the dim-6 Bosonic operators,
according to J.Elias-Miró et al in [24].

γcT ,· γcB,· γcW ,· γc2B,· γc2W ,· γcWB,·
3g′4 + 9

8 g′2 g2 +3λg′2 59
4 g′2

(
29
8 − 53g′2

4g2

)
g′2 94

3 g′2
(

53
12 − 53g′2

4g2

)
g′2 0

observable coupling ĉγZ can parametrize corrections to the process h → γZ through the sum

ĉγZ = m2
W

Λ2

(
2c2

θW
cWW −2s2

θW
cBB − (c2

θW
− s2

θW
)cWB

)
(6.22)

which composes the matrix line wγZ, j. One important observation is that the entries of w is

dependent on SM parameters and therefore run with the scale through the evolution of g, g′

and v. As mentioned before, the authors state a reasonable argument already followed in the

derivation of the approximate evolution equation - the UV values of SM parameters are in general

considered constant around their values aat the electroweak scale. In summary, wi j → wi j(mh).

Finally, the scale-dependent coupling ĉi(µ)≡ wi j(mh)c j(µ) is correlated with the complete set

of observables through:

δ(obs)i

∣∣∣
mh

= ĉi(mh)= ĉi(m)− 1
16π2

∑
j
γ̂i j ĉ j(m) log

m
mh

(6.23)

with

γ̂i j = wik(mh)γklw−1
l j (mh) (6.24)

In the Table 6.2 is registered the column γ·,c2B computed in the basis of Eq.(6.20), extracted from

[24], and revealing the dependence on the set of SM parameters

{g′, g,λ, yt} → {U(1)Y ,SU(2)L,LHiggs,LY (top)} (6.25)

with yt the top Yukawa coupling. The Table also clarify how the anomalous matrix indeed depends

on the entire configuration of light particles correcting the operator.

After solving the Eq.(6.23), ĉi can then be tested before the criteria

δ(obs)i

∣∣∣
mh

= ĉi(mh)=∑
j

wi j(mh)c j(mh) ∈ [εlow
i ,εup

i ] (6.26)

being εi the lower and upper bounds from the measurements to the observable i.

Therefore, the analysis remains essentially the same - To translate, in a direct manner,

informations from one measured sector to another. As in the Triplet scalar example, a tree-level

Wilson coefficient which may not be well limited can propagate its effects into a perhaps more

constrained process. However, the method will be useful when the final values have about the

same size. On what follows, this possibility for the quark-J is explored, first by clarifying the

meaning of its contribution to the kinetic term BµνBµν. Next, the effective operator O2B must

face the class of electroweak parameters Ŝ, T̂ and Y , all measured at the per-mille level.
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6.3.1 Scaled Fields

In the Chapter 5 it was shown that the J-quark integration resulted in a shift of the kinetic

term BµνBµν. It provides, therefore, the first example of the field redefinition presented during

the Decoupling Theorem analysis of Chapter 3. Although the top-down approach chosen for

constructing the Effective Field Theory implies the previous knowledge on the Ultra-Violet

complete theory, the application of the final EFT is definitely independent. Once it is assumed

that the physical universe is ruled by the UV model and that, for experimental reasons, a space

of new particles has not been discovered yet, the philosophy is to state that the experiments

have seen only the ‘bar’ Standard Model, or the Standard Model Effective Field Theory (SMEFT),

whose couplings and fields already include the parameters of the complete theory. Symbolically,

L331 =LSM +LNP (6.27)

where an abstract expression, the L331, has been divided in a renormalizable piece, LSM , plus

some undiscovered properties, LNP . The physical process, at low-energies, have known about the

New Physics parameters only through virtual lines, such that what is in fact measured is

LSMEFT =L SM + ∑
dim-6

ciOi (6.28)

i.e. when one assumes the existence of a full theory that is to assert all the SM as a set of Effective

operators. Being the 3-3-1HL the final theory, what the experiments have seen at low-energies

consists in the SM with shifted fields and couplings. In summary, no additional information can

be extracted from a heavy-particle integration which results in operators of the renormalizable

low-energy theory.

The contribution to the kinetic term has been originated from one piece of the 1-loop result for

these exotic particles to the Bµ propagator. The oblique parameter S [43] is a quantity defined as

a zeroth-order natural relation [42], i.e. from relations involving the Lagrangian parameters that

can result in predictions of the theory. As discussed in Chapter 3 the final form of a renormalizable

Lagrangian remains intact under renormalization and thus any possible tree-level connection

into its parameters. The zeroth-order natural variables are UV finite. In other words, any relation

emerged at tree-level and involving observables may render predictions when the number of

parameters necessary to define the theory is smaller than its overall set. The UV finiteness of

loop corrections to natural relations, although logical is difficult to verify explicitly. One example

for the W-mass was fully performed in M. Schwartz [49], chapter 31.

Thus, the S parameter constitute an observable of the Standard Model, identically equals to

zero, and relates the contributions to the neutral bosons propagators from New Physics models.

Once the 1-loop piece from the J-quark to the SMEFT can be absorbed by rescaling the gauge-

boson Bµ, there is no deformation in the SM Lagrangian and S must persist equals to zero.

Nevertheless, this conclusion does not imply that the J-quark cannot change the value of S - it
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does, at higher-loop level. In the next section it will be shown that c2B will run down to mW and

contribute to the Wilson coefficient cS.

The fact that S will change due to exotic quarks can be interpreted both in the context of the

UV theory as in the SMEFT. In the 3-3-1HL the natural relation behind the definition of S is

being altered by the presence of new parameters. It seems a logical statement. In the SMEFT

scenario, the insertion of O2B deforms the analytical property of the SM Lagrangian, a criteria to

the definition of S. The non-renormalizability of the SMEFT avoids the appearance of natural

relations3.

6.3.2 The Y Parameter

The previous section stated that the oblique parameter S may receive corrections from J-quarks

at higher-loop level, induced by the operator O2B. The authors of [24] have parametrized the

Lagrangian for Electroweak Precision Observables through:

LEWPO =− T̂
2

m2
Z

2
ZµZµ− Ŝ

4m2
W

gg′v2

2
(W3

µνBµν)− W
2m2

W
(∂µW3

µν)2 − Y
2m2

W
(∂µBµν)2 (6.33)

such that

T̂ = ĉT (mW )= v2

m2 cT (mW ); Ŝ = ĉS(mW )= m2
W

m2 [cW (mW )+ cB(mW )+4cWB(mW )] (6.34a)

Y = ĉY (mW )= m2
W

m2 c2B(mW ); W = ĉW (mW )= m2
W

m2 c2W (mW ) (6.34b)

The J-quark is directly enhancing the parameter Y, measured at per-mille level [26]. Now, from

Table 6.2 it can be seen that, although the ci(m) are zero for the remaining observables, they are

in fact different from zero at µ∼ mW . Recovering the evolving equation:

ci(mW )= ci(m)− 1
16π2

∑
j
γi j c j(m) log

m
mW

(6.35)

3The argument follows - (i) The parameter S is zero in the SM. (ii) The 1-loop corrections from J-quarks does not
alter the SM Lagrangian. (iii) Thus, the 1-loop from J’s cannot alter the S parameter. By definition [49] it follows:

S ∝
[
ΠZZ (m2

Z )−ΠZZ (0)− c2 − s2

cs
ΠZγ(m2

Z )−Πγγ(m2
Z )

]
(6.29)

s = sθW . In order to prove S = 0 from J-quarks it is important to preserve the couplings in terms of Aµ and Zµ:

gZ =−eqtgW , gA = eq (6.30)

with q the electric charge. By the singlet isospin structure of Ji (T3 = 0), the many vaccum polarization amplitudes
will be given by (N is the number of colors):

Πγγ(p2)= Nq2ΠVV (p2), ΠγZ (p2)=−Ns
c

q2ΠVV (p2), ΠZZ (p2)= Nq2 s2

c2ΠVV (p2) (6.31)

with ΠVV the sum of the overall chiralities (ΠVV (0)= 0). Replacing it in S:

S ∝
[

s2

c2 − c2 − s2

cs
s
c
−1

]
= 0 (6.32)

Now, higher-order loop corrections from J does not imply the SM - The S parameter may receive a correction.
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Table 6.3: The 95 % CL measurement to the Precision Observables [24].

ĉS(mt) [3] ĉT (mt) [3] ĉY (mt) [4]
[−1,2]×10−3 [−1,2]×10−3 [−3,3]×10−3

the cT would be given by

cT (mW )=− 1
16π2 [3g′4 + 9

8
g′2 g2 +3λg′2]c2B(m) log

m
mW

(6.36)

with4

c2B(m)= cs

30
g∗2

B

(4π)2 ; g∗
B = g tanθW

(
1
6
+ β

p
3

2

)
(6.37)

where the relation sθx =βtanθW has been considered. The cB(mW ), entering in the Ŝ, it will not

be so suppressed:

cB(mW )=− 1
16π2

59
4

g′2c2B(m) log
m

mW
(6.38)

The Table 6.2 brings the γi,2B column to the remaining Wilson coefficients entering in the EWPOs.

Despite the fact that the renormalization group equations were then able to propagate the

c2B into new observables, from Table 6.3, the measurements are equivalent in precision and the

analysis can be performed exclusively to ĉY (mt):

ĉY (mt)=
m2

t

m2 c2B(m)
(
1− 94

3
1

16π2 g′2 log
m
mt

)
(6.39)

which can be tested in the interval (see [4])

ĉY (mt) ∈ [−3,3]×10−3 (6.40)

For completeness, as mentioned by J.Elias-Miró et al., it must be expected to future measurements

not to include the zero in the allowed interval, such that

0< εlow
i < |δ(obs)|i < εlow

i (6.41)

The Eq.(6.39) will then be testing how much tune is necessary to accommodate the heavy mass m

inside the interval. In terms of β the final equation must be

ĉY (mt)= cs
m2

t

m2
g′2

30(4π)2

(
1
6
+
p

3β
2

)2 (
1− 94

3
1

16π2 g′2 log
m
mt

)
(6.42)

with g′ = g tanθW , g = 0.65, sin2
θW

(mZ) = 0.231 and mt = 173GeV (from Particle Data Group

Review [41]). Thus, the correction to c2B is second order in g′2.

4Here cs is the coefficient coming from the functional determinant and is not related with the Wislon coefficient
cS .
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6.3.3 The Role of the cs

The last three equations are crucial to the final conclusions. The first observation is that, despite

the fact that the constant cs, coming from a Gaussian integral, was already computed in Section

2.2.1, it has been left intact at this point. The reason is that the chosen observable, namely the

Y parameter, is sensible to the sign of the Wilson coefficient. This can be interpreted as the

potential associated with the many exchange of B-bosons may be either attractive or repulsive.

Second, the entire content of the present work is based on the importance of Log corrections

to Effective Theories. The results, therefore, may inform what is the level of precision required

to the experiments in order to some particular sectors of models beyond the Standard Model

can be indeed tested. The case of the J-quarks in the 3-3-1HL serves as one example. These

heavy particles are already model suppressed, not coupled with SM fields at tree-level. The first

loop suppression in the result of Eq.(6.42), the factorized piece, is already of order O(10−5) for

m ∼ mt, thus corresponding a safe result compared with the level of precision of Eq.(6.40). The

cs, however, is negative for quarks (cs =−1
2 ), a quality that must be flipped by the Log inside

the brackets. The sign for the Y parameter is then testing the type of particles correcting the

propagator. If the chosen case was a scalar particle, the situation could be the opposite.

Therefore, the condition of Eq.(6.41) can be very informative to these sort of models. For

instance, if only quarks generated the coefficient c2B, a closure in the positive side would be very

constraining. In fact, even when c2B is generated from both fermions and bosons there may be no

possibility to accommodate both signs in the tune. The 3-3-1HL may also provide one example

of this. After the first breaking, the model presents a new heavy Higgs, H singlet of SU(2)L but

neutral under hypercharge, gχB = 0. The additional triplets ρ and η could also be applied before

the second breaking, since now their singlet components are charged under gB. By considering

the scalar ρU of Eq.(4.40), with gρB = g′
(

1
2 −

p
3β
2

)
the formula for ĉY (mt) will be corrected to:

ĉY (mt) = m2
t

m2

[
cJ

2B + cρ2B

](
1− 94

3
1

16π2 g′2 log
m
mt

)
= m2

t

m2
1

30(4π)2

[
cρs gρB + cJ

s g∗2
B

](
1− 94

3
1

16π2 g′2 log
m
mt

)
= m2

t

m2
1

60(4π)2

[
gρ2

B − g∗2
B

](
1− 94

3
1

16π2 g′2 log
m
mt

)
(6.43)

where it has been assumed, for simplicity, both particles with the same mass m. It turns out

that, for variants of the model with positive β, the
[
gχ2

B − g∗2
B

]
is still negative, while the sign

changes for β negative. From Chapter 4, the entire phenomenology of the 3-3-1HL depends on

the particular choice of the β parameter. Thus, the exclusion of the zero in the allowed region of

Y could be informative to these sort of models.
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CHAPTER 7

CONCLUSIONS

The work was a brief presentation about the principles behind the Standard Model Effective

Field Theory and has been separated in two parts:

Part II

• One Effective Field Theory consists on bringing the 1LUV theory into a local description of

the interactions. The expansion can be made in a covariant form via the CDE method. An

universal formula was registered to the case where loop graphs involves heavy particles

only. For mixed heavy-light terms a new expression has been presented.

• The introduction of new terms in order to deal with divergences of a specific Green’s

function can be performed systematically. The presence of field strength-, mass- and charge

renormalization factors is the conceptual manner in QFT to provide predictions consisting

of variations.

• The matching procedure will also contain one independent concept of subtraction. The

procedure is such that it preserves the “hard” modes of propagation of the heavy particle.

This is to say that the Wilson coefficients will carry the information about the integrated

degree of freedom along a small distance of propagation (information of non-locality).

• The heavy mass propagate exclusively in the internal lines and during a short amount

of time compared with the length of the whole interaction. The product of operators at

different points can be replaced by a sum of local operators.

• The use of new non-renormalizable theory is legitimate both by the Weinberg’s and the

decoupling theorem. If the EFT is computed at higher-level, the possible divergences must

always be accompanied by polinomials in the external momenta, thus corresponding to local

counterterms that could be inserted a priori [49]. These insertions leads to new interactions

from higher-dim operators, also gradually more suppressed by powers of the heavy scale. In

summary, close to the decoupling limit, the finite terms will correspond to small corrections.

The theory is predictive.

• The Decoupling theorem states that a renormalizable theory including heavy degrees of

freedom will provide the same predictions at low energies as an equivalent renormalizable

theory obtained by just cutting out the heavy field and redefining its couplings. The error

for a graph Γ will be proportional to 1
ma .
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• The dim-6 truncation is one attempt to gradually insert corrections to a renormalizable low-

energy theory, thus reducing the error when one eliminates heavy particles of a complete

theory.

• The Decoupling theorem presents a very coherent argument about the validity of trans-

forming a large UV complete theory into a simplified and renormalizable variant - The

corrections are suppressed by powers of the heavy sector integrated out. It must be expected,

therefore, that as soon as the experiments can achieve larger scales, these corrections can

become gradually more important and predictions from the low-effective theory less ac-

curate. It is important to emphasize that both, full and low theories, are renormalizable

and differ for a change in the couplings of the effective variant which includes a finite shift

after the renormalization of the original vertices. In the present scenario, it is assumed

that the experiments can in fact reach these suppressed corrections, but the energies are

not sufficient yet to produce the heavy particles asymptotically.

• The operators added to the low theory are not completely arbitrary but must follow the

symmetry of the original theory. In the case of the Standard Model, for example, the

complete set of dimension-six operators was first classified by W. Buchmüller and D.Wyler

in 1986 [9], and recently improved in B. Grzadkowski et al., whose work establish the [31]

so-called Warsaw basis for the dim-6 SMEFT operators.

• The claims in favor of Effective Field Theories also justify a choice for the top-down approach.

The structure of the model, i.e. gauge symmetry, representation, particle-content.., will

conduct the emerging set of operators and eventually accentuate a subset of elements

in the Warsaw basis. This can give an important hint on where the experiments should

concentrate their searches.

• The examples to the Decoupling theorem in Chapter 3 illustrated the procedure for con-

struction of the Effective Theory as a recursive logic. The weight of the new local terms, i.e.

their couplings, must correspond to the difference between the complete and the previous

EFT, at the heavy scale. Thus, the matching is present as a form of introducing a Correspon-

dence Principle into the two theories and to control the presence of large logs. The resulting

coefficients will finally compose a set of boundary conditions to the Renormalization Group

Equations.

• Effective Field Theories are in fact dotted of all the fundamental concepts behind a QFT

and can be seen as a robust technique for simplifying the phenomenological analysis of

complex UV complete models.
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Part III

• The particle content for the 3-3-1 model with heavy-leptons arises according to the so-

denoted variable β. For β-independent interactions, i.e. for vertices present in any variant

of the model, the SU(3)⊗U(1) can be broken into the Standard Model via a new scalar

triplet.

• In the above scenario, all the heavy sector turns loop-suppressed, apart from a neutral

gauge-boson, Z′.

• The integration of heavy-quarks resulted in a contribution to the kinetic-term of the

gauge-boson Bµ, in addition to the dim-6 operator O2B;

• The kinetic term is just rescaling a piece already present in the SM Lagrangian, like in the

example for the decoupling theorem, and must not alter any natural relation emerged in the

SM framework. This correction comes from 1-loop with J-quarks to the boson propagator.

The oblique parameter S is a ultraviolet finite defined as a natural relation and identically

zero in the SM. Having the contributions from J-quarks resulted in BµνBµν cannot imply a

contribution to it.

• In fact, the S parameter may be corrected by the presence of these exotic quarks as higher-

loop effect and it can be shown through the mixing of the operator O2B during the coupling

evolution. Thus, the changing in tree-level relations will appear in the EFT scenario as a

deformation in the analytical structure of the theory, while in the UV complete framework

it will be given due to the presence of a new sector for the SM Lagrangian.

• The loop contribution of c2B to the Y parameter is two order of magnitude (O(10−5)) smaller

than the current precision (O(10−3)). However, the fermion loops implies a negative sign to

the observable, a feature that cannot be tuned by running the coupling.

• The inclusion of a Bosonic loop, through a heavy Higgs, may flip the sign of cY for negative

values of the β-parameter. The verification of a region for the Y parameter which eliminates

the zero value would be very informative to the phenomenology of 3-3-1HL models.
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APPENDIX A

FORMULAE

A.1 On Gamma Functions and MS scheme

This section presents some of the properties of Gamma functions that originate the constants

subtracted during the MS scheme.

The Gamma function is defined like

Γ(z)=
∫ ∞

0
dt tz−1e−t (A.1)

such that, by a changing of variables,

Γ(z)= tz

z
e−t

∣∣∣∣∞
0
+

∫
dt

tz

z
e−t → zΓ(z)=Γ(z+1) (A.2)

It is worthy to extract some identities for these objects from a series expansion [37]. First,

Γ(2+ε) = (1+ε) Γ(1+ε)
= (1+ε) ε (1−ε) Γ(ε−1) (A.3)

Apart from that, by Taylor expanding Γ(2+ε) around ε= 0:

Γ(2+ε) = Γ(2)+Γ′(2) ε+ 1
2
Γ′′(2) ε2 +O3

Γ(2+ε)
Γ(2)

= 1+ψ(2) ε+ 1
2
Γ′′(2)
Γ(2)

ε2 +O3 (A.4)

where

ψ(z)≡ Γ
′(z)
Γ(z)

(A.5)

and thus, with
(
dz ≡ d

dz

)
,

ψ(z) = dz logΓ(z)

= dz log[(z−1)Γ(z−1)]

= dz log[(z−1)]+dz log[Γ(z−1)]

= 1
z−1

+ψ(z−1) (A.6)

or

ψ′(z)=− 1
(z−1)2 +ψ′(z−1) (A.7)
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Besides, from the definition of ψ of Eq.(A.5):

ψ′(z) = Γ′′(z)
Γ(z)

−
(
Γ

′
(z)
Γ(z)

)2

(A.5)= Γ′′(z)
Γ(z)

−ψ(z)2 (A.8)

Thus corresponding, through Eq.(A.6), to

Γ′′(z)
Γ(z)

=ψ′(z−1)− 1
(z−1)2 +ψ(z)2 (A.9)

This last formula can be placed back to the power series Eq.(A.4), leading to

Γ(2+ε)
Γ(2)

= 1+ψ(2) ε+ 1
2

(
ψ′(1)−1+ψ(2)2)

ε2 +O3

(A.7)= 1+ψ(2) ε+ 1
2

(
ψ′(2)+ψ(2)2)

ε2 +O3 (A.10)

From these results it is possible to extract some frequently required values present in loop-

integrals calculation. The final expressions for this part of the treatment are, from Eq.(A.3),

Γ(ε−1)= Γ(2+ε)
(1+ε) ε (1−ε) (A.11)

requiring

ψ(2) (A.6)= 1+ψ(1), ψ′(2) (A.7)= ψ′(1)−1 (A.12)

The constants ψ(1) and ψ′(1) are known and given by

ψ(1)=−γ' 0.578, ψ′(1)= π2

6
(A.13)

and γ the so-called Euler-Mascheroni constant.

The fundamental formula for the matching procedure at quantum level, namely Eq.(2.51),

will generally result in d-dimensional loop integrals in the form

I0
n ≡

∫
dd q

(2π)d
1(

q2 −m2
)n = i

(−1)n

Γ(n)
An (A.14a)

I2
n ≡

∫
dd q

(2π)d
q2(

q2 −m2
)n = i

(−1)n−1

Γ(n)
d
2

A(n−1) (A.14b)

where the An piece is be given by (with ε= 4−d):

An ≡ µnεΓ(n−d/2)
(4π)d/2

(
1

m2

)n−d/2

= µε(n−1)Γ
(
(n−2)+ ε

2
)

(4π)2

(
m2)(2−n)

(
4πµ2

m2

) ε
2

(A.15)

and the mass parameter µ is inserted in order to leave the coupling constants of the theory in

their correct dimension. It must be noted, therefore, that the presence of µn refers to insertion of

n external points for each loop-diagram.
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Next, a power series can be performed for ε around zero by requesting the result

f (x)≡ ax = 1+dx(ax)
∣∣
0 x+O(x2) (A.16)

and

if ax = b → x loga = b → dxb
b

= loga (A.17)

or, in summary,

dx(ax)= ax loga (A.18)

such that, when applied back to Eq.(A.16) implies

ax = 1+ x loga+O(x2) (A.19)

The previous formulas can finally be applied for some examples. The first is chosen to be the

simplest I0
1, which then requires

A1 = Γ
(
ε
2 −1

)
(4π)2

(
m2)(4πµ2

m2

) ε
2

(A.11)= m2

(4π)2
2
ε
Γ

( ε
2
+2

)(
4πµ2

m2

) ε
2

(A.19)= m2

(4π)2
2
ε
Γ

( ε
2
+2

)(
1+ ε

2
log

(
4πµ2

m2

))
(A.10)= m2

(4π)2
2
ε

(
1+ψ(2)

ε

2

)(
1+ ε

2
log

(
4πµ2

m2

))
= m2

(4π)2

(
2
ε
+ψ(2)+ log

(
4πµ2

m2

))
(A.20)

In the second line, higher order terms over ε were just neglected as well as those remaining in

the expansion of Γ(2+ε), since they must vanish in the limit ε→ 0. Apart from that, in the MS

scheme both the pole and the Euler-Mascheroni constant present in ψ(2)= 1−γ are subtracted

along with log4π. Finally, by replacing A1 back to the expression for I0
1, it follows

I0
1 = i

m2

(4π)2

(
log

(
m2

µ2

)
−1

)
(A.21)

Additional results are presented in the main text.

In general, the evaluation of these master integrals requires the integrand to be Wick rotated

into Euclidean space as an intermediate step, what corresponds to the redefinition

q0 → iq0, q2 →−q2 (A.22)

such that the inner product for bar variables goes with the Cartesian metric.
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For concluding, the integrals of Eq.(A.14) can be complemented with the fourth and sixth

order, both present during the evaluation of the various In’s. Here, the former case is presented

according to [42] like

I4
n ≡

∫
dd q

(2π)d
(q2)2(

q2 −m2
)n = i

(−1)n

Γ(n)
d(d+2)

4
A(n−2) (A.23a)

(I4
n)µνρσ ≡

∫
dd q

(2π)d
qµqνqρqσ(
q2 −m2

)n = i
(−1)n

Γ(n)
1
4

(
gµνgρσ+ gµρ gνσ+ gµσgνρ

)
A(n−2) (A.23b)

For the analysis of higher-order integrals see the Appendix of [32] and [53].

A.2 Properties for Covariant Derivatives

The Covariant Derivative1 is a conceptual object able to generate translation both in space-time

and in the internal space. These infinitesimal gauge transformations are performed by the Wilson

line, whose property under a internal rotation Ux is defined like

W(x, y)≡Wxy →UxWxyU−1
y (A.24)

If the fields φ and ψ transform like

φ→φ′ =Uφ (A.25)

the Covariant Derivative on φ is then defined like

Dµφ≡ lim
y→x

Wxyφy −φx

(y− x)
(A.26)

with φx ≡φ(x). A general product like φψ would transform like φψ→φ′ψ′ = (Uφ)(Uψ) such that

Dµ(φψ)= lim
y→x

WxyφyWxyψy −φxψx

(y− x)
(A.27)

which can be factorized like

Dµ(φψ) = lim
y→x

WxyφyWxyψy +φxWxyψy −φxWxyψy −φxψx

(y− x)

= lim
y→x

(Wxyφy −φx)Wxyψy +φx(Wxyψy −ψx)
(y− x)

= (Dµφ)ψ+φ(Dµψ) (A.28)

where it has been considered the property of limit for products and Wxx = 1. The above result,

namely the product rule, is one of the important properties adopted along the main text.

From a general notation

Dµ = ∂µ−Wµ (A.29)

1Review based in the Chapter 12 - Nikhef notes https://www.nikhef.nl/~t45/ftip/Ch12.pdf;
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A.2. PROPERTIES FOR COVARIANT DERIVATIVES

with Wµ = taWa
µ and ta antisymmetric, it has also been defined the field-strength as

[Dµ,Dν]=−Gµν (A.30)

where Gµν = (∂µWν)− (∂νWµ)− [Wµ,Wν]. In terms of components, it follows

Gµν =Ga
µνta with Ga

µν = (∂µWa
ν )− (∂νWa

µ )− f a
bc[Wb

µ ,W c
ν ] (A.31)

Now, the Gµν property of transformation under U , i.e.

Gµν→G′
µν =UGµνU−1 (A.32)

will imply a new, but equivalent, definition for the action of Dµ. In fact, for any function with the

transformation rule of Eq.(A.32), the Covariant Derivative must be given by

DµGµν = lim
δx→0

Wx,x+δxGµν

x+δxWx+δx,x −Gµν
x

δxµ
(A.33)

such that, since Wxy →UxWxyU−1
y

DµG →U(DµG)U−1 (A.34)

If the Wilson line for infinitesimal transformation around Wxx = 1 is given by

W(x, x+δx)= 1−Wαδxα+O(δx2)

W(x, x+δx)= 1+Wαδxα+O(δx2) (A.35)

where Wα are the gauge-fields, in Eq.(A.33) it follows:

DµGµν = lim
δx→0

(1−Wαδxα)Gµν

x+δx(1+Wαδxα)−Gµν
x

δxµ
= (∂µGµν)− [Wµ,Gµν] (A.36)

which is therefore the Covariant Derivative for matrices. It may be noted that this property can

be equivalently written like

DµGµν = [Dµ,Gµν] (A.37)

a choice frequently adopted along the main text.

In practice, however, the gauge fields are rescaled with the presence of a coupling constant

and hermitian generators, such that

Dµ = ∂µ− igWµ (A.38)

This justify, for example, the prime index in G′
µν, i.e.

G′
µν ≡ [Dµ,Dν]=−igGµν (A.39)
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and Gµν = (∂µWν)− (∂νWµ)− ig[Wµ,Wν], with components Ga
µν = (∂µWa

ν )− (∂νWa
µ )+ gf a

bc[Wb
µ ,W c

ν ].

Some examples often encountered are:

−tr[Dµ,Dν]2 = g2tr(GµνGµν)

= g2Ga
µνGb,µνtr(TaTb)

= g2Ga
µνGa,µνT(R) (A.40)

and T(R) the index of the representation, where T(F)= 1
2 in the fundamental and T(A)= N in

the adjoint of SU(N). Another case:

−tr[Dµ, [Dµ,Dν]]2 = g2tr[Dµ,Gµν]2

= g2tr(DµGµν)2

= g2(DµGa,µν)(DαGb
αν)tr(TaTb)

= g2(DµGa,µν)2T(R) (A.41)

where (DµGa,µν) follows from Eq.(A.36) as

DµGµν = (∂µGµν)− ig[Wµ,Gµν]

= (∂µGµν)− ig[Ta,Tb]Wa
µ ,Gb,µν

= (∂µGµν)− ig f abcT cWa
µ ,Gb,µν (A.42)

∴ DµGa,µν = (∂µGa,µν)+ gf bcaWb
µ ,Gc,µν (A.43)

Thus, although the commutators in the Universal Formula have been preserved, they can be

replaced by an equivalent notation [Dµ,G]→ (DµG), with Eq.(A.43) implicit. For completeness,

the action of Dµ on the field-strength of an Abelian theory reduces to a partial derivative.

Two additional examples may also be useful along the application of the results in the

text. The first involves the covariant derivative of a function A instead of a field-strength, like

for example the generic matrix of light fields inside the covariant propagator P2 − m2 + Ax.

Again, the rule DµG = (∂µG)− ig[Wµ,G] is general, whenever the function G transforms like

G → G′ = UGU−1. as illustrated in Chapter 5, there are some cases where the matrix under

consideration is composed by the fields in a particular way. Consider, for instance, A ≡ HH†, with

H the Higgs doublet. It follows that,

DµA = (∂µA)− ig[Wµ, A]

= (∂µA)− ig(WµHH† −HH†Wµ)

= (∂µH)H† +H(∂µH†)+ (−igWµH)H† +H(−igWµH)†

= (DµH)H† +H(DµH)† (A.44)

now, DµH being just the usual application. The last form of the above relation can make the trace

computation clearer.
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The last example consists in the case where the CD acts in a product of matrices AB. Thus,

(Wµ ≡−igWµ)

D(AB) = ∂(AB)+ [Wµ, AB]

= ∂(AB)+ [Wµ, A]B+ A[Wµ,B]

= (DA)B+ A(DB) (A.45)

Then, from the product rule∫
x
(DA)B =

∫
x

trD(AB)−
∫

x
trA(DB)

=
∫

x
(∂µ(AB)+ tr[Wµ, AB])−

∫
x

A(DB) (A.46)

Since the trace of a commutator vanishes

∴
∫

x
(DA)B =−

∫
x

A(DB) (A.47)

and follows the chain rule.

In Section 5.1.2.1 it was considered the identity

|H|2[
(D2H)† ·H + H† · (D2H)

] → −2(OH +OR) (A.48)

which follows from the product rule like

D2|H|4 = 0 → Dµ|H|2Dµ|H|2 +|H|2D2|H|2 = 0 (A.49)

or, from OH ≡ 1
2 (Dµ|H|2)2 and OR ≡ |H|2|DµH|2,

2OH = −|H|2D2|H|2

= −|H|2Dµ
[
(DµH)† ·H+H† · (DµH)

]
= −|H|2

[
(D2H)† ·H+H† · (D2H)

]
−2|H|2|DµH|2 (A.50)

and, finally,

|H|2[
(D2H†) ·H + H† · (D2H)

]=−2(OH +OR) (A.51)

A.3 Finite Components of I2

To work with the finite components of Eq.(2.78d) and (2.78e) is important to restore some

conventions on the Lorentz indices and remark that q and ∂q necessarily commute with the fields

present in G̃,Ũ . The terms are expressed like

(2.78d) = ∆
{
q,G̃

}
∂qb ∆

{
q,G̃

}
∂q ∆

(2.78e) = ∆
{
q,G̃

}
∂qb ∆ Ũ ∆
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and both tilde fields are being evaluated in the second order of the series expansion, i.e.

G̃νµ = 1
3

[Pα,Gνµ]∂qα , Ũ = [Pα,U]∂qα (A.52)

For the (2.78d) case, first consider the last commutator, that can be rewritten as{
q,G̃

}
∂q ∆= (

2[Pα,Gνµ]qµ∂α+ [Pµ,Gνµ]
)
∂ν ∆ (A.53)

where it was made implicit ∂qα ≡ ∂α. Moreover, from ∂ν∆p =−2pqν∆(p+1),{
q,G̃

}
∂q ∆ = −2

(
2[Pα,Gνµ]qµ∂α+ [Pµ,Gνµ]

)
qν∆2

= −2qν∆2 [Pµ,Gνµ]−4qµ∂α(qν∆2) [Pα,Gνµ]

= 2qν∆2 [Pµ,Gνµ]+16qαqνqµ∆3 [Pα,Gνµ] (A.54)

Next, this result must be plugged back at Eq.(2.78d), such that

(2.78d)
(A.53)⊃ 2∆

(
2[Pβ,Gελ]qλ∂β+ [Pβ,Gεβ]

)
∂ε

(
qν∆3)

[Pµ,Gνµ]

= 4∆ qλ∂β∂ε
(
qν∆3)

[Pβ,Gελ][Pµ,Gνµ]+2∆ ∂ε
(
qν∆3)

[Pβ,Gεβ][Pµ,Gνµ]

both convergent, with (a,k)= (2,5) and (a,k)= (1,4) for Eq.(2.60). By considering

∂β∂ε
(
qν∆3) = ∂β

(
gεν∆3 −6∆4qεqν

)
= −6qβgεν∆4 +48∆5qβqεqν (A.55)

it follows

(2.78d) ⊃ 4∆
(
48∆5qβqεqλqν−6qβqλgεν∆4

)
× [Pβ,Gελ][Pµ,Gνµ]+

+2∆
(
gεν∆3 −6∆4qεqν

)
[Pβ,Gεβ][Pµ,Gνµ]

Finally, from the second operator in Eq.(A.54), it follows

(2.78d) ⊃ 16∆
(
2[Pβ,Gελ]qλ∂β+ [Pβ,Gεβ]

)
∂ε

(
qαqνqµ∆4)

[Pα,Gνµ]

= 32∆ qλ∂β∂ε
(
qαqνqµ∆4)

[Pβ,Gελ][Pα,Gνµ]+16∆ ∂ε
(
qαqνqµ∆4)

[Pβ,Gεβ][Pα,Gνµ]

which is finite and requires an integral over sixth power to the momentum. Once the convergence

is stated it must be mentioned that, for a carefully reading, a set of useful identities for large

dervatives were already presented in [32].

In the case of (2.78e) it follows that

(2.78e) = ∆
{
q,G̃

}
∂qb ∆ [Pβ,U]∂β∆

(A.53)= −2
3
∆

(
2[Pα,Gνµ]qµ∂α+ [Pµ,Gνµ]

)
∂ν

(
qβ∆3

)
[Pβ,U]

= −2
3

(
∆ ∂ν

(
qβ∆3

)
[Pµ,Gνµ][Pβ,U]+

+ 2∆ qµ∂α∂ν
(
qβ∆3

)
[Pα,Gνµ][Pβ,U]

)
(A.56)
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Again, from Eq.(A.55), the first line becomes

(2.78e)⊃−2
3

(
gνβ∆4 −6qνqβ∆5

)
[Pµ,Gνµ][Pβ,U] (A.57)

and, finally,

(2.78e)⊃−2
3

(
48qµqαqνqβ∆6 −6gνβqµqα∆5

)
[Pα,Gνµ][Pβ,U] (A.58)

A.4 On CP-odd Operators

This section introduces the remaining CP-odd components for the set of Bosonic operators. In

order to remark how to extract the properties of these operators under CP transformations, it is

sufficient to consider that the vector-fields are such that [7]:

PGa
µP† =Gaµ, CGa

µC† =−saGa
µ (A.59)

where sa =+1 for a ∈ [1,3,4,6,8] and −1 for the remaining. These rules follow from the properties

of the bilinears under C and P. Apart from that, it also includes our previous knowledge about the

symmetries of the strong interactions. From the field-strength Ga
µν and sbsc =−sa for fabc 6= 0:

PGa
µνP† =Gaµν, CGa

µνC† =−saGa
µν (A.60)

Above, the change on the spacial coordinates does not contain additional information once one

integral is taken over all the space-time. The dual of Ga
µν, i.e. G̃a

µν = 1
2εµναβGαβ,a defines a new

gauge-invariant operator of the type

Ga
µνG̃µν,a = 1

2
εµναβGa

µνGa
αβ (A.61)

Since the total antisymmetric tensor satisfies εµναβ =−εµναβ, it follows that

PGa
µνG̃µν,aP† = 1

2
εµναβPGa

µνGa
αβP†

= 1
2
εµναβPGµν,aGαβ,aP†

= −1
2
εµναβPGµν,aGαβ,aP†

= −G · G̃ (A.62)

i.e. the product is odd under parity. Since C is preserved, the operator is also CP-odd. A

similar analysis can be performed to prove that OHB̃ ≡ (DµH) † (DνH)B̃µν is also such that

(CP)OHB̃(CP)† =−OHB̃.
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EXAMPLE FROM A DISCRETE PICTURE

This section aims to cover the concepts behind the construction of an Effective Action from a

discrete framework. The components parts of this analysis, however, will not reach the reason-

ableness expected for a physical theory and, thus, the following text and the overall expressions

must be seen merely as an alternative source of intuition.

The first object of analysis must be called a ‘discrete’ energy functional, denoted as E[J] on

the source J, and related with processes extracted from a theory of two fields, namely Φ and ϕ. It

must be reinforced the importance on not associating these symbols with any specific physical

object. Here they just represent two independent quantities.

On this idealized discrete scenario, the universe is arranged into a lattice form, and here it

is considered in the simplest case of a two points for the space-time, denoted as xa and xb. The

fields on these points are the independent variables denoted in the set {Φa,Φb,ϕa,ϕb}.

The discrete functional E[J] is defined from the expression (where Ji ≡ J(xi)):

Z[J]= e−E[J] =
∫ [ ∏

i=a,b
dϕi

][ ∏
i=a,b

dΦi

]
×exp

[
S[ϕ,Φ]+∑

n
Jnϕn

]
(B.1)

where the absence of index corresponds to a vector over a,b, like ϕ→ (ϕa,ϕb). Note, moreover,

that there are not sources for Φ.

For an illustrative model, the functional S will be given by

S[ϕ,Φ]= ∑
n=a,b

1
2
ΦnOΦn Φn + 1

2
ϕnO

ϕ
nϕn − µ

3!
Φϕ3 (B.2)

Here the On’s are numbers that, in a more reliable theory, would contain information on the

vicinity of xn. It is also worthy noting that all the products involve the same space-time point ,

representing then a local function to the discrete case.

Now, through a Legendre transformation on E[J] it may be defined a new functional denoted

by Γ and so-referred Effective Action, such that

Γ[ϕc]=−E[J]− ∑
n=a,b

Jnϕ
c
n (B.3)

and the classical field
δE[J]
δJn

≡−ϕc
n (B.4)

implying then a functional dependence of J[ϕc].

The previous expression will certainly need a clarification or an appropriate definition for

the operation δ
δJ . Since the exponent in the r.h.s. of Eq.(B.1) is in fact composed by a sum, it is
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natural to require
δJa

δJi
= δa

i (B.5)

with δa
i a Kronecker delta, resulting straightforwardly to the same standard rules for functional

derivatives. Therefore,

δE[J]
δJn

= −δ ln Z
δJn

= − 1
Z

∫ [ ∏
i=a,b

dϕi

][ ∏
i=a,b

dΦi

]
×ϕnexp

[
S[ϕ,Φ]+∑

i
Jiϕi

]
(B.6)

or, the vacuum expectation value for ϕn. Apart from that, the Effective Action is in fact indepen-

dent on the source J:

δΓ

δJn
= − δE

δJn
− ϕc

n

(B.4)= 0 (B.7)

and satisfies

δΓ

δϕc
n

= − δE
δϕc

n
− ∑

i

δJi

δϕc
n
ϕc

i − Jn

= −∑
i

δJi

ϕc
n

δE
δJi

− ∑
i

δJi

δϕc
n
ϕc

i − Jn

(B.4)= −Jn (B.8)

The computation of Γ[ϕc], following [42], may proceed for instance from the saddle point

approximation over the exponent in Eq.(B.1). The expansion is performed around ϕc and Φc, the

latter raised from the solution of
δS[ϕ,Φ]
δΦ

∣∣∣
Φ=Φc

= 0 (B.9)

Finally, by defining S[ϕ,Φ, J]≡ S[ϕ,Φ]+ J ·ϕ, it follows

S[ϕ,Φ, J] ' S[ϕc,Φc, J]+ ∑
n=a,b

(Φn −Φc
n)

δS
δΦn

∣∣∣
c
+ ∑

n=a,b
(ϕn −ϕc

n)
δS
δϕn

∣∣∣
c
+

+1
2

∑
m,n=a,b

[
(Φm −Φc

m)
δ2S

δΦmδΦn

∣∣∣
c
(Φn −Φc

n)+ (ϕm −ϕc
m)

δ2S
δϕmδϕn

∣∣∣
c
(ϕn −ϕc

n)+

+(Φm −Φc
m)

δ2S
δΦmδϕn

∣∣∣
c
(ϕn −ϕc

n)+ (ϕm −ϕc
m)

δ2S
δϕmδΦn

∣∣∣
c
(Φn −Φc

n)
]
+·· · (B.10)

where the |c is indicating derivatives at the classical fields. Moreover, as it was detailed in the

main text, the ϕc implies
δS
δϕ

∣∣∣
c
= 0 or

δS
δϕ

∣∣∣
c
+ J = 0 (B.11)
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to hold exactly. Thus, the linear terms Eq.(B.10) vanish and the integral over
[∏

dϕi
]
[
∏

dΦi]
converts the approximation for Z[J] into a Gaussian integral. At this order the correction is then

given by

Z[J]= eS[ϕc,Φc,J] ×det[H ]−
1
2 (B.12)

where the Hessian H matrix here is composed by 2×2 blocks like

H =
 δ2S
δϕδϕ

δ2S
δΦδϕ

δ2S
δϕδΦ

δ2S
δΦδΦ

∣∣∣∣
c

(B.13)

Besides, the blocks on the diagonal of H are, by the local structure of S, already in diagonal

form.

The connected functional generator E[J] may be written as

−E[J]' S[ϕc,Φc, J] − 1
2

logdet[H ] (B.14)

corresponding to a first correction to the Effective Action like

Γ[ϕc,Φc] ' S[ϕc,Φc, J] − 1
2

logdet[H ] − J ·ϕ
(B.1)= S[ϕc,Φc] − 1

2
logdet[H ] (B.15)

This is the final formula for a field theory including quantum corrections and, on what

follows, it will be the basis for constructing two distinct theories, namely the Light-UV and the

correspondent EFT.

Every step leading to Γ could similarly have been taken from the realistic continuous case,

by replacing
∏

d → D and
∑

n → ∫
x. The choice for a discrete scenario might provide a simple

algebraic form to the calculation of determinants and, as commented before, was chosen with

an illustrative intent. Rigorously, the expression of Eq.(B.2) is dimensionally incorrect, since it

does not include a factor correspondent to the size of the space-time lattice. In other words, the

expression for the vacuum amplitude, including for simplicity only ϕ (see [30]), should be given

by

Z[0]= lim
N→∞

∫ [∏
dϕi

][∏
dπi

]×exp
[
ε
∑
n
πn

ϕn+1 −ϕn

ε
+H

(
πn,

ϕn+1 +ϕn

2

)]
(B.16)

where n+1 refers to the grid point in time for tn+1 = tn +ε. Furthermore, the canonical momenta

is defined as πn ≡ ϕ(tn+ε)−ϕ(tn)
ε

= ϕn+1−ϕn
ε

. Thus far, only the time has been fragmented into a

discrete set of points. In general, a last step for the functional generator definition consists in

writing the Lagrangian function on t as a weighted average of a new set of fields, ϕ̂, on the space

lattice:

ϕn =∑
j

a j(tn)
ϕ̂ j

N
(B.17)

where the index j runs over the points in space. The expression draws a picture of the space

filled with a constant, but not necessarily uniform, field whose points may be pondered with a
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time-dependent sequence of weights {a j} in order to define a new field on t. In fact, since the

functional form of these entities does not a play an important role in quantum field theory, the

expression can be rearranged in a simpler form like

ϕn → ξ
∑

j
ϕ j(tn) (B.18)

where ξ is a constant for the grid size in space. For a more details see [30].

The above discussion was made for fields but must be directly extended to the Lagrangians,

what leads to the concept of density Lagrangian. In the example of Eq.(B.2) the constant of

volume dimension has been absorbed by the functions, an option that implies a change on their

dimension. Thus, for consistency, the numbers O have dimension of mass squared and assume

the representation

OΦn = an −bΦ, O
ϕ
n = an −bϕ, where [O ]= 2 (B.19)

and b are constants associated to the respective fields. Finally, in order to leave the action

dimensionless, it follows that

[ϕ] = [Φ] = −1, [µ]= 4 (B.20)

Moving forward on the conceptual treatment of this section, the theories ΓLUV and ΓEFT can

finally be constructed. As treated along the main text, at leading order the Γ(0)
LUV ≡ SUV[ϕ,Φc[ϕ]]

where Φc[ϕ] is given as an implicit functional on ϕ after solving Eq.(B.9). For the present model

Φc
n =µ(OΦn )−1ϕ3

n (B.21)

such that, after replaced in Eq.(B.2):

Γ(0)
LUV =∑

n

1
2
ϕnO

ϕ
nϕn − µ2

72
ϕ3

n(OΦn )−1ϕ3
n (B.22)

thus defining the final and exact LUV theory. As mentioned before, the presence of (OΦn )−1 in a

realistic physical context represents a non-local aspect of the theory and in practice is associated

with internal propagation of the integrated-out degrees of freedom.

The Effective Field Theory, on the other hand, is raised through the so-called procedure of

matching, performed order-by-order on the effective action and after a local expansion of Γ(i)
LUV.

The local series must run up to the preferred order on the fields dimension, what in general

corresponds to an equivalent order on the suppression parameter b, for operators in the form of

Eq.(B.19).
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In fact, by considering ordinary numbers for simplicity, the series can always be written as

(OΦn )−1 1= −
[

1
b
+ a

b
1

b−a

]
2= −

[
1
b
+ a

b

(
1
b
+ a

b
1

b−a

)]
:
n= −

[
1
b
+ a

b2 +·· ·+ an−1

bn + an

bn
1

b−a

]
= −1

b

(
1+ a

b
+·· ·+ an−1

bn−1

)∣∣∣∣
local

+ an

bn
1

a−b
(B.23)

It follows that the local part of the series will converge to the exact result in the low-energy

region where a ¿ b. On the matter of matching, the EFT will emerge from the truncation of ΓLUV

resolved by a power counting, eventually taking into account the field dimension of the factor

a.

The log contribution for ΓLUV is given by Eq.(B.15) with the replacement Φ→Φc[ϕ] made a

posteriori. It might be clearer, therefore, if the Hessian could be separated into disjoint second

derivatives of heavy and light fields. This task was performed in [33] and will be fully reproduced

here, resulting in the expression

logdet
[
δ2SUV [Φ,ϕ]
δ(Φ,ϕ)2

∣∣∣
Φc

]
= logdet

[
δ2SUV [Φ,ϕ]

(δΦ)2

∣∣∣
Φc

]
+ logdet

[
δ2SUV [Φc[ϕ],ϕ]

(δϕ)2

]
(B.24)

where in the second term in the r.h.s. the Φc[ϕ] must be replaced a priori, and the derivative on

the light fields finally taken. In order to derive the above identity, the first observation involves

the properties of determinants in a block form matrix:

δ2SUV [Φ,ϕ]
δ(Φ,ϕ)2

∣∣∣
Φc

=
(
A B

C D

)
→ det

(
δ2SUV [Φ,ϕ]
δ(Φ,ϕ)2

)
= det(D)det(A−BD−1C) (B.25)

From the equation defining the classical δSUV [Φ,ϕ]
δΦ

∣∣∣
Φc

= 0 it follows that

0 = δ

δϕ

(
δSUV [Φ,ϕ]

δΦ

∣∣∣
Φc

)
= δ2SUV [Φ,ϕ]

δϕδΦ

∣∣∣
Φc

+ δΦc

δϕ

δ2SUV [Φ,ϕ]
δΦ2

∣∣∣
Φc

(B.26)

where it has been considered the chain rule1

δ

δϕ
= δ

δϕ

∣∣∣
Φc

+ δΦc

δϕ

δ

δΦc
(B.28)

1Here the |Φc denotes a partial functional derivative. Analogously, for functions:

f (x(y), y) → d
dy

f = ∂y f + dx
d y

∂x f (B.27)
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APPENDIX B. EXAMPLE FROM A DISCRETE PICTURE

Thus, back to Eq.(B.25) it follows

A−BD−1C = δ2SUV

δϕ2

∣∣∣
Φc

− δ2SUV

δϕδΦ

∣∣∣
Φc

(
δ2SUV

δΦ2

∣∣∣
Φc

)−1
δ2SUV

δΦδϕ

∣∣∣
Φc

(B.26)= δ2SUV

δϕ2

∣∣∣
Φc

+ δΦc

δϕ

δ2SUV

δΦδϕ

∣∣∣
Φc

(B.28)= δ2SUV [ϕ,Φc[ϕ]]
δϕ2 (B.29)

which, by replacing in Eq.(B.25), proves the Eq.(B.24). Since, by definition, SUV [ϕ,Φc[ϕ]] =
Γ(0)

L,UV [ϕ], the expression for Γ(1)
L,UV is clearer expressed like

Γ(1)
L,UV =−1

2

logdet
[
δ2SUV [Φ,ϕ]

(δΦ)2

∣∣∣
Φc

]
+ logdet

δ2Γ(0)
L,UV [ϕ]

(δϕ)2

 (B.30)

As mentioned in the Chapter 2, the construction of the EFT will follow from the matching

procedure at the level of Effective Actions through

Γ(1)
EFT ≡∑

i
c(1)

i Oi − 1
2

logdet
δ2Γ(0)

EFT [ϕ]

(δϕ)2 =Γ(1)
LUV , at µ= M (B.31)

where here the µ= M is just remarking the scale where the equality holds. Finally, the Wilson

coefficients can extracted from

∑
i

c(1)
i Oi = 1

2

logdet

[
δ2Γ(0)

EFT [ϕ]

(δϕ)2

]
− logdet

δ2Γ(0)
L,UV [ϕ]

(δϕ)2

− 1
2

logdet
[
δ2SUV [Φ,ϕ]

(δΦ)2

∣∣∣
Φc

]
(B.32)

In HLM the coefficients extracted from the first bracket were called mixed terms, since they

are related with loops containing both light and heavy particles. The above expression also clarify

the correct mode of performing the power counting - During the subtraction of equivalent terms

present in the log corrections for the EFT and the LUV theories.

After this point, since the trace computation from a discrete to a continuous point of view

may substantially differ, the rest of the computation must be left to the main text.
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