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Resumo

Nesta tese, mostramos o calculo da funcao de particao dos espinores puros. O
calculo sera executado de dois modos diferentes usando o método de fantasma-para-
fantasma (até o décimo segundo nivel massivo) e usando o método do ponto fixo
(até o quinto nivel massivo). Apds incluir a contribuicao das varidveis do setor da
matéria (2™, 0% p,), ndés derivamos o espectro massivo da supercorda aberta.

Embora os espinores puros sejam varidaveis bosonicas, a funcao de particao dos
espinores puros contém estados fermionicos os quais comecam aparecer a partir
do segundo nivel massivo. Estos estados fermionicos vém de funcoes que nao sao
bem definidas globalmente no espago dos espinores puros, e estao relacionados ao

fantasma b no formalismo de spinores puros para a supercorda.

Palavras Chaves: Supersimetria; Supercordas; CFT; BRST; Espinores Puros;

Quantizacao Covariante

Areas do conhecimento: Fisica de Particulas e Teoria de Campos
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Abstract

In this thesis, we have calculated the partition function of pure spinors. The
computation is performed by using two different methods, namely ghosts-for-ghosts
(up to the twelfth mass-level) and fixed point (up to the fifth mass-level) techniques.
After adding the contribution from the (z™, 6%, p,) matter variables, we reproduce
the massive open superstring spectrum.

Even though pure spinor variables are bosonic, the pure spinor partition func-
tion contains fermionic states which first appear at the second mass-level. These
fermionic states come from functions which are not globally defined in pure spinor

space, and are related to the b ghost in the pure spinor formalism for the superstring.
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Chapter 1

Introduction

String theory is one of the most promising candidate theory we have for a unified
description of the fundamental particles and forces in nature including gravity. Its
basic building blocks are one dimensional extended objects (strings) which for their
mathematical consistency can be defined in 26 (bosonic string) or in 10 spacetime
dimensions (superstrings). In contrast with particle theories, string theory is highly
constrained in the choice of interactions, supersymmetries and gauge groups. In
fact, all the usual particles emerge as excitations of the string and the interactions

are simply given by the geometric splitting and joining of these strings.

There are five consistent superstring theories, all of them are related by a net
of dualities [1]: type I, type IIA, type IIB, heterotic Eg x Fg and heterotic SO(32).
These five theories are described using two standard formalisms: the Ramond-
Neveu-Schwarz (RNS) formalism and Green-Schwarz (GS) formalism. The RNS
formalism has manifest worldsheet supersymmetry, but the spacetime supersym-
metry is not. The spacetime supersymmetry can be verified after perform the so-
called GSO projection (Gliozzi-Scherk-Olive) [2]. The fact that this formalism does
not have a manifest spacetime supersymmetry makes it hard to perform scattering
amplitude computations as the vertex operators which describe fermions in space-
time are complicated, in addition to the technical problem of summing over spin
structures (different periodic or antiperiodic boundary conditions for the worldsheet

fermions around various cycles) [3].

To solve the issues we have just mentioned, it would be nice to have a formulation
with manifest spacetime supersymmetry. In fact there is such formulation, it is the
GS formalism, although covariant quantization of this theory seems hard because
the existence of a technical problem dealing with mixture of first and second class
constraints, the GS superstring can be quantized in the light cone gauge, but due
to the lost of manifest covariance, problems in computing scattering amplitudes

arise. And in fact using this formalism only four-point tree and one loop scattering



amplitudes were computed explicitly [4].

About seven years ago, a new formalism for the superstring was proposed which
is manifestly super-Poincaré covariant and which can be easily quantized [5]. This
pure spinor formalism for the superstring has passed various consistency checks and
has been used to compute multiloop amplitudes and to describe Ramond-Ramond
backgrounds in a super-Poincaré covariant manner.

One of the key ingredients of the formalism is the use of a bosonic variable \*
transforming as an SO(10) spinors and satisfying a pure spinor constraint )\O"yo%/\ﬁ =
0 for m = 1 to 10. Thanks to this constraint, the BRST operator Q@ = [ dzA%d,, is
nilpotent. In a sense, A* can be thought as the ghost for the Green-Schwarz-Siegel
worldsheet constraint d,. Although the use of such a constrained ghost system is
unconventional, it can be used to construct vertex operators and to define string
amplitudes as worldsheet correlation functions [5, 6, 7]. Dependence of the ampli-
tudes on the non-zero modes of \* and its conjugate w, is fixed by the operator
product expansions OPES, and the functional integral over the zero-modes can be
inferred by requiring BRST and super-Poincaré invariance.

Although the basic ingredients for computing on-shell amplitudes are already
there, it would be useful to understand the functional integral over A* without
relying on the BRST invariance, or equivalently, to understand the nature of the
Hilbert space in the operator formalism. This would be necessary, for example, if one
wishes to apply the formalism to construct a superstring field theory. In this thesis,
this Hilbert space question will be answered by explicitly computing the partition
function of pure spinor variables.

There are two basic strategies to study the structure of the Hilbert space for
the pure spinors. The first is to deal directly with the constrained variables (this
approach is known as the curved (v description), and define the Hilbert space as
the space of operators that are consistent with the pure spinor constraint [5]. To
be consistent with the constraint, the conjugate w, has to appear in combinations
invariant under the “gauge transformations” dyw, = A (7™A)a generated by the
constraint Ay . The other is to try to remove the constraint by introducing BRST
ghosts. The constraint is then expressed effectively as the cohomology condition of
a BRST operator D [8] *.

In order to properly understand the Hilbert space of the pure spinors variables,
in a recent work [10], we have considered models with a single irreducible quadratic

constraint. It has been argued that the curved v and BRST formalisms provide

*D should not to be confused with the “physical” BRST operator @ = [ A*d,, of the pure spinor
formalism. (Because a possible use of D is to combine it with @ to construct a single nilpotent
operator Q = D + Q + - - -, we called D a “mini-BRST” operator in [9].)



equivalent classical descriptions of these models, although, quantum mechanically,
the Hilbert spaces of the two descriptions differ slightly due to the different normal
ordering prescriptions used. Nevertheless, since our partition function is defined so
that it is insensitive to quantum corrections, the two descriptions lead to the same
partition function even quantum mechanically. We shall use the partition function
as a guide to study the structure of the Hilbert space.

One of the virtues for studying these simpler models is that the BRST descrip-
tion is very effective, allowing a close study of its cohomology. In particular, the
full partition function of the BRST cohomology can be easily computed and it man-
ifestly possesses two important symmetries that we shall call “field-antifield” and
“x-conjugation” symmetries. The former implies that, after coupling to “matter”
variables (p, ), the cohomology of the “physical” BRST operator Q = [ Ap comes
in field-antifield pairs.

Coming back to the case of pure spinor variables; for states depending only on the
zero modes of A%, the Hilbert space of states in the pure spinor formalism is easily
understood and is given by arbitrary polynomials in A*. Since A* is constrained
to satisfy Ay™A = 0, these polynomials are parameterized by constants f(a;..a.)

for n = 0 to oo which are symmetric in their spinor indices and which satisfy

Yo f(ar.an) = 0-
As shown in [11, 12], this Hilbert space for the zero modes is described by the

partition function
Zo(t) = (1 —)718(1 — 10#* + 16¢> — 16t° + 10t° — t*)

where \* carries +1 t-charge. Expanding Zy(t) in powers of ¢, one reproduces the
independent number of f(a,..a,)’s at order ¢". After multiplying by (1 — ¢)'® which
comes from the partition function for the 16 #¢ zero modes, (1 — ¢)'6Zy(¢) describes
the z-independent degrees of freedom for the massless sector of the open superstring.
For example, 1 describes the Maxwell ghost, —10t? describes the photon, +16t3
describes the photino, and the remaining terms describe the antifields for these
states. Note that Zy(¢) satisfies the identity Zy(1/t) = —t3Zy(t) which implies a
symmetry between the fields and antifields.

We shall perform a similar analysis for the non-zero modes of A%, as well as
the modes of its conjugate momentum w,. The partition function for the lowest
non-zero mode was already computed in [12], and we shall extend this computation
for higher massive modes. The computation will be performed in two ways, firstly
using the ghosts-for-ghosts method (up to the twelfth mass-level) [13] and secondly
using the fixed point method (up to the fifth mass-level) [9, 11].



Due to the fact that the pure spinor constraint is infinitely reducible, an infinity
chain of ghosts is required. Using the multiplicities N of these ghosts, we have

written a formal expression for the partition function of pure spinors [9, 13]

Z(q,t) = ]f[ [(1 — %)M }f[ (1 — g"t%)yNe(1 — ghtF) =]

Although it may seem difficult to extract useful information from this formal ex-
pression, by appealing to some regularization procedure in order to guarantee the
convergence of the infinite product over k, character formulas Z,(t) were calculated
up to the twelfth mass-level (h = 12). A suitable regularization procedure which
respects the two important symmetries of the partition function has been used in
[13]. This prescription for computing higher mass-level character formulas is based
on Padé approximants. It was shown by explicit computation that the firsts five
character formulas obtained by means of Padé approximants are in agreement with
the ones found by means of fixed point technique [9].

Nevertheless using the ghosts-for-ghosts method (Padé approximants) the parti-
tion function has been computed without the spin dependence on the states. Spin
dependence is crucial if we want to prove that the full partition function (includ-
ing the contribution of the worldsheet matter sector) correctly reproduces the light
cone open superstring spectrum [9]. Therefore, it would be interesting to know the
character formula with the spin dependence in the ghosts-for-ghosts scheme and im-
plement another prescription like Padé approximants which takes into account the
spin dependence on the states.

After including the contribution from the matter variables (2™, 0% p,), we show
that the partition function, up to the fifth mass-level, correctly describes the massive
levels of the open superstring spectrum [9].

In computing the partition function for the non-zero modes of A* and w,, we will
discover a surprise. Because the constraint Ay \ = (0 generates the gauge transfor-
mation dywe, = A" (v \)q for the conjugate momentum, one naively expects that
the Hilbert space is described by polynomials of A* and w, (and their worldsheet
derivatives) which are invariant under this gauge transformation. However, in ad-
dition to these ordinary gauge invariant states, we will discover that field-antifield
symmetry implies that there are additional states starting at the second mass level
which contribute to the partition function with a minus sign. These additional states
should therefore be interpreted as fermions, which is surprising since A* and w,, are
bosonic variables.

We will argue that these extra fermionic states are related to the b ghost in the

pure spinor formalism, and come from functions which are not globally defined on



the space of the pure spinors. Remember that the b ghost satisfying {Q,b} = T
is a composite operator constructed from both the matter variables (2™, 6% p,)
and ghost variables (A% w,). This composite operator cannot be globally defined
on all patches, and in the non-minimal pure spinor formalism, is described by the
sum of a zero-form, one-form, two-form and three-form [14]. The three-form in the
b ghost is independent of the matter variables (2™, 0% p,), and will be identified
with a fermionic scalar in the pure spinor partition function at the second mass
level. At higher mass levels, the extra fermionic states in the pure spinor partition
function can be similarly identified with products of this fermionic three-form with
polynomials of A* and w, (and their worldsheet derivatives).

In hindsight, the appearance of the b ghost in the (\*, w,) partition function is
not surprising since any covariant description of massive states is expected to include
auxiliary spacetime fields whose vertex operator involves the b ghost. Nevertheless,
the manner in which the b ghost appears in a partition function for bosonic world-
sheet variables is quite remarkable and suggests that many important features of

the b ghost can be learned by studying the pure spinor partition function.

The plan of this thesis is as follows: In chapter 2, we study the partition function
of free bosonic and fermionic conformal field theories. These theories are of particular
importance since they are very used in bosonic string as well as in superstring
theories.

In chapter 3, we study the partition function of a simple model defined by a single
quadratic constraint. The model is studied using two different approach, namely the
intrinsic curved 37 description and the BRST description.

In chapter 4, we review the basics of the pure spinor formalism for the superstring
and study in detail the lowest open superstring excitation which describes on-shell
super-Yang-Mills theory.

In chapter 5, the partition function of gauge invariant polynomials constructed
out of (A%, w,) and their derivatives are computed by explicitly constructing them at
lower Virasoro levels. We point out that the space of gauge invariants is insufficient
if one requires field-antifield symmetry; in particular, a fermionic state is found to
be missing at level 2, which will be identified as a term in the composite b ghost.

Chapter 6 is devoted to the computation of the partition function including
the missing states found in the previous chapter. We use two methods for the
computation, each with its advantages and disadvantages. The first method utilizes
Chesterman’s BRST description of the pure spinor system [8] involving ghosts-for-
ghosts. A nice feature of this method is that two important symmetries—field-

antifield and “x-conjugation” symmetries—are (formally) manifest. However, since



this description requires an infinite tower of ghosts-for-ghosts, the expression for the
partition function is not rigorously defined. Nevertheless, we show that there is an
unambiguous way to compute the partition function level by level respecting the
two symmetries.

In chapter 7, we use the second method for computing the partition function,
namely a fixed point formula, which generalizes the zero mode result of [11]. The
formula includes the spin dependence of the states, and the computation is fairly
straightforward. However, it misses some finite number of states that must be
recovered by imposing the two symmetries given in chapter 6.

In chapter 8, we explain the structure of the Hilbert space of the pure spinor
system using Cech and Dolbeault descriptions. We give an explanation of the states
which does not correspond to the usual gauge invariant polynomials, those missing
fermionic states will be identified as elements of the third Cech cohomology.

In chapter 9, we relate the partition function and the superstring spectrum.
After including the contribution from the matter variables, we show that a simple
twisting of the charges gives rise to the partition function of lightcone fields and
their antifields.

A summary and further interesting applications are given in chapter 10. Several
appendices are included for convenience. Some group theoretical formulas are col-
lected in appendix A, and a list of partition functions can be found in appendix B.
Finally in appendix C, we present some details involved in the computations of

higher level character formulas.



Chapter 2

Partition functions for bosonic and fermionic

variables

In this chapter, we are going to study the partition function of free bosonic and
fermionic conformal field theories (CFT). These theories are of particular importance
since they are very used in bosonic string as well as in superstring theories. For the
purposes of this thesis, let us study the partition function of these theories as simplest
examples before going into the problems dealing with constrained CFT models as

the pure spinors case.

2.1 Free bosonic #v and fermionic bc system

Let us start with the simplest case, namely the free Sy CFT defined by commuting
variables 3 and 7 which have conformal weights (1,0) and (0,0) respectively, with

action

S = /d%ﬁéy. (2.1)
These fields are holomorphic by the equations of motion,

op=0y=0. (2.2)

The equations of motion and the operator products OPES are derived in the stan-

dard way.
Because the statistic is bosonic, some signs in operator products are different,
Blahly) ~ —— A()ly) ~ —— (2.3
x ~ x ~— . .
W)~ V@Bl p—
The energy momentum tensor is
T = poy, (2.4)



using the OPES (2.3), it is easy to show that the central charge is given by ¢ = 2.
The action (2.1) has the following global U (1) symmetry: §vy = +ey , 63 = —ef.

The corresponding Noether current is

J = py. (2.5)

Therefore the U(1) charge for the fields 3 and v are given by —1 and +1 respectively.
Now let us define and compute the partition function for this system. Our

partition function is defined as the trace
Z(q,t) = Try[(=1)"¢"t"], (2.6)

over the Hilbert space H (which will be defined soon), where (—1)!" = +1 for bosonic
and (—1)F = —1 for fermionic states. Ly and Jy are the zero mode of the energy
momentum tensor (2.4) and the U(1) current (2.5).

As we know by the equation of motion (2.2), all fields are holomorphic. One can
then expand a field f in modes, f(z) = 332 fx/2**", where h is the conformal
weight of f. The vacuum state |0) is defined so that fx,,]0) = 0, for £ > 1. More
explicitly, in terms of the modes of the basic fields 3 and +, the vacuum is defined
such that is annihilated by the modes: §;_1|0) = 7£|0) = 0, for k& > 1.

The states are built by acting on the vacuum with the remaining field modes.
Instead of working with the modes, for convenience we are going to use local oper-
ators, in accord with the state-operator isomorphism. For instance, the state 7|0)
corresponds to the operator 0%y. A general state is then a polynomial in the fields
and their derivatives. The set of these states is that we have denoted by .

As a pedagogical illustration, let us compute the level h =0, h =1 and h = 2

character formulas and then write down the full partition function.

Weight 0 At the lowest level h = 0, the states are given by
Ho={¥"}, n>0, (2.7)

therefore the partition function (character) at this level reads

Zo(t) = Ty [(—1) %] = i . (2.8)

Weight 1 At level h = 1, the states are given by

Hy={py", "0y}, n>0, (2.9)
therefore the partition function at this level is given by
¢! t .
L) =1+ 1= (' +1)Z(t). (2.10)



Weight 2 At level h = 2, the states are given by
= {"B3v, 9B, ¥y, B M0}, n>0, (2.11)
therefore the partition function at this level is given by

Zo(t) = (147" +t+177+ ) Z(t). (2.12)

Full expression for the partition function As we can see, the partition func-

tion Z(q,t) can be expanded like

0=3 2", (2.13)

where we have computed explicitly up to level h = 2 the character formulas Z,(t).
From the results (2.8), (2.10) and (2.12), we can easily obtain the expression which
reproduces these character formulas

1 5 1
Z(q,t) = T3 hl;ll A= (1= tgh) (2.14)

In general if we have a field v with N components, i.e. v = (v,92,--+,7"), the full

partition function reads

1
Z(q,t) .
(a:%) (1—¢)¥ H — LN (1 — tgh)N

(2.15)

For the case of a free bc CFT defined by anticommuting variables b and ¢ which
have conformal weights (1,0) and (0,0) and U(1) ¢-charge —1 and +1 respectively,
the partition function is given by

Z(q,t) = (1 —1) ﬁ 1—¢! —tq"). (2.16)

In general if we have a fermionic field ¢ with NV components, i.e. ¢ = (¢!, ¢?,--- ¢

the full partition function reads
Z(g,t) = (1 —1¢) H V(1 —tg"?N . (2.17)

Let us use the ideas given in this section and study the partition function of
more interesting models, namely the bosonic string and superstring. We are going
to compute the partition function of these models using the lightcone coordinates
since the lightcone is the quickest route to obtain the physical spectrum. We left

the covariant computations for chapters 6, 7 and section 9.1.



2.2 Bosonic string partition function

As it is well known (for instance see reference [15]), the bosonic string action in the

lightcone gauge is given by
1 S
S = / 2 SOXDX, (2.18)

where only the transverse coordinates X%, i = 1,2,---,24 are presented. We can

expand the fields in modes, for instance

i __Loo aj, —i—__LOO aj,
0X'(z) = NG > it 0X'(z) = ﬂn; g (2.19)

n=—oo — 0

In this gauge all string excitations are generated by the transverse oscillators o’ .
Thus, for example, the first exited open string state is given by o ]0). A list of the

firsts 3 open string states is given in the following table

Open bosonic string spectrum
Mass States # of degrees
M?*=-11]0) 1 (2.20)
M? = o' ,|0) 24
M?>=1 |a,|0), &' o’ |0) 244300

The mass square of the open string states is given by the eigenvalue of the

operator
M?*=>Ya',a, —1=N-1, (2.21)
n=1
where N is the level
24 oo
N=> > nNgy. (2.22)
1=1 n=1

The mass of each state is thus determined in terms of the level of excitation.

The light cone open bosonic string partition function
Zie(q) = Try, [(=1)"¢" ], (2.23)

can be computed as the trace over the occupation number N;, and it breaks up into
a sum

24 oo 00

Zilg)=q¢ ' T IT >. "V, (2.24)

10



the various sums are geometric,

Zq =(1-q¢")", (2.25)
and so we obtain
0
Zelg) =q " [ (1— ") 2% (2.26)
i’
Expanding this lasts expression (2.26) in powers of ¢ we get

Zi(q) = 1¢ 1 4+ 24 + 324¢ + 3200¢° + - - - | (2.27)

and therefore the partition function is describing the number of open string physical

degrees at each mass level as it is shown in table (2.20).

2.3 Superstring partition function

For the superstring case, we are going to use the lightcone version of Green-Schwarz
(GS) formalism [16] since this formalism provides us the lightcone spectrum without
using any GSO projection *. The action of the GS superstring in the lightcone gauge

is given by
1 . _
S = / @z (;OX'0X" +6°06") (2.28)

where only the transverse coordinates X’, i =1,2,---,8 and 6%, a = 1,2,---,8 are
presented. Note that the X* variable carries vectorial index while the §¢ variable
carries quiral spinorial index a of the group SO(8). We can expand the fields in

modes, for instance

a - %
OX( Z Zn+1’ 0*(z) = > T

TL_—OO n=-—0o0 z

(2.29)

In this gauge all superstring excitations are generated by the transverse oscillators
o! and 6%. A list of the firsts 3 open superstring states is given in the following
table

Open superstring spectrum
Mass States bosonic | fermionic
M? =0 | |0)&7 8 8
: — — (2.30)
M? =1 |a" [|0)%7, §*,]|0)% 128 128
M? =2 | a,|0)%, o o |0)7, §9,|0)% 1152 | 1152
6 ,6°,10)*, 6,0t |0)*

*In the RNS formalism the GSO projection is required in order to achieve spacetime
supersymmetry.

11



The mass square of the open superstring states is given by the eigenvalue of the

operator
o . . o0
M?> =3 o' ol +> nb® 0% =N, (2.31)
n=1 n=1

where NN is the level. The mass of each state is thus determined in terms of the level

of excitation.

Due to supersymmetry the light cone open superstring partition function

Zie(q) = Try, [(-1)"¢"] (2.32)

vanishes identically, nevertheless we can compute the trace over the bosonic (or

fermionic) sector shown in table (2.30). The trace breaks up into a sum given as a

result
Zlc,bosonic q) = 8 . 2.33
=81l () (233
Expanding this lasts expression (2.33) in powers of ¢ we get
Z1eposonic(q) = 8 + 128¢ + 1152¢” + 7680¢° + - - - | (2.34)

and therefore the partition function is describing the number of superstring states
at each mass level (2.30).

The fermionic part of the partition function is given by

S [RNEPA N
Zlc,fermionic(Q) = -8 H (1 — Zn) s

n=1

(2.35)

and so the total partition function Zc15ta1(¢) = Zicposonic(q) + Zic, fermionic(q) vanishes
identically as it was expected.

One aim of this thesis is to derive the lightcone degrees of freedom for the su-
perstring states from the covariant partition function computed in the pure spinor

formalism. Before going into this formalism, let us study a simple toy model.
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Chapter 3

A simple constrained model

In order to understand the problem of computing the pure spinor partition function,
we are going to study, in this chapter, a simple model based on reference [10].

As mentioned in the introduction, the main motivation for this investigation is
to understand the proper Hilbert space of the pure spinor superstring by computing
its partition function. We begin the study by defining and computing the partition
function of gauge invariant polynomials in a simple model. Our main finding will be
that, starting from the first mass level, the space of naive gauge invariants lacks the
so-called field-antifield symmetry [9, 10] because some finite number of fermionic
operators are missing.

On the other hand, in the BRST description of the model, the partition function
of the BRST cohomology is found to satisfy the field-antifield symmetry. Further-
more, the BRST partition function is found to possess another discrete symmetry
which we call “x-conjugation symmetry”. Both field-antifield and x-conjugation
symmetries reflect certain dualities of the cohomology, and their existence plays an

important role in the consistency of the pure spinor formalism [9].

3.1 The model

The toy model is based on a pair of bosonic fields A and X and their respective

conjugate fields w and w, with action
S = /sz(wéA + @) (3.1)

where the fields A, ), w, @ have conformal weights (0,0), (0,0), (1,0), (1,0) respec-
tively, and additionally the fields A and ) are constrained to satisfy

A = 0. (3.2)
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The action (3.1) has the following global U(1) symmetry: A = +el, SN = +€X

dw = —ew, 0w = —ew. The corresponding Noether current is
J = w + Mb. (3.3)

Therefore the U(1) charge for the fields A\ A and w, @ are given by +1,+1 and
—1,—1 respectively. Note that due to the constraint (3.2) the action (3.1) has a

gauge symmetry
SAAN=0A=0 , d,w=AN , 6 =AN. (3.4)

Now we are going to compute the partition function of this system by listing
all possible gauge invariant states, i.e. operators which are compatible with the

constraint (3.2) and the gauge invariance (3.4).

3.2 The partition function

We begin by describing the definition of our partition function. The characters of

the states we are interested in are
e statistics (Grassmanity) measured by (—1)F (F: fermion number operator),
e weight (Virasoro level) measured by Ly, and
e t-charge measured by a U(1) charge Jp.

By introducing formal variables (g,%) to keep track of the charges, the partition

function is defined as

Z(g,t) = _(-1)F¢"t", (3.5)
Josh
for states: |F,Jy, h), where (—1)" = +1 for bosonic and (—1)" = —1 for fermionic
states, h is the conformal weight and Jy the respective U(1) charge.
We now count the number of gauge invariant polynomials constructed out of A,
A, w, @ and their derivatives, and compute the partition function (3.5). Similar

counting of gauge invariant polynomials for the present and related models is given
in [17].

Weight 0 At the lowest level h = 0, the states are exhausted by

Ho={1L,A\", A"}, n>0, (3.6)
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therefore the partition function (character) at this level reads

t t 1—¢
Zo(t) =1 = . .
o) =145 +7 (1—1)2 (8.7)

Note that the level 0 partition function satisfies the following identity
Zo(t) = —t~ % Zy(1/t) . (3.8)

We call this property as field-antifield symmetry. As explained in [11], the number
ay (which in our model is a, = 0) on the exponent is the ghost number anomaly
of the system. Since this symmetry plays an important role in our forthcoming
discussions (as well as in the pure spinor superstring), let us explain the implication

of its existence before going on to the weight 1 partition function.

Field-antifield symmetry Suppose one couples the system to free fermionic be
systems (p, p; 0, 6) of weight (1,1;0,0), and extends the definition of the t-charge
to the new sector as t(p, p; 0,5) = (—=1,-1;1,1). By analogy with the pure spinor
superstring, one also defines the “physical” BRST operator as

Q= [Ow+3p). (3.9)

Then the symmetry Zy(t) = —t~ % Z(1/t) implies that all Q)-cohomology elements
appear in “spacetime” field-antifield pairs [18]. Indeed, the total zero-mode partition

function reads
Zo(t) = Zpo(t) Zgo(t) =1 =1, (3.10)
which is accounted for by a pair of “massless” cohomologies
Lat® < (M) =M+ Mat — 2. (3.11)

The field-antifield symmetry implies the existence of a non-degenerate inner

product that pairs every operator V to its antifield V)
(V,V4) =1. (3.12)
For the case at hand, the inner product can be defined as the overlap
(V, W) =1lim, ,o(0]2*2°V (1/2)IW(2)|0), (3.13)
with the condition

(0](\0)|0) = 1. (3.14)
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It is easy to see that ()-exact states decouples from the inner product. Of course,
this construction of the inner product is reminiscent of that of the pure spinor

superstring [5] where one uses the rule
(O[(Ay™0) (A" 0) (A" 0) (07mnp0)|0) = 1. (3.15)

We will shortly observe that the space of gauge invariant polynomials at weight
1 and higher lacks the field-antifield symmetry. It might sound harmless but we
stress the importance of having the field-antifield symmetry at all mass levels to
define the “spacetime amplitude” appropriately. Otherwise, some “massive” vertex
operators in the cohomology of @ = [(Ap + 5\]5) would unfavorably decouple from
the amplitude. In fact, in the pure spinor formulation of superstring, demonstrating
the existence of field-antifield symmetry for the full cohomology of Q) = [ A\*d,, was

an unresolved challenge. This and related issues has been reported in [9].

Weight 1 Having explained the notion of field-antifield symmetry, let us go back
to the construction of gauge invariant polynomials at weight 1. All possible states

which are gauge invariant under (3.4) modulo the constraint (3.2) are given by
Hy = {\"@, Nw, O, 9N, ADA, A"OA, "N}, n>0, (3.16)
therefore the partition function at this level is given by

2 22 2 — 2 — 23 4 ¢4
Zypoty(t) = —— + 2t + 12 + =

1—t 1—t (1—1t)2 (3.17)

Note that Z; ,0,(t) as defined in (3.17) does not posses the field-antifield sym-

metry. However, it is easy to see that
Z\(t) = Zy poiy (t) — 72 (3.18)

satisfies the symmetry. This suggests that one needs an extra fermionic state with
t-charge —2. As we are going to see in the next section, in the BRST cohomology,

this extra state corresponds to the b ghost.

3.3 BRST description of the model

For the model with the irreducible constraint (3.2) the conventional BRST formalism
provides a very simple way of describing it, compared to the elaborate language of the
curved (7 formulation [10]. (This is not necessarily the case for infinitely reducible

constraints such as the ones for the pure spinors [9].) Here, a fermionic (b, ¢) ghost
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pair is introduced to impose the constraint effectively and the physical states are

described as the cohomology of the BRST operator
Lx:/bum. (3.19)

The action in the BRST description is given by
S = / 22 (WO + TN + bde) | (3.20)

where b and ¢ are the usual Faddeev-Popov ghosts and they have conformal weights
(1,0) and (0,0) respectively. Clearly, this action is invariant under the following

ghost number symmetry 6b = —ieb, ¢ = iec, the corresponding Noether current is
J, = ch. (3.21)

In the BRST framework, basic fields obey the following free field operator prod-

uct expansions

N 1
Ax)w ~ - 3.22
@i ~ (322
1
A ~ - 2
()w(y) parl (3.23)
1
b ~ . 24
@elr) ~ — (324
The t-charge current is defined as
J = Aw + M+ 2J, . (3.25)
The charges of the basic operators are
Fw,A) =(0,0), h{w,A)=(1,0), tw,A)=(-1,1), (3.26)
F(,e) =(1,1), h(bec)=(1,0), tbc)=(-2,2). (3.27)

3.4 BRST cohomology and symmetries of partition function

Since the BRST operator D carries t-charge 0, the partition function of D-cohomology
coincides with that of the unconstrained space of (w, A, b, ¢) in which the cohomol-
ogy is computed. This is because the elements not in the cohomology form BRST
doublets and cancel out due to (—1)". Therefore, the partition function is simply
given by [19]

12 X (12 (1 — %)
Z(q,t) = (1—t2H 1—tq (L—t7"gh)?

(3.28)
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By expanding in ¢, partition functions (character formulas) at fixed Virasoro levels
can be readily obtained.

The full partition function enjoys the following two symmetries, which turn out
to be of fundamental importance [9]. First is the “field-antifield symmetry” we

already encountered:
Z(q,t) =—t"Z(q,1/t). (3.29)

As explained in section 3.2, this symmetry is important to have a nice inner product
after coupling to the fermionic partners (p, p; 0, é) The other is what we shall call

“x-conjugation symmetry”
Z(¢,q/t) =—a't*Z(q,q/t). (3.30)

A little computation shows that this symmetry (3.30) relates the states at ¢"'¢" and
those at ¢! t™tn¢—2-7,

In the previous paragraph, we found that the partition function of the BRST
cohomology possesses the field-antifield symmetry while that of the gauge invari-
ant polynomials does not. We here explicitly construct the elements of the BRST

cohomology and identify the extra states that are responsible for the discrepancy.

Weight 0: The zero mode contributions to the full partition function (3.28) is
simply
1—#

Zo(t) = =k (3.31)

and it coincides with the result obtained from counting the number of gauge invariant
polynomials (3.7). Indeed, since functions of the form eA\"\" are never D-closed,
and since the functions of the form A"A™ are D-exact, cohomology representatives

can be taken as
{1, A", A"}, n>0, (3.32)

but now with A\’s unconstrained. Of course, this is expected from the outset as the

BRST construction is designed to realize what we have just described.

Weight 1: From (3.28) one immediately finds

—t 24t 1223 4+ ¢4
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and it possesses the field-antifield symmetry unlike the level 1 partition function
Z1 poiy(t) of the gauge invariant polynomials. As expected, Z;(t) contains an extra

fermionic state with respect to Zy poiy (1):
Zi(t) = Zy pory(t) = —t72. (3.34)

Clearly, the cohomology element responsible for —#~2 is the BRST b ghost carrying
charges —¢'t~2. For completeness, let us write the D-cohomology representatives at
level h =1

{b, DX, ON, A" (w + be), ATH b + be), AOX, A", A"}, n>0. (3.35)

Let us make a final remark. As it was noted in references [9, 11, 13], the ghost-
for-ghost multiplicities Ny in the BRST description for the constrained model can

be obtained by writing the level zero character (3.7) as
Zo(t)y = JJ (@ —¢F) ™. (3.36)

The fields at t-charge k will have | Ny| components, and will be bosons for Ny > 0
and fermions for N, < 0. For our model for instance we get, by comparing (3.7)
with (3.36), Ny =2, Ny = —1 and Ny =0 for £ > 2.

In chapter 5, we are going to use the ideas given in this chapter to compute the
partition function of pure spinors. The U(1) charge adopted for the pure spinor
fields A“ and its conjugate w, will be +1 and —1 respectively. Before going into the
details of chapter 5, let us review some aspects of the pure spinor formalism for the

superstring.
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Chapter 4

Pure spinor formalism for the superstring

Since the problem of covariant quantization of the GS superstring was discovered,
many attempts to solve this problem were done. For instance, one tentative was
developed in the work of Siegel [20], he suggested the following action for the open

superstring
1 _ _
/d2z(§axmaxm + pa06°), (4.1)

where the spinorial index « goes from 1 to 16, and the conjugate momentum of 8%,
Da, 18 treated as an independent variable. Furthermore, Siegel added an appropriated
set of first class constraints. Inside this set of constraints, it must be the Virasoro
constraint, T = —%Hml_[m — d,00“ and the kappa symmetry generators of the GS
formalism, given by G = II""(,,d)®, where

1
[ = oz™ + 507”89. (4.2)
In this approach, the variable
d 1(3 myly "90) (Ym) (4.3)
a = Pa — 7\0OT - mV )a .
p 9 1 Y gt

does not need to be constrained to be zero. Siegel’s approach was applied with
success to the superparticle [21]; but for the case of the superstring a set of first class
constraints which closes the algebra at the quantum level and which reproduces the
correct physical superstring spectrum was never found.

In the year 2000, a new formalism was proposed by Prof. Nathan Berkovits for
quantizing the superstring in a manifestly ten-dimensional super-Poincaré covariant
manner [5]. This formalism has been used for computing covariant multiloop ampli-
tudes [6], leading to new insights into perturbative finiteness of superstring theory

[22]. This formalism is going to be the topic of the next sections.
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4.1 The action

Like the GS description of the superstring, the starting point of the pure spinor
formalism is the employ of the superspace in D = 10 as the target space for the su-
perstring. Nevertheless new ingredients are added such that covariant quantization
is achieved.

The basic variables are the superspace coordinates (z™,0%). As it is known one of
the main problems in the GS formalism is the definition of the conjugate momentum
for the A% variables, which gives constraints related to the kappa symmetry. In the
pure spinor formalism the conjugate momentum p, is directly introduced in the

action
S = /dgz(—axmax + Pa00% + w0 ) (4.4)
2 m (8] [8]

The ghost A% is a pure spinor, i.e., )\0‘%%)\’3 = 0, and w, is its conjugate momentum.
The pure spinor constraint implies that the action is invariant under the following

transformation
dwe = A" (VmA)a (4.5)

for any A™. Therefore we can choose this freedom to eliminate 5 components of the
conjugate momentum ws,.

Defining 2™, 6%, A* as fields with conformal weight zero and p,, w, with confor-
mal weight one, the action (4.4) turn to be conformal invariant. The fundamental

OPES are easy to compute and they are given by

g™ (w)z"(z) ~ —n™In|w — 2|, (4.6)
58
pa(w)eﬂ('z) ~ W i P
dolw)ds(2) ~ T Al (2),
da(w)I"(z) ~ L 00°(2)

where II" and d,, are defined in (4.2) and (4.3).

The energy momentum tensor for the matter variables is given by
1 m 8]
T = —5(’% 0Ty, — padf®, (4.7)

which has —22 central charge, the contribution for the central charge coming from
the ghosts variables is +22. To see this, it is necessary to break Lorentz SO(10)
(after perform the Wick rotation) invariance to the subgroup SU(5) x U(1) [5].
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The pure spinor constraint can be solved and we can express A“ in terms of the
11 independent degrees of freedom by decomposing the 16 components of A® into
SU(5) x U(1) representations as

1
M= A = YUat]s  Afabed) = — g Vllabted); (4.8)

where v is an SU(5) scalar, and upe) is an SU(5) antisymmetric two-form. Using
this decomposition, and by bosonizing the (3, v) fields as (3 = 9¢e™?, v = ne?), we

can write the formulas for the currents [11]

5) 3
J = —53425 - 5775, (4'9)
Nab — ,Uab
b be b 5 3
Na =  —UgqeV + 5(1(1775 + Zad)),

5 3
Nab - 3auab + uacudeCd + uab(§77€ + §a¢)7
1 1 1
T = v"0uq — 50000 — ndE + 50(n€) — 40(9¢ + ng),

where T' is the stress-energy tensor for the ghosts fields and the worldsheet fields
satisfy the OPES

NWEE) ~ (y— 27" 6W)s(2) ~ —log(y — 2),  v*Puey ~ 0107 (y — 2)™". (4.10)
Using these parameterizations of a pure spinor, the OPES of the currents in (4.9)

can be computed to be

1 1 1

§ﬁ(%nA)“, J(y)A*(z) ~ T

Non (Y)A(2) ~ A, (4.11)

! +
2(y—2)*  (y—2)? y—z

Therefore, as we can see, the conformal central charge is +22, the ghost-number
anomaly is —8, the Lorentz central charge is —3, and the ghost-number central

charge is —4.
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4.2 Physical states

In the pure spinor formalism, the superstring physical states are identified with

states having ghost number one * in the cohomoly of the BRST operator

Q= fdz A . (4.12)

Using the OPES (4.6), it is easy to show that this BRST () operator is nilpotent
thanks to the pure spinor constraint Ay™\ = 0.

The reader may have a question related to the definition of the physical states,
why are the physical states defined to have ghost number one? To answer this
question, let us write the most general vertex operator at the massless level

\I’(,T, 0, /\) = C + \*A, + /\/YmnPQT/\A* + )\a)\ﬁ)\’YCZBfY e, (413)

mnpqr

where C'(z,0), Ay(x,0), A, .. (x,0) and C

T gy (x,0) are superfields the - - - includes

superfields with powers greater than three \’s. As we are going to see in more
detail, in section 4.3, the superfield C(x,6) has ghost number zero and contains
the spacetime ghost, the superfield A,(z,6) which has ghost number one contains
the super Yang-Mills fields, the superfield A, ..(7,0) has ghost number two and
contains the super Yang-Mills antifields, finally the superfield C75 (z,6) which has
ghost number three contains the spacetime antighost. It is possible to show that the
superfields with ghost number greater than three will have trivial cohomology [23].
And therefore, it is consistent to take as physical states those states having ghost
number one.

The pure spinor condition implies that the conjugate momentum of A\*, w,, can

appear in combinations which are invariant under the transformation (4.5)

1
J =wa A%, N™ = gw'ym")\,

where N™" and .J are defined in terms of the U(5) fields as in the previous section.
The open superstring vertex operators are constructed as an arbitrary combination
of the fields [z™, 0%, d,, A%, N™" J], with ghost number one and conformal weight
h. In our case h is related with the level of the state, i.e., (mass)?=h.

In the case where the state has (mass)?=0, i.e., h = 0, the vertex operator is

given by

U = A\*Au(2,0), (4.14)

*The ghost number is given by the number of A’s which appears in the vertex operators. For
instance, the vertex operator U = \* A, (z,0) has ghost number one.

23



using the physical state condition QU = 0, 6U = Q2 and the OPE d,(y) f(z(2),0(2)) ~
(y — 2) "D f (3(2),6(2)), where

0
D, = — A 4.1
o aga + 0 /Yaﬂam’ ( 5)

we obtain the super Maxwell equation of motion ’)/%%pquaAg = 0 together with its
gauge invariance 0 A, = D,{). For massive states, the superspace description is more
complicated [24], however, it has been proven that the cohomology of @ at ghost-
number one correctly describes the open superstring spectrum [25]. One aim of this
thesis is to obtain the open superstring spectrum from the pure spinor superstring
partition function, this topic will be studied in the next chapters. Prescriptions
to compute multiloop amplitudes using this pure spinor formalism can be found in
6, 7].

4.3 Massless pure spinor superstring state: fields and anti-
fields

We have seen that the lowest open superstring excitation describes on-shell super-
Yang-Mills theory. There is a Poincaré-covariant description of this theory using
an SO(9,1) vector field a,,(z) and an x*(x) SO(9,1) spinor field which satisfy the

equations of motion
O fan =0,  s0mx” =0, (4.16)
and gauge invariance
0y, = Oms =0, Ofmn =0. (4.17)

where f,,, is the Yang-Mills field strength. However, there is also a super-Poincaré
covariant description using an SO(9, 1) spinor wavefunction A, (z,6) defined in ten
dimension superspace. As it will be explained below, on-shell super-Yang-Mills
theory can be described by a spinor superfield A, (z, @) which satisfies the superspace
equation of motion

D, Az =0, (4.18)

rymnpqr

for any five-form direction mnpqr, with the gauge invariance
0AL = D2, (4.19)

where Q(z, 0) is any scalar superfield and Dy, is the supersymmetric derivative (4.15).
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One can also define field strengths constructed from A, by

1

B, = —vD,Ag,
8
« 1 af m m
we = 10 /m (DgB™ — 0™ Ag),
1
Fon = 3[mBn]:§(7mn)§DgWa. (4.20)

Under the gauge transformation of (4.17),
OB, = 0mf) SWe=0, O0F,, =0. (4.21)

To show that A,(z, ) describes on-shell super-Yang-Mills theory, it will be useful
to first note that in ten dimensions any symmetric bispinor f,s can be decomposed

in terms of a vector and a five-form as fos = Vi fm + Y05

Jmnpgr and any antisym-
metric bispinor f,s can be decomposed in terms of a three-form as fas = 745" frnp-
Since {Dq, Dg} = 7030m, one can check that 64, = D, is indeed a gauge invari-
ance of (4.18).

Using Q(z,0) = s(x) + ha(7)0% + jus(2)0%6°; one can gauge away (Aq(z))|o=0
and the three-form part of (D,Ag(x))|p—o. Furthermore, eq. (4.18) implies that the
five-form part of (D, Ag(x))|p=o vanishes. So the lowest non-vanishing component of
Ay(z,0) in this gauge is the vector component (D, A(z))|g=o which will be defined
as 8a,,(z). Continuing this type of argument to higher order in 6%, one finds that
there exists a gauge choice such that

Aal2,0) = S Datn(2) + 2 (07O o) £, (422)

where a,,(z) and x?(x) are SO(9,1) vector and spinor fields satisfying (4.16) and
where the component fields in - - - are functions of spacetime derivatives of a,,(z) and
x?(x). Furthermore, this gauge choice leaves the residual gauge transformations of
(4.17) where s(z) = (2(z))|p—o. Also, one can check that the # = 0 components of
the superfields B,,, W* and F,,, of (4.20) are a,,, x® and fy,,, respectively. So the
equations of motion and gauge invariances of (4.18) and (4.19) correctly describe
on-shell super-Yang-Mills theory.

Now one would like to obtain this super-Poincaré covariant description of super-
Yang-Mills theory by quantizing the open superstring. This covariant description
can be done by using a BRST-like operator out of the fermionic constraints d, in
the pure spinor formalism for the superstring.

We have already seen that the most general super-Poincaré covariant wavefunc-
tion ¥(xz,0,\) (at the massless level) that can be constructed from the worldsheet
pure spinor variables (z™, 0% A%) was given by (4.13). Since Q¥ = \*D,C +
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NN DLAg + -+, Q¥ = 0 implies that A,(z,0) satisfies the equation of motion
AN DoAg = 0. But since A*A? is proportional to (Ay™P7\)yf
that Dy™™P7" A = 0, which is the super-Yang-Mills equation of motion of (4.18).
Furthermore, if one defines the gauge parameter A = Q + A*f, + ---, the gauge

this implies

transformation 6V = QA implies 6 A, = D,f) which is the super-Yang-Mills gauge
transformation of (4.19).

As it is well known, the only states at non-zero momentum in the cohomology of
@ are the on-shell super-Yang-Mills gluon and gluino, a,,(x) and x“(x), and their
antifields, ¢*™(z) and x}(z). Since in the antifield formalism gauge invariances of
the antifields correspond to equations of motion of the fields and vice versa, one
expects a*(z) and x%(z) to satisfy the equation of motion 9,,a™ = 0 with the

gauge invariances
da*™ = 9,(0"s™ — 9"s™),  Oxh(x) = VOmk” (4.23)

where s,, and x” are gauge parameters.

The fields a,, and x® appear in components of A, as in (4.22), and the anti-
fields a™™ and xj, appear in components of the ghost-number +2 superfield A}, .
of (4.13). Using Q¥ = 0 and 0¥ = QA, A}, ., satisfies the equation of motion
A (AP \) D, A yinpar = fy%/f;WDafg. Ex-

mnpgr = 0 With the gauge invariance 0 A
can be gauged to the

*

panding f, and A’ in components, one learns that Ay, .

mnpqr

form

A:nnpqr = (HV[mnpe) (Q%r])o‘XZ (z) + (QV[mnpg) (Q’qu}SQ)a*S(I) +oeey (4.24)

where x} and a*’ satisfy the equations of motion and residual gauge invariances of
(4.23), and - - - involves terms with higher order in #* which depend on derivatives
of xi and a*’.

As it is shown in [23], there are also zero momentum states in the cohomology
of (). In addition to the states described by the zero-momentum gluon, gluino,
antigluon, and antigluino, there are also zero-momentum ghost and antighost states
¢ and ¢* in the # = 0 component of the ghost-number zero superfield, C(x,0) =
¢(z)+- -+, and in the (#)° component of the ghost-number +3 superfield, Cf;5. (2, 60) =
oo (2)(Y70) 0 (V) 3(7P0) 4 (07 mnpf) + - - -. So although (4.13) contains superfields
of arbitrarily high ghost number, only superfields with ghost-number between zero
and three contain states in the cohomology of Q.

The linearized equations of motion and gauge invariances Q¥ = 0 and 0¥ = QA

are easily generalized to the non-linear equations of motion and gauge invariances

QU + gV =0, SW = QA+ g[¥, A]. (4.25)
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For the superfield A,(z,0), (4.25) implies the super-Yang-Mills equations of motion
and gauge transformations of (4.18) and (4.19). Furthermore, the equations of
motion and gauge transformation of (4.25) can be obtained from the spacetime

action
S — / 4"y <1\1:Q\11 n 1g\pw> , (4.26)
2 3
using the normalization definition that

(D™ 0) (M7 0) (XY "0) (0mpg) ) = 1 . (4.27)

After writing (4.27) in terms of component fields and integrating out auxiliary fields,
it should be possible to show that (4.26) reduces to the standard Batalin-Vilovisky
(BV) action for super-Yang-Mills,

1 *M *
S = /dlox(zfmnfm” + Xa'ygfgamxﬂ + a* O c — gece ) ) (4.28)

Remember that an essential ingredient of the BV formalism is the doubling of
the complete set of fields [26]. To each field one associates an antifield with opposite
statistics. We have seen that the massless state defined as the cohomology of the
BRST operator () contains field as well as their respective antifields.

So far we have analyzed the massless open superstring state which in the pure
spinor formalism is defined as an element in the cohomology of the BRST operator ().
We have shown that the cohomology at the massless level is describing super-Yang-
Mills fields together with their respective antifields. It would be nice, by explicitly
computing the cohomology of the BRST operator @), to see if massive states have
this field and antifield structure. Covariant computation of the cohomology seems to
be hard, nevertheless using the partition function of pure spinors one can argue that
massive states will appear in fields and antifields with the same physical degrees of

freedom.
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Chapter 5

Naive partition function of pure spinors and

missing states

To explain what we have just stated, as in the case of the toy model (see chapter 3),
we are going to compute the partition function of globally defined gauge invariant
operators by explicitly constructing them at lower Virasoro levels. It turns out that,
starting from level h = 2, this space of gauge invariant polynomials by itself lacks
some operators for having the field-antifield symmetry. The missing state turns out
to be fermionic and so it cannot be a usual gauge invariant state. Indeed, it is
related to a term (called b5 [9]) which appears in the expression for the b-ghost used

in multiloop amplitude computations [7].

5.1 Definition of the partition function

The characters of the states we wish to keep track of are their statistics, weights
(Virasoro levels), t-charge (measured by J = wA + pf) and the Lorentz spin. The

Lorentz spin of a state can be labeled by five integers which we denote by

—~

= (ajasagasas) Dynkin basis, (5.1)

[l papizpaps]  “five sign” basis.

— D=

Introducing formal variables (g, t, &) for each quantum numbers, we define the par-

tition function (character) as

Z(q,t,3) = Tr(=1)Fq-ot’oer (5.2)
- Z Zh(ta &)qh .
h>0

The trace is taken over various states defined in the pure spinor Hilbert space.

Characters of the basic operators w and A are

hw,\) = (1,0), #w,\) =(-1,1), (5.3)
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M(W) — 6(00010) — eé(ialiagiagim;i(m) (Odd # of — ’S),

M(/\) _ 6(00001) _ 6%(ﬂ:0’1i0’2i0’3i0’4i0’5) (even # of — JS) )

The relation between the Dynkin basis and the “five sign basis” can be found in
appendix A.1.
Sometimes, it is convenient to ignore the spin characters and concentrate on the

dimensions of the Hilbert space

Z(q,t) =Tr(=1)"q"oth (5.4)
= tho Z (t)qh
= tho,n Nh,nqhtn .

A list of partition functions at lower levels can be found in appendix B.

5.2 Cohomology via partition function

In chapter 9, we will relate the partition function of pure spinors to that of the
cohomology of the physical BRST operator @ = [ A%d,. Let us explain the basic
idea behind this, which is also useful for the computation of the partition function
itself.

Let O be a fermionic nilpotent operator that commutes with Ly, Jy and the
Lorentz charge, let ‘H be the cohomology of O, and let F be the Hilbert space in
which the cohomology of O is computed. Then it can be shown that the traces over
‘H and F coincide:

Try (— 1) qlot?oe? = Trp(—1) qlotloer (5.5)
To show this, first split H and F to even and odd parts:
H=H.DOH,, F=FdF,. (5.6)

(In our case, fermion numbers will be carried by §’s and the fermionic BRST ghosts.)

Then, since
Fo = Ze+Fe)Ze= He+Be)+B,, (5.7)
(Z2 = KerO, B=ImO),
and similar for e <> o, the trace over B, and B, do not contribute to the right-hand
side of (5.5) due to the factor (—1)%.

Thus, although we defined the partition function as the trace over the cohomol-

ogy of some nilpotent operator O, it could have been the trace over the space in
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which the cohomology is computed. Below, we use the formula (5.5) freely when

computing the partition functions.

We will also use the formula (5.5) in chapter 9 when we relate the partition
function of pure spinors to the cohomology of the physical BRST operator Q) =
J A%d,. Although ) does not commute with Jy, we will argue that one can twist
the t-charge using the Lorentz current so that the twisted charge 0 piece of @) has
the same cohomology as @) (except for the on-shell condition Ly = 0). Then the
cohomology of ) can be read off from the twisted partition function. It will be shown
in chapter 9 that the cohomology thus obtained precisely reproduces the lightcone

spectrum of the superstring.

5.3 Counting of gauge invariant polynomials and the miss-

ing states

The states we construct are polynomials of w, A and their derivatives, and are

invariant under the “gauge transformation”
Iawa = AN"(YmA)a - (5.8)

In the language of curved (v theory these correspond to globally defined operators.
Basic invariants with a single w are the U(1) current, Lorentz currents, and the

energy-momentum tensor for the pure spinor sector
J =wX, NPI=1wyPiI\, T =uwdl. (5.9)

Of course, arbitrary products of these operators are again gauge invariant. Starting
from level 2, there will be certain gauge invariant polynomials with negative .J;
charge meaning that the number of w’s is strictly larger than that of A’s. These,
however, are perfectly normal gauge invariant operators and should not be confused
with the “missing states” alluded to at the beginning of this chapter.

The true missing states, which first appear at level 2, are fermionic and are
crucial for reproducing the massive spectrum of the superstring. The purpose of
this section is to show that the Hilbert space of “naive” gauge invariants lacks field-
antifield symmetry and hence is not the appropriate Hilbert space in the pure spinor
formalism. Descriptions of gauge invariants at levels 0 and 1 can also be found in
references [11][12].
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5.3.1 Level 0 gauge invariants

At the lowest level, the Hilbert space is spanned by non-vanishing polynomials of
A. Due to the pure spinor constraint, A\’s can only appear in the “pure spinor

representations”
Aleryez oo yen) = (0000n)t",  (n>0). (5.10)

Here, we also indicated the ¢-charge of the state, and the symbol («jas---ay))
signifies the “spinorial vy-traceless condition”, which means that the expression is
zero when any two indices o;a; are contracted using Vare; Since the pure spinor

representations have dimensions

(n+7)(n+6)(n+5)?2n+4)>2n+3)>%n+2)(n+1)

dim(0000n) = S BT R ,  (5.11)
the level 0 partition function is easily found to be [11]
1 —10#% 4 16t° — 16t° + 10t° —° (L +¢)(1 + 4t + ¢
Zo(t) = * * _AHOA+AHE)

(1—1¢)e - (1—t)n
5.3.2 Field-antifield symmetry

Before proceeding to the next level, let us explain an important symmetry possessed
by the zero-mode partition function. Looking at (5.12), one immediately notices that

Zy(t) has the following symmetry:
Zo(t) = —t3Zy(1/1). (5.13)

As we shall explain shortly, this symmetry is related to field-antifield symmetry in
the pure spinor superstring. The symmetry is important for having a non-degenerate
inner product on the physical states and the value —8 is related to the ghost number
anomaly of the pure spinor system [11].

In order to explain how the field-antifield symmetry is related to the inner prod-
uct structure of pure spinor superstring, let us compute the total weight 0 partition
function for the pure spinor superstring, by including the contribution from 0¢. As-

signing t-charge 1 to 6, the partition function for 6¢ is easily computed and reads
Zpo(t) = Trg(—1)Ft" = (1 —1)'°. (5.14)
Hence, the total weight 0 partition function is

Zo(t) - Z/\yo(t)Zgyo(t) (515)
= 1—102 + 16 — 16t> + 10t5 — ¢®.
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Now Zg(t) is nothing but the partition function for the cohomology of Qg = [ A%p,
carrying t-charge zero. For the massless sector, the cohomology of Qg coincides with
the zero-momentum cohomology of @@ = [ A\*d,. The cohomology representatives

can be explicitly identified as follows:

0. | (5.16)
—10¢2 : (Ay™0)

164> (Ay™8) (vmb)a
—16t° : (AP0 (A1) (7pg0)*

1048 - (AP0) (Ay90) (0 Ympaf) ,

=% (™0 (AP0) (AY0) (8mpaf) -

It is then easy to see that an appropriate inner product (V, W) can be defined on

the cohomology using the zero-mode prescription
(9™0) (AP0) (X110 gy = 1. (5.17)
Every cohomology element V' has its conjugate (antifield) V4 such that
(V,Va) ={(VIV4) =1, (5.18)

where V1 denotes the BPZ conjugate of V [27]. Since A\* has t-charge anomaly —8
while 0% has 16, the rule (5.17) precisely saturates the anomaly. It is analogous
to the rule for the bosonic string, (cdcd?c) = 1, and can be derived from func-
tional integration methods after including an appropriate BRST-invariant measure
factor [6].

Below, we shall argue that the partition function of pure spinors has the field-
antifield symmetry (5.13) at each Virasoro level, and therefore all physical states in

the pure spinor superstring appear in field-antifield pairs.

5.3.3 Level 1 gauge invariants

The weight 1 can be saturated either by one w or one 9\, and we wish to count the

states that do not vanish due to the pure spinor constraints
AMTA=0, (AN =229™MOA=0. (5.19)

For the states with w, one must also require invariance under the gauge transforma-

tion dawa = Ay (7™A)q- For the level 1 operators, the latter condition implies that
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w must appear in the form of the gauge invariant currents J and N™?. Hence, all

the possible states with a single w are (n > 0)

wa XN ) = (0000n)E" (5.20)
We (,ymp)aﬂ/\((ﬂ)\ﬁl e /\/Bn)) = (0100n)t” .

The states involving 0\ are described by (n > 0)

AN@NFL L NBD) = (0000, n + 1)t (5.21)
ONYIPINENI NP = (0010n) "2,

Note that while Ay™0X = 0 due to the pure spinor constraint, the 3-form A\y™P49\
is non-vanishing.

Adding up all four contributions, one finds [12]

46 — 144t + 116t2 + 1643 — 161> — 1165 + 14447 — 461°

Zi(t) = G (5.22)
_2(1+1)(23 + 20t + 23¢%)
= = . (5.23)

This satisfies the same field-antifield symmetry as Zy(t):

Zi(t) =—t2Z,(1/1t). (5.24)

5.3.4 Level 2 gauge invariants and a missing state

Explicit constructions of the gauge invariant polynomials at level 2 can be obtained
using similar methods. But at this level we encounter several new features. Most
importantly, we will find that the space of gauge invariant polynomials does not
posses the field-antifield symmetry. This implies the space has to be augmented
by some finite number of terms. We shall explain the symmetries of the partition
function in chapter 6. For now, however, let us focus on the space of gauge invariant
polynomials and enumerate them.

First of all, there are polynomials with two w’s. One might expect that these
w’s only appear in the form of N™P or J, but there is in fact a gauge invariant

polynomial with negative ¢-charge
fo=3Jwa + N™ (Yppw)q - (5.25)

Appearance of f, is interesting, but we stress that it is a perfectly normal gauge

invariant polynomial and has nothing to do with the “missing states”. Of course,
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fo multiplied by some function of A is again gauge invariant, but this carries non-
negative t-charge and can be expressed in terms of operators constructed from N™P
and .J.

The states with two N’s, two J’s, and one N and one .J are (n > 0)
NpmpNegA™ = (Ypmp) ar (Ygr)@) ae AN AT 2D = (02000)",  (5.26)
N[mqur})‘(n) = (’Y[mpw)m (qu]w)Oéz)‘((al)‘m AP\ = (0001, n + 1)t

NI A = (4550 0y Wa, A@T A2 NP NF) — (0100n)8™
JIN® = G wa, N@ X2\ A — (0000m)t"
Here, we left the v-traceless conditions implicit, and the indices in [mp, qr] are
traceless, block-symmetric, and antisymmetric within each blocks. In fact, the 4-
form piece of NNA™, NJA™ and JJA™ can be written as (n > 0)
Far ™ = (Bwaewa + (Y™0)ag (Yrmpw) o) AEONS - \On) (5.27)
= (00010) ® (0000n)t"*,
so one must be careful not to double count.
As for the polynomials with a single derivative, the following states are indepen-
dent (n > 0):
ONTPAM = 9(way ™0 o, NE)N N = (0100n)t" (5.28)
DTN = O(wa, NN N = (0000m) 1",
NTPOIN = (™) o, 0N NN NP (4 — traces))
+(w7[[mp)a0(3)\7qrt]])a1/\((ao/\a1 APt )\
= ((0100,n + 1) + (1001n) + (0000, n + 1))t"** + (0110n)t" 2,
JOMNM = ON@oN N A L (DA Ympg)ay ALOON AP B
= (0000,n + 1)t"*! 4 (0010n)t" "2,
T = w,0\* = (00000)t°.
Note that TA™Y) and w,, dA(@0 21 )% ... \Bx) are not independent.

Finally, there are two types of polynomials with two derivatives, 9?AA(™ and

(0X)2A™ | and some of them are related by the level 2 pure spinor condition
M"PPN + OMY™ON = 0. (5.29)

The independent states are (n > 0)

FPANBL D) = (00001) ® (0000n)t"+!,  (5.30)
oAl g 2 AP AP = (0000, n + 2)¢7 12,
(a)\,ympq)ﬁla)\((a)\m AP \Ber) = (0010, n + 1)¢"*3
((‘3)\7[[mpq)ﬁl (8)\7’““]])/@2/\((51 A2 )\Oet2) — (0020n)t"** .
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Adding up all the contributions, (5.25), (5.26), (5.28) and (5.30), one finds

Z5 poly (1) 167" + 817 — 3840t + 7794¢> — 10848¢> + 12870t* — 12032t°

1
il
182225 — 489617 + 282315 — 11361° + 2400 — 32411 + 2t12} .

(5.31)

The missing state As already mentioned, Z;,,, we just computed does not

posses the field-antifield symmetry. However, one finds that

Zo(t) = Zopary(t) =17
—t 16t — 120672 + 576t — 1003 + 528t — 214¢% + 59243

1
!
—592¢% + 21415 — 528¢7 4+ 1003% — 5761° + 120¢'° — 16¢ + t”}

(5.32)

does have the desired symmetry

Therefore, we expect to have an extra fermionic singlet with t-charge —4 at level
2. Because it is fermionic, it cannot be a usual gauge invariant state. Indeed, it is
related to a term (called b5 [9]) which appears in the expression for the b-ghost used
in multiloop amplitude computations [7].

Remember that the b ghost satisfying {Q,b} = T is a composite operator con-
structed from both the matter variables (z™, 6%, p,) and ghost variables (A%, wy).
This composite operator cannot be globally defined on all patches (see chapter 8),
and in the non-minimal pure spinor formalism, is described by the sum of a zero-
form, one-form, two-form and three-form [14]. The three-form in the b ghost is

independent of the matter variables (z™, 8%, p,)

(ry"Pr) (X’YUT,OT) N N°T

by = L
’ 512(AN)4

(5.34)
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Chapter 6

Partition function of pure spinors and its

symmetries

In this and in the next chapter, we are going to present two independent methods for
computing the partition function of pure spinors. The first method utilizes Chester-
man’s ghost-for-ghost description of pure spinors [8], while the second method uses
a fixed point formula extending the zero mode result of [11]. Neither method gives
the complete partition function in closed form, but the partition functions can be
computed level by level unambiguously once one imposes the requirements of field-
antifield and “x-conjugation” symmetries.

We present the ghost-for-ghost method first because the two symmetries of the
partition function are (formally) manifest in this formalism. However, since the
ghost-for-ghost description of the pure spinor requires an infinite tower of ghosts-
for-ghosts, the expression for the partition function is ill-defined and one has to
invoke an analytic continuation in order to maintain the two symmetries. Also,
using this method, it is difficult to compute the partition function keeping the spin

dependence of the states.

6.1 Ghost-for-ghost description of pure spinors

In this section, we analyze the (infinite) reducibility conditions for the pure spinor
constraint using the BRST formalism. The resulting BRST operator D was first
introduced by Chesterman [8]. As already mentioned, we sometimes refer to D
as the mini-BRST operator to avoid confusion with the physical BRST operator
Q = Ad,.

Chesterman’s ghost-for-ghost, construction is designed so that it reproduces the
space of gauge invariant functions of the constrained system. Indeed, the partition
functions of D-cohomology in weight 0 and 1 sectors precisely describe the number

of gauge invariant objects described in section 5.3. However, starting at weight 2,
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we find extra cohomology elements which do not correspond to the naive gauge
invariants. We shall claim that those extra states are as important part of the
Hilbert space of the pure spinor system as the naive gauge invariants.

Let us present the prescription to find the ghosts in order to describe the pure
spinor constraint Ay™A = 0. Following the usual strategy of the ghost-for-ghost
construction, we introduce a fermionic ghost ¢™ to ‘kill’ the pure spinor part of \*
and define the D-action

D= /Mm/\ b & DE™ = Ay, (6.1)

where b, is the conjugate field of ¢™. Then, a function f(\) proportional to Ay™\ is
D-exact and does not contribute to the D-cohomology. However, because the pure

spinor constraint is reducible, this is not the end of the story, using the identity
(A" AN (ymA)a =0, (6.2)

one can coustruct a D-closed state

" (YmA)a (6.3)

which must be killed by introducing another generation of ghost. For the case
at hand, we introduce a bosonic ghost x, and define Dx, = ¢™(7mA)a. So that

" (YmA)a becomes trivial, and the operator D becomes

D= / (A" A by + €™ (A7a0)) (6.4)

where (* is the conjugate field of x,. Now we repeat the above argument, there is a
D-closed state of (6.4), and it is given by ¢™¢"” + %X’ymn/\, again we introduce a new
ghost C™" and define DC™" = ¢™¢™ + %X'ymnk. We can continue this path, getting

an infinite set of unconstrained fields: A%, ¢™, xo, C™", ... with their respective
conjugate fields: wq, by, (¢, Bnp, ... with free action
S = [ d(wadX + bpdc™ + (DX + BndC™ ) (6.5)

and mini-BRST operator D given by [9]

1 1
D= / ()"Ym/\ b + " (AymC) + §an(cmcn + §X7mn)‘) + - ) . (6.6)

To compute the partition function, we need to assign t-charges to the fields. In
order that D carries zero t-charge, we can easily see that the values of the t-charges
for the fields: A%, ¢™, xqo, C™, ... are 1,2,3,4,---, and for their conjugate fields

Weay by €%, Bp, - -+ are —1, =2, —3, —4, ... respectively. Furthermore, note that, the
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multiplicities of the ghosts A%, ¢, xo, C™", ... are 16, —10, 16, —45, ... respectively,
where the sign in from of each numbers tell us whether the ghost is fermionic (—)
or bosonic (+).

The multiplicities N, of the ghosts can be also obtained by writing the level zero
character (5.12) as [9, 11]

Zo(t) = T[ (1~ 1) ™. (6.7

The fields at t-charge k will have | Ny| components, and will be bosons for Ny > 0
and fermions for N, < 0. The multiplicities N, contain the information about the

Virasoro central charge, as well as the ghost current algebra:

5 Cvir = Z Ni, o aghost = _kz: kNk,  Cghost = _kz: k* N (6.8)
=1 =1
We can easily deduce from (5.12) and (6.7):
N, =16, Ny = —10, Ny = 16, N, = —45, N5 = 144, Ny = —456, ...  (6.9)

For the computations to be done in the appendix C, we will need to know the
value of the moments of the Ny’s, i.e. we want: 332, k*T' N;. This was analyzed in

[11]. The moments of (6.9) are given by
f: ETIN, = 12— 281 — c(l—s) f: k(=2 = V3)F + (=2 +V3)%)  (6.10)
* Lioy(-2=V/3) + LiL,(~2+V3)
¢(=s) ’

where Lig(2) is the so-called polylogarithm (also known as de Jonquiere’s function),

= 12— 251

it is a special function defined by the sum

Lis(z Z

B> ol

Another way to get 332, k*"1 NV}, is by considering the general expression of the
form we analyzed in (5.12) and (6.7):

I k*Nk_w

where P and () are some polynomials. We have

oo P(ex)
> Nl —efry = :
k=1 ‘ Og(l ¢ ) o8 Q(em)
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Since

T o
log(1 — e*) =log(—x) + 5+ >
where B;, are Bernoulli numbers, we have:

log(z) SNy + 3 log(—k)Nj + = 3 kN; +
k=1 k=1 2 k=1

— By 29 — 2 P(e”)

x k* N, = —log .
2 501" & Q)
Using (5.12) and expanding the right hand side RHS of (6.11), we obtain the

following value for the moments

(6.11)

>Ny=11, > kNy=8, Y KNy=4, > k'Ny=-4, (6.12)
k=1 k=1 k=1 k=1

> KN, =4, ZkSNk:@ and > k"N, = —396.

k=1 k=1 3 k=1

The first three moments of Ny’s given in (6.12) contain the information about the
virs ghost’ and the ghost-
(6.8). As we can check, the value of these current central

conformal central charge c the ghost-number anomaly a

number central Cohost

charges are in agreement with the non-covariant calculation (4.11).

6.2 Partition function of the mini-BRST cohomology

In the previous section, we resolved the pure spinor constraint using the infinite
chain of free-field ghosts, and constructed the BRST operator D. Since D carries
zero t-charge, the partition function of its cohomology is equal to that of the total
Hilbert space of (now unconstrained) pure spinors and the ghosts. Therefore, the

full partition function of pure spinors can be formally written as

Za.t) = T =)™ [T = ¢") ™ (1 — ¢+%) %] (6.13)
Z(g,t) = ;f[ [;f[(l - qhtk)_N’“}f[(l - qht_k)_N’*’] = hi_o: Zh(t)qh.

It may seem difficult to extract useful information from this formal expression. In
fact, on the contrary, once the moments of N,’s are known, the two important sym-
metries of the partition function—the field-antifield symmetry and the x-conjugation
symmetry—can be easily deduced from (6.13). Also, by expanding in ¢, and employ-
ing Padé approximants [13], one can obtain from (6.13) a well-defined expression
at each Virasoro level. In section 6.4, we shall demonstrate this by computing the

partition function up to level h = 12.
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6.3 Symmetries of the partition function

Elementary calculations show that Z(q,?) defined in (6.13) has the following sym-

metries:
field-antifield symmetry: Z(q,t) = H((—l)N’“t_(k+1)N’“)Z(q, 1/t) (6.14)
k>0
= —t7*Z(q,1/1),

x-conjugation symmetry:
Z(a.t) = TL((=1) g2 EFONHERONG 7 /1) (6.15)

k>0
= —¢tZ(q,q/t).

Imposing those symmetries on the formal expression for Z(g,t) means that one has

made an analytical continuation
Z(q,t) = Mpso(—ig 2n(q) " VEF 011 (g, %)) Ve, (6.16)

where the elliptic functions are defined as

dulg,t) = i Y (—1)Fqt V2 (6.17)
k=—00
= —ig"/Pn(q)(' =) T - ") (1 = ¢"t7),
h>1
(@) = ¢/ T[0—d"). (6.18)
h>1

The symmetries above follow from the well-known transformation properties of the

theta function:
(g, t) = =g, 1/t) = —¢"*t911(q, qt) . (6.19)

x-conjugation symmetry and the higher cohomology As in the case of the
toy model (see chapter 3 and [10]), the *-conjugation symmetry suggests that there
are non-trivial fermionic elements in the higher D-cohomology. The element with
charges —q?t~* generalizing the state b of the toy model is of particular importance.
Unfortunately, the construction of this state in the BRST framework is not straight-
forward, obstructed by the complexity of the infinite ghosts-for-ghosts. However, the
state has a particularly nice interpretation in the Cech/ Dolbeault cohomologies. In
fact, it turns out to be nothing but the tail term b3 of the composite reparameteri-

zation b-ghost [9].
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In the next section, starting from the formal expression of the partition function
(6.13), we are going to describe a method for computing higher level character
formulas Z,(t). We refer this method as Padé approximants. The method is mainly
based in the knowledge of the zero mode part Zy(t) of the partition function. From
this level zero character formula, we extract the ghosts multiplicities Vg, and using
the moments (3, k*T1Ny) of those multiplicities, by employing a novel application
of Padé approximants, we are able to compute higher level character formulas 7 (¢)
of pure spinors (up to the twelfth mass-level h = 12). We find that our results are
in agreement with the results found in [9] (up to the fifth mass-level h = 5) where
the fixed point technique was used (the fixed point technique will be discussed in

the next chapter).

6.4 Padé approximants

The Padé approximation seeks to approximate the behavior of a function by a ratio
of two polynomials. This ratio is referred to as the Padé approximant. This approx-
imation works nicely even for functions containing poles, because the use of rational
functions allows them to be well-represented. Recently, the Padé approximation has
been applied to string field theory to analyze the tachyon condensation [28, 29, 30].

Let us now consider the general equations of the Padé approximation. Given
some function f(t), its [M/N] Padé approximant denoted by fI™/N(t) is a rational
function of the form [31]

iy = 2 E LB Pt (6.20)
where the coefficients py, po, - - -, Par, Qo, G1, * * *, @, are obtained by solving a system
of M + N + 1 algebraic equations

dn fIM/N]
T(a):f‘<">(a), n=01,2 -, M+N. (6.21)

The equations (6.21) come from equating the coefficients of (¢t —a)” (up to the order
n = M + N) in the Taylor expansion of the functions f(t) and fIM/Nl(t) around
some point t = a (which usually is taken at ¢ = 0).

Having sketched briefly the method to approximate functions by means of ra-
tional functions. Next, we are going to use this method for computing higher level
character formulas of pure spinors. Let us start by writting the formal expression
(6.13) for the partition function of pure spinors like the following

Z(g,t) = Zo(t)[1 + i_oj ()", (6.22)
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where the level h function f,(t) is defined by

h
1

hag — ") 7Nk(6.23)

fn(t) = )], Where Z(qt

00 00
H H — g"tF) N (1

As we know by a previous work [9], up to the level h = 5, these level h functions
are given by rational functions. Therefore, this result is an indication that these
level h functions can be computed by means of Padé approximants. In fact this is
the case as it is shown in the appendix C, the functions fi(t), fa(t), f5(¢), - - - can be
calculated using Padé approximants. As our main result, we have noted that these

functions can be written like the following

2h+6 ;
Yico Cipth

Tnlt) = th+2(1 + 4t + ¢2)

(6.24)

where the value of the coefficients (), up to the level h = 12 are given in the

following tables

i | Cio| Cin| Cig Cis Cia Cis Cigs Ciz

0 0 0 -1 —16 —126 —672 —2772 —9504
1 0 0 12 146 920 3996 13440 37224

2 1 0 —67 | —536 —2411 —7616 —18358 —35184
3 4 46 248 822 1852 3270 7752 33356
4 1 40 319 1200 1745 — 5944 —48147 | —179648
5 0 46 628 4114 17000 48206 91948 87730
6 0 0 319 3720 21767 82112 210717 326760
7 0 0 248 4114 32356 162662 585464 1575690
8 0 0 —67 1200 21767 162552 778424 2706944
9 0 0 12 822 17000 162662 977032 4215020 (6.25)
10 0 0 -1 —536 1745 82112 778424 4454624
111 0 0 0 146 1852 48206 585464 4215020
121 0 0 0 —16 —2411 —5944 210717 2706944
131 0 0 0 0 920 3270 91948 1575690
141 0 0 0 0 —126 —7616 —48147 326760
5] 0 0 0 0 0 3996 7752 87730
16| 0 0 0 0 0 —672 —18358 —179648
171 0 0 0 0 0 0 13440 33356
18] 0 0 0 0 0 0 —2772 —35184
191 0 0 0 0 0 0 0 37224
200 0 0 0 0 0 0 0 —9504
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[ Cis Cio Ci1o Cin Cin2

0 —28314 —75504 —184041 —416416 —884884
1 87912 180180 320892 484770 265136

2 —5bH368 —77968 —130185 —342472 —1118117
3 145512 513680 1480688 3596898 7511244
4 —467078 —900256 —1189750 —468240 2940853
5 —112192 —651084 —1221496 23356 8349688
6 —14878 —1971392 —7447790 —17913424 —30692216
7 3130008 3975312 77136 —15954844 —51076344
8 7136292 14067968 18009420 783936 —74353372
9 13953544 36499868 75237248 115010006 94216072
10 | 18453761 59453552 153557340 318143976 504911177
11| 21308252 82467920 255938464 651539178 1363603964
12 | 18453761 88624848 330202624 999457424 2512598839
13 | 13953544 82467920 366326624 1301105402 3825279040
14 7136292 59453552 330202624 1398947880 4802902081
15 3130008 36499868 255938464 1301105402 5216743428
16 —14878 14067968 153557340 999457424 4802902081
17 —112192 3975312 75237248 651539178 3825279040
18 —467078 —1971392 18009420 318143976 2512598839
19 145512 —651084 77136 115010006 1363603964
20 —5bH368 —900256 —7447790 783936 504911177
21 87912 513680 —1221496 —15954844 94216072
22 —28314 —77968 —1189750 —17913424 —74353372
23 0 180180 1480688 23356 —51076344
24 0 —75504 —130185 —468240 —30692216
25 0 0 320892 3596898 8349688
26 0 0 —184041 —342472 2940853
27 0 0 0 484770 7511244
28 0 0 0 —416416 —1118117
29 0 0 0 0 0965136
30 0 0 0 0 —884884

(6.26)

We have defined the values of the C} o coefficients such that the level zero function
is defined as fo(t) = 1. It is interesting to note that the coefficients C;, satisfy the

following identities

Cinn = Copte—ips
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B h
Z o -iCin = — Z Gr—iCip (6.28)
i=0 =0

which can be derived by using the two symmetries of the partition function (6.14),
(6.15) and verified by using the coefficients shown in tables (6.25) and (6.26). The

coefficient ¢,, is generated by

Zo(t

— 2
1+4t+t2 HZO% ’ (6.29)
and it is given explicitly by the formula
b, = (1+n)2+n)B+n)4+n)5+n)*(6+n)(7+n)(8+n)(9+n) (6.30)

2731527

The importance of the identity (6.28) is as follows. If we know the coefficients
Cio, Cia, -+ +, Cyipr, it is possible to compute explicitly the coefficients Cy,, Crp, - -+,
Ch . For instance, setting 2’ = 0 in equation (6.28), we get

h
Cop=—>_ n-iCig, (6.31)
i=0

using (6.30) and the value of the coefficients C; given in the table (6.25) into the
equation (6.31), we obtain

(1 —h)h(1+R)*(2+ h)*(3+ h)*(4+ h)(5+ h)
26.3%.52.7 '

Con = (6.32)

By employing the same steps given above, setting A’ = 1 in equation (6.28), we

arrive to the following expression for the C ), coefficient

(h— DA+ h)%(2+ h)(3+ h)(4 + h)(108 + 10h + 12h? — h3)

i, =
b 25.33.5.7

(6.33)

Finally, it would be important to find an explicit expression for a general co-
efficient C;, (for all h > 0 and 7 > 0). It is clear that if we know explicitly C;,
it should be possible to write a compact expression for the complete pure spinor

partition function

1+t oo 2h+6
11

SN Ottt (6.34)

h=0 =0

Z(q,t) =

where the factor (1+¢)/(1 —)!, in front of our formula (6.34), comes from substi-
tution of equations (5.12) and (6.24) into the equation (6.22).
So far, we have computed the partition function without the spin dependence

on the states. Spin dependence is crucial if we want to prove that the full partition
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function (including the contribution of the worldsheet matter sector) correctly re-
produces the light cone superstring spectrum [9]. Therefore, it would be interesting
to know the character formula with the spin dependence. In the next chapter, we
are going to compute the character formulas including the spin dependence at each

Virasoro level by using the so-called fixed point technique.
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Chapter 7

Fixed point formulas for the full partition

function

In the previous chapter, we have presented a formula for the full partition function of
pure spinors using an infinite tower of ghosts-for-ghosts. The formula is natural and
convenient for motivating the two important symmetries of the partition function,
i.e. the field-antifield symmetry and the -conjugation symmetry. Also, we were able
to compute the partition function level by level, respecting those two symmetries.
However, the computation using (6.13) is not easy if one wishes to keep the spin
information of the states [13]. We here present a very simple fixed point formula for
the partition function including the spin character, extending the zero mode formula
given in [11]. Although our formulas (7.11) and (7.12) miss some finite number of
states at each Virasoro level, these missing states can be recovered by imposing the
two symmetries (6.14) and (6.15) of the full partition function.

7.1 Review of fixed point formula for level zero partition

function

For convenience, we briefly review the fixed point formula for the zero mode partition
function [11]. (See also [32].)

Geometric preliminary Let us begin by refining our description of the space of

pure spinors

Xig = {A%[A%hA =0, A #0} (7.1)
= (C*-bundle over Xjg), (Xip=S0(10)/U(5)).

With the removal of the origin understood, X, can be covered by 16 patches, where

in each patch at least one component of A is non-vanishing. It is convenient to use
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the “five sign” notation to describe the components of A. (See appendix A.1 for

explanations.) In this notation, the character of 16 components are

1
Attt = ez (Fo1E02k0sE01L05) (even number of —’s) | (7.2)

and X can be covered by 16 patches
Usiszz ={N€ Xio | Aoz #0}. (7.3)

In a given patch, a pure spinor can be parameterized using eleven parameters (g, tq)
which are in the (1,10) of U(5). ug is the “angular” coordinate parameterizing the

base Xy and g is the coordinate for the fiber C*. For example in U; ., .,

A= ()\+7 )‘ab7 )\(z) = (97 GUap, %geadeeubcude) . (74)
where
A = A #0, (7.5)
Ao = {Ai i1+ and permutations },
XY = {A;,____ and permutations }.

The characters of g and u,, in this patch are

g= e2(o1+02 03 t01+05) Ugy = € (7ato0) (1<a<b<b). (7.6)

7

In other patches Uc 44444y, the characters will be

1 . 1., _ _
ge = eze(gl+‘72+‘73+‘74+‘75) = p2¢ ‘77 Uegh = € e(gatap) —¢ (cavatenop) , (77)

where € acts by even number of sign changes.

The fixed point formula By constructing the symmetry generators explicitly,

one finds the action of N,, on X;y which commutes with the J-rescaling of the

C*-fiber. A generic action of the maximal torus of SO(10) has 16 fixed points which

are nothing but the “origins” (uq, = 0) of 16 patches. The spin character of pure

spinors can then be written as a sum of the contributions at the fixed points [32][33]
16 1 10 1

Zo(t,0) =

e=1

(7.8)

1 _ te%E-O' (ab):l 1 — e*(faUaJrEbO'b)

where we use the notation of [11]. The sum over e describes the sum over 16

fixed points. The first term of the summand is the character of the non-vanishing

component g, and the second term is the character of the rest w45, both at a given

fixed point ¢. Summation over the fixed points in (7.8) is straightforward and one

gets [11]

1— 10¢? + 1643 — 161> + 10¢° — 148
(1 —1t)16 '

Zy(t,5) = (7.9)
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7.2 Fixed point formulas for the full partition function

Now, let us introduce two ways to extend the zero-mode fixed point formula (7.8).
The two utilize different parameterizations for the non-zero modes and lead to par-
tition functions that differ by a finite number of terms at each level. Also, both
miss a finite number of terms with respect to the fully symmetric partition function.
However, the missing states can be unambiguously recovered by imposing the field-
antifield and *-conjugation symmetries, and the two formulas then give the same
symmetric partition function.

The first way of extending is to simply include the non-zero modes of A at each

patch (g, uc o) € Ue together with the modes of their conjugates (he, v®):

€ Ve

16
Z(q,t,0) = > Zg,t,9), (7.10)
e=1
1 10 1

L= 1o (gyimg 1 = ghem(eontan)
1 10 1

X H T H 1 — qheeaanrebtrb ’

po1 1=t te 297 (g

Z(q,t,6) = ]I

h>0

(7.11)

The first line represents the modes of (g, uq) and the second line represents the
modes of (h,v®).

To obtain another way of parameterizing the non-zero modes, one observes that
the constraints for the non-zero modes are essentially linear A\gy#A_p+--- =0 (A ~
0"\) while the constraint for the zero mode is quadratic Agy*Ag = 0. Therefore,
the 11 components of non-zero modes A j (and their conjugates) can be thought
as carrying different characters from the zero-mode A\g, and the contribution from a

fixed point is

1 10 1
Ze((L t, 0) = m (agll 1 — e—(cadatenon) (712)
1 10 1
X e —
hl;Il 1 — qter (aby=1 1 — ghterco—(cadateron)
1 10 1

< 11 T.o II

he1 L —qMtlem27 gny 1 — ght—le~3eoH(caoateron)

The second line describes the contributions of the A non-zero modes and the third
line describes the contributions of the w non-zero modes. As mentioned above, it
carries essentially the same information as the first formula (7.11).

By expanding either (7.11) or (7.12) in ¢, the level A partition function with spin

information is expressed in a simple form for all A~ > 1. The summation over 16
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fixed points is straightforward, and one gets a result of the form

By (t,5)

Zh(taa):m;

(7.13)
where PJ(t,5) is some polynomial in ¢ with coefficients taking values in the repre-
sentations of SO(10), and (1 —t)'® = [[,c16(1 — te””). We put a prime on Pj(t,5)
as it lacks field-antifield symmetry as of yet:

PL(t,&) £ PL(1/t,—5). (7.14)

We now turn to our results on P} (¢,5) and explain how to improve them so that

they respect the field-antifield and *-conjugation symmetries.

7.3 Partition functions for non-zero modes with spin char-

acter

Although the summation over 16 fixed points is straightforward, it is not obvious
how to combine local U(5) characters into SO(10) characters in a simple manner.
A convenient computational trick is to utilize the Weyl character formula to take
care of the combinatorics. To do this, one first augments the factor for the zero-
mode character H%gb)zl(l — e~ (@rat®o)) =1 representing the 10 “positive roots of
SO(10)/U(5)” by the character of the remaining 10 positive roots of SO(10), i.e.
those of U(5), [T{gp=1 (1 — e (@ra=aon)) =1 "and then extends the summation over the
16 fixed points € to 1920 elements of the SO(10) Weyl group W. Using the first
parameterization of (7.11), 1920 “local” contributions are given by
1 R 1

Zw(Q7t76) = T i, H

1 — tez? iy (1= em(Weretwn))(] — e=(waremwon))

(7.15)

1 11_0[ 1
) 3 —\Wa T Wy,
th 1 - qhteiw'” (ab):l ]_ — qhe ( a0a+Wp b)
1 10 1

X hl;[l 1 — qhtfleféwﬂ (agll 1 — qhewatfa+wafb )
(Using the second parameterization of (7.12), the formula is the same except for the
last two lines representing non-zero modes.) An element w € W acts on the five-sign
basis by permutations and an even number of sign changes. The two modifications
“cancel” each other and simply gives >, Zuw = > Ze.
Now multiplying e“*” (where p is the half sum of positive roots) to both the nu-
merator and denominator of Z,(q, t, &), and denoting the SO(10) Weyl denominator
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by e’R, the sum over w reads

1920 1 1 15

20@t:9) = 2 Zu(0.t.8) = Gpmen oV e 110 - te2"(=?)) (7.16)

w e#1

x [[ {non-zero modes} .
1

Using the Weyl character formula, the summation over w € W is readily done
leading to the expressions of the form (7.13). This trick also explains why one gets

SO(10) representations as the coefficients of ¢.

Level 1 Using the computational trick just mentioned at this level, the second
parameterization of (7.12) yields

1

Z19n4(t,0) = m

{(45 + 1)t — 144" + (126~ — 10)* + 161*  (7.17)
—16t° — (126" — 10)¢° + 144¢" — (45 + 1)t%}

while the first parameterization (7.11) yields

Ziast = Zipna — 1. (7.18)

The singlet missing from Z; 4 is the gauge invariant current J = wA, and the
only way to make Z ;5 consistent with field-antifield symmetry and *-conjugation

symmetry up to this level is to add 1 to it. So we conclude
Zl(t, 5:) - Zl,gnd(t, 6) — Zl,lst(t7 6) + 1 , (719)

where Z 9,4 obtained from our second parameterization is defined in (7.17).

Higher levels An important point to notice is that although Zs,; reproduces the
fully symmetric partition function at level 1, neither 75 nor Z,,4 reproduce the
fully symmetric partition function at higher levels. In particular, they both miss
the fermionic singlet at —¢?*t* discussed above, and (a part of) analogous states at
higher levels. Also, both 74 and Z,,4 miss some gauge-invariant operators. For

example, at level 3, the numerator Pj(t,5) in Z,q starts as
Py(t,d) =—10t2+ (144 +560+3-16)t ' +--- (7.20)

and the correction required includes both bosonic and fermionic operators. Nev-
ertheless, at least up to the fifth level, the difference between the t-expansions of
the fully symmetric partition function and the result from the fixed point formulas
is always finite. Therefore, the fixed point result can be unambiguously improved
to the symmetric one using the method described for the ghost-for-ghost partition

function. (A list of the improved numerator Py (¢, &) can be found in appendix B.2.)
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Towards fixed point formula for the fully symmetric partition function
Since we use the field-antifield and *-conjugation symmetries as guiding principles
for computing the complete partition function, it will be useful to build them into
the fixed point formula itself. Although we do not have an answer to this problem
at the present time, organizing the complete partition function into a character of
§(\)(10) affine Lie algebra seems to be promising. This should also be useful for
extending our result to all mass levels. However, we leave the study of these issues
for future research, and we now turn into the explanation of the structure of the

pure spinor cohomology using Cech and Dolbeault descriptions.
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Chapter 8

Pure spinor cohomology: Cech and Dolbeault

descriptions

In this chapter, we explain the structure of the Hilbert space of the pure spinor
system. We are going to give an explanation of the states which do not correspond
to the usual gauge invariant polynomials. As mentioned those “missing” states are

essential for the partition function to have the symmetries

Z(q,t) = —t°Z(q,1/t) = —¢*t " Z (¢, 4/1) .- (8.1)

Let us begin by studying certain aspects of the Cech type description of the pure
spinors and indicating the results we have established in this thesis. This is not
intended to be a complete overview of the formalism, as we only cover issues which
are relevant for explaining the missing states appearing in the computation of the

pure spinor partition function.

8.1 Pure spinor sector as a curved (v system

A standard way to construct a general curved (v system on a complex manifold X
is to start with a set of free conformal field theories taking values in the coordinate
patches {Ua} of X, and try to glue them together [32, 34, 35]. The field content of
each conformal field theory is described by the (holomorphic) coordinates of a patch
u® and its conjugate v, satisfying the free field operator product expansion
0%

2 —w

u®(2)vp(w) ~ (8.2)

Not all manifolds X, however, lead to a consistent worldsheet theory. A basic
requirement is that one must be able to consistently glue the operator products (8.2)
on overlaps. Gluing on double overlaps U4 N Up can always be done (though they
are not quite unique), but the gluing on Uy N Ug, U4 N Ug and U N Us must be
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consistent on the triple overlap Uy N Up N Ue (cocycle condition). In order that
there is no topological obstruction for this, the first Pontryagin class p;(X) must be
vanishing. Also, to be able to define the energy-momentum tensor T' globally (i.e.
to have a conformal field theory), X must possess a nowhere vanishing holomorphic
top-form and hence the first Chern class ¢;(X) must also be vanishing.

In the case of pure spinors all these obstructions turn out to be absent [32]. The

target space is basically the space of SO(10) pure spinors, with the origin removed:
Xip = A% [ XN = 0,0 £ 0}, (83)

which is a complex cone over a compact projective space Xjy. It is well known that
X1 is the homogeneous space

X = SO(10)/U(5), (8.4)

and has ten (complex) dimensions. The origin A = 0 is removed from the space
of all solutions to the equations Ay™A = 0 in order to meet the general criteria
above, p; = ¢; = 0. With this removal of the origin understood, Xy can be covered
by 16 patches {Us} (A=1,...,16) where in each patch at least one component
of A (which we denote A*) is non-vanishing. Very explicit formulas for the gluing
of operator products, symmetry currents J and N™" and the energy-momentum
tensor T can be found in [32].

8.2 Cech description

Given a space X on which the curved v system can be consistently defined, the
space of observables, or simply the Hilbert space of the model, is defined as the
cohomology of the difference operator 4, also known as Cech operator.

To understand what Cech cohomology is, we need to grasp a few concepts first.
Let X be a complex manifold, and 4 = {U4} an open cover of X. This means
that we have open sets Uy such that U,Uy = X. Let F be a presheaf™ of Abelian
groups on X, that is, a map that assigns to every set in X an Abelian group. This

group can, in principle, vary from set to set. For instance, the Abelian group F'(Uyx)

*In mathematics, a presheaf is a tool for systematically tracking locally defined data attached to
the open sets of a topological space. The data can be restricted to smaller open sets, and the data
assigned to an open set is equivalent to all collections of compatible data assigned to collections of
smaller open sets covering the original one. For example, such data can consist of continuous or
smooth functions defined on each open set. Presheaves are by design quite general and abstract
objects, and their correct definition is rather technical [36].
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assigned to a set Uy C X could be the group of continuous functions defined on Uy,
where the group operation is simply the sum of functions.

A presheaf also assumes that if we have two sets Uy, Ug C X such that Uy C Up,
then there exists a restriction map ry, v, : F(Up) — F(Uas). We see that ry, v,
maps, or restricts, the Abelian group corresponding to the bigger set Upg to the
Abelian group corresponding to the smaller set Uy,.

Now, consider ordered families of (n+1) sets Uy,, i = 0,1,---,n from the cover.
Ordered in this context means that the order of the given sets is to be taken into
account. An n-cochain ¢ = (A4 4n) assigns to a family {Ua,,Ua,,...,Ua,}
an element of the Abelian group F(Ua, N Ua, N ... N Uy,). For instance, if F
assigns to the group of continuous functions, a 1-cochain 1) assigns to {Ua,,Ua, } &
function whose domain is Uy, N Uy,. In other words, we have an object of the form
W({Uny, Ua, })(x) = f(x), with € Ua, NUy,.

Since n-cochains take values in the Abelian groups (determined by the presheaf),
one can add two different n-cochains to obtain another n-cochain. Thus, n-cochains
themselves form an Abelian group. Suppose we have an n-cochain v, as we saw, this
acts on families of (n+1) sets. Let us see how we can use 9 to construct an (n+1)-
cochain, that is, a map acting on families of (n+2) sets. Let {Ua,,...,Ua,,,} be an
ordered family of (n+2) sets from the cover . If we remove a set Uy, from the family,
we are left with an ordered family of (n+1) sets, {Uay, .-, U, Usjrs o Unyy )
Then, the n-cochain 1 can act on this reduced family to give an element of the
Abelian group F(Ua,N...NU4;_, NU4,, N...NUL
(n + 1)-cochain, whose output should be an element of the Abelian group F(Uga, N

w1)- Now, we want to define an
... Ua,,,), which corresponds to the intersection of all (n + 2) sets. To get such
wir C U4 N
cooNUa N Uy, NN Uy, (notice that the intersection of (n + 2) sets is
smaller than the intersection of (n + 1) sets), there exists a restriction map r; :
FUgo oo .NUs, MU NN Us ) = F(UggN .. Uy, ). Then, rj4p would
be a (n + 1) cochain.

Now, the (n+1)-cochain we are really interested in constructing is a combination

an element, we can use the restriction map. Indeed, since Ug, N... Uy

Jj+1

of the (n 4 1)-cochains we just defined. Specifically, we define the (n + 1)-cochain
ov by

n+1

OV (Uags - Unp) = S (=1r00(Ungs .o Uny 1 Unyiyso Unnyy)  (8:5)

§=0

Note that the (—1)7 makes this an alternating sum. Since the output of r;i is
an element of an Abelian group, the negative sign would mean simply the inverse

element in the group sense. The symbol § is called the Cech differential which is
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nilpotent 62 = 0, and it takes n-cochains into an (n + 1)-cochain.

An n-cochain such that 51/) = 0 is called an n-cocycle. An n-cochain 1 that can
be written as ¢ = 3¢, where ¢ is an (n— 1)-cochain, will satisfy d¢» = 0 trivially, i.c.,
it will be an n-cocycle. These trivial n-cocycles are called n-coboundaries. The nth
Cech cohomology H™(9) is defined as the space of d-closed n-cochains (n-cocycles)
modulo d-exact elements (n-coboundaries). In particular, the zeroth cohomology
HO(3) is simply the space of “gauge invariant” operators defined globally on X. It
turns out that the missing states (appearing in the computation of the pure spinor
partition function) correspond to elements in the third Cech cohomology H?3(5). A
remarkable reason why H?($) is important is that a nontrivial element in H3($) is

essential for the construction of the composite reparameterization b-ghost.

8.3 Cech/Dolbeault descriptions and the operator b3

The description of the curved (v system in the previous section was done using
the Cech language by patching together a collection of free conformal field theories.
There is a closely related formulation which uses the Dolbeault language. The two
are related in the same manner as the standard Cech and Dolbeault cohomologies
of a complex manifold are related. In the Cech description, only the holomorphic
local coordinates u, of X were used, but the Dolbeault description utilizes the
antiholomorphic variable u® as well. This allows the construction of a partition of
unity on X and, by considering the cohomology of an extension of the Dolbeault
operator dx, one can deal exclusively with globally defined objects [32, 35].

In the pure spinor formalism, the so-called non-minimal formulation corresponds
to this Dolbeault formulation [7][14]. There, one introduces another set of pure
spinor variables A\, and its (target space) differential r, = d), which are constrained

to satisfy
XY™ N =0, A" =0. (8.6)

The conjugate momenta for the non-minimal fields are denoted by @* and s, and
they must appear in combinations which are invariant under the non-minimal gauge

transformations

0xw® = A (1), Sy = U (yr)?, (8.7)

Jps® = U™ (A,

with A,, and ¥,, being bosonic and fermionic gauge parameters.
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The Dolbeault operator dx can be defined as a natural extension of the Dolbeault

differential in complex geometry:

= ~ 0
8X = —Tawa ~ d/\a axa . (88)

Note that dx is gauge invariant under (8.7). If one wishes to be more rigorous, the
expression for dx should be understood in terms of its local expressions that are
consistently glued. Also, note that only the zero-modes for the non-minimal sector

are relevant for the dx-cohomology due to the relation
Ox (80N) = WON + s0r = —Ton—min - (8.9)

Whenever there is a dx-closed operator F' with positive weight h carried by the
non-minimal sector, it can be written as dx of itself multiplied by the zero-mode of
sON:

—}1lc‘9x((83)\)0F) =F. (8.10)

The minimal (Cech) and non-minimal (Dolbeault) formulations can be related
by imitating the argument that establishes the usual Cech-Dolbeault isomorphism.
That is, the cohomologies of & and Jy are related using the partition of unity {pa}

“subordinate to” the coordinate patches {Uj4}:

A
pa = iX S, pa=1and ps =0 outside Uy, (8.11)
—= (/\X)I‘A)\A - (/\I‘)XA)\A
dps =0 = _ .

(Here and hereafter, Einstein summation convention does not apply for the index
A; when needed, we will always write the summation over A explicitly.) A Cech

n-cochain 1 = (1/404») is described in the Dolbeault language by an n-form

1
0,y AAn

=

Since 9 is holomorphic (i.e. dxtpo4n = 0), the usual argument relating the Cech

and Dolbeault cohomologies can be applied (provided one uses a good cover so that
Ox-cohomology is locally trivial).

Since the non-minimal variable 74 (or consequently dp, ) is a fermionic variable, it

is clear that using the map (8.12) which relates the minimal (Cech) and non-minimal

(Dolbeault) formulations, elements in the Cech cohomology H™(6) will be bosonic
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for n even and fermionic for n odd. In particular the operator b3 which bellows to
H3(4) is a fermionic one. The identification of by is easier in the Cech/Dolbeault
cohomologies. Indeed, it can be identified as the “tail term” of the reparameteri-
zation b-ghost of the pure spinor formalism. Recall that in the non-minimal pure

spinor formalism the b-ghost is written as [6, 14]

b = by+bi+by+bs,

— pes — Ao 7™ (v d)® — Ny (V™00)* — JOO* — L5209
by = —s%O\, + (Af) = —5%0\, — {7 (Omd) (47()\/\) ) 1 ) ;
b Xarﬂﬂ[am B (X’ym”pr){(d’ymnpd) — 48Ny } 8.13
T 768(AN)? ’ (8.13)
by, — XQT[;T,},K[O‘/B”/} _ (Tfym"pT)Nmn (prd)
(AN) 64(AN)3 ’
b — Xarﬂr,yrgL[aﬂ'y‘ﬂ _ (T'ym”pr)(X’ylkpr)Nmank
’ (AN 512(AN) ’

and satisfies

{Q,bo} =T, {0x,b}+{Q,bis1} =0, (i=0,1,2), {0x,bs} =0. (8.14)

Being the tail of the b-ghost, b3 is clearly in the Dolbeault cohomology of intrinsic, or
gauge invariant operators. It is independent of (x,p,0) and carries charges —¢?t *.

So this is the “missing state” we were looking for.
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Chapter 9

Derivation of the lightcone spectrum

Finally in this chapter, we derive the Green-Schwarz lightcone spectrum by com-
bining the pure spinor partition function with those of the matter variables ™ and
(Pa, 0). The lightcone spectrum we are to derive is the Fock space spanned by the
transverse oscillators

o S

—n

(i€8,,ac8, n>1), (9.1)

n?

on the super-Maxwell ground states
i) + |a) = 8, + 8,. (9.2)
Their partition function is simply
Z1(q,3) = Tre(—=1)Fq e (9.3)
_ (8,8 H (1— gh)s:

or (L=q")®

Now, since the physical BRST operator of the pure spinor formalism () contains
pieces with non-zero t-charge, the total partition function of the pure spinor super-
string Z(q,t,5) (which includes z and (p,0) sectors) is not directly related to the
cohomology of Q). Moreover, Z(q, t, ) differs from the lightcone partition function.
However, it will be shown in this chapter that if the ¢-charge is twisted appropriately
using the lightcone boost charge (t — 1), Z(q,t,5) can be related to the lightcone

partition function as
Z(Qvfa 6) A _?ZZC(CL&) + 27/jﬁzlc(QJa!) . (94)

The first term at > represents the usual lightcone spectrum and the second term at
16 represents the spectrum of the antifields. If one writes Q = Qo + Q1 + - - - where
Q. carries t-charge n, it is obvious that the twisted total partition function Z(q, f, )

represents the cohomology of #-charge 0 piece Qg of ). One might think that the
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cohomology of )y has nothing to do with that of ¢, but it will be shown that ()
and ) have the same cohomology, except that the on-shell condition (Lg = 0) is not
implied for the former.

Let us begin by first illustrating the analogous result for the bosonic string.

9.1 Lightcone spectrum of bosonic string from covariant

partition function

The BRST operator of the bosonic string takes the form

Q = T, + bcoe (9.5)
1
= Z ¢ plp— = Z (m —n)c_mC pnbmin,
nez 2 mnez

where we leave the normal orderings implicit and the Virasoro operators are given
by

1
Lo = K+ o aum—1 (9.6)
2 m>1
1
L, = = Z A mOpm (N #0).
2 meZ

Because of the ghost zero-mode oscillators {by, ¢y} = 1, the cohomology of () consists
of two identical copies of the lightcone spectrum—those without ¢, (fields) and those
with ¢y (antifields). Thus, the partition function defined by Tr(—1)"q" vanishes
identically due to field-antifield cancellation. One way to get a non-zero result is to
impose an additional condition by = 0 which drops all the antifields from the trace,
but it is difficult to perform an analogous operation in the pure spinor formalism.
Another way to get a non-zero result is to introduce a charge that distinguishes

fields from antifields. Clearly, the ghost number (¢-charge) measured by
J =-bec (= tbe)=(-1,1)) (9.7)

does the job. The (lightcone) partition function would then be

1
Zi(q,t) = Tr(—1) g ot’e = —q7(t — t?) 11 AT (9.8)
h>1 (I—q")
where the prefactor represents the ground state tachyon (¢ = —¢~'t) and its antifield

(cdc = ¢~ '1?).
In obtaining the expression (9.8), we used the well-known fact that the physical

spectrum is spanned by the transverse oscillators o', (i =1,...,24, n > 0). Now,
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let us explain how it can be obtained from the covariant partition function

Z(qataﬁ) - Zx(Q7t7 5)Zbc(q;t7 5)7 (99)
1
Ze = T e
111;[1 (1— ¢h)%6
Zye = [[A=¢"tH" I @=¢"t)".
h>2 h>—1

If the BRST operator @) carried ghost number (¢-charge) 0, the total partition func-
tion Z(q,t,d) would represent its cohomology. But since @) carries ghost number 1,
Z(q,t,5) is not directly related to the cohomology. Nevertheless, there is a simple
way to obtain the partition function of cohomology (9.8) from Z(q, t, ). The proce-
dure is simple and one only has to twist the t-charge by the lightcone boost charge
for the non-zero modes o

- 1
J = J =T+ Ni (9.10)

(The zero-modes k™ are kept intact.) Then, the twisted ¢-charges read
t(k*, a5, al,bc) =(0,+£1,0,—1,1), (9.11)

and the twisted partition function becomes identical to (9.8) representing lightcone
fields and antifields:
L 1

Z(q,t,0) = —q "t -] ——s - 9.12
01.9) =~ =) 1] = iy (912)
Of course, Z(q7 t, ) represents the cohomology of the t-charge 0 piece of Q,
Q = Qo+Q1+Qy, (9.13)
1
QO = _7k+ Z C—na; )
2 n#0

and not necessarily that of @ itself. However, as is apparent from (9.13) the co-
homologies of () and )y are identical, except that the on-shell conditions are not
implied for the latter. (Recall that we are not imposing the by = 0 condition.) So the
twisted partition function (9.12) in fact represents the lightcone spectrum but with-
out the on-shell condition. In the previous paragraph, we recovered the well-known

fact that the BRST cohomology reproduces the lightcone spectrum [37].

9.2 Lightcone spectrum from pure spinor partition function

As explained earlier, physical states in the pure spinor formalism are defined as

the cohomology of (). We now wish to define an operator that is the analog of
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Qo = —(1/2)k™ X0 ¢_nar, of the bosonic string as the twisted ¢-charge 0 piece
of the physical BRST operator. To find the appropriate twisting of the t-charge
current J; = wA + ph, let us study the massless vertex operators and see where the

lightcone degrees of freedom reside.

9.2.1 Twisting of t-charge

The super-Poincaré covariant vertex operator for the super-Maxwell fields is given
by
Vo= \"Ay(z,0) (9.14)
= A%a(z) + (MY"0)am(x) + (AY"0)(0ym)ax” (z) + - -
with ¢™(z) and x*(z) the photon and photino wave functions. (The first term A%,
is pure gauge and the ellipsis involve spacetime derivatives of ™ and x®.) In this

form, the lightcone degrees of freedom (a’, x%) are contained in the terms at > and

3. But if the t-charges of A and 6 are twisted by the lightcone boost charge as

J = J=wA+pf+ N + Ny, (9.15)
™A AT0,770) = (2,0,2,0)),
both are brought to >

2 (W0ai(x), (M 0)(07M)ax(z). (9.16)
Similar analysis shows that the lightcone degrees of freedom for the antiphoton and

antiphotino are brought to %, which explains our expectation (9.4):
Z(q,1,6) = —t°21.(¢,3) + 1°Z1.(q, 7). (9.17)
The analysis here does not tell us how the t-charges of (the non-zero modes of)
Ox™ should be twisted, but it turns out that the appropriate definition of .J is
J=wh+pl+K, K=NJ+Nj +2N/". (9.18)

Note that we twisted the lightcone coordinates dzT twice as much as others, and
we indicate by the prime in N~ that the zero-mode of dz* = k* are kept intact.

In our convention, the boost charge K of the basic operators are
Ky w,v5)) = (£1,£1), K(v p,y50) = (£1,+1), (9.19)
K(k*, 02, 02") = (0,44,0).
It will now be argued that the {-charge 0 piece of the physical BRST operator
plays a role analogous to the Qo = —(1/2)k* 3, 4o c_na;, of the bosonic string. As

a first step, let us see how the total partition function Z(q, t, &) is twisted at several

lower mass levels.
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9.2.2 Massless states

It is easy to see that the twisted partition function for the zero modes Zo(f, &)
represents the lightcone super-Maxwell ground state. The twisted partition function

can be easily computed from the original spin partition function:

Zo(t,&) = 1-—10#*+16t° — 16t° +10t° — 1¢°, (9.20)

—  Zo(t,d) = —(8,—8,)1%+ (8, — 8,)1°.
At the level of vertex operators, this formula can be understood as follows.
Covariant vertex operators for the super-Maxwell antifields (a*, x%), for the ghost

¢, and for the antighost ¢* are similar to that of the super-Maxwell field (9.14) but

have different numbers of A:

VE o= AN As(x,0) (9.21)

= o () (A0) (V70) X0 (2) + (M) (M) (07" 0) 0y, () + - -
U = Al,0) = 1e(@) +
U = )‘a)‘ﬁ)‘wAaﬁw(l" 0) =+ (M"0)(M"0)(AY"0) (0vmnpl) " (z) + - -

The terms of the covariant partition function Zg corresponds to the (vertex operators

of) component fields as
1—10t* +16t° — 16t° + 10t° — 1#° (¢, am, X*, X5, ab, c*) . (9.22)

Under the twisting (9.15) one finds that only the lightcone degrees of freedom sur-

vives as in
AR S N A A
1| ¢
—10t2 | a* at a”
1643 @ @
—16¢° Xa X5
106 a*+ ot ot
—18 ¢t

Spurious degrees of freedom and the ghosts (a*, x¢, ¢ etc.) are brought outside #*5

and get cancelled by components with the opposite statistics.

9.2.3 First massive states

The lightcone partition function at level 1 can be derived in a similar manner. A

new feature here is the appearance of non-zero modes of ™ which have to be twisted
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twice as much (9.18). The total partition function before the twisting is

Z1(t,5) = Zur1Zpo.o + ZuroZpo1 + ZuroZpo,0Za
= ((45+1) — 144t + (126 — 10)¢* + 16¢*
—16t° — (126 — 10)¢° + 144¢" — (45 + 1)t*)
+((1 — 102 + 16¢* — 161° + 10¢° — 14%), ® (10, — 16, * — 164t)),
and after the twisting (9.18), it becomes
Z1(1,5) = (8, — 8,)1 24 (—=56yq + 3540 + 28 — 8, + 1){° + (=56, + 56,,)1>
— (=565 + 56,,)° — (=56, + 354, + 28 — 8, + 1)t° — (8, — 8,)t"°
+20(1,3) @ (1, — 8,.0) 2+ (8,5 + 89.0)1" + (1, + 84.,)12) . (9.23)

A little algebra shows that again only the terms at #2° survives:

Z,(t,d) = —1*(35+28+1+56,, +8,—56,, — 8, —56,, —8,)  (9.24)
+1°(35 +28 + 1+ 56,, + 8, — 56,, — 8, — 56,, — 8,) .

The cancellation among spurious states and ghosts occurs as indicated in figure 9.1.

9.2.4 Higher massive states

The very same twisting procedure leads to the lightcone spectrum for the higher
massive states. The computations are straightforward once the spin partition func-
tions Zj(t, &) of the pure spinor are obtained. We list the latter up to level h = 5
in appendix B.2, so the interested reader can readily check the emergence of the

lightcone spectrum.

9.3 (o-cohomology and absence of on-shell condition

Finally, let us study the relation between the cohomologies of @)y and (). It will be
argued that Q) is an analog of k™ 3, . o, c_,, of the bosonic string, and in particular
that it does not imply the on-shell condition.

Under the twisted f-charge, @ splits into three pieces

Q = Qo+ Q2+, (9.25)
Qo = Xd,, (d,=p.+kT0,, dj=p;+0:027),
Qy = (N0Yk + (\'0)0x",
Qi = (02" — L (07"0)(07,00),
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t~74 t72 tO t2 t”4 t~6 t~8 t”lO t~12
-16t~1 -8, -8
45¢° 8, 28+1 8,
10,t° 1 8, 1
140 1
-120¢? -28 —56,, — 8, -28
-100,t2 | -1 -8, -1 —35 -1 -8, -1
-8, —28 -8
-1
-2-10¢? 2.1 -2-8, 2.1
144¢3 8 56,; +8, 56, + 8 8.
144,43 8, 56,, +8, 56, + 8, 8,
16,13 8, 8,
2.16¢° 2.8, 2.8,
*
-2-16¢° -2-8, -2-8,
16,4 -8, -85
-144,t° -8, -56,; — 8, —56,, — 8, -8,
-144¢° -8, -56,, — 8, —56,, —8, -8
2-10t5 2-1 2-8, 2-1
100,15 1
8y 28 8y
1 8, 1 35 1 8, 1
120t° 28 56, + 8, 28
.18 -1
-10,¢8 -1 -8, -1
-45¢8 -8, -28-1 -8,
16¢° 8, 8,
0 0 0 -(35,28,1) 0 (35,28,1) 0 0 0
'(565(1, 811) (56saa 811)
(5644,85) (56,4, 8;)
(561157 Sa) '(56115, 8(1)

Figura 9.1: Lightcone first massive states from level 1 twisted character
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where the notation 9z'F signifies the omission of zero-modes k*. (Qq is certainly
nilpotent, but since it only contains the k' component of the momentum, setting
Qo = 0 cannot imply the on-shell condition.

In order to see that Qg indeed works as k* 3, .o a5, c_p, of the bosonic string, we
study its cohomology directly, by employing the method utilized in [38] to derive
the (on-shell) lightcone spectrum from Q.

9.3.1 Ghost-for-ghost method with an SO(8) parameterization of pure
spinor

In section 6.1, we analyzed the reducibility conditions of the pure spinor constraint
in an SO(10) covariant manner. As was noted in [38], there is a simpler version of
this analysis if one breaks the covariance down to SO(8).

First, parameterize SO(8) antichiral and chiral components of A* as
M=%\ = Ui’yfbsb. (9.26)

\® satisfies the pure spinor condition provided s is constrained to be null, s¢s* = 0.

However, half of v' is spurious because of the gauge invariance
Savt = A%(y'8)% = G\ = A%(ss) = 0. (9.27)

Repeating the BRST construction (section 6.1) in an SO(8) covariant manner, one

obtains a chain of free-field ghosts-for-ghosts*
(Bn,Cn) + (B%,¢t), (ph,08), (0,¢8), (phiol), -+, (9.28)

where as before (0%, ,,c% ;) are fermionic and (pb,, 0%, ) are bosonic. Introducing
a fermionic ghost pair (b, ¢) for the remaining constraint s®s* = 0 (and denoting the

conjugate to s and v® by % and w?), the mini-BRST operator reads [38]

D= /(bsdsd + 554Gl + cTgn) (9.29)
where
g = —wel + oy — Pyt 4 (9-30)
Ty = (w'oy) + (bics) + (phol) + -
Using a regularization 1 —1+1—--- = lim,,;(1 + )~! = 1/2 familiar in covariant

treatments of the x-symmetry, it is straightforward to check that the combined

*We departed from [38] in notation to match the notation of the present thesis. In [38], the initial
parameterization was chosen oppositely (i.e. A* = s*) and the ghosts (ban—1, C2n—1, P2n, 02n)n>1

were denoted by (U, ty, Wy, Un)-
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system of (t%, s%;w?, v'; By, Cp, b, ¢) has the desired central charge 22. Moreover, one
can construct a set of generators for the full SO(10) Lorentz current algebra (with
appropriate level —3), under which D and the physical BRST operator @' (to be
defined shortly) are invariant [38, 39].

In [38], the SO(8) mini-BRST operator D was used to construct the ghost ex-
tended physical BRST operator Q' = D + [ A\*d, + - - -, whose cohomology is equiv-

alent to that of ) = [ A%d,. The operator can be written in the same form as
D

)

Q' = /(bsdsd + s4G* + 2¢T), (9.31)
provided one defines
Gt = d*+ vy + Gy, (9.32)
T = —(7 +2'7" +0*7%) + 2¢4d” + Ty,

with 7 being the superinvariant momentum O0x™ — 6+™0f. The combinations
(G% T) and ( gh, T,n) satisfy the same algebra
a b —25%T a
G (2)G"(w) = , GU2)T(w) =T(2)T (w) = regular. (9.33)

Z—w

This algebra appears repeatedly in the pure spinor formalism, and is related to
the algebra generated by the first-class part of the Green-Schwarz-Siegel constraint
do [20].

Now that the ghost extended physical BRST operator (9.31) is written entirely
in terms of free fields, the analysis of its cohomology is straightforward as explained
in [38]. Let us apply the argument to the case at hand, where the full operator @ is
replaced by its t-charge 0 piece Q.

9.3.2 Lightcone “off-shell” spectrum from ()y-cohomology

By coupling the SO(8) mini-BRST operator D to @)y, one concludes that the co-
homology of @ is equivalent to that of the #-charge 0 contribution to Q' which

18

Q= [(bs™s" + 5°GE + 2¢Ts) (9-34)
where
gg — d/a _|_Uz'%{1bd/b + g;zh’ (9_35)
1
To = —5835" + 0* kT + 2¢5d"™ + Ty -
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To study the cohomology of 05, it is convenient to introduce the grading defined
by

l(pa, 04, 02"F) = (1, =1, %1) . (9-36)

Under the l-grading, @ splits to

Qo = Qo1+ Qoo (9.37)
Qo1 = [(s"pa — 0a"),
Qoo = (rest)

= [(bss" + 50,02 + s*0'd” + s*Gl, + 200k + de(cfd'®) + 2¢T ) -

)

It immediately follows that two quartets
(pd> 9&7 tda Sd) 5 (azli7 bl; CI) 5 (938)

decouple from the cohomology. Furthermore, the conditions implied by @ on the
remaining fields

(kiy axz) P (ptm 0(1) ’ (b07 CO) ’ (wi7 Ui) ) (Bn7 On) ’ (939)
are the cohomology condition of

Q" = cof (kT +2(crd) + Ton)
= colktv? +2(dey) +w'oh 4+ bics + -+ (9.40)

Remembering d), = p, + k70, it then follows that the cohomology of @' (and hence
that of ()g) is spanned by

oz’ (po — k70,) , (9.41)

on the super-Maxwell ground states (1, \y™0, (Av™0)(Ym0)a, - - -, AP (with ap-
propriate BRST ghost extensions).

If the full operator ) was used in place of @y one would find ¢k~ (among
other terms) in the final form of )", and this leads to the on-shell condition [38].
Summing up, we have learned that the physical BRST operator () of the pure spinor
formalism contains a piece @y which plays an analogous role as k* 3", .o, c_, of
the bosonic string, and the role of the rest of () is to impose the on-shell condition

on the “off-shell” lightcone spectrum. This was what we wanted to explain.
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Chapter 10

Summary and future applications

Taking aim at clarifying the Hilbert space for the pure spinors, we have started by
given a brief review of the pure spinor formalism for the superstring and then we
have analyzed the Hilbert space of a simple model defined by a quadratic constraint.
We have used the partition function as a guide to study the structure of the Hilbert
space.

The Hilbert space of this simple model was studied using two different approach,
namely the intrinsic curved (v description and the BRST description. Although
there are slight mismatches between the two descriptions due to the quantum or-
dering problem, we found that their partition functions agree. Since the partition
functions in both descriptions are insensitive to quantum corrections, the agreement
of the partition functions can be explained by classically relating the elements of

the cohomologies of the two formalisms [10].

In the BRST description of the model, the full partition function of the BRST
cohomology can be easily computed and it manifestly possesses two important sym-
metries that we have called “field-antifield” and “x-conjugation” symmetries. The
field-antifield symmetry implies that, after coupling to matter variables, the coho-
mology of the physical BRST operator () comes in field-antifield pairs.

There, however, are several points in the present model that require further
clarifications. One of them is to understand the discrepancy between the extrinsic
(BRST) and intrinsic (curved (7v) descriptions more precisely. At the quantum
level, a source for the discrepancy between the BRST and curved (v descriptions
arises from the different normal ordering prescriptions used in the two. A pair of
the elements of the classical BRST cohomology can drop out from the quantum
cohomology by forming a BRST doublet. In the curved [~ framework, similar
phenomenon occurs when the quantum effect spoils the gluing property of a classical
cohomology. In this case, the failure of gluing is represented by a higher cochain

which is also in the classical cohomology. Since the two frameworks use different
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normal ordering prescriptions, there are discrepancies between the two phenomena.
It would be useful to study if this type of discrepancy can be remedied, for example,
by appropriately bosonizing the BRST ghosts.

Another clarification that should be attempted is to explore the one-loop path in-
tegral expression for our partition function. When properly understood, it should be
useful for unconvering the origin of the field-antifield and *-conjugation symmetries.

After we have introduced the study of the simple model, we extend the result
to the more interesting case of pure spinors. Despite the fact that the pure spinor
constraint is infinitely reducible, it will be argued that the structures above carry
over almost literally. For the case of pure spinors its BRST description is more
complicated than the simple model, because the pure spinors constraint turn out to
be infinitely reducible and so an infinite chain of ghosts are required. Nevertheless its
partition function can be written at least formally and it posses the two important
“field-antifield” and “x-conjugation” symmetries.

For computing the character of pure spinors, another method, called as fixed-
point technique, has been developed [9, 11]. In this thesis, we have computed the
partition function of pure spinors up to the fifth mass level using the fixed-point
method and up to the twelfth mass level using the ghost-for-ghost method. After
including the partition function of the matter variables, we showed agreement with
the light-cone open superstring spectrum.

In the ghost-for-ghost scheme, the method for computing higher level pure spinor
character formulas is based on the formal expression for the full partition function

of pure spinors [9]

o0 o0

Z(q1) = JTLL =)™ JLA = ¢"") M (1 =" %)™, (10.1)

where N, are the multiplicities of the ghost fields. The use of these ghosts comes
from the resolution of the pure spinor constraint, and the necessity of infinite many
of them is because the pure spinor constraint is infinitely reducible [9, 40]. Although
it may seem difficult to extract useful information from this formal expression. In
fact, on the contrary, once the moments of N,’s are known, the two important sym-
metries of the partition function, the field-antifield symmetry and the x-conjugation
symmetry, have been easily deduced from (10.1).

By expanding (10.1) in powers of ¢, we obtain character formulas Z(t) at each

Virasoro level
Z(q,t) = > Zn(t)g". (10.2)
h=0

To derive explicit expressions for these character formulas, we have required to ap-

peal some regularization procedure in order to guarantee the convergence of the
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infinite product over k. We have shown that the method based on Padé approxi-
mants does this job of regularization and in fact we have obtained character formulas
up to level h = 12 [13]. The method was mainly based on the knowledge of the zero
mode part Zy(t) of the partition function. From this level zero character formula,
we have extracted the ghosts multiplicities Ny, and using the moments (3=, £*T1V;)
of those multiplicities, by employing Padé approximants, we were able to compute
higher level character formulas Z,(t) of pure spinors. We have found that our results
are in agreement with the results found in [9] (up to the fifth mass-level h = 5) where
the fixed point technique was used. The good advantage of this method based on
Padé approximants is that it preserves level by level the two important symmetries
of the partition function.

Methods based on Padé approximants have many applications in the issue of
tachyon condensation in string field theory [28, 29, 30], as it is a good tool for
summing numerically divergent series.

We hope that computations beyond the level h = 12 will help us to guess the
explicit form of the complete pure spinor partition function. Using Padé approxi-
mants, we can implement a computer code in order to obtain higher level character
formulas and the time consuming by the computer is much less compared with com-
putations involving the fixed point method. In general for SO(2d) pure spinors the
number of fixed points is 2¢~! and the complexity of summing over these fixed points
(as it was also noted in [11]) grows exponentially with N = 2¢=1. On the other hand
the computations shown by means of Padé approximants are less complicated, so
this technique can be used as an alternative (to the fixed point technique) easier
(computationally) way to get the character formulas for higher-dimensional pure
spinors.

So far, using the ghost-for-ghost technique, we have computed the partition
function without the spin dependence on the states. Spin dependence is crucial if
we want to prove that the full partition function (including the contribution of the
worldsheet matter sector) correctly reproduces the light cone superstring spectrum
[9]. Therefore, it would be interesting to know the character formula with the spin
dependence in the ghosts-for-ghosts scheme. We leave this issue as a future work.

The main surprise we have found in the computation of the pure spinor partition
function is the appearance of fermionic states starting at the second mass level.
These fermionic states all correspond to three-forms on the pure spinor space, and
are related to a term in the b ghost in the pure spinor formalism.

There are several possible applications of these results for amplitude computa-
tions and for superstring field theory. Using the RNS formalism, scattering ampli-

tudes can be computed either using conformal field theory techniques or using the
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operator method. Although conformal field theory techniques are more convenient
for multiloop amplitudes, the operator method is convenient for one-loop computa-
tions where one expresses the amplitude as a trace over states in the Hilbert space.

In this thesis, the pure spinor partition function was only computed up to some
mass level, but it might be possible to extend our results and construct an explicit
formula for the complete pure spinor partition function. One could then use the op-
erator method in the pure spinor formalism, which might simplify the computations
of one-loop amplitudes.

Knowing that there can be no Cech cohomologies with degree greater than 3 is
nice for the pure spinor multiloop amplitudes, because it implies that one need not
worry about the poles coming from the fusion of many reparameterization b-ghosts.
The troublesome poles are necessarily in Cech cohomologies with degree greater
than 3 and, modulo the subtleties coming from the divergences at the boundary of
moduli spaces, they can be ignored without requiring the regularization introduced
in [7]. It would be interesting to work out how it is actually realized, and the present
work might be useful to clarify some aspects of this issue.

Another topic that can be addressed is the one we have mentioned at the end
of section 4.3, namely the covariant computation of the second mass-level state
contained in the cohomology of the BRST operator (). This problem should be
and interesting issue since, as we have seen, the b ghost (which appears at the
second mass-level) has a non-trivial dependence on the non-minimal variables. In
the Dolbeault like description of the pure spinor formalism, it would be nice to see
how the level two massive vertex operator depends on the b ghost.

A fourth possible application of these results is for superstring field theory.
In [14], a cubic open superstring field theory action was constructed using the pure
spinor formalism. However, the correct definition of the Hilbert space was unclear
because of the possibility of states diverging when (A\) — 0. Using the results of
this thesis, one now knows that the Hilbert space must at least allow states which
diverge as (A\)~? in order to reproduce the correct massive spectrum [9]. But it is
an open question if one can consistently define a multiplication rule for string fields

in such a manner that states diverging like (A\) ™! are never produced [7, 14].
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Appendix A

SO(10) conventions and formulas

A.1 Dynkin labels

As is well known, all the irreducible representations of SO(10) can be labeled by
five integers called Dynkin labels. Those are nothing but the highest weights of the

representations in an appropriate basis. In our convention,
vector :  (10000) = 10, (A.1)
2-form :  (01000) = 45,
3-form: (00100) = 120,
antichiral spinor :  (00010) = 16,
chiral spinor :  (00001) = 16.
When computing the partition functions, it is sometimes more convenient to

introduce an orthogonal basis for the Cartan subalgebra, e, (a = 1,...,5) such that

the fundamental roots are
€1 — €9, €9 — €3, €3 — €4, €4 + €y . (A2)

We then denote the character of e, by e’ where o, is a formal variable for book-

keeping. Also the weight vectors in this basis are denoted by square bracket:

=Ygt [apapapaps] < et (A.3)

The components p,’s take values in half integers and are related to the (integer

valued) Dynkin labels (ajasazaqas) by

m 111 1/2 1/2 ay
I 01 1 1/2 1/2 as
us | =100 1 1/2 1/2 as | - (A.4)
L4 000 1/2 1/2 a
15 000 —1/2 1/2 as
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We refer to this basis as the “five sign basis” because the weights and characters of

chiral spinors are expressed as
1
o= —[+1, 41,41, 41, 41] & ezlFortoostontos) (A.5)
2

with even number of minus signs.

A.2 Some dimension formulas
Dimensions of the SO(10) irreducible representations are given by

dim(abcde)

= 24.34.431'52.6.7{(a+1)(b+1)(c+1)(d+1)(e+1)

a+b+2)b+c+2)(ct+d+2)(cte+?2)
a+b+c+3)b+c+d+3)(b+c+e+3)(c+d+e+3)
a+b+c+d+4)(a+b+c+e+4)(b+c+d+e+4)(b+2c+d+e+5)
atbtctdtetd)atb+2+dtet6)at2b+2+dte+T)}.
(A.6)

(
(
(
(

Of special interest are the ‘(chiral) pure spinor representations’ (0000n), which have

the following dimensions

(n+7)(n+6)(n+5)?2n+4)>2n+3)>%*(n+2)(n+1) .

dim(0000n) = 7.6-52.42.32.9

(A7)
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Appendix B

Table of partition functions

B.1 Partition functions without spin: number of states

List of coefficients Ny, ,, present in the expansion Z(q,t) = 3,50 X Nmng™t" of
the pure spinors partition function. We include the usual gauge invariant states

(N > 0) as well as the extra states (N, , < 0).

B.2 Spin partition functions

n Nom Nl,n N2,n N3,n N4,n N5,n

-8 0 0 0 0 0

-7 0 0 0 0 —672
-6 0 0 0 0 —126 —4068
- 0 0 0 —16 —592 —11408
-4 0 0 —1 —46 —1073 —16974
-3 0 0 0 —16 —592 —11408
-2 0 0 0 0 0 0 (B.1)
-1 0 0 16 592 11408 152736

0 1 46 1073 16974 205373 2031130
1 16 092 11408 153408 1617344 14228752
2 | 126 | 4068 70522 868012 8479364 69771888
3] 672 | 19824 | 320304 | 3716208 34489920 | 271222800
4 12772 | 76824 | 1180602 | 13125484 | 1173525227 | 892615196

For convenience, we here list the partition functions with spin dependence up to

fifth Virasoro levels. Partition functions at each level are of the form

Zh(ta 5) -

_ By(t,d)
(1—1)
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where (1 —1)% = J] (1 — te"),
nes

S = (00001) = 16

(B.2)



and Py (t, &) is a polynomial of ¢ with coefficients taking values in the representations
of SO(10). For brevity, we only write the numerator P, (t). Again, formulas include

the extra states.

Level 0:

Py(t,3) = (00000); — (10000)30#2 + (00010)4>
—(00001)14t® + (10000)10t® — (00000),¢3 (B.3)

Level 1:

Py(t,&) = ((01000)45 + (00000);) — (10010)144t* + ((00020)126 — (10000)10)¢
+(00010)16t> — (00001)14¢° — ((00002) 156 — (10000) )28
+(10001)144t” — ((01000)45 4 (00000, )2* (B.4)

Level 2:

Py(1,3) = —(00000),£~* + (00001) 15t — (00100),20¢ 2
+(+(01010)560 + (00010) 1)t~
(= (10020) 1050 + (01000)45 + 2(00000)1)2° + (+(00030)675 — (10010),44)¢"
(= (11000)320 + (00020) 16 — 2(10000)10)£2 + (+(01010)s50 + 2(00010) )3
+(—(01001)560 — 2(00001);)>
S+ (4(11000)520 — (00002) 196 + 2(10000)10)°
+(—(00003)g72 + (10001 )144)t" + (+(10002)1050 — (01000)45 — 2(00000), )¢*
(= (01001550 — (00001) 1)2°
+(00100) 15681 — (00010) 6t + (00000),¢2 (B.5)

Level 3:

Ps(t,3) = —(00010) 16t 4+ (00011)210t* — (00110) 1200 > 4 (01020) 36967 2
+(—(10030) 5980 + (01010)569 + 2(00010),6)¢ "
+(+(00040)2772 — (10020)1950 + (02000)770 + 3(01000)45 + 3(00000)1 )t
+(—(11010)3696 + (00030)g72 — 3(10010) 144)t"
+(+(01020)3696 — 2(11000)390 + 3(00020) 196 — 3(10000)10)#>
+(+2(01010) 560 + 3(00010) 1)
+(=2(01001)560 — 3(00001) 16)t°
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+(—(01002) 3606 + 2(11000) 3550 — 3(00002) 156 + 3(10000) 10 )2°
+(+(11001) 3695 — (00003)g72 + 3(10001) 447
+(—(00004) 9775 + (10002) 1050 — (02000)775 — 3(01000) 45 — 3(00000), )¢*
+(+(10003) 5250 — (01001)560 — 2(00001) )¢
—(01002)3606t1° + (00101)1200t"> — (0001191012 + (00001);6t'3  (B.6)

Level 4:

Py(t,3) = —(00020)96t =% + (+(00021) 1449 — (00010)6)~°
+(—(00120)g930 + (00011)515 — (00000), )¢~
+(+(01030)1 7280 — (00110) 1900 + (00001) )t 3
+(—(10040)29790 + (01020)3696 + (00020) 126 — (00100)190)¢~2
+(+(00050)g504 — (10030)5280 + (02010)5064

4(10001) 144 + 3(01010)560 + 4(00010) 1)t !
+(—(11020) 23040 + (00040)a772 — 3(10020) 1050
42(02000) 779 4+ 5(01000) 45 + 6(00000), )£°
+(4(01030) 17280 — (20001)720 — 2(11010)3696 + 3(00030)g72 — 5(10010)44)t"
+(—(12000) 4410 + 2(01020) 3696 — 4(11000)320 + 5(00020) 196 — 6(10000)¢)>
+(+(02010)g064 + (00021) 1440 + 4(01010)560 + 6(00010)6 )t
+(—(02001)g064 — (00012) 449 — 4(01001)560 — 6(00001) )t
+(4(12000) 4410 — 2(01002) 3696 + 4(11000)399 — 5(00002) 126 + 6(10000) )t
+(—(01003) 7280 + (20010) 790 + 2(11001) 3595 — 3(00003)g72 + 5(10001)144)t7
+(+(11002)93040 — (00004) 9775 + 3(10002)1050
—2(02000)770 — 5(01000)45 — 6(00000); )8
+(—(00005)g504 + (10003) 5980 — (02001 )g064
—(10010) 144 — 3(01001)560 — 4(00001)¢)2”
+(+(10004) 99790 — (01002)3696 — (00002) 196 + (00100) 90 )¢
+(—(01003) 17280 4 (00101) 1200 — (00010)6 )"
+(+(00102)6930 — (00011)550 + (00000), )¢'?
+(—(00012) 1440 + (00001)16)2"® + (00002) 96t (B.7)

Level 5:

P5(t, &) = _(00030)6727577 + (+(00031)6930 — (00020)126 — (00100)120)t76
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+(—(00130) 99568 + (00021) 1440 + (00101)1900 — 2(00010)16)¢
+(+(01040)g4350 — (00120)g930 — (00200).4125 + 2(00011)510 — (00000) )¢~
+(=(10050)gs640 + (01030)17280 — 2(00110) 1990 + (00001)6)¢ 3
+(+(00060) 28314 — (10040) 29790 + (02020) 46500 -+ 3(01020) 3696 + 2(00020)156)t 2
+(—(11030) 102960 + (00050)g504 — 3(10030) 5250 + (11001)3696
+2(02010)s064 + 2(10001)144 + 6(01010)560 + 8(00010) 1)t~
+(+(01040) 64350 — (20011)s085 — 2(11020) 3040 + 3(00040)277
—5(10020)1050 + (03000) 7644 + 4(02000)770 + 10(01000) 45 + 9(00000), )£°
+(—(12010) 43680 + 2(01030) 17250 — 2(20001) 799 — 5(11010)3696
+5(00030)g72 — 10(10010)44) ¢!
+(+(02020) 46500 + (00031)g930 — (20100)4312 — 2(12000) 441
+5(01020)3695 — 8(11000)320 + 10(00020)125 — 9(10000)10)¢2
+(+(10110)gg00 + 2(02010)s064 + 2(00021) 1440 + 8(01010)s60 + 9(00010)16)#3
+(—(10101)g800 — 2(02001)g964 — 2(00012) 1440 — (01001560 — 9(00001) 1)t
+(—(02002) 46500 — (00013) g0 + (20100) 4312 + 2(12000) 4410
—5(01002) 3696 + 8(11000)320 — 10(00002) 126 + 9(10000) 10 )£°
+(+(12001) 43680 — 2(01003) 17280 + 2(20010) 790 + 5(11001)3606
—5(00003)672 + 10(10001)144)t7
+(—(01004)g4350 + (20011)5085 + 2(11002)23040 — 3(00004) 377
+5(10002) 1050 — (03000)7644 — 4(02000)770 — 10(01000)45 — 9(00000), )¢3
+(+(11003) 102960 — (00005)g504 + 3(10003)5280 — (11010)3696
—2(02001)s061 — 2(10010)144 — 6(01001)560 — 8(00001)6)t?
+(—(00006)58314 + (10004) 29790 — (02002)46500 — 3(01002)3695 — 2(00002)126) ¢
+(+(10005) 65640 — (01003) 17280 + 2(00101)1200 — (00010)16) ¢!
+(—(01004)g4350 + (00102) 950 + (00200).4125 — 2(00011)210 + (00000); )12
+(+(00103) 9565 — (00012) 1449 — (00110) 1200 + 2(00001)6)¢13
+(—(00013)g930 + (00002) 196 + (00100)120)¢™* 4 (00003) 6725 (B.8)
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Appendix C

Computation of higher level character formulas

Higher level character formulas Z,(¢) can be obtained from the formal expression
(6.13) as follows. Performing a Taylor expansion of the expression (6.13) around
q = 0, we have

oo qh 8h

Z(q,t) = Zy(t) + 1; ﬁaT]hZ(% g0 (C.1)

o0

= Z[1+Y ht)d],

h=1
where the level h function f,,(t) has been defined as the expression (6.23). To obtain
these level h functions, we are going to use a method based on Padé approximants.

Let us explain our method by computing in detail the level one function f;(¢).
From the expression (6.23), we derive the following expression for the level one

function
fil) = 30 Nu(th 4175, (€2)
k=1

expanding the RHS of (C.2) around ¢ = 1 and keeping terms up to some order

(relevant for the computations to be done next), we get
filt) = 2 N4+ (=17 BNy — (t—1° Y KNy +--- (C.3)
k=1 k=1 k=1
Applying the formula (6.10) to find the even moments 3", Ny, 35 kN and replacing
them into the equation (C.3), we obtain
fil) =22+4t—1)* =4t —1)> +--- (C.4)
Using Padé approximants, we express the function f;(¢) as a rational function

1+ ptd

~ p[M/N]
= H - L

, (C.5)
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for instance, as a pedagogical illustration let us compute explicitly the [2/1] Padé

approximant of f(t)

14 pit+ pot?

£ : C.6
(1) P (C.6)
expanding the RHS of (C.6) around ¢ = 1, we get
1+ oo —
ﬁm@): -Hh+m+pMH-M% %+mm@_n (C.7)
o +q (g0 + ¢1)
m%—pwwrﬂﬁu_D;_mm%—pww?+ﬁu_lﬁ+”.
(g0 + ¢1)? (20 +aq1)*

Equating the coefficients of (£ —1)% (¢t —1)', (¢t —1)2, (¢t — 1) in equations (C.4)

and (C.7), we get 4 equations for the unknown coefficients py, p2, qo, ¢1

L+p1+p2
o+ q1
P1qo + 2p2q0 — q1 + P21
(q0 + q1)?

P25 — Mo + ¢
(0 +q1)?

P21qs — P1Godi + 43
(qo +q1)*

— 92, (C.8)

solving these system of equations (C.8) we obtain

7 1
= — =1 =0 = -, C.9
p1 9 P2 » qo 41 1 (C.9)
Computations of higher Padé approximants follows in the same way as it was

shown above. The results of these computations are given in table (C.10).

[M/N] Pi, P2, * "t PMm do, 41, """ gN

[2/1] 7/2, 1 0,1/4

[2/2] 20/23, 1 1/46, 2/23, 1/46

[3/1] 1, 18/25, —2/25 1/50, 1/10

[1/3] 43/23 75/5566, 875/5566, —135/2783, 1/121  |(C.10)
(3/2] 20/23,1,0 1/46, 2/23, 1/46

[2/3] 20/23, 1 1/46, 2/23, 1/46, 0

[3/3] 20/23,1,0 1/46,2/23,1/46, 0

[4/4] 20/23,1,0,0 1/46,2/23, 1/46, 0, 0

As we can see by explicit computations, the Padé approximants are approaching
to the rational function (46 + 40t + 46¢%)/(1 + 4¢ + %), and therefore we take this
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function as being the level one function f;(t)

46 + 40t + 46t2
1) =
h(t) 1 +4t+£2

(C.11)

By multiplying this function (C.11) with the level zero character Zy(t), we get

46 — 144t + 116t 4 1613 — 161> — 116t° + 144t" — 46t8

Zl(t) (t _ 1)16 ’

(C.12)

and therefore, we correctly reproduce the level one character formula given in [9, 12].
For the next level h = 2, by using the same strategy shown above, we have found
that the Padé approximant computation gives the following result for the level two

function

ht) = —1+4 12t — 67> + 248¢% + 319¢* + 628> + 319¢° 4 24847 — 67¢* + 1217 — ¢*°
2 (1 + 4t + 2) '

By multiplying this level two function fy(¢) with the level zero character Zy(t), we
correctly reproduce the level two character formula found in [9)].
Computation of higher level functions f5(¢) by means of Padé approximants,
suggest us that these functions can be written like
S Cpt?

fa(t) = (2(1 4 AL+ 7)) (C.13)

We have computed the C;, coefficients up to the level h = 12, the results are given
in the tables (6.25) and (6.26) of chapter 6. Multiplying the functions fj,(¢) with
the level zero character formula Zy(t), we obtain the characters Z,(t). We have
compared our first five character formulas with the formulas given in [9] and we

have found agreement.
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