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a b s t r a c t 

We derived explicit forms for the convergence to the steady state for a 1-D Smith–Slatkin mapping at and 

near at bifurcations. We used a phenomenological description with a set of scaling hypothesis leading to 

a homogeneous function giving a scaling law. The procedure is supported by numerical simulations and 

confirmed by a theoretical description. At the bifurcation we used an approximation transforming the dif- 

ference equation into a differential one whose solution remount all scaling features. Near the bifurcation 

an investigation of fixed point stability leads to the decay for the stationary state. Simulations are made 

in the pitchfork, transcritical and period doubling bifurcations. 
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. Introduction 

The pioneer application of nonlinear mapping for the investiga-

ion of population dynamics in biology is due to May [1] . After his

ublication many different contributions appeared. Applications of

appings are vast and can be seen in physics [2–6] , chemistry, bi-

logy, engineering, mathematics and many others [7–17] . 

The investigation of stability of fixed points as well as con-

itions leading to bifurcations are well known [18–21] . Intermit-

ence was investigated in Ref. [22] and led to interesting properties

here a pseudo regularity along a chaotic dynamics is anticipat-

ng a tangent bifurcation giving birth to a periodic window, hence

o regularity. It is known that the convergence to the fixed point

t the bifurcation was proved to obey an homogeneous function

haracterized by a set of three critical exponents [23,24] . Near the

ifurcations the dynamics converges to the steady state by means

f an exponential decay [23] whose relaxation time is given by

 power law for a bifurcation parameter. The set of critical expo-

ents dictates the speed of convergence to the stationary point and

an also be used to identify, whenever it is not possible analyti-

ally what type the bifurcation is. In this paper, we consider the

mith–Slatkin mapping, derived from applications in biology, and

eek to obtain, understand and describe the critical exponents near

he bifurcations. We implement different procedures to describe

he dynamics and hence obtain the exponents. First we identify
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here the bifurcations are. Then we investigate the convergence

o the fixed point using numerical simulations. We consider and

pproximation that transforms the difference equation, near the

xed point, into a differential equation, and solve it analytically to

ompare the arguments with the corresponding scaling times. The

ritical exponents emerge naturally from such a procedure and are

btained for short and large times. Near the bifurcation we obtain

he relaxation time to the steady state by using fixed point stabil-

ty analysis. At the bifurcation the convergence is described by an

omogeneous function while near the bifurcations an exponential

ecay explains how the steady state is reached. 

The organization of the paper is simple. Section 2 describes the

apping, the numerical simulations as well as the analytical find-

ngs. Conclusions are shown in Section 3 . 

. The model and scaling properties 

The model we consider in this paper is a version of the Smith–

latkin mapping, which is written as [25–28] 

 n +1 = f (x n ) = 

Rx n 

1 + a x 
γ
n 

, (1)

here R, a and γ are control parameters and we consider them to

e non negative. The dynamical variable is represented by x when

he index n denotes the iteration number. For the case of γ = 1 the

kellam model [28,29] is recovered. To give a glimpse of the orbit

iagram, Fig. 1 was constructed for the parameters γ = 6 , a = 1 for

he initial condition x = 0 . 01 . 
0 
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Fig. 1. Orbit diagram obtained for Eq. (1) using γ = 6 , a = 1 and the initial con- 

dition x 0 = 0 . 01 . Fixed point x ∗2 is represented in red (stable) and green (unstable). 

Bifurcations as well as the main periodic window are identified in the diagram. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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The fixed points, obtained from the condition x n +1 = x n = x ∗

are: (i) x ∗
1 

= 0 , which is asymptotically stable for R ∈ [0, 1), (ii) and

(iii) deserve a short discussion first. For any odd γ , fixed points

are: (ii) x ∗
2 , 3 

= ±
[

R −1 
a 

] 1 
γ while γ is of any other kind, even, irra-

tional etc, we obtain (iii) x ∗2 = 

[
R −1 

a 

] 1 
γ . Fixed points x ∗2 , 3 are asymp-

totically stable 1 for R ∈ (1 , 
γ

(γ −2) 
) , for γ � = 2. A pitchfork supercrit-

ical bifurcation happens at R = 1 for an odd γ while a transcriti-

cal is observed at same R for any other value of γ . Red curve in

Fig. 1 shows the stable fixed point x ∗
2 

while green curve is a con-

tinuation of x ∗
2 

however after a period doubling bifurcation where

it is unstable. A period two orbit arises at R = 

γ
(γ −2) 

following nor-

mal Feigenbaum scaling [30,31] after that. 

Our first objective in this paper is to consider the convergence

to the fixed point x ∗
1 

= 0 at the bifurcation in R = 1 . We shall show

it obeys scaling properties leading different curves generated by

different initial conditions to overlap onto each other, after ap-

propriate scaling transformations, into a single and universal plot.

Near the bifurcation, the convergence is so far described by an ex-

ponential decay whose relaxation time depend on the distance of

the bifurcation. We use Taylor expansion near the fixed point, in-

vestigating the fixed point stability to prove it. 

To illustrate how the dynamical variable evolves to the equilib-

rium at a bifurcation, we considered R = 1 , γ = 6 , a = 1 and differ-

ent initial conditions for x 0 . Fig. 2 (a) shows the convergence to the

fixed point x ∗
1 

= 0 . We see that for short n , the orbit stays confined

in a regime of seemingly constant plateau. After a while eventually

it suffers a changeover at a typical crossover iteration number de-

noted as n x and ultimately bends towards a regime of decay to its

final state x ∗. 

The scaling properties extracted from Fig. 2 (a) are the follow-

ing: (i) For a short n � n x we notice x (n ) ∝ x α, leading us to con-

0 

1 By asymptotically stable we mean that given an initial condition inside of the 

basin of attraction of the fixed point, in the limit of lim n → ∞ , the orbit has a final 

state at x ∗ , hence converging to the fixed point. 

n  

i  

x  

f  

w  
lude that α = 1 since x ( n ) ∝ x 0 ; (ii) For large enough n , typically

 	 n x , the dynamical variable is described as x ( n ) ∝ n β where β is

 decay exponent which depends on the nonlinearity of the map-

ing γ . For γ = 6 we obtained from fitting numerically the data an

xponent β = −0 . 16 6 6 6320(8) , as shown in the decaying regime

f Fig. 2 ; (iii) Finally, the crossover iteration number n x is given by

 x ∝ x z 
0 

where z is a changeover exponent. 

A homogeneous function of the type 

 (x 0 , n ) = l x (l ˜ a x 0 , l 
˜ b n ) , (2)

s a natural consequence of the behavior observed from Fig. 2 (a)

s well as from the scaling hypotheses. Here l is a scaling factor,

˜  and 

˜ b are characteristic exponents. Doing a similar procedure as

ade in Ref. [23] a scaling law appears as 

 = 

α

β
. (3)

he knowledge of any two exponents allows one to find the third

y using Eq. (3) . The relevant scaling transformations to be made

re x → x/x α
0 

and n → n/x z 
0 
, leading to a perfect overlap of all

urves shown in Fig. 2 (a) onto a single and hence universal curve,

s shown in Fig. 2 (b). 

When the dynamical variable x ( n ) is very close to the equi-

ibrium, the expression x n +1 = Rx n (1 + ax 
γ
n ) 

−1 can be Taylor ex-

anded leading to x n +1 = Rx n (1 − ax 
γ
n ) . Moreover its variation as

ompared to the next iterate to be very small, i. e., x n +1 − x n is

mall enough. Such property allows us to use the following ap-

roximation x n +1 − x n ∼= 

df 
dn 

. For R = 1 , this leads to df 
dn 

= −ax γ +1 .

his is a first order differential equations that must be solved for

he ranges x ∈ [ x 0 , x ( n )] and n starting from n = 0 . The solution is

ritten as 

 (n ) = 

x 0 

[1 + aγ x 
γ
0 

n ] 
1 
γ

. (4)

q. (4) allows us to do the following analysis: (i) when aγ x 
γ
0 

n � 1 ,

e have x ( n ) ∼= 

x 0 , therefore leading to α = 1 ; (ii) For the case of

γ x 
γ
0 

n 	 1 we end up with x (n ) ≈ n −1 /γ , hence β = −1 /γ ; (iii)

or the case aγ x 
γ
0 

n x = 1 we have n x ∝ x 
−γ
0 

, therefore z = −γ . All

f these findings are giving support for the numerical simulations.

q. (4) is plotted in Fig. 2 (a) as dashed lines and we see the agree-

ent between the numerical an analytical description is remark-

ble. 

Near the bifurcation the dynamics is not described anymore

y an homogeneous function. Instead of it the convergence is

escribed rather by an exponential decay of the type (see Refs.

32,33] ) 

 (n ) − x ∗ = (x 0 − x ∗) e −n/τ , (5)

here τ is the relaxation time described by 

∝ μδ, (6)

nd δ is a relaxation exponent. Fig. 3 shows the behavior of τ vs . μ
iven an exponent δ = −0 . 9879(4) ∼= 

−1 , obtained by a numerical

tting of the data, and this result is invariant with respect to the

arameter γ . 

Let us now describe the convergence to the steady state when

 � = 1, therefore near the bifurcation. There is no difference on the

rocedure considering before or after the bifurcation. We shall

onsider the neighborhood of R = R c = 1 , where the index c de-

otes the critical, i.e., the bifurcation parameter. Starting from an

nitial condition near the fixed point we have x 0 = x ∗ + ε0 , where

 

∗ denotes the fixed point and ε0 corresponds to an initial distance

rom the fixed point. Since the mapping is given by x n +1 = f (x n ) ,

e have that x = f (x ∗ + ε ) . Since ε is sufficiently small, a Taylor
1 0 0 
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Fig. 2. (a) Plot of the convergence towards the steady state x ∗1 = 0 , at R = 1 for γ = 6 , a = 1 and considering different initial conditions as labeled in the figure. Dashed 

curves (red) correspond to the analytical result and the line (green) corresponds to the fitting of the decay. (b) Overlap of the curves shown in (a) onto a single and universal 

plot. The scaling transformations used are x → x/x α0 and n → n/x z 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. Plot of τ vs . μ for the control parameters γ = 6 and a = 1 . A power law fit- 

ting gives δ = −0 . 9879(4) and correlation coefficient c f = −0 . 9999966 . It is invari- 

ant with respect to γ . 
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xpansion to the expression of f gives 

 1 = f ( x 0 ) 

= f ( x ∗) + ε0 
∂ f 

∂x 

∣∣∣∣
x ∗

+ 

ε 2 0 

2 

∂ 2 f 

∂x 2 

∣∣∣∣
x ∗

+ . . . 
(7) 

eeping only first order and from the fixed point condition f (x ∗) =
 

∗ we have x 1 − x ∗ = ε1 = ε0 
∂ f 
∂x 

∣∣∣
x ∗

. When going further to the sec-

nd iterated of the mapping we obtain ε2 = ε1 
∂ f 
∂x 

∣∣∣
x ∗

that may be

ewritten in a convenient way as ε2 = ε0 

(
∂ f 
∂x 

∣∣∣
x ∗

)2 

. Generalizing for

he iterated n we have 

n = ε0 

(
∂ f 

∂x 

∣∣∣
x ∗

)n 

. (8) 

he condition −1 < 

∂ f 
∂x 

∣∣∣
x ∗

< 1 warrants convergence to the station-

ry state. Let us now consider a specific case. Fixed point x ∗1 = 0

nd R < 1 but close to one with R c = 1 . The distance from the fixed
oint at iterated n can be written in a convenient way as 

n = ε0 e 
ln 

[ 
∂ f 
∂x 

∣∣∣
x ∗

] n 
, (9) 

here εn = x n − x ∗. Since for x ∗
1 

= 0 we have ∂ f 
∂x 

∣∣∣
x ∗

= R, then εn =
0 e 

n ln (R ) . Let us now write R = R c − μ where μ gives the distance

rom the bifurcation. R c = 1 identifies the bifurcation parameter.

ubstituting the expression of R in ln ( R ) we have 

n (R ) = ln (R c − μ) , 

= ln 

[ 
R c 

(
1 − μ

R c 

)] 
, 

= ln (R c ) − μ

R c 
, (10) 

here the last expression comes from Taylor expansion. The lead-

ng term is then written as 

n = ε0 e 
−μn . (11) 

ecause the term εn = x n − x ∗ and ε0 = x 0 − x ∗ an immediate com-

arison with Eq. (5) can be made. We conclude that δ = −1 , in

ell agreement with Fig. 3 . 

The procedure made for R = 1 can also be made at the period

oubling bifurcation as well no matter if first, second or any other

rder of the period doubling bifurcation. For the first period dou-

ling, the mapping must be iterated twice. For the second period

oubling bifurcation, the mapping must iterated four times and so

n. Our results for the case of R = 

γ
γ −2 , i.e., at the first period dou-

ling bifurcation gives α = 1 , β = −1 / 2 , z = −2 and δ = −1 . 

. Conclusions 

As a short summary we have investigated the convergence to

he steady state in a 1-D Smith–Slatkin mapping near three bifur-

ations: (i) a pitchfork for γ odd; (ii) transcritical for any other

, which leads to similar results as of case (i) and; (iii) period
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doubling bifurcation, no matter the order considered for the bifur-

cation. At the bifurcation the decay is described by homogeneous

function leading to three critical exponents α = 1 , β = −1 /γ and

z = −γ . The relevant scaling law describing the invariance is z =
α/β . Near the bifurcation the convergence to the fixed point is

given by an exponential decay and the relaxation time is described

by a power law of the type τ ∝ μδ , with δ = −1 independent of

the three bifurcations considered. Such exponent was obtained via

fixed point investigation. 

The procedure discussed here is an extension of the results pre-

sented in Ref. [23] . Generalizations for other mappings, particularly

for the case of 2-D can be made. For such type of mappings, the

convergence is observed in a plane. One has to find convenient

variables, possible the distance from the fixed point - polar coor-

dinates is a natural candidate since the convergence spirals around

the fixed point - and describe in such coordinates the evolution to-

wards the steady state. With this set of variables the scaling should

emerge easily. 
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