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Resumo

Nesta tese, mostramos o c�alculo da fun�c~ao de parti�c~ao dos espinores puros. Oc�alculo ser�a executado de dois modos diferentes usando o m�etodo de fantasma-para-fantasma (at�e o d�ecimo segundo n��vel massivo) e usando o m�etodo do ponto �xo(at�e o quinto n��vel massivo). Ap�os incluir a contribui�c~ao das vari�aveis do setor damat�eria (xm; ��; p�), n�os derivamos o espectro massivo da supercorda aberta.Embora os espinores puros sejam vari�aveis bosônicas, a fun�c~ao de parti�c~ao dosespinores puros cont�em estados fermiônicos os quais come�cam aparecer a partirdo segundo n��vel massivo. Estos estados fermiônicos vêm de fun�c~oes que n~ao s~aobem de�nidas globalmente no espa�co dos espinores puros, e est~ao relacionados aofantasma b no formalismo de spinores puros para a supercorda.

Palavras Chaves: Supersimetria; Supercordas; CFT; BRST; Espinores Puros;Quantiza�c~ao Covariante
�Areas do conhecimento: F��sica de Part��culas e Teor��a de Campos
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Abstract

In this thesis, we have calculated the partition function of pure spinors. Thecomputation is performed by using two di�erent methods, namely ghosts-for-ghosts(up to the twelfth mass-level) and �xed point (up to the �fth mass-level) techniques.After adding the contribution from the (xm; ��; p�) matter variables, we reproducethe massive open superstring spectrum.Even though pure spinor variables are bosonic, the pure spinor partition func-tion contains fermionic states which �rst appear at the second mass-level. Thesefermionic states come from functions which are not globally de�ned in pure spinorspace, and are related to the b ghost in the pure spinor formalism for the superstring.
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Chapter 1

Introduction

String theory is one of the most promising candidate theory we have for a uni�eddescription of the fundamental particles and forces in nature including gravity. Itsbasic building blocks are one dimensional extended objects (strings) which for theirmathematical consistency can be de�ned in 26 (bosonic string) or in 10 spacetimedimensions (superstrings). In contrast with particle theories, string theory is highlyconstrained in the choice of interactions, supersymmetries and gauge groups. Infact, all the usual particles emerge as excitations of the string and the interactionsare simply given by the geometric splitting and joining of these strings.
There are �ve consistent superstring theories, all of them are related by a netof dualities [1]: type I, type IIA, type IIB, heterotic E8 �E8 and heterotic SO(32).These �ve theories are described using two standard formalisms: the Ramond-Neveu-Schwarz (RNS) formalism and Green-Schwarz (GS) formalism. The RNSformalism has manifest worldsheet supersymmetry, but the spacetime supersym-metry is not. The spacetime supersymmetry can be veri�ed after perform the so-called GSO projection (Gliozzi-Scherk-Olive) [2]. The fact that this formalism doesnot have a manifest spacetime supersymmetry makes it hard to perform scatteringamplitude computations as the vertex operators which describe fermions in space-time are complicated, in addition to the technical problem of summing over spinstructures (di�erent periodic or antiperiodic boundary conditions for the worldsheetfermions around various cycles) [3].
To solve the issues we have just mentioned, it would be nice to have a formulationwith manifest spacetime supersymmetry. In fact there is such formulation, it is theGS formalism, although covariant quantization of this theory seems hard becausethe existence of a technical problem dealing with mixture of �rst and second classconstraints, the GS superstring can be quantized in the light cone gauge, but dueto the lost of manifest covariance, problems in computing scattering amplitudesarise. And in fact using this formalism only four-point tree and one loop scattering
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amplitudes were computed explicitly [4].
About seven years ago, a new formalism for the superstring was proposed whichis manifestly super-Poincar�e covariant and which can be easily quantized [5]. Thispure spinor formalism for the superstring has passed various consistency checks andhas been used to compute multiloop amplitudes and to describe Ramond-Ramondbackgrounds in a super-Poincar�e covariant manner.
One of the key ingredients of the formalism is the use of a bosonic variable ��transforming as an SO(10) spinors and satisfying a pure spinor constraint ��
m���� =0 for m = 1 to 10. Thanks to this constraint, the BRST operator Q = R dz��d� isnilpotent. In a sense, �� can be thought as the ghost for the Green-Schwarz-Siegelworldsheet constraint d�. Although the use of such a constrained ghost system isunconventional, it can be used to construct vertex operators and to de�ne stringamplitudes as worldsheet correlation functions [5, 6, 7]. Dependence of the ampli-tudes on the non-zero modes of �� and its conjugate !� is �xed by the operatorproduct expansions OPES, and the functional integral over the zero-modes can beinferred by requiring BRST and super-Poincar�e invariance.
Although the basic ingredients for computing on-shell amplitudes are alreadythere, it would be useful to understand the functional integral over �� withoutrelying on the BRST invariance, or equivalently, to understand the nature of theHilbert space in the operator formalism. This would be necessary, for example, if onewishes to apply the formalism to construct a superstring �eld theory. In this thesis,this Hilbert space question will be answered by explicitly computing the partitionfunction of pure spinor variables.
There are two basic strategies to study the structure of the Hilbert space forthe pure spinors. The �rst is to deal directly with the constrained variables (thisapproach is known as the curved �
 description), and de�ne the Hilbert space asthe space of operators that are consistent with the pure spinor constraint [5]. Tobe consistent with the constraint, the conjugate !� has to appear in combinationsinvariant under the \gauge transformations" ��!� = �m(
m�)� generated by theconstraint �
m�. The other is to try to remove the constraint by introducing BRSTghosts. The constraint is then expressed e�ectively as the cohomology condition ofa BRST operator D [8] �.
In order to properly understand the Hilbert space of the pure spinors variables,in a recent work [10], we have considered models with a single irreducible quadraticconstraint. It has been argued that the curved �
 and BRST formalisms provide
�D should not to be confused with the \physical" BRST operator Q = R ��d� of the pure spinor

formalism. (Because a possible use of D is to combine it with Q to construct a single nilpotent
operator Q̂ = D +Q+ � � �, we called D a \mini-BRST" operator in [9].)
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equivalent classical descriptions of these models, although, quantum mechanically,the Hilbert spaces of the two descriptions di�er slightly due to the di�erent normalordering prescriptions used. Nevertheless, since our partition function is de�ned sothat it is insensitive to quantum corrections, the two descriptions lead to the samepartition function even quantum mechanically. We shall use the partition functionas a guide to study the structure of the Hilbert space.
One of the virtues for studying these simpler models is that the BRST descrip-tion is very e�ective, allowing a close study of its cohomology. In particular, thefull partition function of the BRST cohomology can be easily computed and it man-ifestly possesses two important symmetries that we shall call \�eld-anti�eld" and\�-conjugation" symmetries. The former implies that, after coupling to \matter"variables (p; �), the cohomology of the \physical" BRST operator Q = R �p comesin �eld-anti�eld pairs.
Coming back to the case of pure spinor variables; for states depending only on thezero modes of ��, the Hilbert space of states in the pure spinor formalism is easilyunderstood and is given by arbitrary polynomials in ��. Since �� is constrainedto satisfy �
m� = 0, these polynomials are parameterized by constants f((�1:::�n))for n = 0 to 1 which are symmetric in their spinor indices and which satisfy
�1�2m f((�1:::�n)) = 0.
As shown in [11, 12], this Hilbert space for the zero modes is described by thepartition function

Z0(t) = (1� t)�16(1� 10t2 + 16t3 � 16t5 + 10t6 � t8)
where �� carries +1 t-charge. Expanding Z0(t) in powers of t, one reproduces theindependent number of f((�1:::�n))'s at order tn. After multiplying by (1� t)16 whichcomes from the partition function for the 16 �� zero modes, (1� t)16Z0(t) describesthe x-independent degrees of freedom for the massless sector of the open superstring.For example, 1 describes the Maxwell ghost, �10t2 describes the photon, +16t3describes the photino, and the remaining terms describe the anti�elds for thesestates. Note that Z0(t) satis�es the identity Z0(1=t) = �t8Z0(t) which implies asymmetry between the �elds and anti�elds.

We shall perform a similar analysis for the non-zero modes of ��, as well asthe modes of its conjugate momentum w�. The partition function for the lowestnon-zero mode was already computed in [12], and we shall extend this computationfor higher massive modes. The computation will be performed in two ways, �rstlyusing the ghosts-for-ghosts method (up to the twelfth mass-level) [13] and secondlyusing the �xed point method (up to the �fth mass-level) [9, 11].
3



Due to the fact that the pure spinor constraint is in�nitely reducible, an in�nitychain of ghosts is required. Using the multiplicities Nk of these ghosts, we havewritten a formal expression for the partition function of pure spinors [9, 13]
Z(q; t) = 1Y

k=1 [(1� tk)�Nk
1Y
h=1(1� qhtk)�Nk(1� qht�k)�Nk ] :

Although it may seem di�cult to extract useful information from this formal ex-pression, by appealing to some regularization procedure in order to guarantee theconvergence of the in�nite product over k, character formulas Zh(t) were calculatedup to the twelfth mass-level (h = 12). A suitable regularization procedure whichrespects the two important symmetries of the partition function has been used in[13]. This prescription for computing higher mass-level character formulas is basedon Pad�e approximants. It was shown by explicit computation that the �rsts �vecharacter formulas obtained by means of Pad�e approximants are in agreement withthe ones found by means of �xed point technique [9].
Nevertheless using the ghosts-for-ghosts method (Pad�e approximants) the parti-tion function has been computed without the spin dependence on the states. Spindependence is crucial if we want to prove that the full partition function (includ-ing the contribution of the worldsheet matter sector) correctly reproduces the lightcone open superstring spectrum [9]. Therefore, it would be interesting to know thecharacter formula with the spin dependence in the ghosts-for-ghosts scheme and im-plement another prescription like Pad�e approximants which takes into account thespin dependence on the states.
After including the contribution from the matter variables (xm; ��; p�), we showthat the partition function, up to the �fth mass-level, correctly describes the massivelevels of the open superstring spectrum [9].
In computing the partition function for the non-zero modes of �� and w�, we willdiscover a surprise. Because the constraint �
m� = 0 generates the gauge transfor-mation ��w� = �m(
m�)� for the conjugate momentum, one naively expects thatthe Hilbert space is described by polynomials of �� and w� (and their worldsheetderivatives) which are invariant under this gauge transformation. However, in ad-dition to these ordinary gauge invariant states, we will discover that �eld-anti�eldsymmetry implies that there are additional states starting at the second mass levelwhich contribute to the partition function with a minus sign. These additional statesshould therefore be interpreted as fermions, which is surprising since �� and w� arebosonic variables.
We will argue that these extra fermionic states are related to the b ghost in thepure spinor formalism, and come from functions which are not globally de�ned on
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the space of the pure spinors. Remember that the b ghost satisfying fQ; bg = Tis a composite operator constructed from both the matter variables (xm; ��; p�)and ghost variables (��; w�). This composite operator cannot be globally de�nedon all patches, and in the non-minimal pure spinor formalism, is described by thesum of a zero-form, one-form, two-form and three-form [14]. The three-form in theb ghost is independent of the matter variables (xm; ��; p�), and will be identi�edwith a fermionic scalar in the pure spinor partition function at the second masslevel. At higher mass levels, the extra fermionic states in the pure spinor partitionfunction can be similarly identi�ed with products of this fermionic three-form withpolynomials of �� and w� (and their worldsheet derivatives).
In hindsight, the appearance of the b ghost in the (��; w�) partition function isnot surprising since any covariant description of massive states is expected to includeauxiliary spacetime �elds whose vertex operator involves the b ghost. Nevertheless,the manner in which the b ghost appears in a partition function for bosonic world-sheet variables is quite remarkable and suggests that many important features ofthe b ghost can be learned by studying the pure spinor partition function.
The plan of this thesis is as follows: In chapter 2, we study the partition functionof free bosonic and fermionic conformal �eld theories. These theories are of particularimportance since they are very used in bosonic string as well as in superstringtheories.
In chapter 3, we study the partition function of a simple model de�ned by a singlequadratic constraint. The model is studied using two di�erent approach, namely theintrinsic curved �
 description and the BRST description.
In chapter 4, we review the basics of the pure spinor formalism for the superstringand study in detail the lowest open superstring excitation which describes on-shellsuper-Yang-Mills theory.
In chapter 5, the partition function of gauge invariant polynomials constructedout of (��, w�) and their derivatives are computed by explicitly constructing them atlower Virasoro levels. We point out that the space of gauge invariants is insu�cientif one requires �eld-anti�eld symmetry; in particular, a fermionic state is found tobe missing at level 2, which will be identi�ed as a term in the composite b ghost.
Chapter 6 is devoted to the computation of the partition function includingthe missing states found in the previous chapter. We use two methods for thecomputation, each with its advantages and disadvantages. The �rst method utilizesChesterman's BRST description of the pure spinor system [8] involving ghosts-for-ghosts. A nice feature of this method is that two important symmetries|�eld-anti�eld and \�-conjugation" symmetries|are (formally) manifest. However, since
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this description requires an in�nite tower of ghosts-for-ghosts, the expression for thepartition function is not rigorously de�ned. Nevertheless, we show that there is anunambiguous way to compute the partition function level by level respecting thetwo symmetries.In chapter 7, we use the second method for computing the partition function,namely a �xed point formula, which generalizes the zero mode result of [11]. Theformula includes the spin dependence of the states, and the computation is fairlystraightforward. However, it misses some �nite number of states that must berecovered by imposing the two symmetries given in chapter 6.In chapter 8, we explain the structure of the Hilbert space of the pure spinorsystem using �Cech and Dolbeault descriptions. We give an explanation of the stateswhich does not correspond to the usual gauge invariant polynomials, those missingfermionic states will be identi�ed as elements of the third �Cech cohomology.In chapter 9, we relate the partition function and the superstring spectrum.After including the contribution from the matter variables, we show that a simpletwisting of the charges gives rise to the partition function of lightcone �elds andtheir anti�elds.A summary and further interesting applications are given in chapter 10. Severalappendices are included for convenience. Some group theoretical formulas are col-lected in appendix A, and a list of partition functions can be found in appendix B.Finally in appendix C, we present some details involved in the computations ofhigher level character formulas.
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Chapter 2

Partition functions for bosonic and fermionic
variables

In this chapter, we are going to study the partition function of free bosonic andfermionic conformal �eld theories (CFT). These theories are of particular importancesince they are very used in bosonic string as well as in superstring theories. For thepurposes of this thesis, let us study the partition function of these theories as simplestexamples before going into the problems dealing with constrained CFT models asthe pure spinors case.
2.1 Free bosonic �
 and fermionic bc system
Let us start with the simplest case, namely the free �
 CFT de�ned by commutingvariables � and 
 which have conformal weights (1; 0) and (0; 0) respectively, withaction

S = Z d2z� �@
 : (2.1)
These �elds are holomorphic by the equations of motion,

�@� = �@
 = 0 : (2.2)
The equations of motion and the operator products OPES are derived in the stan-dard way.Because the statistic is bosonic, some signs in operator products are di�erent,

�(x)
(y) � 1x� y ; 
(x)�(y) � � 1x� y : (2.3)
The energy momentum tensor is

T = �@
 ; (2.4)
7



using the OPES (2.3), it is easy to show that the central charge is given by c = 2.The action (2.1) has the following global U(1) symmetry: �
 = +�
 ; �� = ���.The corresponding Noether current is
J = �
 : (2.5)

Therefore the U(1) charge for the �elds � and 
 are given by �1 and +1 respectively.Now let us de�ne and compute the partition function for this system. Ourpartition function is de�ned as the trace
Z(q; t) = TrH[(�1)F qL0tJ0 ]; (2.6)

over the Hilbert spaceH (which will be de�ned soon), where (�1)F = +1 for bosonicand (�1)F = �1 for fermionic states. L0 and J0 are the zero mode of the energymomentum tensor (2.4) and the U(1) current (2.5).As we know by the equation of motion (2.2), all �elds are holomorphic. One canthen expand a �eld f in modes, f(z) = P1k=�1 fk=zk+h, where h is the conformalweight of f . The vacuum state j0i is de�ned so that fk+hj0i = 0, for k � 1. Moreexplicitly, in terms of the modes of the basic �elds � and 
, the vacuum is de�nedsuch that is annihilated by the modes: �k�1j0i = 
kj0i = 0, for k � 1.The states are built by acting on the vacuum with the remaining �eld modes.Instead of working with the modes, for convenience we are going to use local oper-ators, in accord with the state-operator isomorphism. For instance, the state 
kj0icorresponds to the operator @k
. A general state is then a polynomial in the �eldsand their derivatives. The set of these states is that we have denoted by H.As a pedagogical illustration, let us compute the level h = 0, h = 1 and h = 2character formulas and then write down the full partition function.
Weight 0 At the lowest level h = 0, the states are given by

H0 = f
ng ; n � 0 ; (2.7)
therefore the partition function (character) at this level reads

Z0(t) = TrH0 [(�1)F tJ0 ] = 1X
n=0 tn =

11� t : (2.8)
Weight 1 At level h = 1, the states are given by

H1 = f�
n; 
n@
g ; n � 0 ; (2.9)
therefore the partition function at this level is given by

Z1(t) = t�11� t + t1� t =
�t�1 + t�Z0(t) : (2.10)

8



Weight 2 At level h = 2, the states are given by
H2 = f
n�@
; 
n@�; 
n@2
; �2
n; 
n(@
)2g ; n � 0 ; (2.11)

therefore the partition function at this level is given by
Z2(t) = �1 + t�1 + t+ t�2 + t2�Z0(t) : (2.12)

Full expression for the partition function As we can see, the partition func-tion Z(q; t) can be expanded like
Z(q; t) = 1X

h=0Zh(t)qh ; (2.13)
where we have computed explicitly up to level h = 2 the character formulas Zh(t).From the results (2.8), (2.10) and (2.12), we can easily obtain the expression whichreproduces these character formulas

Z(q; t) = 11� t
1Y
h=1

1(1� t�1qh)(1� tqh) : (2.14)
In general if we have a �eld 
 with N components, i.e. 
 = (
1; 
2; � � � ; 
N), the fullpartition function reads

Z(q; t) = 1(1� t)N
1Y
h=1

1(1� t�1qh)N(1� tqh)N : (2.15)
For the case of a free bc CFT de�ned by anticommuting variables b and c whichhave conformal weights (1; 0) and (0; 0) and U(1) t-charge �1 and +1 respectively,the partition function is given by

Z(q; t) = (1� t) 1Y
h=1(1� t�1qh)(1� tqh) : (2.16)

In general if we have a fermionic �eld c with N components, i.e. c = (c1; c2; � � � ; cN),the full partition function reads
Z(q; t) = (1� t)N 1Y

h=1(1� t�1qh)N(1� tqh)N : (2.17)
Let us use the ideas given in this section and study the partition function ofmore interesting models, namely the bosonic string and superstring. We are goingto compute the partition function of these models using the lightcone coordinatessince the lightcone is the quickest route to obtain the physical spectrum. We leftthe covariant computations for chapters 6, 7 and section 9.1.
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2.2 Bosonic string partition function
As it is well known (for instance see reference [15]), the bosonic string action in thelightcone gauge is given by

S = Z d2z 12@X i �@X i ; (2.18)
where only the transverse coordinates X i, i = 1; 2; � � � ; 24 are presented. We canexpand the �elds in modes, for instance

@X i(z) = � ip2
1X

n=�1
�inzn+1 ; �@X i(�z) = � ip2

1X
n=�1

~�in�zn+1 : (2.19)
In this gauge all string excitations are generated by the transverse oscillators �in.Thus, for example, the �rst exited open string state is given by �i�1j0i. A list of the�rsts 3 open string states is given in the following table

Open bosonic string spectrum
Mass States # of degrees
M2 = �1 j0i 1
M2 = 0 �i�1j0i 24
M2 = 1 �i�2j0i, �i�1�j�1j0i 24+300

(2.20)

The mass square of the open string states is given by the eigenvalue of theoperator
M2 = 1X

n=1�i�n�in � 1 = N � 1 ; (2.21)
where N is the level

N = 24X
i=1

1X
n=1nNin : (2.22)

The mass of each state is thus determined in terms of the level of excitation.
The light cone open bosonic string partition function

Zlc(q) = TrHlc [(�1)F qN�1]; (2.23)
can be computed as the trace over the occupation number Nin and it breaks up intoa sum

Zlc(q) = q�1 24Y
i=1

1Y
n=1

1X
Nin=0 q

nNin ; (2.24)
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the various sums are geometric,
1X

N=0 qnN = (1� qn)�1 ; (2.25)
and so we obtain

Zlc(q) = q�1 1Y
n=1(1� qn)�24 : (2.26)

Expanding this lasts expression (2.26) in powers of q we get
Zlc(q) = 1q�1 + 24+ 324q + 3200q2 + � � � ; (2.27)

and therefore the partition function is describing the number of open string physicaldegrees at each mass level as it is shown in table (2.20).
2.3 Superstring partition function
For the superstring case, we are going to use the lightcone version of Green-Schwarz(GS) formalism [16] since this formalism provides us the lightcone spectrum withoutusing any GSO projection �. The action of the GS superstring in the lightcone gaugeis given by

S = Z d2z �12@X i �@X i + �a �@�a� ; (2.28)
where only the transverse coordinates X i, i = 1; 2; � � � ; 8 and �a, a = 1; 2; � � � ; 8 arepresented. Note that the X i variable carries vectorial index while the �a variablecarries quiral spinorial index a of the group SO(8). We can expand the �elds inmodes, for instance

@X i(z) = � ip2
1X

n=�1
�inzn+1 ; �a(z) = 1X

n=�1
�anzn+ 12

: (2.29)
In this gauge all superstring excitations are generated by the transverse oscillators�in and �an. A list of the �rsts 3 open superstring states is given in the followingtable

Open superstring spectrum
Mass States bosonic fermionic
M2 = 0 j0i _a;j 8 8
M2 = 1 �i�1j0i _a;j, �a�1j0i _a;j 128 128
M2 = 2 �i�2j0i _a;j, �i�1�j�1j0i _a;j, �a�2j0i _a;j 1152 1152�a�1�b�1j0i _a;j, �a�1�i�1j0i _a;j

(2.30)

�In the RNS formalism the GSO projection is required in order to achieve spacetime
supersymmetry.
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The mass square of the open superstring states is given by the eigenvalue of theoperator
M2 = 1X

n=1�i�n�in +
1X
n=1n�a�n�an = N ; (2.31)

where N is the level. The mass of each state is thus determined in terms of the levelof excitation.
Due to supersymmetry the light cone open superstring partition function

Zlc(q) = TrHlc [(�1)F qN ] (2.32)
vanishes identically, nevertheless we can compute the trace over the bosonic (orfermionic) sector shown in table (2.30). The trace breaks up into a sum given as aresult

Zlc;bosonic(q) = 8 1Y
n=1

�1 + qn1� qn
�8 : (2.33)

Expanding this lasts expression (2.33) in powers of q we get
Zlc;bosonic(q) = 8+ 128q + 1152q2 + 7680q3 + � � � ; (2.34)

and therefore the partition function is describing the number of superstring statesat each mass level (2.30).The fermionic part of the partition function is given by
Zlc;fermionic(q) = �8 1Y

n=1
�1 + qn1� qn

�8 ; (2.35)
and so the total partition function Zlc;total(q) = Zlc;bosonic(q)+Zlc;fermionic(q) vanishesidentically as it was expected.One aim of this thesis is to derive the lightcone degrees of freedom for the su-perstring states from the covariant partition function computed in the pure spinorformalism. Before going into this formalism, let us study a simple toy model.
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Chapter 3

A simple constrained model

In order to understand the problem of computing the pure spinor partition function,we are going to study, in this chapter, a simple model based on reference [10].
As mentioned in the introduction, the main motivation for this investigation isto understand the proper Hilbert space of the pure spinor superstring by computingits partition function. We begin the study by de�ning and computing the partitionfunction of gauge invariant polynomials in a simple model. Our main �nding will bethat, starting from the �rst mass level, the space of naive gauge invariants lacks theso-called �eld-anti�eld symmetry [9, 10] because some �nite number of fermionicoperators are missing.
On the other hand, in the BRST description of the model, the partition functionof the BRST cohomology is found to satisfy the �eld-anti�eld symmetry. Further-more, the BRST partition function is found to possess another discrete symmetrywhich we call \�-conjugation symmetry". Both �eld-anti�eld and �-conjugationsymmetries re
ect certain dualities of the cohomology, and their existence plays animportant role in the consistency of the pure spinor formalism [9].

3.1 The model
The toy model is based on a pair of bosonic �elds � and ~� and their respectiveconjugate �elds w and ~w, with action

S = Z d2z(w �@�+ ~w �@~�) ; (3.1)
where the �elds �; ~�; w; ~w have conformal weights (0,0), (0,0), (1,0), (1,0) respec-tively, and additionally the �elds � and ~� are constrained to satisfy

�~� = 0: (3.2)
13



The action (3.1) has the following global U(1) symmetry: �� = +��; �~� = +�~� ;�w = ��w; � ~w = �� ~w. The corresponding Noether current is
J = �w + ~� ~w: (3.3)

Therefore the U(1) charge for the �elds �; ~� and w; ~w are given by +1;+1 and�1;�1 respectively. Note that due to the constraint (3.2) the action (3.1) has agauge symmetry
��� = ��~� = 0 ; ��w = �~� ; �� ~w = �� : (3.4)

Now we are going to compute the partition function of this system by listingall possible gauge invariant states, i.e. operators which are compatible with theconstraint (3.2) and the gauge invariance (3.4).
3.2 The partition function
We begin by describing the de�nition of our partition function. The characters ofthe states we are interested in are

� statistics (Grassmanity) measured by (�1)F (F : fermion number operator),
� weight (Virasoro level) measured by L0, and
� t-charge measured by a U(1) charge J0.

By introducing formal variables (q; t) to keep track of the charges, the partitionfunction is de�ned as
Z(q; t) = X

J0;h(�1)
F qhtJ0 ; (3.5)

for states: jF; J0; hi, where (�1)F = +1 for bosonic and (�1)F = �1 for fermionicstates, h is the conformal weight and J0 the respective U(1) charge.We now count the number of gauge invariant polynomials constructed out of �,~�, w, ~w and their derivatives, and compute the partition function (3.5). Similarcounting of gauge invariant polynomials for the present and related models is givenin [17].
Weight 0 At the lowest level h = 0, the states are exhausted by

H0 = f1; �n; ~�ng ; n > 0 ; (3.6)
14



therefore the partition function (character) at this level reads
Z0(t) = 1 + t1� t + t1� t = 1� t2(1� t)2 : (3.7)

Note that the level 0 partition function satis�es the following identity
Z0(t) = �t�agZ0(1=t) : (3.8)

We call this property as �eld-anti�eld symmetry. As explained in [11], the numberag (which in our model is ag = 0) on the exponent is the ghost number anomalyof the system. Since this symmetry plays an important role in our forthcomingdiscussions (as well as in the pure spinor superstring), let us explain the implicationof its existence before going on to the weight 1 partition function.
Field-anti�eld symmetry Suppose one couples the system to free fermionic bcsystems (p; ~p; �; ~�) of weight (1; 1; 0; 0), and extends the de�nition of the t-chargeto the new sector as t(p; ~p; �; ~�) = (�1;�1; 1; 1). By analogy with the pure spinorsuperstring, one also de�nes the \physical" BRST operator as

Q = Z (�p+ ~�~p) : (3.9)
Then the symmetry Z0(t) = �t�agZ0(1=t) implies that all Q-cohomology elementsappear in \spacetime" �eld-anti�eld pairs [18]. Indeed, the total zero-mode partitionfunction reads

Z0(t) = Z�;0(t)Z�;0(t) = 1� t2 ; (3.10)
which is accounted for by a pair of \massless" cohomologies

1 at t0 $ (��) = �~� + ~�� at � t2 : (3.11)
The �eld-anti�eld symmetry implies the existence of a non-degenerate innerproduct that pairs every operator V to its anti�eld VA

(V; VA) = 1 : (3.12)
For the case at hand, the inner product can be de�ned as the overlap

(V;W ) = limz!0h0jz2L0V (1=z)W (z)j0i ; (3.13)
with the condition

h0j(��)j0i = 1 : (3.14)
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It is easy to see that Q-exact states decouples from the inner product. Of course,this construction of the inner product is reminiscent of that of the pure spinorsuperstring [5] where one uses the rule
h0j(�
m�)(�
n�)(�
p�)(�
mnp�)j0i = 1 : (3.15)

We will shortly observe that the space of gauge invariant polynomials at weight1 and higher lacks the �eld-anti�eld symmetry. It might sound harmless but westress the importance of having the �eld-anti�eld symmetry at all mass levels tode�ne the \spacetime amplitude" appropriately. Otherwise, some \massive" vertexoperators in the cohomology of Q = R (�p + ~�~p) would unfavorably decouple fromthe amplitude. In fact, in the pure spinor formulation of superstring, demonstratingthe existence of �eld-anti�eld symmetry for the full cohomology of Q = R ��d� wasan unresolved challenge. This and related issues has been reported in [9].
Weight 1 Having explained the notion of �eld-anti�eld symmetry, let us go backto the construction of gauge invariant polynomials at weight 1. All possible stateswhich are gauge invariant under (3.4) modulo the constraint (3.2) are given by

H1 = f~�n~!; �n!; @�; @~�; �@~�; �n@�; ~�n@~�g ; n > 0 ; (3.16)
therefore the partition function at this level is given by

Z1;poly(t) = 21� t + 2t+ t2 + 2t21� t = 2� t2 � 2t3 + t4(1� t)2 : (3.17)
Note that Z1;poly(t) as de�ned in (3.17) does not posses the �eld-anti�eld sym-metry. However, it is easy to see that

Z1(t) = Z1;poly(t)� t�2 (3.18)
satis�es the symmetry. This suggests that one needs an extra fermionic state witht-charge �2. As we are going to see in the next section, in the BRST cohomology,this extra state corresponds to the b ghost.
3.3 BRST description of the model
For the model with the irreducible constraint (3.2) the conventional BRST formalismprovides a very simple way of describing it, compared to the elaborate language of thecurved �
 formulation [10]. (This is not necessarily the case for in�nitely reducibleconstraints such as the ones for the pure spinors [9].) Here, a fermionic (b; c) ghost
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pair is introduced to impose the constraint e�ectively and the physical states aredescribed as the cohomology of the BRST operator
D = Z b(�~�) : (3.19)

The action in the BRST description is given by
S = Z d2z(w �@�+ ~w �@~�+ b�@c) ; (3.20)

where b and c are the usual Faddeev-Popov ghosts and they have conformal weights(1,0) and (0,0) respectively. Clearly, this action is invariant under the followingghost number symmetry �b = �i�b, �c = i�c, the corresponding Noether current is
Jg = cb : (3.21)

In the BRST framework, basic �elds obey the following free �eld operator prod-uct expansions
~�(x) ~w(y) � � 1x� y ; (3.22)
�(x)w(y) � � 1x� y ; (3.23)
b(x)c(y) � 1x� y : (3.24)

The t-charge current is de�ned as
J = �w + ~� ~w + 2Jg : (3.25)

The charges of the basic operators are
F (!; �) = (0; 0) ; h(!; �) = (1; 0) ; t(!; �) = (�1; 1) ; (3.26)
F (b; c) = (1; 1) ; h(b; c) = (1; 0) ; t(b; c) = (�2; 2) : (3.27)

3.4 BRST cohomology and symmetries of partition function
Since the BRST operatorD carries t-charge 0, the partition function ofD-cohomologycoincides with that of the unconstrained space of (!; �; b; c) in which the cohomol-ogy is computed. This is because the elements not in the cohomology form BRSTdoublets and cancel out due to (�1)F . Therefore, the partition function is simplygiven by [19]

Z(q; t) = 1� t2(1� t)2
1Y
h=1

(1� t2qh)(1� t�2qh)(1� tqh)2(1� t�1qh)2 : (3.28)
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By expanding in q, partition functions (character formulas) at �xed Virasoro levelscan be readily obtained.
The full partition function enjoys the following two symmetries, which turn outto be of fundamental importance [9]. First is the \�eld-anti�eld symmetry" wealready encountered:

Z(q; t) = �t�agZ(q; 1=t) : (3.29)
As explained in section 3.2, this symmetry is important to have a nice inner productafter coupling to the fermionic partners (p; ~p; �; ~�). The other is what we shall call\�-conjugation symmetry"

Z(q; q=t) = �q1t�2Z(q; q=t) : (3.30)
A little computation shows that this symmetry (3.30) relates the states at qmtn andthose at q1+m+nt�2�n.

In the previous paragraph, we found that the partition function of the BRSTcohomology possesses the �eld-anti�eld symmetry while that of the gauge invari-ant polynomials does not. We here explicitly construct the elements of the BRSTcohomology and identify the extra states that are responsible for the discrepancy.
Weight 0: The zero mode contributions to the full partition function (3.28) issimply

Z0(t) = 1� t2(1� t)2 ; (3.31)
and it coincides with the result obtained from counting the number of gauge invariantpolynomials (3.7). Indeed, since functions of the form c�n~�m are never D-closed,and since the functions of the form �n~�m are D-exact, cohomology representativescan be taken as

f1; �n; ~�ng ; n > 0 ; (3.32)
but now with �'s unconstrained. Of course, this is expected from the outset as theBRST construction is designed to realize what we have just described.
Weight 1: From (3.28) one immediately �nds

Z1(t) = �t�2 + 2t�1 + 1� t2 � 2t3 + t4(1� t)2 ; (3.33)
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and it possesses the �eld-anti�eld symmetry unlike the level 1 partition functionZ1;poly(t) of the gauge invariant polynomials. As expected, Z1(t) contains an extrafermionic state with respect to Z1;poly(t):
Z1(t)� Z1;poly(t) = �t�2 : (3.34)

Clearly, the cohomology element responsible for �t�2 is the BRST b ghost carryingcharges �q1t�2. For completeness, let us write the D-cohomology representatives atlevel h = 1
fb; @�; @~�; �n�1(�w + bc); ~�n�1(~� ~w + bc); �@~�; �n@�; ~�n@~�g ; n > 0 : (3.35)
Let us make a �nal remark. As it was noted in references [9, 11, 13], the ghost-for-ghost multiplicities Nk in the BRST description for the constrained model canbe obtained by writing the level zero character (3.7) as

Z0(t) = 1Y
k=1(1� tk)�Nk : (3.36)

The �elds at t-charge k will have jNkj components, and will be bosons for Nk > 0and fermions for Nk < 0. For our model for instance we get, by comparing (3.7)with (3.36), N1 = 2, N2 = �1 and Nk = 0 for k > 2.In chapter 5, we are going to use the ideas given in this chapter to compute thepartition function of pure spinors. The U(1) charge adopted for the pure spinor�elds �� and its conjugate w� will be +1 and �1 respectively. Before going into thedetails of chapter 5, let us review some aspects of the pure spinor formalism for thesuperstring.
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Chapter 4

Pure spinor formalism for the superstring

Since the problem of covariant quantization of the GS superstring was discovered,many attempts to solve this problem were done. For instance, one tentative wasdeveloped in the work of Siegel [20], he suggested the following action for the opensuperstring
Z d2z(12@xm �@xm + p� �@��) ; (4.1)

where the spinorial index � goes from 1 to 16, and the conjugate momentum of ��,p�, is treated as an independent variable. Furthermore, Siegel added an appropriatedset of �rst class constraints. Inside this set of constraints, it must be the Virasoroconstraint, T = �12�m�m � d�@�� and the kappa symmetry generators of the GSformalism, given by G� = �m(
md)�, where
�m = @xm + 12�
m@�: (4.2)

In this approach, the variable
d� = p� � 12

�@xm + 14�
m@�
�(
m�)� (4.3)

does not need to be constrained to be zero. Siegel's approach was applied withsuccess to the superparticle [21]; but for the case of the superstring a set of �rst classconstraints which closes the algebra at the quantum level and which reproduces thecorrect physical superstring spectrum was never found.
In the year 2000, a new formalism was proposed by Prof. Nathan Berkovits forquantizing the superstring in a manifestly ten-dimensional super-Poincar�e covariantmanner [5]. This formalism has been used for computing covariant multiloop ampli-tudes [6], leading to new insights into perturbative �niteness of superstring theory[22]. This formalism is going to be the topic of the next sections.
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4.1 The action
Like the GS description of the superstring, the starting point of the pure spinorformalism is the employ of the superspace in D = 10 as the target space for the su-perstring. Nevertheless new ingredients are added such that covariant quantizationis achieved.The basic variables are the superspace coordinates (xm; ��). As it is known one ofthe main problems in the GS formalism is the de�nition of the conjugate momentumfor the �� variables, which gives constraints related to the kappa symmetry. In thepure spinor formalism the conjugate momentum p� is directly introduced in theaction

S = Z d2z�12@xm �@xm + p� �@�� + w� �@���: (4.4)
The ghost �� is a pure spinor, i.e., ��
m���� = 0, and w� is its conjugate momentum.The pure spinor constraint implies that the action is invariant under the followingtransformation

�w� = �m(
m�)� ; (4.5)
for any �m. Therefore we can choose this freedom to eliminate 5 components of theconjugate momentum w�.De�ning xm, ��, �� as �elds with conformal weight zero and p�, w� with confor-mal weight one, the action (4.4) turn to be conformal invariant. The fundamentalOPES are easy to compute and they are given by

xm(w)xn(z) � ��mn ln jw � zj ; (4.6)
p�(w)��(z) � ���w � z ;
d�(w)d�(z) � � 1w � z 
m���m(z) ;
d�(w)�m(z) � 1w � z 
m��@��(z):

where �m and d� are de�ned in (4.2) and (4.3).The energy momentum tensor for the matter variables is given by
T = �12@xm@xm � p�@�� ; (4.7)

which has �22 central charge, the contribution for the central charge coming fromthe ghosts variables is +22. To see this, it is necessary to break Lorentz SO(10)(after perform the Wick rotation) invariance to the subgroup SU(5)� U(1) [5].
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The pure spinor constraint can be solved and we can express �� in terms of the11 independent degrees of freedom by decomposing the 16 components of �� intoSU(5)� U(1) representations as
�+ = 
; �[ab] = 
u[ab]; �[abcd] = �18
u[abucd]; (4.8)

where 
 is an SU(5) scalar, and u[ab] is an SU(5) antisymmetric two-form. Usingthis decomposition, and by bosonizing the (�; 
) �elds as (� = @�e��; 
 = �e�), wecan write the formulas for the currents [11]
J = �52@�� 32��; (4.9)

Nab = vab;
N ba = �uacvbc + �ba(54�� + 34@�);
Nab = 3@uab + uacubdvcd + uab(52�� + 32@�);
T = 12vab@uab � 12@�@�� �@� + 12@(��)� 4@(@�+ ��);

where T is the stress-energy tensor for the ghosts �elds and the worldsheet �eldssatisfy the OPES
�(y)�(z) � (y � z)�1; �(y)�(z) � � log(y � z); vabucd � �[ac �b]d (y � z)�1: (4.10)
Using these parameterizations of a pure spinor, the OPES of the currents in (4.9)can be computed to be

Nmn(y)��(z) � 12 1y � z (
mn�)�; J(y)��(z) � 1y � z��; (4.11)
Nkl(y)Nmn(z) � � 3(y � z)2 (�n[k�l]m) + 1y � z (�m[lNk]n � �n[lNk]m);

J(y)J(z) � � 4(y � z)2 ; J(y)Nmn(z) � 0;
Nmn(y)T (z) � 1(y � z)2Nmn(z); J(y)T (z) � � 8(y � z)3 + 1(y � z)2J(z);

T (y)T (z) � 12 22(y � z)4 + 2(y � z)2T (z) + 1y � z@T:
Therefore, as we can see, the conformal central charge is +22, the ghost-numberanomaly is �8, the Lorentz central charge is �3, and the ghost-number centralcharge is �4.
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4.2 Physical states
In the pure spinor formalism, the superstring physical states are identi�ed withstates having ghost number one � in the cohomoly of the BRST operator

Q = I dz ��d� : (4.12)
Using the OPES (4.6), it is easy to show that this BRST Q operator is nilpotentthanks to the pure spinor constraint �
m� = 0.

The reader may have a question related to the de�nition of the physical states,why are the physical states de�ned to have ghost number one? To answer thisquestion, let us write the most general vertex operator at the massless level
	(x; �; �) = C + ��A� + �
mnpqr�A�mnpqr + �����
C���
 + � � � ; (4.13)

where C(x; �), A�(x; �), A�mnpqr(x; �) and C���
(x; �) are super�elds the � � � includessuper�elds with powers greater than three �'s. As we are going to see in moredetail, in section 4.3, the super�eld C(x; �) has ghost number zero and containsthe spacetime ghost, the super�eld A�(x; �) which has ghost number one containsthe super Yang-Mills �elds, the super�eld A�mnpqr(x; �) has ghost number two andcontains the super Yang-Mills anti�elds, �nally the super�eld C���
(x; �) which hasghost number three contains the spacetime antighost. It is possible to show that thesuper�elds with ghost number greater than three will have trivial cohomology [23].And therefore, it is consistent to take as physical states those states having ghostnumber one.
The pure spinor condition implies that the conjugate momentum of ��, w�, canappear in combinations which are invariant under the transformation (4.5)

J = !��� ; Nmn = 12!
mn� ;
where Nmn and J are de�ned in terms of the U(5) �elds as in the previous section.The open superstring vertex operators are constructed as an arbitrary combinationof the �elds [xm; ��; d�; ��; Nmn; J ], with ghost number one and conformal weighth. In our case h is related with the level of the state, i.e., (mass)2=h.

In the case where the state has (mass)2=0, i.e., h = 0, the vertex operator isgiven by
U = ��A�(x; �) ; (4.14)

�The ghost number is given by the number of �'s which appears in the vertex operators. For
instance, the vertex operator U = ��A�(x; �) has ghost number one.
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using the physical state conditionQU = 0, �U = Q
 and the OPE d�(y)f(x(z); �(z)) �(y � z)�1D�f(x(z); �(z)), where
D� = @@�� + 12��
m��@m ; (4.15)

we obtain the super Maxwell equation of motion 
��mnpqrD�A� = 0 together with itsgauge invariance �A� = D�
. For massive states, the superspace description is morecomplicated [24], however, it has been proven that the cohomology of Q at ghost-number one correctly describes the open superstring spectrum [25]. One aim of thisthesis is to obtain the open superstring spectrum from the pure spinor superstringpartition function, this topic will be studied in the next chapters. Prescriptionsto compute multiloop amplitudes using this pure spinor formalism can be found in[6, 7].
4.3 Massless pure spinor superstring state: �elds and anti-

�elds
We have seen that the lowest open superstring excitation describes on-shell super-Yang-Mills theory. There is a Poincar�e-covariant description of this theory usingan SO(9; 1) vector �eld am(x) and an ��(x) SO(9; 1) spinor �eld which satisfy theequations of motion

@mfmn = 0 ; 
m��@m�� = 0 ; (4.16)
and gauge invariance

�am = @ms ; ��� = 0 ; �fmn = 0 : (4.17)
where fmn is the Yang-Mills �eld strength. However, there is also a super-Poincar�ecovariant description using an SO(9; 1) spinor wavefunction A�(x; �) de�ned in tendimension superspace. As it will be explained below, on-shell super-Yang-Millstheory can be described by a spinor super�eld A�(x; �) which satis�es the superspaceequation of motion


��mnpqrD�A� = 0 ; (4.18)
for any �ve-form direction mnpqr, with the gauge invariance

�A� = D�
 ; (4.19)
where 
(x; �) is any scalar super�eld andD� is the supersymmetric derivative (4.15).
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One can also de�ne �eld strengths constructed from A� by
Bm = 18
��m D�A� ;
W� = 110
��m (D�Bm � @mA�) ;
Fmn = @[mBn] = 18(
mn)��D�W� : (4.20)

Under the gauge transformation of (4.17),
�Bm = @m
 ; �W� = 0 ; �Fmn = 0 : (4.21)

To show that A�(x; �) describes on-shell super-Yang-Mills theory, it will be usefulto �rst note that in ten dimensions any symmetric bispinor f�� can be decomposedin terms of a vector and a �ve-form as f�� = 
m��fm+
mnpqr�� fmnpqr and any antisym-metric bispinor f�� can be decomposed in terms of a three-form as f�� = 
mnp�� fmnp.Since fD�; D�g = 
m��@m, one can check that �A� = D�
 is indeed a gauge invari-ance of (4.18).Using 
(x; �) = s(x) + h�(x)�� + j��(x)����; one can gauge away (A�(x))j�=0and the three-form part of (D�A�(x))j�=0. Furthermore, eq. (4.18) implies that the�ve-form part of (D�A�(x))j�=0 vanishes. So the lowest non-vanishing component ofA�(x; �) in this gauge is the vector component (D
mA(x))j�=0 which will be de�nedas 8am(x). Continuing this type of argument to higher order in ��, one �nds thatthere exists a gauge choice such that
A�(x; �) = 12(
m�)�am(x) + 112(�
mnp�)(
mnp)����(x) + � � � ; (4.22)

where am(x) and ��(x) are SO(9; 1) vector and spinor �elds satisfying (4.16) andwhere the component �elds in � � � are functions of spacetime derivatives of am(x) and��(x). Furthermore, this gauge choice leaves the residual gauge transformations of(4.17) where s(x) = (
(x))j�=0. Also, one can check that the � = 0 components ofthe super�elds Bm, W� and Fmn of (4.20) are am, �� and fmn, respectively. So theequations of motion and gauge invariances of (4.18) and (4.19) correctly describeon-shell super-Yang-Mills theory.Now one would like to obtain this super-Poincar�e covariant description of super-Yang-Mills theory by quantizing the open superstring. This covariant descriptioncan be done by using a BRST-like operator out of the fermionic constraints d� inthe pure spinor formalism for the superstring.We have already seen that the most general super-Poincar�e covariant wavefunc-tion 	(x; �; �) (at the massless level) that can be constructed from the worldsheetpure spinor variables (xm; ��; ��) was given by (4.13). Since Q	 = ��D�C +
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����D�A� + � � �, Q	 = 0 implies that A�(x; �) satis�es the equation of motion����D�A� = 0. But since ���� is proportional to (�
mnpqr�)
��mnpqr, this impliesthat D
mnpqrA = 0, which is the super-Yang-Mills equation of motion of (4.18).Furthermore, if one de�nes the gauge parameter � = 
 + ��f� + � � �, the gaugetransformation �	 = Q� implies �A� = D�
 which is the super-Yang-Mills gaugetransformation of (4.19).As it is well known, the only states at non-zero momentum in the cohomology ofQ are the on-shell super-Yang-Mills gluon and gluino, am(x) and ��(x), and theiranti�elds, a�m(x) and ���(x). Since in the anti�eld formalism gauge invariances ofthe anti�elds correspond to equations of motion of the �elds and vice versa, oneexpects a�m(x) and ���(x) to satisfy the equation of motion @ma�m = 0 with thegauge invariances
�a�m = @n(@nsm � @msn) ; ����(x) = 
m��@m�� ; (4.23)

where sm and �� are gauge parameters.The �elds am and �� appear in components of A� as in (4.22), and the anti-�elds a�m and ��� appear in components of the ghost-number +2 super�eld A�mnpqrof (4.13). Using Q	 = 0 and �	 = Q�, A�mnpqr satis�es the equation of motion��(�
mnpqr�)D�A�mnpqr = 0 with the gauge invariance �A�mnpqr = 
��mnpqrD�f�. Ex-panding f� and A�mnpqr in components, one learns that A�mnpqr can be gauged to theform
A�mnpqr = (�
[mnp�)(�
qr])����(x) + (�
[mnp�)(�
qr]s�)a�s(x) + � � � ; (4.24)

where ��� and a�s satisfy the equations of motion and residual gauge invariances of(4.23), and � � � involves terms with higher order in �� which depend on derivativesof ��� and a�s.As it is shown in [23], there are also zero momentum states in the cohomologyof Q. In addition to the states described by the zero-momentum gluon, gluino,antigluon, and antigluino, there are also zero-momentum ghost and antighost statesc and c� in the � = 0 component of the ghost-number zero super�eld, C(x; �) =c(x)+� � �, and in the (�)5 component of the ghost-number +3 super�eld, C���
(x; �) =� � �+c�(x)(
m�)�(
n�)�(
p�)
(�
mnp�)+ � � �. So although (4.13) contains super�eldsof arbitrarily high ghost number, only super�elds with ghost-number between zeroand three contain states in the cohomology of Q.The linearized equations of motion and gauge invariances Q	 = 0 and �	 = Q�are easily generalized to the non-linear equations of motion and gauge invariances
Q	+ g		 = 0 ; �	 = Q� + g[	;�] : (4.25)
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For the super�eld A�(x; �), (4.25) implies the super-Yang-Mills equations of motionand gauge transformations of (4.18) and (4.19). Furthermore, the equations ofmotion and gauge transformation of (4.25) can be obtained from the spacetimeaction
S = Z d10x D12	Q	+ 13g			

E ; (4.26)
using the normalization de�nition that

D(�
m�)(�
p�)(�
q�)(�
mpq�)E = 1 : (4.27)
After writing (4.27) in terms of component �elds and integrating out auxiliary �elds,it should be possible to show that (4.26) reduces to the standard Batalin-Vilovisky(BV) action for super-Yang-Mills,

S = Z d10x�14fmnfmn + ��
m��@m�� + a�m@mc� gccc�� : (4.28)
Remember that an essential ingredient of the BV formalism is the doubling ofthe complete set of �elds [26]. To each �eld one associates an anti�eld with oppositestatistics. We have seen that the massless state de�ned as the cohomology of theBRST operator Q contains �eld as well as their respective anti�elds.So far we have analyzed the massless open superstring state which in the purespinor formalism is de�ned as an element in the cohomology of the BRST operatorQ.We have shown that the cohomology at the massless level is describing super-Yang-Mills �elds together with their respective anti�elds. It would be nice, by explicitlycomputing the cohomology of the BRST operator Q, to see if massive states havethis �eld and anti�eld structure. Covariant computation of the cohomology seems tobe hard, nevertheless using the partition function of pure spinors one can argue thatmassive states will appear in �elds and anti�elds with the same physical degrees offreedom.
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Chapter 5

Naive partition function of pure spinors and
missing states

To explain what we have just stated, as in the case of the toy model (see chapter 3),we are going to compute the partition function of globally de�ned gauge invariantoperators by explicitly constructing them at lower Virasoro levels. It turns out that,starting from level h = 2, this space of gauge invariant polynomials by itself lackssome operators for having the �eld-anti�eld symmetry. The missing state turns outto be fermionic and so it cannot be a usual gauge invariant state. Indeed, it isrelated to a term (called b3 [9]) which appears in the expression for the b-ghost usedin multiloop amplitude computations [7].
5.1 De�nition of the partition function
The characters of the states we wish to keep track of are their statistics, weights(Virasoro levels), t-charge (measured by J = !� + p�) and the Lorentz spin. TheLorentz spin of a state can be labeled by �ve integers which we denote by

� = (a1a2a3a4a5) Dynkin basis ; (5.1)
= 12[�1�2�3�4�5] \�ve sign" basis :

Introducing formal variables (q; t; ~�) for each quantum numbers, we de�ne the par-tition function (character) as
Z(q; t; ~�) = Tr(�1)FqL0tJ0e��� (5.2)

= X
h�0Zh(t; ~�)qh :

The trace is taken over various states de�ned in the pure spinor Hilbert space.Characters of the basic operators ! and � are
h(!; �) = (1; 0) ; t(!; �) = (�1; 1) ; (5.3)
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�(!) = e(00010) = e 12 (��1��2��3��4��5) (odd # of � 's) ;
�(�) = e(00001) = e 12 (��1��2��3��4��5) (even # of � 's) :

The relation between the Dynkin basis and the \�ve sign basis" can be found inappendix A.1.Sometimes, it is convenient to ignore the spin characters and concentrate on thedimensions of the Hilbert space
Z(q; t) = Tr(�1)FqL0tJ0 (5.4)

= Ph�0 Zh(t)qh
= Ph�0;nNh;nqhtn :

A list of partition functions at lower levels can be found in appendix B.
5.2 Cohomology via partition function
In chapter 9, we will relate the partition function of pure spinors to that of thecohomology of the physical BRST operator Q = R ��d�. Let us explain the basicidea behind this, which is also useful for the computation of the partition functionitself.Let O be a fermionic nilpotent operator that commutes with L0, J0 and theLorentz charge, let H be the cohomology of O, and let F be the Hilbert space inwhich the cohomology of O is computed. Then it can be shown that the traces overH and F coincide:

TrH(�1)FqL0tJ0e��� = TrF(�1)FqL0tJ0e��� : (5.5)
To show this, �rst split H and F to even and odd parts:

H = He �Ho ; F = Fe �Fo : (5.6)
(In our case, fermion numbers will be carried by �'s and the fermionic BRST ghosts.)Then, since

Fe = Ze + Fe=Ze = (He + Be) + Bo ; (5.7)
(Z = KerO ; B = ImO) ;

and similar for e$ o, the trace over Be and Bo do not contribute to the right-handside of (5.5) due to the factor (�1)F .Thus, although we de�ned the partition function as the trace over the cohomol-ogy of some nilpotent operator O, it could have been the trace over the space in
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which the cohomology is computed. Below, we use the formula (5.5) freely whencomputing the partition functions.
We will also use the formula (5.5) in chapter 9 when we relate the partitionfunction of pure spinors to the cohomology of the physical BRST operator Q =R ��d�. Although Q does not commute with J0, we will argue that one can twistthe t-charge using the Lorentz current so that the twisted charge 0 piece of Q hasthe same cohomology as Q (except for the on-shell condition L0 = 0). Then thecohomology of Q can be read o� from the twisted partition function. It will be shownin chapter 9 that the cohomology thus obtained precisely reproduces the lightconespectrum of the superstring.

5.3 Counting of gauge invariant polynomials and the miss-
ing states

The states we construct are polynomials of !, � and their derivatives, and areinvariant under the \gauge transformation"
��!� = �m(
m�)� : (5.8)

In the language of curved �
 theory these correspond to globally de�ned operators.Basic invariants with a single ! are the U(1) current, Lorentz currents, and theenergy-momentum tensor for the pure spinor sector
J = !� ; Npq = 12!
pq� ; T = !@� : (5.9)

Of course, arbitrary products of these operators are again gauge invariant. Startingfrom level 2, there will be certain gauge invariant polynomials with negative J0charge meaning that the number of !'s is strictly larger than that of �'s. These,however, are perfectly normal gauge invariant operators and should not be confusedwith the \missing states" alluded to at the beginning of this chapter.
The true missing states, which �rst appear at level 2, are fermionic and arecrucial for reproducing the massive spectrum of the superstring. The purpose ofthis section is to show that the Hilbert space of \naive" gauge invariants lacks �eld-anti�eld symmetry and hence is not the appropriate Hilbert space in the pure spinorformalism. Descriptions of gauge invariants at levels 0 and 1 can also be found inreferences [11][12].
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5.3.1 Level 0 gauge invariants
At the lowest level, the Hilbert space is spanned by non-vanishing polynomials of�. Due to the pure spinor constraint, �'s can only appear in the \pure spinorrepresentations"

�((�1��2 � � ���n)) = (0000n)tn ; (n � 0) : (5.10)
Here, we also indicated the t-charge of the state, and the symbol ((�1�2 � � ��n))signi�es the \spinorial 
-traceless condition", which means that the expression iszero when any two indices �i�j are contracted using 
m�i�j . Since the pure spinorrepresentations have dimensions

dim(0000n) = (n+ 7)(n+ 6)(n+ 5)2(n+ 4)2(n+ 3)2(n+ 2)(n+ 1)7 � 6 � 52 � 42 � 32 � 2 ; (5.11)
the level 0 partition function is easily found to be [11]

Z0(t) = 1� 10t2 + 16t3 � 16t5 + 10t6 � t8(1� t)16 = (1 + t)(1 + 4t+ t2)(1� t)11 : (5.12)
5.3.2 Field-anti�eld symmetry
Before proceeding to the next level, let us explain an important symmetry possessedby the zero-mode partition function. Looking at (5.12), one immediately notices thatZ0(t) has the following symmetry:

Z0(t) = �t�8Z0(1=t) : (5.13)
As we shall explain shortly, this symmetry is related to �eld-anti�eld symmetry inthe pure spinor superstring. The symmetry is important for having a non-degenerateinner product on the physical states and the value �8 is related to the ghost numberanomaly of the pure spinor system [11].In order to explain how the �eld-anti�eld symmetry is related to the inner prod-uct structure of pure spinor superstring, let us compute the total weight 0 partitionfunction for the pure spinor superstring, by including the contribution from ��. As-signing t-charge 1 to ��, the partition function for �� is easily computed and reads

Z�;0(t) = Tr�(�1)FtJ0 = (1� t)16 : (5.14)
Hence, the total weight 0 partition function is

Z0(t) = Z�;0(t)Z�;0(t) (5.15)
= 1� 10t2 + 16t3 � 16t5 + 10t6 � t8 :

31



Now Z0(t) is nothing but the partition function for the cohomology of Q0 = R ��p�carrying t-charge zero. For the massless sector, the cohomology of Q0 coincides withthe zero-momentum cohomology of Q = R ��d�. The cohomology representativescan be explicitly identi�ed as follows:
t0 : 1 ; (5.16)

�10t2 : (�
m�) ;
16t3 : (�
m�)(
m�)� ;

�16t5 : (�
p�)(�
q�)(
pq�)� ;
10t6 : (�
p�)(�
q�)(�
mpq�) ;
�t8 : (�
m�)(�
p�)(�
q�)(�
mpq�) :

It is then easy to see that an appropriate inner product (V;W ) can be de�ned onthe cohomology using the zero-mode prescription
h(�
m�)(�
p�)(�
q�)(�
mpq�)i = 1 : (5.17)

Every cohomology element V has its conjugate (anti�eld) VA such that
(V; VA) = hV yVAi = 1 ; (5.18)

where V y denotes the BPZ conjugate of V [27]. Since �� has t-charge anomaly �8while �� has 16, the rule (5.17) precisely saturates the anomaly. It is analogousto the rule for the bosonic string, hc@c@2ci = 1, and can be derived from func-tional integration methods after including an appropriate BRST-invariant measurefactor [6].
Below, we shall argue that the partition function of pure spinors has the �eld-anti�eld symmetry (5.13) at each Virasoro level, and therefore all physical states inthe pure spinor superstring appear in �eld-anti�eld pairs.

5.3.3 Level 1 gauge invariants
The weight 1 can be saturated either by one ! or one @�, and we wish to count thestates that do not vanish due to the pure spinor constraints

�
m� = 0 ; @(�
m�) = 2�
m@� = 0 : (5.19)
For the states with !, one must also require invariance under the gauge transforma-tion ��!� = �m(
m�)�. For the level 1 operators, the latter condition implies that
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! must appear in the form of the gauge invariant currents J and Nmp. Hence, allthe possible states with a single ! are (n � 0)
!��((���1 � � ���n)) = (0000n)tn ; (5.20)

!�(
mp)���((���1 � � ���n)) = (0100n)tn :
The states involving @� are described by (n � 0)

@�((���1 � � ���n)) = (0000; n+ 1)tn+1 ; (5.21)
@��
mpq�� �((���1 � � ���n)) = (0010n)tn+2 :

Note that while �
m@� = 0 due to the pure spinor constraint, the 3-form �
mpq@�is non-vanishing.
Adding up all four contributions, one �nds [12]

Z1(t) = 46� 144t+ 116t2 + 16t3 � 16t5 � 116t6 + 144t7 � 46t8(1� t)16 (5.22)
= 2(1 + t)(23 + 20t+ 23t2)(1� t)11 : (5.23)

This satis�es the same �eld-anti�eld symmetry as Z0(t):
Z1(t) = �t�8Z1(1=t) : (5.24)

5.3.4 Level 2 gauge invariants and a missing state
Explicit constructions of the gauge invariant polynomials at level 2 can be obtainedusing similar methods. But at this level we encounter several new features. Mostimportantly, we will �nd that the space of gauge invariant polynomials does notposses the �eld-anti�eld symmetry. This implies the space has to be augmentedby some �nite number of terms. We shall explain the symmetries of the partitionfunction in chapter 6. For now, however, let us focus on the space of gauge invariantpolynomials and enumerate them.

First of all, there are polynomials with two !'s. One might expect that these!'s only appear in the form of Nmp or J , but there is in fact a gauge invariantpolynomial with negative t-charge
f� = 3J!� +Nmp(
mp!)� : (5.25)

Appearance of f� is interesting, but we stress that it is a perfectly normal gaugeinvariant polynomial and has nothing to do with the \missing states". Of course,
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f� multiplied by some function of � is again gauge invariant, but this carries non-negative t-charge and can be expressed in terms of operators constructed from Nmp
and J .The states with two N 's, two J 's, and one N and one J are (n � 0)

N[[mpNqr]]�(n) = (
[[mp!)�1(
qr]]!)�2�((�1��2��1 � � ���n)) = (0200n)tn ; (5.26)
N[mpNqr]�(n) = (
[mp!)�1(
qr]!)�2�((�1��2��1 � � ���n)) = (0001; n+ 1)tn ;
NmpJ�(n) = (
mp!)�1!�2�((�1��2��1 � � ���n)) = (0100n)tn ;
JJ�(n) = !�1!�2�((�1��2��1 � � ���n)) = (0000n)tn :

Here, we left the 
-traceless conditions implicit, and the indices in [[mp; qr]] aretraceless, block-symmetric, and antisymmetric within each blocks. In fact, the 4-form piece of NN�(n), NJ�(n) and JJ�(n) can be written as (n � 0)
f��(n) = (3!�0!� + (
mp!)�0(
mp!)�)�((�0��1 � � ���n)) (5.27)

= (00010)
 (0000n)tn�1 ;
so one must be careful not to double count.As for the polynomials with a single derivative, the following states are indepen-dent (n � 0):

@Nmp�(n) = @(!�0
mp�0�1�((�1)��1 � � ���n)) = (0100n)tn ; (5.28)
@J�(n) = @(!�1�((�1)��1 � � ���n)) = (0000n)tn ;

Nmp@��(n) = ((!
mp)�1@�((�0��1��1 � � ���n)) + (
 � traces))
+(!
[[mp)�0(@�
qrt]])�1�((�0��1��1 � � ���n))= ((0100; n+ 1) + (1001n) + (0000; n+ 1))tn+1 + (0110n)tn+2 ;

J@��(n) = !�1@�((�0��1��1 � � ���n)) + !�0(@�
mpq)�1�((�0��1��1 � � ���n))= (0000; n+ 1)tn+1 + (0010n)tn+2 ;
T = !�@�� = (00000)t0 :

Note that T�(n+1) and !�1@�((�0��1��1 � � ���n)) are not independent.Finally, there are two types of polynomials with two derivatives, @2��(n) and(@�)2�(n), and some of them are related by the level 2 pure spinor condition
�
m@2�+ @�
m@� = 0 : (5.29)

The independent states are (n � 0)
@2���((�1 � � ���n)) = (00001)
 (0000n)tn+1 ; (5.30)

@�((�1@��2��1 � � ���n)) = (0000; n+ 2)tn+2 ;
(@�
mpq)�1@�((���1��2 � � ���n+1)) = (0010; n+ 1)tn+3 ;

(@�
[[mpq)�1(@�
rst]])�2�((�1��2 � � ���n+2)) = (0020n)tn+4 :
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Adding up all the contributions, (5.25), (5.26), (5.28) and (5.30), one �nds
Z2;poly(t) = 1(1� t)16

n16t�1 + 817� 3840t+ 7794t2 � 10848t3 + 12870t4 � 12032t5
+8222t6 � 4896t7 + 2823t8 � 1136t9 + 240t10 � 32t11 + 2t12o :

(5.31)
The missing state As already mentioned, Z2;poly we just computed does notposses the �eld-anti�eld symmetry. However, one �nds that
Z2(t) = Z2;poly(t)� t�4

= 1(1� t)16
n�t�4 + 16t�3 � 120t�2 + 576t�1 � 1003 + 528t� 214t2 + 592t3

�592t5 + 214t6 � 528t7 + 1003t8 � 576t9 + 120t10 � 16t11 + t12o
(5.32)

does have the desired symmetry
Z2(t) = �t�8Z2(1=t) : (5.33)

Therefore, we expect to have an extra fermionic singlet with t-charge �4 at level2. Because it is fermionic, it cannot be a usual gauge invariant state. Indeed, it isrelated to a term (called b3 [9]) which appears in the expression for the b-ghost usedin multiloop amplitude computations [7].Remember that the b ghost satisfying fQ; bg = T is a composite operator con-structed from both the matter variables (xm; ��; p�) and ghost variables (��; w�).This composite operator cannot be globally de�ned on all patches (see chapter 8),and in the non-minimal pure spinor formalism, is described by the sum of a zero-form, one-form, two-form and three-form [14]. The three-form in the b ghost isindependent of the matter variables (xm; ��; p�)
b3 = (r
���r)(�
���r)N��N��

512(��)4 : (5.34)
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Chapter 6

Partition function of pure spinors and its
symmetries

In this and in the next chapter, we are going to present two independent methods forcomputing the partition function of pure spinors. The �rst method utilizes Chester-man's ghost-for-ghost description of pure spinors [8], while the second method usesa �xed point formula extending the zero mode result of [11]. Neither method givesthe complete partition function in closed form, but the partition functions can becomputed level by level unambiguously once one imposes the requirements of �eld-anti�eld and \�-conjugation" symmetries.
We present the ghost-for-ghost method �rst because the two symmetries of thepartition function are (formally) manifest in this formalism. However, since theghost-for-ghost description of the pure spinor requires an in�nite tower of ghosts-for-ghosts, the expression for the partition function is ill-de�ned and one has toinvoke an analytic continuation in order to maintain the two symmetries. Also,using this method, it is di�cult to compute the partition function keeping the spindependence of the states.

6.1 Ghost-for-ghost description of pure spinors
In this section, we analyze the (in�nite) reducibility conditions for the pure spinorconstraint using the BRST formalism. The resulting BRST operator D was �rstintroduced by Chesterman [8]. As already mentioned, we sometimes refer to Das the mini-BRST operator to avoid confusion with the physical BRST operatorQ = R ��d�.Chesterman's ghost-for-ghost construction is designed so that it reproduces thespace of gauge invariant functions of the constrained system. Indeed, the partitionfunctions of D-cohomology in weight 0 and 1 sectors precisely describe the numberof gauge invariant objects described in section 5.3. However, starting at weight 2,
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we �nd extra cohomology elements which do not correspond to the naive gaugeinvariants. We shall claim that those extra states are as important part of theHilbert space of the pure spinor system as the naive gauge invariants.Let us present the prescription to �nd the ghosts in order to describe the purespinor constraint �
m� = 0. Following the usual strategy of the ghost-for-ghostconstruction, we introduce a fermionic ghost cm to `kill' the pure spinor part of ��and de�ne the D-action
D = Z �
m� bm $ Dcm = �
m� ; (6.1)

where bm is the conjugate �eld of cm. Then, a function f(�) proportional to �
m� isD-exact and does not contribute to the D-cohomology. However, because the purespinor constraint is reducible, this is not the end of the story, using the identity
(�
m�)(
m�)� = 0 ; (6.2)

one can construct a D-closed state
cm(
m�)� ; (6.3)

which must be killed by introducing another generation of ghost. For the caseat hand, we introduce a bosonic ghost �� and de�ne D�� = cm(
m�)�. So thatcm(
m�)� becomes trivial, and the operator D becomes
D = Z ��
m� bm + cm(�
m�)� ; (6.4)

where �� is the conjugate �eld of ��. Now we repeat the above argument, there is aD-closed state of (6.4), and it is given by cmcn+ 12�
mn�, again we introduce a newghost Cmn and de�ne DCmn = cmcn + 12�
mn�. We can continue this path, gettingan in�nite set of unconstrained �elds: ��, cm, ��, Cmn, ::: with their respectiveconjugate �elds: w�, bm, ��, Bmn, ::. with free action
S = Z dz(w� �@�� + bm �@cm + �� �@�� +Bmn �@Cmn + :::) ; (6.5)

and mini-BRST operator D given by [9]
D = Z ��
m� bm + cm(�
m�) + 12Bmn(cmcn + 12�
mn�) + � � � � : (6.6)

To compute the partition function, we need to assign t-charges to the �elds. Inorder that D carries zero t-charge, we can easily see that the values of the t-chargesfor the �elds: ��, cm, ��, Cmn, ::: are 1; 2; 3; 4; � � �, and for their conjugate �eldsw�; bm; ��; Bmn; � � � are �1;�2;�3;�4; ::: respectively. Furthermore, note that, the
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multiplicities of the ghosts ��, cm, ��, Cmn, ::: are 16, �10, 16, �45, ::: respectively,where the sign in from of each numbers tell us whether the ghost is fermionic (�)or bosonic (+).The multiplicities Nk of the ghosts can be also obtained by writing the level zerocharacter (5.12) as [9, 11]
Z0(t) = 1Y

k=1(1� tk)�Nk : (6.7)
The �elds at t-charge k will have jNkj components, and will be bosons for Nk > 0and fermions for Nk < 0. The multiplicities Nk contain the information about theVirasoro central charge, as well as the ghost current algebra:

12cvir =
1X
k=1Nk; aghost = � 1X

k=1 kNk; cghost = � 1X
k=1 k2Nk: (6.8)

We can easily deduce from (5.12) and (6.7):
N1 = 16; N2 = �10; N3 = 16; N4 = �45; N5 = 144; N6 = �456; : : : (6.9)
For the computations to be done in the appendix C, we will need to know thevalue of the moments of the Nk's, i.e. we want: P1k=1 ks+1Nk. This was analyzed in[11]. The moments of (6.9) are given by

1X
k=1 ks+1Nk = 12� 2s+1 � 1�(�s)

1X
k=1 ks((�2�

p3)k + (�2 +p3)k) (6.10)
= 12� 2s+1 � Li�s(�2�p3) + Li�s(�2 +p3)�(�s) ;

where Lis(z) is the so-called polylogarithm (also known as de Jonqui�ere's function),it is a special function de�ned by the sum
Lis(z) = 1X

k=1
zkks :

Another way to get P1k=1 ks+1Nk is by considering the general expression of theform we analyzed in (5.12) and (6.7):
1Y
k=1(1� tk)�Nk = P (t)Q(t) ;

where P and Q are some polynomials. We have
1X
k=1Nk log(1� ekx) = � log P (ex)Q(ex) :
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Since
log(1� ex) = log(�x) + x2 + 1X

g=1
B2g2g(2g)!x2g;

where Bk are Bernoulli numbers, we have:
log(x) 1X

k=1Nk + 1X
k=1 log(�k)Nk + x2

1X
k=1 kNk +

1X
g=1

B2g2g(2g)!x2g
1X
k=1 k2gNk = � log P (ex)Q(ex) : (6.11)

Using (5.12) and expanding the right hand side RHS of (6.11), we obtain thefollowing value for the moments
1X
k=1Nk = 11 ; 1X

k=1 kNk = 8 ; 1X
k=1 k2Nk = 4 ; 1X

k=1 k4Nk = �4 ; (6.12)
1X
k=1 k6Nk = 4 ; 1X

k=1 k8Nk = 683 and 1X
k=1 k10Nk = �396 :

The �rst three moments of Nk's given in (6.12) contain the information about theconformal central charge cvir, the ghost-number anomaly aghost, and the ghost-number central cghost (6.8). As we can check, the value of these current centralcharges are in agreement with the non-covariant calculation (4.11).
6.2 Partition function of the mini-BRST cohomology
In the previous section, we resolved the pure spinor constraint using the in�nitechain of free-�eld ghosts, and constructed the BRST operator D. Since D carrieszero t-charge, the partition function of its cohomology is equal to that of the totalHilbert space of (now unconstrained) pure spinors and the ghosts. Therefore, thefull partition function of pure spinors can be formally written as

Z(q; t) = 1Y
k=1 [(1� tk)�Nk

1Y
h=1(1� qhtk)�Nk(1� qht�k)�Nk ] (6.13)

Z(q; t) = 1Y
k=1 [

1Y
h=0(1� qhtk)�Nk

1Y
h=1(1� qht�k)�Nk ] = 1X

h=0Zh(t)qh:
It may seem di�cult to extract useful information from this formal expression. Infact, on the contrary, once the moments of Nk's are known, the two important sym-metries of the partition function|the �eld-anti�eld symmetry and the �-conjugationsymmetry|can be easily deduced from (6.13). Also, by expanding in q, and employ-ing Pad�e approximants [13], one can obtain from (6.13) a well-de�ned expressionat each Virasoro level. In section 6.4, we shall demonstrate this by computing thepartition function up to level h = 12.
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6.3 Symmetries of the partition function
Elementary calculations show that Z(q; t) de�ned in (6.13) has the following sym-metries:

�eld-anti�eld symmetry: Z(q; t) = Y
k�0
�(�1)Nkt�(k+1)Nk�Z(q; 1=t) (6.14)

= �t�8Z(q; 1=t) ;
�-conjugation symmetry:

Z(q; t) = Y
k�0
�(�1)�kNkq� 12k(k+1)Nktk(k+1)Nk�Z(q; q=t) (6.15)

= �q2t�4Z(q; q=t) :
Imposing those symmetries on the formal expression for Z(q; t) means that one hasmade an analytical continuation

Z(q; t) = Qk�0(�iq�1=12�(q)�1ptk #11(q; tk))�Nk ; (6.16)
where the elliptic functions are de�ned as

#11(q; t) = i 1X
k=�1(�1)kq

12 (k�1=2)2tk�1=2 (6.17)
= �iq1=12�(q)(t1=2 � t�1=2)Yh�1(1� qht)(1� qht�1) ;

�(q) = q1=24 Yh�1(1� qh) : (6.18)
The symmetries above follow from the well-known transformation properties of thetheta function:

#11(q; t) = �#11(q; 1=t) = �q1=2t #11(q; qt) : (6.19)
�-conjugation symmetry and the higher cohomology As in the case of thetoy model (see chapter 3 and [10]), the �-conjugation symmetry suggests that thereare non-trivial fermionic elements in the higher D-cohomology. The element withcharges �q2t�4 generalizing the state b of the toy model is of particular importance.Unfortunately, the construction of this state in the BRST framework is not straight-forward, obstructed by the complexity of the in�nite ghosts-for-ghosts. However, thestate has a particularly nice interpretation in the �Cech/Dolbeault cohomologies. Infact, it turns out to be nothing but the tail term b3 of the composite reparameteri-zation b-ghost [9].
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In the next section, starting from the formal expression of the partition function(6.13), we are going to describe a method for computing higher level characterformulas Zh(t). We refer this method as Pad�e approximants. The method is mainlybased in the knowledge of the zero mode part Z0(t) of the partition function. Fromthis level zero character formula, we extract the ghosts multiplicities Nk, and usingthe moments (Pk ks+1Nk) of those multiplicities, by employing a novel applicationof Pad�e approximants, we are able to compute higher level character formulas Zh(t)of pure spinors (up to the twelfth mass-level h = 12). We �nd that our results arein agreement with the results found in [9] (up to the �fth mass-level h = 5) wherethe �xed point technique was used (the �xed point technique will be discussed inthe next chapter).
6.4 Pad�e approximants
The Pad�e approximation seeks to approximate the behavior of a function by a ratioof two polynomials. This ratio is referred to as the Pad�e approximant. This approx-imation works nicely even for functions containing poles, because the use of rationalfunctions allows them to be well-represented. Recently, the Pad�e approximation hasbeen applied to string �eld theory to analyze the tachyon condensation [28, 29, 30].Let us now consider the general equations of the Pad�e approximation. Givensome function f(t), its [M=N ] Pad�e approximant denoted by f [M=N ](t) is a rationalfunction of the form [31]

f [M=N ](t) = 1 +PMj=1 pjtjPNj=0 qjtj ; (6.20)
where the coe�cients p1, p2, � � �, pM , q0, q1, � � �, qN , are obtained by solving a systemof M +N + 1 algebraic equations

dnf [M=N ]
dtn (a) = f (n)(a) ; n = 0; 1; 2; � � � ; M +N : (6.21)

The equations (6.21) come from equating the coe�cients of (t�a)n (up to the ordern = M + N) in the Taylor expansion of the functions f(t) and f [M=N ](t) aroundsome point t = a (which usually is taken at t = 0).Having sketched brie
y the method to approximate functions by means of ra-tional functions. Next, we are going to use this method for computing higher levelcharacter formulas of pure spinors. Let us start by writting the formal expression(6.13) for the partition function of pure spinors like the following
Z(q; t) = Z0(t)h1 + 1X

h=1 fh(t)qh
i ; (6.22)
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where the level h function fh(t) is de�ned by
fh(t) = 1h! @

h
@qh ~Z(q; t)jq=0 where ~Z(q; t) = 1Y

k=1
1Y
h=1(1� qhtk)�Nk(1� qht�k)�Nk :(6.23)

As we know by a previous work [9], up to the level h = 5, these level h functionsare given by rational functions. Therefore, this result is an indication that theselevel h functions can be computed by means of Pad�e approximants. In fact this isthe case as it is shown in the appendix C, the functions f1(t), f2(t), f3(t), � � � can becalculated using Pad�e approximants. As our main result, we have noted that thesefunctions can be written like the following
fh(t) =

P2h+6i=0 Ci;htith+2(1 + 4t+ t2) ; (6.24)
where the value of the coe�cients Ci;h up to the level h = 12 are given in thefollowing tables
i Ci;0 Ci;1 Ci;2 Ci;3 Ci;4 Ci;5 Ci;6 Ci;70 0 0 �1 �16 �126 �672 �2772 �95041 0 0 12 146 920 3996 13440 372242 1 0 �67 �536 �2411 �7616 �18358 �351843 4 46 248 822 1852 3270 7752 333564 1 40 319 1200 1745 � 5944 �48147 �1796485 0 46 628 4114 17000 48206 91948 877306 0 0 319 3720 21767 82112 210717 3267607 0 0 248 4114 32356 162662 585464 15756908 0 0 �67 1200 21767 162552 778424 27069449 0 0 12 822 17000 162662 977032 421502010 0 0 �1 �536 1745 82112 778424 445462411 0 0 0 146 1852 48206 585464 421502012 0 0 0 �16 �2411 �5944 210717 270694413 0 0 0 0 920 3270 91948 157569014 0 0 0 0 �126 �7616 �48147 32676015 0 0 0 0 0 3996 7752 8773016 0 0 0 0 0 �672 �18358 �17964817 0 0 0 0 0 0 13440 3335618 0 0 0 0 0 0 �2772 �3518419 0 0 0 0 0 0 0 3722420 0 0 0 0 0 0 0 �9504

(6.25)
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i Ci;8 Ci;9 Ci;10 Ci;11 Ci;120 �28314 �75504 �184041 �416416 �8848841 87912 180180 320892 484770 5651362 �55368 �77968 �130185 �342472 �11181173 145512 513680 1480688 3596898 75112444 �467078 �900256 �1189750 �468240 29408535 �112192 �651084 �1221496 23356 83496886 �14878 �1971392 �7447790 �17913424 �306922167 3130008 3975312 77136 �15954844 �510763448 7136292 14067968 18009420 783936 �743533729 13953544 36499868 75237248 115010006 9421607210 18453761 59453552 153557340 318143976 50491117711 21308252 82467920 255938464 651539178 136360396412 18453761 88624848 330202624 999457424 251259883913 13953544 82467920 366326624 1301105402 382527904014 7136292 59453552 330202624 1398947880 480290208115 3130008 36499868 255938464 1301105402 521674342816 �14878 14067968 153557340 999457424 480290208117 �112192 3975312 75237248 651539178 382527904018 �467078 �1971392 18009420 318143976 251259883919 145512 �651084 77136 115010006 136360396420 �55368 �900256 �7447790 783936 50491117721 87912 513680 �1221496 �15954844 9421607222 �28314 �77968 �1189750 �17913424 �7435337223 0 180180 1480688 23356 �5107634424 0 �75504 �130185 �468240 �3069221625 0 0 320892 3596898 834968826 0 0 �184041 �342472 294085327 0 0 0 484770 751124428 0 0 0 �416416 �111811729 0 0 0 0 56513630 0 0 0 0 �884884

(6.26)

We have de�ned the values of the Ci;0 coe�cients such that the level zero functionis de�ned as f0(t) = 1. It is interesting to note that the coe�cients Ci;h satisfy thefollowing identities
Ci;h = C2h+6�i;h ; (6.27)
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h0X
i=0 �h0�iCi;h = � hX

i=0 �h�iCi;h0 ; (6.28)
which can be derived by using the two symmetries of the partition function (6.14),(6.15) and veri�ed by using the coe�cients shown in tables (6.25) and (6.26). Thecoe�cient �m is generated by

Z0(t)1 + 4t+ t2 = 1X
n=0�ntn ; (6.29)

and it is given explicitly by the formula
�n = (1 + n)(2 + n)(3 + n)(4 + n)(5 + n)2(6 + n)(7 + n)(8 + n)(9 + n)27 � 34 � 52 � 7 : (6.30)
The importance of the identity (6.28) is as follows. If we know the coe�cientsCi;0, Ci;1, � � �, Ci;h0 , it is possible to compute explicitly the coe�cients C0;h, C1;h, � � �,Ch0;h. For instance, setting h0 = 0 in equation (6.28), we get

C0;h = � hX
i=0 �h�iCi;0 ; (6.31)

using (6.30) and the value of the coe�cients Ci;0 given in the table (6.25) into theequation (6.31), we obtain
C0;h = (1� h)h(1 + h)2(2 + h)2(3 + h)2(4 + h)(5 + h)26 � 33 � 52 � 7 : (6.32)

By employing the same steps given above, setting h0 = 1 in equation (6.28), wearrive to the following expression for the C1;h coe�cient
C1;h = (h� 1)h(1 + h)2(2 + h)(3 + h)(4 + h)(108 + 10h+ 12h2 � h3)25 � 33 � 5 � 7 : (6.33)
Finally, it would be important to �nd an explicit expression for a general co-e�cient Ci;h (for all h � 0 and i � 0). It is clear that if we know explicitly Ci;h,it should be possible to write a compact expression for the complete pure spinorpartition function

Z(q; t) = 1 + t(1� t)11
1X
h=0

2h+6X
i=0 Ci;hti�h�2qh ; (6.34)

where the factor (1 + t)=(1� t)11, in front of our formula (6.34), comes from substi-tution of equations (5.12) and (6.24) into the equation (6.22).So far, we have computed the partition function without the spin dependenceon the states. Spin dependence is crucial if we want to prove that the full partition
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function (including the contribution of the worldsheet matter sector) correctly re-produces the light cone superstring spectrum [9]. Therefore, it would be interestingto know the character formula with the spin dependence. In the next chapter, weare going to compute the character formulas including the spin dependence at eachVirasoro level by using the so-called �xed point technique.
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Chapter 7

Fixed point formulas for the full partition
function

In the previous chapter, we have presented a formula for the full partition function ofpure spinors using an in�nite tower of ghosts-for-ghosts. The formula is natural andconvenient for motivating the two important symmetries of the partition function,i.e. the �eld-anti�eld symmetry and the �-conjugation symmetry. Also, we were ableto compute the partition function level by level, respecting those two symmetries.However, the computation using (6.13) is not easy if one wishes to keep the spininformation of the states [13]. We here present a very simple �xed point formula forthe partition function including the spin character, extending the zero mode formulagiven in [11]. Although our formulas (7.11) and (7.12) miss some �nite number ofstates at each Virasoro level, these missing states can be recovered by imposing thetwo symmetries (6.14) and (6.15) of the full partition function.
7.1 Review of �xed point formula for level zero partition

function
For convenience, we brie
y review the �xed point formula for the zero mode partitionfunction [11]. (See also [32].)
Geometric preliminary Let us begin by re�ning our description of the space ofpure spinors

X10 = f�� j ��
����� = 0 ; � 6= 0g (7.1)
= (C�-bundle over X10) ; (X10 = SO(10)=U(5)) :

With the removal of the origin understood, X10 can be covered by 16 patches, wherein each patch at least one component of � is non-vanishing. It is convenient to use
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the \�ve sign" notation to describe the components of �. (See appendix A.1 forexplanations.) In this notation, the character of 16 components are
������ = e 12 (��1��2��3��4��5) (even number of �'s) ; (7.2)

and X10 can be covered by 16 patches
U����� = f� 2 X10 j ������ 6= 0g : (7.3)

In a given patch, a pure spinor can be parameterized using eleven parameters (g; uab)which are in the (1;10) of U(5). uab is the \angular" coordinate parameterizing thebase X10 and g is the coordinate for the �ber C�. For example in U+++++,
� = (�+; �ab; �a) = (g; guab; 18g�abcdeubcude) : (7.4)

where
�+ = �+++++ 6= 0 ; (7.5)
�ab = f�+++�� and permutations g ;
�a = f�+���� and permutations g :

The characters of g and uab in this patch are
g = e 12 (�1+�2+�3+�4+�5) ; uab = e�(�a+�b) ; (1 � a < b � 5) : (7.6)

In other patches U�(+++++), the characters will be
g� = e 12 �(�1+�2+�3+�4+�5) = e 12 ��� ; u�;ab = e��(�a+�b) = e�(�a�a+�b�b) ; (7.7)

where � acts by even number of sign changes.
The �xed point formula By constructing the symmetry generators explicitly,one �nds the action of N�� on X10 which commutes with the J-rescaling of theC�-�ber. A generic action of the maximal torus of SO(10) has 16 �xed points whichare nothing but the \origins" (uab = 0) of 16 patches. The spin character of purespinors can then be written as a sum of the contributions at the �xed points [32][33]

Z0(t; ~�) = 16X
�=1

1
1� te 12 ���

10Y
(ab)=1

11� e�(�a�a+�b�b) (7.8)
where we use the notation of [11]. The sum over � describes the sum over 16�xed points. The �rst term of the summand is the character of the non-vanishingcomponent g�, and the second term is the character of the rest u�;ab, both at a given�xed point �. Summation over the �xed points in (7.8) is straightforward and onegets [11]

Z0(t; ~�) = 1� 10t2 + 16t3 � 16t5 + 10t6 � 1t8(1� t)16 : (7.9)
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7.2 Fixed point formulas for the full partition function
Now, let us introduce two ways to extend the zero-mode �xed point formula (7.8).The two utilize di�erent parameterizations for the non-zero modes and lead to par-tition functions that di�er by a �nite number of terms at each level. Also, bothmiss a �nite number of terms with respect to the fully symmetric partition function.However, the missing states can be unambiguously recovered by imposing the �eld-anti�eld and �-conjugation symmetries, and the two formulas then give the samesymmetric partition function.The �rst way of extending is to simply include the non-zero modes of � at eachpatch (g�; u�;ab) 2 U� together with the modes of their conjugates (h�; vab� ):

Z(q; t; ~�) = 16X
�=1Z�(q; t; ~�) ; (7.10)

Z�(q; t; ~�) = Y
h�0

1
1� qhte 12 ���

10Y
(ab)=1

11� qhe�(�a�a+�b�b) (7.11)
�Y

h�1
1

1� qht�1e� 12 ���
10Y

(ab)=1
11� qhe�a�a+�b�b :

The �rst line represents the modes of (g; uab) and the second line represents themodes of (h; vab).To obtain another way of parameterizing the non-zero modes, one observes thatthe constraints for the non-zero modes are essentially linear �0
���h+� � � = 0 (��h �@h�) while the constraint for the zero mode is quadratic �0
��0 = 0. Therefore,the 11 components of non-zero modes ��h (and their conjugates) can be thoughtas carrying di�erent characters from the zero-mode �0, and the contribution from a�xed point is
Z�(q; t; ~�) = 1

1� te 12 ���
10Y

(ab)=1
11� e�(�a�a+�b�b) (7.12)

�Y
h�1

1
1� qhte 12 ���

10Y
(ab)=1

1
1� qhte 12 ����(�a�a+�b�b)

�Y
h�1

1
1� qht�1e� 12 ���

10Y
(ab)=1

1
1� qht�1e� 12 ���+(�a�a+�b�b) :

The second line describes the contributions of the � non-zero modes and the thirdline describes the contributions of the ! non-zero modes. As mentioned above, itcarries essentially the same information as the �rst formula (7.11).By expanding either (7.11) or (7.12) in q, the level h partition function with spininformation is expressed in a simple form for all h � 1. The summation over 16
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�xed points is straightforward, and one gets a result of the form
Zh(t; ~�) = P 0h(t; ~�)(1� t)16 ; (7.13)

where P 0h(t; ~�) is some polynomial in t with coe�cients taking values in the repre-sentations of SO(10), and (1� t)16 = Q�216(1� te���). We put a prime on P 0h(t; ~�)as it lacks �eld-anti�eld symmetry as of yet:
P 0h(t; ~�) 6= P 0h(1=t;�~�) : (7.14)

We now turn to our results on P 0h(t; ~�) and explain how to improve them so thatthey respect the �eld-anti�eld and �-conjugation symmetries.
7.3 Partition functions for non-zero modes with spin char-

acter
Although the summation over 16 �xed points is straightforward, it is not obvioushow to combine local U(5) characters into SO(10) characters in a simple manner.A convenient computational trick is to utilize the Weyl character formula to takecare of the combinatorics. To do this, one �rst augments the factor for the zero-mode character Q10(ab)=1(1 � e�(�a�a+�b�b))�1 representing the 10 \positive roots ofSO(10)=U(5)" by the character of the remaining 10 positive roots of SO(10), i.e.those of U(5), Q10(ab)=1(1� e�(�a�a��b�b))�1, and then extends the summation over the16 �xed points � to 1920 elements of the SO(10) Weyl group W . Using the �rstparameterization of (7.11), 1920 \local" contributions are given by

Zw(q; t; ~�) = 1
1� te 12w��

10Y
(ab)=1

1(1� e�(wa�a+wb�b))(1� e�(wa�a�wb�b)) (7.15)
�Y

h�1
1

1� qhte 12w��
10Y

(ab)=1
11� qhe�(wa�a+wb�b)

�Y
h�1

1
1� qht�1e� 12w��

10Y
(ab)=1

11� qhewa�a+wb�b :
(Using the second parameterization of (7.12), the formula is the same except for thelast two lines representing non-zero modes.) An element w 2 W acts on the �ve-signbasis by permutations and an even number of sign changes. The two modi�cations\cancel" each other and simply gives Pw Zw = P� Z�.Now multiplying ew�� (where � is the half sum of positive roots) to both the nu-merator and denominator of Zw(q; t; ~�), and denoting the SO(10) Weyl denominator
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by e�R, the sum over w reads
Z(q; t; ~�) = 1920X

w Zw(q; t; ~�) = 1(1� t)16 1e�R
X
w (�1)wew� 15Y

�6=1(1� te 12w(���)) (7.16)
�Y

h�1fnon-zero modesg :
Using the Weyl character formula, the summation over w 2 W is readily doneleading to the expressions of the form (7.13). This trick also explains why one getsSO(10) representations as the coe�cients of t.
Level 1 Using the computational trick just mentioned at this level, the secondparameterization of (7.12) yields
Z1;2nd(t; ~�) = 1(1� t)16 f(45+ 1)t0 � 144t1 + (126� � 10)t2 + 16t3 (7.17)

�16t5 � (126+ � 10)t6 + 144t7 � (45+ 1)t8g ;
while the �rst parameterization (7.11) yields

Z1;1st = Z1;2nd � 1 : (7.18)
The singlet missing from Z1;1st is the gauge invariant current J = !�, and theonly way to make Z1;1st consistent with �eld-anti�eld symmetry and �-conjugationsymmetry up to this level is to add 1 to it. So we conclude

Z1(t; ~�) = Z1;2nd(t; ~�) = Z1;1st(t; ~�) + 1 ; (7.19)
where Z1;2nd obtained from our second parameterization is de�ned in (7.17).
Higher levels An important point to notice is that although Z2nd reproduces thefully symmetric partition function at level 1, neither Z1st nor Z2nd reproduce thefully symmetric partition function at higher levels. In particular, they both missthe fermionic singlet at �q2t�4 discussed above, and (a part of) analogous states athigher levels. Also, both Z1st and Z2nd miss some gauge-invariant operators. Forexample, at level 3, the numerator P 03(t; ~�) in Z2nd starts as

P 03(t; ~�) = �10t�2 + (144+ 560+ 3 � 16)t�1 + � � � ; (7.20)
and the correction required includes both bosonic and fermionic operators. Nev-ertheless, at least up to the �fth level, the di�erence between the t-expansions ofthe fully symmetric partition function and the result from the �xed point formulasis always �nite. Therefore, the �xed point result can be unambiguously improvedto the symmetric one using the method described for the ghost-for-ghost partitionfunction. (A list of the improved numerator Ph(t; ~�) can be found in appendix B.2.)
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Towards �xed point formula for the fully symmetric partition functionSince we use the �eld-anti�eld and �-conjugation symmetries as guiding principlesfor computing the complete partition function, it will be useful to build them intothe �xed point formula itself. Although we do not have an answer to this problemat the present time, organizing the complete partition function into a character ofdSO(10) a�ne Lie algebra seems to be promising. This should also be useful forextending our result to all mass levels. However, we leave the study of these issuesfor future research, and we now turn into the explanation of the structure of thepure spinor cohomology using �Cech and Dolbeault descriptions.
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Chapter 8

Pure spinor cohomology: �Cech and Dolbeault
descriptions

In this chapter, we explain the structure of the Hilbert space of the pure spinorsystem. We are going to give an explanation of the states which do not correspondto the usual gauge invariant polynomials. As mentioned those \missing" states areessential for the partition function to have the symmetries
Z(q; t) = �t�8Z(q; 1=t) = �q2t�4Z(q; q=t) : (8.1)

Let us begin by studying certain aspects of the �Cech type description of the purespinors and indicating the results we have established in this thesis. This is notintended to be a complete overview of the formalism, as we only cover issues whichare relevant for explaining the missing states appearing in the computation of thepure spinor partition function.
8.1 Pure spinor sector as a curved �
 system
A standard way to construct a general curved �
 system on a complex manifold Xis to start with a set of free conformal �eld theories taking values in the coordinatepatches fUAg of X, and try to glue them together [32, 34, 35]. The �eld content ofeach conformal �eld theory is described by the (holomorphic) coordinates of a patchua and its conjugate va satisfying the free �eld operator product expansion

ua(z)vb(w) � �abz � w : (8.2)
Not all manifolds X, however, lead to a consistent worldsheet theory. A basicrequirement is that one must be able to consistently glue the operator products (8.2)on overlaps. Gluing on double overlaps UA \ UB can always be done (though theyare not quite unique), but the gluing on UA \ UB, UA \ UC and UB \ UC must be
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consistent on the triple overlap UA \ UB \ UC (cocycle condition). In order thatthere is no topological obstruction for this, the �rst Pontryagin class p1(X) must bevanishing. Also, to be able to de�ne the energy-momentum tensor T globally (i.e.to have a conformal �eld theory), X must possess a nowhere vanishing holomorphictop-form and hence the �rst Chern class c1(X) must also be vanishing.
In the case of pure spinors all these obstructions turn out to be absent [32]. Thetarget space is basically the space of SO(10) pure spinors, with the origin removed:

X10 = f�� j ��
m���� = 0 ; � 6= 0g ; (8.3)
which is a complex cone over a compact projective space X10. It is well known thatX10 is the homogeneous space

X10 = SO(10)=U(5) ; (8.4)
and has ten (complex) dimensions. The origin � = 0 is removed from the spaceof all solutions to the equations �
m� = 0 in order to meet the general criteriaabove, p1 = c1 = 0. With this removal of the origin understood, X10 can be coveredby 16 patches fUAg (A = 1; : : : ; 16) where in each patch at least one componentof � (which we denote �A) is non-vanishing. Very explicit formulas for the gluingof operator products, symmetry currents J and Nmn, and the energy-momentumtensor T can be found in [32].
8.2 �Cech description
Given a space X on which the curved �
 system can be consistently de�ned, thespace of observables, or simply the Hilbert space of the model, is de�ned as thecohomology of the di�erence operator ��, also known as �Cech operator.

To understand what �Cech cohomology is, we need to grasp a few concepts �rst.Let X be a complex manifold, and U = fUAg an open cover of X. This meansthat we have open sets UA such that [AUA = X. Let F be a presheaf � of Abeliangroups on X, that is, a map that assigns to every set in X an Abelian group. Thisgroup can, in principle, vary from set to set. For instance, the Abelian group F (UA)
�In mathematics, a presheaf is a tool for systematically tracking locally de�ned data attached to

the open sets of a topological space. The data can be restricted to smaller open sets, and the data
assigned to an open set is equivalent to all collections of compatible data assigned to collections of
smaller open sets covering the original one. For example, such data can consist of continuous or
smooth functions de�ned on each open set. Presheaves are by design quite general and abstract
objects, and their correct de�nition is rather technical [36].
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assigned to a set UA � X could be the group of continuous functions de�ned on UA,where the group operation is simply the sum of functions.A presheaf also assumes that if we have two sets UA; UB � X such that UA � UB,then there exists a restriction map rUA;UB : F (UB) ! F (UA). We see that rUA;UBmaps, or restricts, the Abelian group corresponding to the bigger set UB to theAbelian group corresponding to the smaller set UA.Now, consider ordered families of (n+1) sets UAi , i = 0; 1; � � � ; n from the cover.Ordered in this context means that the order of the given sets is to be taken intoaccount. An n-cochain  = ( A0A1���An) assigns to a family fUA0 ; UA1 ; : : : ; UAngan element of the Abelian group F (UA0 \ UA1 \ : : : \ UAn). For instance, if Fassigns to the group of continuous functions, a 1-cochain  assigns to fUA0 ; UA1g afunction whose domain is UA0 \UA1 . In other words, we have an object of the form (fUA0 ; UA1g)(x) = f(x), with x 2 UA0 \ UA1 .Since n-cochains take values in the Abelian groups (determined by the presheaf),one can add two di�erent n-cochains to obtain another n-cochain. Thus, n-cochainsthemselves form an Abelian group. Suppose we have an n-cochain  , as we saw, thisacts on families of (n+1) sets. Let us see how we can use  to construct an (n+1)-cochain, that is, a map acting on families of (n+2) sets. Let fUA0 ; : : : ; UAn+1g be anordered family of (n+2) sets from the cover U . If we remove a set UAj from the family,we are left with an ordered family of (n+1) sets, fUA0 ; : : : ; UAj�1 ; UAj+1 ; : : : ; UAn+1g.Then, the n-cochain  can act on this reduced family to give an element of theAbelian group F (UA0 \ : : :\UAj�1 \UAj+1 \ : : :\UAn+1). Now, we want to de�ne an(n+ 1)-cochain, whose output should be an element of the Abelian group F (UA0 \: : : UAn+1), which corresponds to the intersection of all (n + 2) sets. To get suchan element, we can use the restriction map. Indeed, since UA0 \ : : : UAn+1 � UA0 \: : : \ UAj�1 \ UAj+1 \ : : : \ UAn+1 (notice that the intersection of (n + 2) sets issmaller than the intersection of (n + 1) sets), there exists a restriction map rj :F (UA0 \ : : : \ UAj�1 \ UAj+1 \ : : : \ UAn+1)! F (UA0 \ : : : UAn+1). Then, rj wouldbe a (n+ 1) cochain.Now, the (n+1)-cochain we are really interested in constructing is a combinationof the (n + 1)-cochains we just de�ned. Speci�cally, we de�ne the (n + 1)-cochain�� by
(�� )(UA0 ; : : : ; UAn+1) = n+1X

j=0(�1)jrj (UA0 ; : : : ; UAj�1 ; UAj+1 ; : : : ; UAn+1) (8.5)
Note that the (�1)j makes this an alternating sum. Since the output of rj isan element of an Abelian group, the negative sign would mean simply the inverseelement in the group sense. The symbol �� is called the �Cech di�erential which is
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nilpotent ��2 = 0, and it takes n-cochains into an (n+ 1)-cochain.
An n-cochain such that �� = 0 is called an n-cocycle. An n-cochain  that canbe written as  = ���, where � is an (n�1)-cochain, will satisfy �� = 0 trivially, i.e.,it will be an n-cocycle. These trivial n-cocycles are called n-coboundaries. The nth�Cech cohomology Hn(��) is de�ned as the space of ��-closed n-cochains (n-cocycles)modulo ��-exact elements (n-coboundaries). In particular, the zeroth cohomologyH0(��) is simply the space of \gauge invariant" operators de�ned globally on X. Itturns out that the missing states (appearing in the computation of the pure spinorpartition function) correspond to elements in the third �Cech cohomology H3(��). Aremarkable reason why H3(��) is important is that a nontrivial element in H3(��) isessential for the construction of the composite reparameterization b-ghost.

8.3 �Cech/Dolbeault descriptions and the operator b3

The description of the curved �
 system in the previous section was done usingthe �Cech language by patching together a collection of free conformal �eld theories.There is a closely related formulation which uses the Dolbeault language. The twoare related in the same manner as the standard �Cech and Dolbeault cohomologiesof a complex manifold are related. In the �Cech description, only the holomorphiclocal coordinates ua of X were used, but the Dolbeault description utilizes theantiholomorphic variable ua as well. This allows the construction of a partition ofunity on X and, by considering the cohomology of an extension of the Dolbeaultoperator @X , one can deal exclusively with globally de�ned objects [32, 35].
In the pure spinor formalism, the so-called non-minimal formulation correspondsto this Dolbeault formulation [7][14]. There, one introduces another set of purespinor variables �� and its (target space) di�erential r� = d�� which are constrainedto satisfy

��
m���� = 0 ; ��
m��r� = 0 : (8.6)
The conjugate momenta for the non-minimal �elds are denoted by !� and s�, andthey must appear in combinations which are invariant under the non-minimal gaugetransformations

��!� = �m(
m�)� ; �	!� = 	m(
mr)� ; (8.7)
�	s� = 	m(
m�)� ;

with �m and 	m being bosonic and fermionic gauge parameters.
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The Dolbeault operator @X can be de�ned as a natural extension of the Dolbeaultdi�erential in complex geometry:
@X = �r�!� � d�� @@�� : (8.8)

Note that @X is gauge invariant under (8.7). If one wishes to be more rigorous, theexpression for @X should be understood in terms of its local expressions that areconsistently glued. Also, note that only the zero-modes for the non-minimal sectorare relevant for the @X-cohomology due to the relation
@X(s@�) = !@�+ s@r = �Tnon�min : (8.9)

Whenever there is a @X-closed operator F with positive weight h carried by thenon-minimal sector, it can be written as @X of itself multiplied by the zero-mode ofs@�:
�1h@X((s@�)0F ) = F : (8.10)

The minimal (�Cech) and non-minimal (Dolbeault) formulations can be relatedby imitating the argument that establishes the usual �Cech-Dolbeault isomorphism.That is, the cohomologies of �� and @X are related using the partition of unity f�Ag\subordinate to" the coordinate patches fUAg:
�A = �A�A�� ! PA �A = 1 and �A = 0 outside UA ; (8.11)

d�A = @X(�A) = (��)rA�A � (�r)�A�A(��)2 :
(Here and hereafter, Einstein summation convention does not apply for the indexA; when needed, we will always write the summation over A explicitly.) A �Cechn-cochain � = ( A0���An) is described in the Dolbeault language by an n-form

� = 1(n+ 1)!
X

A0;���; An
 A0���An�A0d�A1 ^ � � � ^ d�An : (8.12)

Since � is holomorphic (i.e. @X A0���An = 0), the usual argument relating the �Cechand Dolbeault cohomologies can be applied (provided one uses a good cover so that@X-cohomology is locally trivial).Since the non-minimal variable rA (or consequently d�A) is a fermionic variable, itis clear that using the map (8.12) which relates the minimal (�Cech) and non-minimal(Dolbeault) formulations, elements in the �Cech cohomology Hn(��) will be bosonic
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for n even and fermionic for n odd. In particular the operator b3 which bellows toH3(��) is a fermionic one. The identi�cation of b3 is easier in the �Cech/Dolbeaultcohomologies. Indeed, it can be identi�ed as the \tail term" of the reparameteri-zation b-ghost of the pure spinor formalism. Recall that in the non-minimal purespinor formalism the b-ghost is written as [6, 14]
b = b0 + b1 + b2 + b3 ;
b0 = �s�@�� + ��G�

(��) = �s�@�� � ��f�m(
md)� �Nmn(
mn@�)� � J@�� � 14@2��g4(��) ;
b1 = ��r�H [��]

(��)2 = (�
mnpr)f(d
mnpd)� 48Nmn�pg768(��)2 ; (8.13)
b2 = ��r�r
K [��
]

(��) = �(r
mnpr)Nmn(�
pd)64(��)3 ;
b3 = ��r�r
r�L[��
�]

(��)4 = (r
mnpr)(�
lkpr)NmnN lk
512(��)4 ;

and satis�es
fQ ; b0g = T ; f@X ; big+ fQ ; bi+1g = 0 ; (i = 0; 1; 2) ; f@X ; b3g = 0 : (8.14)

Being the tail of the b-ghost, b3 is clearly in the Dolbeault cohomology of intrinsic, orgauge invariant operators. It is independent of (x; p; �) and carries charges �q2t�4.So this is the \missing state" we were looking for.
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Chapter 9

Derivation of the lightcone spectrum

Finally in this chapter, we derive the Green-Schwarz lightcone spectrum by com-bining the pure spinor partition function with those of the matter variables xm and(p�; ��). The lightcone spectrum we are to derive is the Fock space spanned by thetransverse oscillators
�i�n ; Sa�n ; (i 2 8v ; a 2 8s ; n � 1) ; (9.1)

on the super-Maxwell ground states
jii+ j _ai = 8v + 8a : (9.2)

Their partition function is simply
Zlc(q; ~�) = Trlc(�1)FqL0e��� (9.3)

= (8v � 8a)Yh�1
(1� qh)8s(1� qh)8v :

Now, since the physical BRST operator of the pure spinor formalism Q containspieces with non-zero t-charge, the total partition function of the pure spinor super-string Z(q; t; ~�) (which includes x and (p; �) sectors) is not directly related to thecohomology of Q. Moreover, Z(q; t; ~�) di�ers from the lightcone partition function.However, it will be shown in this chapter that if the t-charge is twisted appropriatelyusing the lightcone boost charge (t ! ~t), Z(q; t; ~�) can be related to the lightconepartition function as
~Z(q; ~t; ~�) $ �~t2Zlc(q; ~�) + ~t6Zlc(q; ~�) : (9.4)

The �rst term at ~t2 represents the usual lightcone spectrum and the second term at~t6 represents the spectrum of the anti�elds. If one writes Q = Q0 +Q1 + � � � whereQn carries t-charge n, it is obvious that the twisted total partition function ~Z(q; ~t; ~�)represents the cohomology of ~t-charge 0 piece Q0 of Q. One might think that the
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cohomology of Q0 has nothing to do with that of Q, but it will be shown that Q0and Q have the same cohomology, except that the on-shell condition (L0 = 0) is notimplied for the former.Let us begin by �rst illustrating the analogous result for the bosonic string.
9.1 Lightcone spectrum of bosonic string from covariant

partition function
The BRST operator of the bosonic string takes the form

Q = cTx + bc@c (9.5)
= X

n2Z c�nLn � 12
X

m;n2Z(m� n)c�mc�nbm+n ;
where we leave the normal orderings implicit and the Virasoro operators are givenby

L0 = 12k2 +
X
m�1�

��m��;m � 1 (9.6)
Ln = 12

X
m2Z �

�n�m��;m (n 6= 0) :
Because of the ghost zero-mode oscillators fb0; c0g = 1, the cohomology ofQ consistsof two identical copies of the lightcone spectrum|those without c0 (�elds) and thosewith c0 (anti�elds). Thus, the partition function de�ned by Tr(�1)FqL0 vanishesidentically due to �eld-anti�eld cancellation. One way to get a non-zero result is toimpose an additional condition b0 = 0 which drops all the anti�elds from the trace,but it is di�cult to perform an analogous operation in the pure spinor formalism.Another way to get a non-zero result is to introduce a charge that distinguishes�elds from anti�elds. Clearly, the ghost number (t-charge) measured by

J = �bc (! t(b; c) = (�1; 1) ) (9.7)
does the job. The (lightcone) partition function would then be

Zlc(q; t) = Tr(�1)FqL0tJ0 = �q�1(t� t2)Yh�1
1(1� qh)24 ; (9.8)

where the prefactor represents the ground state tachyon (c = �q�1t) and its anti�eld(c@c = q�1t2).In obtaining the expression (9.8), we used the well-known fact that the physicalspectrum is spanned by the transverse oscillators �i�n (i = 1; : : : ; 24, n > 0). Now,
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let us explain how it can be obtained from the covariant partition function
Z(q; t; ~�) = Zx(q; t; ~�)Zbc(q; t; ~�) ; (9.9)

Zx = Y
h�1

1(1� qh)26 ;
Zbc = Y

h�2 (1� qht�1)1 Y
h��1 (1� qht)1 :

If the BRST operator Q carried ghost number (t-charge) 0, the total partition func-tion Z(q; t; ~�) would represent its cohomology. But since Q carries ghost number 1,Z(q; t; ~�) is not directly related to the cohomology. Nevertheless, there is a simpleway to obtain the partition function of cohomology (9.8) from Z(q; t; ~�). The proce-dure is simple and one only has to twist the t-charge by the lightcone boost chargefor the non-zero modes ��n0
J ! ~J = J + 12N+�x0 : (9.10)

(The zero-modes k� are kept intact.) Then, the twisted ~t-charges read
~t(k�; ��n0 ; �in; b; c) = (0;�1; 0;�1; 1) ; (9.11)

and the twisted partition function becomes identical to (9.8) representing lightcone�elds and anti�elds:
~Z(q; ~t; ~�) = �q�1(~t� ~t2)Yh�1

1(1� qh)24 : (9.12)
Of course, ~Z(q; ~t; ~�) represents the cohomology of the ~t-charge 0 piece of Q,

Q = Q0 +Q1 +Q2 ; (9.13)
Q0 = �12k+

X
n6=0 c�n��n ;

and not necessarily that of Q itself. However, as is apparent from (9.13) the co-homologies of Q and Q0 are identical, except that the on-shell conditions are notimplied for the latter. (Recall that we are not imposing the b0 = 0 condition.) So thetwisted partition function (9.12) in fact represents the lightcone spectrum but with-out the on-shell condition. In the previous paragraph, we recovered the well-knownfact that the BRST cohomology reproduces the lightcone spectrum [37].
9.2 Lightcone spectrum from pure spinor partition function
As explained earlier, physical states in the pure spinor formalism are de�ned asthe cohomology of Q. We now wish to de�ne an operator that is the analog of
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Q0 = �(1=2)k+Pn6=0 c�n��n of the bosonic string as the twisted ~t-charge 0 pieceof the physical BRST operator. To �nd the appropriate twisting of the t-chargecurrent Jt = !�+ p�, let us study the massless vertex operators and see where thelightcone degrees of freedom reside.
9.2.1 Twisting of t-charge
The super-Poincar�e covariant vertex operator for the super-Maxwell �elds is givenby

V = ��A�(x; �) (9.14)
= �� �(x) + (�
m�)am(x) + (�
m�)(�
m)���(x) + � � �

with am(x) and ��(x) the photon and photino wave functions. (The �rst term �� �is pure gauge and the ellipsis involve spacetime derivatives of am and ��.) In thisform, the lightcone degrees of freedom (ai; � _a) are contained in the terms at t2 andt3. But if the t-charges of � and � are twisted by the lightcone boost charge as
J ! ~J = !�+ p� +N+�!� +N+�p� ; (9.15)

(~t(
+�; 
��; 
+�; 
��) = (2; 0; 2; 0)) ;
both are brought to ~t2

~t2: (�
i�)ai(x) ; (�
��)(�
+) _a� _a(x) : (9.16)
Similar analysis shows that the lightcone degrees of freedom for the antiphoton andantiphotino are brought to ~t6, which explains our expectation (9.4):

~Z(q; ~t; ~�) = �~t2Zlc(q; ~�) + ~t6Zlc(q; ~�) : (9.17)
The analysis here does not tell us how the t-charges of (the non-zero modes of)@xm should be twisted, but it turns out that the appropriate de�nition of ~J is

~J = !�+ p� +K ; K = N+�!� +N+�p� + 2N+�x0 : (9.18)
Note that we twisted the lightcone coordinates @x� twice as much as others, andwe indicate by the prime in N+�x0 that the zero-mode of @x� = k� are kept intact.In our convention, the boost charge K of the basic operators are

K(
�!; 
��) = (�1;�1) ; K(
�p; 
��) = (�1;�1) ; (9.19)
K(k�; @x0�; @xi) = (0;�4; 0) :

It will now be argued that the ~t-charge 0 piece of the physical BRST operatorplays a role analogous to the Q0 = �(1=2)k+Pn6=0 c�n��n of the bosonic string. Asa �rst step, let us see how the total partition function Z(q; t; ~�) is twisted at severallower mass levels.
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9.2.2 Massless states
It is easy to see that the twisted partition function for the zero modes ~Z0(~t; ~�)represents the lightcone super-Maxwell ground state. The twisted partition functioncan be easily computed from the original spin partition function:

Z0(t; ~�) = 1� 10t2 + 16t3 � 16t5 + 10t6 � 1t8 ; (9.20)
! ~Z0(~t; ~�) = �(8v � 8a)~t2 + (8v � 8a)~t6 :

At the level of vertex operators, this formula can be understood as follows.Covariant vertex operators for the super-Maxwell anti�elds (a�; ���), for the ghostc, and for the antighost c� are similar to that of the super-Maxwell �eld (9.14) buthave di�erent numbers of �:
V � = ����A��(x; �) (9.21)

= � � �+ (�
n�)(�
p�)(
np�)����(x) + (�
n�)(�
p�)(�
mnp�)a�m(x) + � � �
U = A(x; �) = 1c(x) + � � � ;
U� = �����
A��
(x; �) = � � �+ (�
m�)(�
n�)(�
p�)(�
mnp�)c�(x) + � � � :

The terms of the covariant partition function Z0 corresponds to the (vertex operatorsof) component �elds as
1� 10t2 + 16t3 � 16t5 + 10t6 � 1t8 $ (c; am; ��; ���; a�m; c�) : (9.22)

Under the twisting (9.15) one �nds that only the lightcone degrees of freedom sur-vives as in
~t0 ~t1 ~t2 ~t3 ~t4 ~t5 ~t6 ~t7 ~t8

1 c�10t2 a+ ai a�16t3 � _a �a�16t5 ��a ��_a10t6 a�+ a�i a���1t8 c�
Spurious degrees of freedom and the ghosts (a�, �a, c etc.) are brought outside ~t2;6and get cancelled by components with the opposite statistics.
9.2.3 First massive states
The lightcone partition function at level 1 can be derived in a similar manner. Anew feature here is the appearance of non-zero modes of xm which have to be twisted
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twice as much (9.18). The total partition function before the twisting is
Z1(t; ~�) = Z!�;1Zp�;0 + Z!�;0Zp�;1 + Z!�;0Zp�;0Zx;1

= ((45+ 1)� 144t+ (126� 10)t2 + 16t3
�16t5 � (126� 10)t6 + 144t7 � (45+ 1)t8)!�+((1� 10t2 + 16t3 � 16t5 + 10t6 � 1t8)� 
 (10x � 16pt�1 � 16�t)) ;

and after the twisting (9.18), it becomes
~Z1(~t; ~�) = (8v � 8a)~t�2 + (�56va + 35aa + 28� 8s + 1)~t0 + (�56vs + 56sa)~t2

�(�56vs + 56sa)~t6 � (�56va + 35aa + 28� 8s + 1)~t9 � (8v � 8a)~t10
+ ~Z0(~t; ~�)
 ((1x � 8p;a)~t�2 + (8p;s + 8�;a)~t0 + (1x + 8�;s)~t2) : (9.23)

A little algebra shows that again only the terms at ~t2;6 survives:
~Z1(~t; ~�) = �~t2(35+ 28+ 1+ 56sa + 8v � 56va � 8s � 56vs � 8a) (9.24)

+~t6(35+ 28+ 1+ 56sa + 8v � 56va � 8s � 56vs � 8a) :
The cancellation among spurious states and ghosts occurs as indicated in �gure 9.1.

9.2.4 Higher massive states
The very same twisting procedure leads to the lightcone spectrum for the highermassive states. The computations are straightforward once the spin partition func-tions Zh(t; ~�) of the pure spinor are obtained. We list the latter up to level h = 5in appendix B.2, so the interested reader can readily check the emergence of thelightcone spectrum.
9.3 Q0-cohomology and absence of on-shell condition
Finally, let us study the relation between the cohomologies of Q0 and Q. It will beargued that Q0 is an analog of k+Pn6=0 ��n c�n of the bosonic string, and in particularthat it does not imply the on-shell condition.Under the twisted ~t-charge, Q splits into three pieces

Q = Q0 +Q2 +Q4 ; (9.25)
Q0 = ��d0� ; (d0a = pa + k+�a ; d0_a = p _a + � _a@x0�) ;
Q2 = (� _a� _a)k� + (�
i�)@xi ;
Q4 = (�a�a)@x0+ � 12(�
m�)(�
m@�) ;
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~t�4 ~t�2 ~t0 ~t2 ~t4 ~t6 ~t8 ~t10 ~t12
-16t�1 -8a -8s45t0 8v 28+ 1 8v10xt0 1 8v 11t0 1
-120t2 -28 �56sa � 8v -28
-100xt2 -1 -8v -1 �35 -1 -8v -1

-8v �28 -8v
�1

-2 � 10t2 -2 � 1 -2 � 8v -2 � 1144t3 8s 56vs + 8a 56va + 8s 8a144xt3 8a 56va + 8s 56vs + 8a 8s16xt3 8s 8a
2 � 16t3 2 � 8a 2 � 8s

?
-2 � 16t5 -2 � 8s -2 � 8a
-16xt5 -8a -8s
-144xt5 -8s -56vs � 8a �56va � 8s -8a
-144t5 -8a -56va � 8s �56vs � 8a -8s
2 � 10t6 2 � 1 2 � 8v 2 � 1100xt6 18v 28 8v1 8v 1 35 1 8v 1120t6 28 56sa + 8v 28
-1t8 -1

-10xt8 -1 -8v -1
-45t8 -8v -28� 1 -8v16t9 8s 8a

0 0 0 -(35;28;1) 0 (35;28;1) 0 0 0
-(56sa;8v) (56sa;8v)
(56va;8s) -(56va;8s)
(56vs;8a) -(56vs;8a)

Figura 9.1: Lightcone �rst massive states from level 1 twisted character
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where the notation @x0� signi�es the omission of zero-modes k�. Q0 is certainlynilpotent, but since it only contains the k+ component of the momentum, settingQ0 = 0 cannot imply the on-shell condition.In order to see that Q0 indeed works as k+Pn6=0 ��n c�n of the bosonic string, westudy its cohomology directly, by employing the method utilized in [38] to derivethe (on-shell) lightcone spectrum from Q.
9.3.1 Ghost-for-ghost method with an SO(8) parameterization of purespinor
In section 6.1, we analyzed the reducibility conditions of the pure spinor constraintin an SO(10) covariant manner. As was noted in [38], there is a simpler version ofthis analysis if one breaks the covariance down to SO(8).First, parameterize SO(8) antichiral and chiral components of �� as

� _a = s _a ; �a = vi
a_bi s_b : (9.26)
�� satis�es the pure spinor condition provided s _a is constrained to be null, s _as _a = 0.However, half of vi is spurious because of the gauge invariance

��vi = �a(
is)a ! ���a = �a(ss) = 0 : (9.27)
Repeating the BRST construction (section 6.1) in an SO(8) covariant manner, oneobtains a chain of free-�eld ghosts-for-ghosts�

(Bn; Cn) : (ba1; ca1) ; (�i2; �i2) ; (ba3; ca3) ; (�i4; �i4) ; � � � ; (9.28)
where as before (ba2n�1; ca2n�1) are fermionic and (�i2n; �i2n) are bosonic. Introducinga fermionic ghost pair (b; c) for the remaining constraint s _as _a = 0 (and denoting theconjugate to s _a and vi by t _a and wi), the mini-BRST operator reads [38]

D = Z (bs _as _a + s _aG _agh + cTgh) ; (9.29)
where

G _agh = �wi
 _abi cb1 + �i2
 _abi bb1 � �i2
 _abi cb3 + � � � ; (9.30)
Tgh = (wi�i2) + (b1c3) + (�i2�i4) + � � � :

Using a regularization 1� 1+ 1� � � � = limx!1(1 + x)�1 = 1=2 familiar in covarianttreatments of the �-symmetry, it is straightforward to check that the combined
�We departed from [38] in notation to match the notation of the present thesis. In [38], the initial

parameterization was chosen oppositely (i.e. �a = sa) and the ghosts (b2n�1; c2n�1; �2n; �2n)n�1
were denoted by (un; tn; wn; vn).
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system of (t _a; s _a;wi; vi;Bn; Cn; b; c) has the desired central charge 22. Moreover, onecan construct a set of generators for the full SO(10) Lorentz current algebra (withappropriate level �3), under which D and the physical BRST operator Q0 (to bede�ned shortly) are invariant [38, 39].
In [38], the SO(8) mini-BRST operator D was used to construct the ghost ex-tended physical BRST operator Q0 = D+ R ��d�+ � � �, whose cohomology is equiv-alent to that of Q = R ��d�. The operator can be written in the same form asD,

Q0 = Z (bs _as _a + s _aG _a + 2cT ) ; (9.31)
provided one de�nes

G _a = d _a + vi
 _abi db + G _agh ; (9.32)
T = �(�� + 2vi�i + v2�+) + 2ca1da + Tgh ;

with �m being the superinvariant momentum @xm � �
m@�. The combinations(G _a; T ) and (G _agh; Tgh) satisfy the same algebra
G _a(z)G _b(w) = �2� _a_bTz � w ; G _a(z)T (w) = T (z)T (w) = regular : (9.33)

This algebra appears repeatedly in the pure spinor formalism, and is related tothe algebra generated by the �rst-class part of the Green-Schwarz-Siegel constraintd� [20].Now that the ghost extended physical BRST operator (9.31) is written entirelyin terms of free �elds, the analysis of its cohomology is straightforward as explainedin [38]. Let us apply the argument to the case at hand, where the full operator Q isreplaced by its ~t-charge 0 piece Q0.
9.3.2 Lightcone \o�-shell" spectrum from Q0-cohomology
By coupling the SO(8) mini-BRST operator D to Q0, one concludes that the co-homology of Q0 is equivalent to that of the ~t-charge 0 contribution to Q0 whichis

Q00 = Z (bs _as _a + s _aG _a0 + 2cT0) ; (9.34)
where

G _a0 = d0 _a + vi
 _abi d0b + G _agh ; (9.35)
T0 = �12@x0� + v2k+ + 2ca1d0a + Tgh :
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To study the cohomology of Q00, it is convenient to introduce the grading de�nedby
l(p _a; � _a; @x0�) = (1;�1;�1) : (9.36)

Under the l-grading, Q00 splits to
Q00 = Q00;1 +Q00;0 ; (9.37)
Q00;1 = s (s _ap _a � c0@x0�) ;
Q00;0 = (rest)

= s (bs _as _a + s _a� _a@x0� + s _avi
 _abi d0b + s _aG _agh + 2cv2k+ + 4c(ca1d0a) + 2cTgh) :
It immediately follows that two quartets

(p _a; � _a; t _a; s _a) ; (@x0�; b0; c0) ; (9.38)
decouple from the cohomology. Furthermore, the conditions implied by Q00 on theremaining �elds

(k�; @xi) ; (pa; �a) ; (b0; c0) ; (wi; vi) ; (Bn; Cn) ; (9.39)
are the cohomology condition of

Q00 = c0s (k+v2 + 2(c1d0) + Tgh)
= c0(k+v2 + 2(d0c1) + wi�i2 + ba1ca3 + � � �)0 : (9.40)

Remembering d0a = pa+ k+�a, it then follows that the cohomology of Q0 (and hencethat of Q0) is spanned by
@xi ; (pa � k+�a) ; (9.41)

on the super-Maxwell ground states (1; �
m�; (�
m�)(
m�)�; � � � ; �(3)�(5)) (with ap-propriate BRST ghost extensions).If the full operator Q was used in place of Q0 one would �nd c0k� (amongother terms) in the �nal form of Q00, and this leads to the on-shell condition [38].Summing up, we have learned that the physical BRST operator Q of the pure spinorformalism contains a piece Q0 which plays an analogous role as k+Pn6=0 ��n c�n ofthe bosonic string, and the role of the rest of Q is to impose the on-shell conditionon the \o�-shell" lightcone spectrum. This was what we wanted to explain.
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Chapter 10

Summary and future applications

Taking aim at clarifying the Hilbert space for the pure spinors, we have started bygiven a brief review of the pure spinor formalism for the superstring and then wehave analyzed the Hilbert space of a simple model de�ned by a quadratic constraint.We have used the partition function as a guide to study the structure of the Hilbertspace.
The Hilbert space of this simple model was studied using two di�erent approach,namely the intrinsic curved �
 description and the BRST description. Althoughthere are slight mismatches between the two descriptions due to the quantum or-dering problem, we found that their partition functions agree. Since the partitionfunctions in both descriptions are insensitive to quantum corrections, the agreementof the partition functions can be explained by classically relating the elements ofthe cohomologies of the two formalisms [10].
In the BRST description of the model, the full partition function of the BRSTcohomology can be easily computed and it manifestly possesses two important sym-metries that we have called \�eld-anti�eld" and \�-conjugation" symmetries. The�eld-anti�eld symmetry implies that, after coupling to matter variables, the coho-mology of the physical BRST operator Q comes in �eld-anti�eld pairs.
There, however, are several points in the present model that require furtherclari�cations. One of them is to understand the discrepancy between the extrinsic(BRST) and intrinsic (curved �
) descriptions more precisely. At the quantumlevel, a source for the discrepancy between the BRST and curved �
 descriptionsarises from the di�erent normal ordering prescriptions used in the two. A pair ofthe elements of the classical BRST cohomology can drop out from the quantumcohomology by forming a BRST doublet. In the curved �
 framework, similarphenomenon occurs when the quantum e�ect spoils the gluing property of a classicalcohomology. In this case, the failure of gluing is represented by a higher cochainwhich is also in the classical cohomology. Since the two frameworks use di�erent
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normal ordering prescriptions, there are discrepancies between the two phenomena.It would be useful to study if this type of discrepancy can be remedied, for example,by appropriately bosonizing the BRST ghosts.Another clari�cation that should be attempted is to explore the one-loop path in-tegral expression for our partition function. When properly understood, it should beuseful for unconvering the origin of the �eld-anti�eld and �-conjugation symmetries.After we have introduced the study of the simple model, we extend the resultto the more interesting case of pure spinors. Despite the fact that the pure spinorconstraint is in�nitely reducible, it will be argued that the structures above carryover almost literally. For the case of pure spinors its BRST description is morecomplicated than the simple model, because the pure spinors constraint turn out tobe in�nitely reducible and so an in�nite chain of ghosts are required. Nevertheless itspartition function can be written at least formally and it posses the two important\�eld-anti�eld" and \�-conjugation" symmetries.For computing the character of pure spinors, another method, called as �xed-point technique, has been developed [9, 11]. In this thesis, we have computed thepartition function of pure spinors up to the �fth mass level using the �xed-pointmethod and up to the twelfth mass level using the ghost-for-ghost method. Afterincluding the partition function of the matter variables, we showed agreement withthe light-cone open superstring spectrum.In the ghost-for-ghost scheme, the method for computing higher level pure spinorcharacter formulas is based on the formal expression for the full partition functionof pure spinors [9]
Z(q; t) = 1Y

k=1 [(1� tk)�Nk
1Y
h=1(1� qhtk)�Nk(1� qht�k)�Nk ] ; (10.1)

where Nk are the multiplicities of the ghost �elds. The use of these ghosts comesfrom the resolution of the pure spinor constraint, and the necessity of in�nite manyof them is because the pure spinor constraint is in�nitely reducible [9, 40]. Althoughit may seem di�cult to extract useful information from this formal expression. Infact, on the contrary, once the moments of Nk's are known, the two important sym-metries of the partition function, the �eld-anti�eld symmetry and the �-conjugationsymmetry, have been easily deduced from (10.1).By expanding (10.1) in powers of q, we obtain character formulas Zh(t) at eachVirasoro level
Z(q; t) = 1X

h=0Zh(t)qh : (10.2)
To derive explicit expressions for these character formulas, we have required to ap-peal some regularization procedure in order to guarantee the convergence of the
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in�nite product over k. We have shown that the method based on Pad�e approxi-mants does this job of regularization and in fact we have obtained character formulasup to level h = 12 [13]. The method was mainly based on the knowledge of the zeromode part Z0(t) of the partition function. From this level zero character formula,we have extracted the ghosts multiplicities Nk, and using the moments (Pk ks+1Nk)of those multiplicities, by employing Pad�e approximants, we were able to computehigher level character formulas Zh(t) of pure spinors. We have found that our resultsare in agreement with the results found in [9] (up to the �fth mass-level h = 5) wherethe �xed point technique was used. The good advantage of this method based onPad�e approximants is that it preserves level by level the two important symmetriesof the partition function.Methods based on Pad�e approximants have many applications in the issue oftachyon condensation in string �eld theory [28, 29, 30], as it is a good tool forsumming numerically divergent series.We hope that computations beyond the level h = 12 will help us to guess theexplicit form of the complete pure spinor partition function. Using Pad�e approxi-mants, we can implement a computer code in order to obtain higher level characterformulas and the time consuming by the computer is much less compared with com-putations involving the �xed point method. In general for SO(2d) pure spinors thenumber of �xed points is 2d�1 and the complexity of summing over these �xed points(as it was also noted in [11]) grows exponentially with N = 2d�1. On the other handthe computations shown by means of Pad�e approximants are less complicated, sothis technique can be used as an alternative (to the �xed point technique) easier(computationally) way to get the character formulas for higher-dimensional purespinors.So far, using the ghost-for-ghost technique, we have computed the partitionfunction without the spin dependence on the states. Spin dependence is crucial ifwe want to prove that the full partition function (including the contribution of theworldsheet matter sector) correctly reproduces the light cone superstring spectrum[9]. Therefore, it would be interesting to know the character formula with the spindependence in the ghosts-for-ghosts scheme. We leave this issue as a future work.The main surprise we have found in the computation of the pure spinor partitionfunction is the appearance of fermionic states starting at the second mass level.These fermionic states all correspond to three-forms on the pure spinor space, andare related to a term in the b ghost in the pure spinor formalism.There are several possible applications of these results for amplitude computa-tions and for superstring �eld theory. Using the RNS formalism, scattering ampli-tudes can be computed either using conformal �eld theory techniques or using the
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operator method. Although conformal �eld theory techniques are more convenientfor multiloop amplitudes, the operator method is convenient for one-loop computa-tions where one expresses the amplitude as a trace over states in the Hilbert space.In this thesis, the pure spinor partition function was only computed up to somemass level, but it might be possible to extend our results and construct an explicitformula for the complete pure spinor partition function. One could then use the op-erator method in the pure spinor formalism, which might simplify the computationsof one-loop amplitudes.Knowing that there can be no �Cech cohomologies with degree greater than 3 isnice for the pure spinor multiloop amplitudes, because it implies that one need notworry about the poles coming from the fusion of many reparameterization b-ghosts.The troublesome poles are necessarily in �Cech cohomologies with degree greaterthan 3 and, modulo the subtleties coming from the divergences at the boundary ofmoduli spaces, they can be ignored without requiring the regularization introducedin [7]. It would be interesting to work out how it is actually realized, and the presentwork might be useful to clarify some aspects of this issue.Another topic that can be addressed is the one we have mentioned at the endof section 4.3, namely the covariant computation of the second mass-level statecontained in the cohomology of the BRST operator Q. This problem should beand interesting issue since, as we have seen, the b ghost (which appears at thesecond mass-level) has a non-trivial dependence on the non-minimal variables. Inthe Dolbeault like description of the pure spinor formalism, it would be nice to seehow the level two massive vertex operator depends on the b ghost.A fourth possible application of these results is for superstring �eld theory.In [14], a cubic open superstring �eld theory action was constructed using the purespinor formalism. However, the correct de�nition of the Hilbert space was unclearbecause of the possibility of states diverging when (���) ! 0. Using the results ofthis thesis, one now knows that the Hilbert space must at least allow states whichdiverge as (���)�3 in order to reproduce the correct massive spectrum [9]. But it isan open question if one can consistently de�ne a multiplication rule for string �eldsin such a manner that states diverging like (���)�11 are never produced [7, 14].
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Appendix A

SO(10) conventions and formulas

A.1 Dynkin labels
As is well known, all the irreducible representations of SO(10) can be labeled by�ve integers called Dynkin labels. Those are nothing but the highest weights of therepresentations in an appropriate basis. In our convention,

vector : (10000) = 10 ; (A.1)
2-form : (01000) = 45 ;
3-form : (00100) = 120 ;
antichiral spinor : (00010) = 16 ;
chiral spinor : (00001) = 16 :

When computing the partition functions, it is sometimes more convenient tointroduce an orthogonal basis for the Cartan subalgebra, ea (a = 1; : : : ; 5) such thatthe fundamental roots are
e1 � e2; e2 � e3; e3 � e4; e4 � e5 : (A.2)

We then denote the character of ea by e�a where �a is a formal variable for book-keeping. Also the weight vectors in this basis are denoted by square bracket:
� = Pa �aea $ [�1�2�3�4�5] $ e��� : (A.3)

The components �a's take values in half integers and are related to the (integervalued) Dynkin labels (a1a2a3a4a5) by0
BBBBBBBB@

�1�2�3�4�5

1
CCCCCCCCA
=

0
BBBBBBBB@

1 1 1 1=2 1=20 1 1 1=2 1=20 0 1 1=2 1=20 0 0 1=2 1=20 0 0 �1=2 1=2

1
CCCCCCCCA

0
BBBBBBBB@

a1a2a3a4a5

1
CCCCCCCCA
: (A.4)
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We refer to this basis as the \�ve sign basis" because the weights and characters ofchiral spinors are expressed as
� = 12[�1;�1;�1;�1;�1] $ e 12 (��1��2��3��4��5) ; (A.5)

with even number of minus signs.
A.2 Some dimension formulas
Dimensions of the SO(10) irreducible representations are given by

dim(a b c d e)
= 124 � 34 � 43 � 52 � 6 � 7

n(a+ 1)(b+ 1)(c+ 1)(d+ 1)(e+ 1)
(a+ b+ 2)(b+ c+ 2)(c+ d+ 2)(c+ e+ 2)
(a+ b+ c+ 3)(b+ c+ d+ 3)(b+ c+ e+ 3)(c+ d+ e+ 3)
(a+ b+ c+ d+ 4)(a+ b+ c+ e+ 4)(b+ c+ d+ e+ 4)(b+ 2c+ d+ e+ 5)
(a+ b+ c+ d+ e+ 5)(a+ b+ 2c+ d+ e+ 6)(a+ 2b+ 2c+ d+ e+ 7)o :

(A.6)
Of special interest are the `(chiral) pure spinor representations' (0000n), which havethe following dimensions

dim(0000n) = (n+ 7)(n+ 6)(n+ 5)2(n+ 4)2(n+ 3)2(n+ 2)(n+ 1)7 � 6 � 52 � 42 � 32 � 2 : (A.7)
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Appendix B

Table of partition functions

B.1 Partition functions without spin: number of states
List of coe�cients Nm;n present in the expansion Z(q; t) = Pm�0PnNm;nqmtn ofthe pure spinors partition function. We include the usual gauge invariant states(Nm;n > 0) as well as the extra states (Nm;n < 0).

n N0;n N1;n N2;n N3;n N4;n N5;n � � �
-8 0 0 0 0 0 0-7 0 0 0 0 0 �672-6 0 0 0 0 �126 �4068-5 0 0 0 �16 �592 �11408-4 0 0 �1 �46 �1073 �16974-3 0 0 0 �16 �592 �11408-2 0 0 0 0 0 0-1 0 0 16 592 11408 1527360 1 46 1073 16974 205373 20311301 16 592 11408 153408 1617344 142287522 126 4068 70522 868012 8479364 697718883 672 19824 320304 3716208 34489920 2712228004 2772 76824 1180602 13125484 1173525227 892615196... ... ... ... ... ... ...

(B.1)

B.2 Spin partition functions
For convenience, we here list the partition functions with spin dependence up to�fth Virasoro levels. Partition functions at each level are of the form
Zh(t; ~�) = Ph(t; ~�)(1� t)S where (1� t)S � Y

�2S(1� te���); S = (00001) = 16 (B.2)
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and Ph(t; ~�) is a polynomial of t with coe�cients taking values in the representationsof SO(10). For brevity, we only write the numerator Ph(t). Again, formulas includethe extra states.
Level 0:

P0(t; ~�) = (00000)1 � (10000)10t2 + (00010)16t3
�(00001)16t5 + (10000)10t6 � (00000)1t8 (B.3)

Level 1:
P1(t; ~�) = ((01000)45 + (00000)1)� (10010)144t1 + ((00020)126 � (10000)10)t2

+(00010)16t3 � (00001)16t5 � ((00002)126 � (10000)10)t6
+(10001)144t7 � ((01000)45 + (00000)1)t8 (B.4)

Level 2:
P2(t; ~�) = �(00000)1t�4 + (00001)16t�3 � (00100)120t�2

+(+(01010)560 + (00010)16)t�1
+(�(10020)1050 + (01000)45 + 2(00000)1)t0 + (+(00030)672 � (10010)144)t1
+(�(11000)320 + (00020)126 � 2(10000)10)t2 + (+(01010)560 + 2(00010)16)t3

+(�(01001)560 � 2(00001)16)t5
+(+(11000)320 � (00002)126 + 2(10000)10)t6

+(�(00003)672 + (10001)144)t7 + (+(10002)1050 � (01000)45 � 2(00000)1)t8
+(�(01001)560 � (00001)16)t9

+(00100)120t10 � (00010)16t11 + (00000)1t12 (B.5)
Level 3:

P3(t; ~�) = �(00010)16t�5 + (00011)210t�4 � (00110)1200t�3 + (01020)3696t�2
+(�(10030)5280 + (01010)560 + 2(00010)16)t�1

+(+(00040)2772 � (10020)1050 + (02000)770 + 3(01000)45 + 3(00000)1)t0
+(�(11010)3696 + (00030)672 � 3(10010)144)t1

+(+(01020)3696 � 2(11000)320 + 3(00020)126 � 3(10000)10)t2
+(+2(01010)560 + 3(00010)16)t3
+(�2(01001)560 � 3(00001)16)t5
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+(�(01002)3696 + 2(11000)320 � 3(00002)126 + 3(10000)10)t6
+(+(11001)3696 � (00003)672 + 3(10001)144)t7

+(�(00004)2772 + (10002)1050 � (02000)770 � 3(01000)45 � 3(00000)1)t8
+(+(10003)5280 � (01001)560 � 2(00001)16)t9

�(01002)3696t10 + (00101)1200t11 � (00011)210t12 + (00001)16t13 (B.6)
Level 4:

P4(t; ~�) = �(00020)126t�6 + (+(00021)1440 � (00010)16)t�5
+(�(00120)6930 + (00011)210 � (00000)1)t�4
+(+(01030)17280 � (00110)1200 + (00001)16)t�3

+(�(10040)20790 + (01020)3696 + (00020)126 � (00100)120)t�2
+(+(00050)9504 � (10030)5280 + (02010)8064
+(10001)144 + 3(01010)560 + 4(00010)16)t�1

+(�(11020)23040 + (00040)2772 � 3(10020)1050
+2(02000)770 + 5(01000)45 + 6(00000)1)t0

+(+(01030)17280 � (20001)720 � 2(11010)3696 + 3(00030)672 � 5(10010)144)t1
+(�(12000)4410 + 2(01020)3696 � 4(11000)320 + 5(00020)126 � 6(10000)10)t2

+(+(02010)8064 + (00021)1440 + 4(01010)560 + 6(00010)16)t3
+(�(02001)8064 � (00012)1440 � 4(01001)560 � 6(00001)16)t5

+(+(12000)4410 � 2(01002)3696 + 4(11000)320 � 5(00002)126 + 6(10000)10)t6
+(�(01003)17280 + (20010)720 + 2(11001)3696 � 3(00003)672 + 5(10001)144)t7

+(+(11002)23040 � (00004)2772 + 3(10002)1050
�2(02000)770 � 5(01000)45 � 6(00000)1)t8

+(�(00005)9504 + (10003)5280 � (02001)8064
�(10010)144 � 3(01001)560 � 4(00001)16)t9

+(+(10004)20790 � (01002)3696 � (00002)126 + (00100)120)t10
+(�(01003)17280 + (00101)1200 � (00010)16)t11
+(+(00102)6930 � (00011)210 + (00000)1)t12

+(�(00012)1440 + (00001)16)t13 + (00002)126t14 (B.7)
Level 5:

P5(t; ~�) = �(00030)672t�7 + (+(00031)6930 � (00020)126 � (00100)120)t�6
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+(�(00130)29568 + (00021)1440 + (00101)1200 � 2(00010)16)t�5
+(+(01040)64350 � (00120)6930 � (00200)4125 + 2(00011)210 � (00000)1)t�4

+(�(10050)68640 + (01030)17280 � 2(00110)1200 + (00001)16)t�3
+(+(00060)28314 � (10040)20790 + (02020)46800 + 3(01020)3696 + 2(00020)126)t�2

+(�(11030)102960 + (00050)9504 � 3(10030)5280 + (11001)3696
+2(02010)8064 + 2(10001)144 + 6(01010)560 + 8(00010)16)t�1

+(+(01040)64350 � (20011)8085 � 2(11020)23040 + 3(00040)2772
�5(10020)1050 + (03000)7644 + 4(02000)770 + 10(01000)45 + 9(00000)1)t0

+(�(12010)43680 + 2(01030)17280 � 2(20001)720 � 5(11010)3696
+5(00030)672 � 10(10010)144)t1

+(+(02020)46800 + (00031)6930 � (20100)4312 � 2(12000)4410
+5(01020)3696 � 8(11000)320 + 10(00020)126 � 9(10000)10)t2

+(+(10110)8800 + 2(02010)8064 + 2(00021)1440 + 8(01010)560 + 9(00010)16)t3
+(�(10101)8800 � 2(02001)8064 � 2(00012)1440 � 8(01001)560 � 9(00001)16)t5

+(�(02002)46800 � (00013)6930 + (20100)4312 + 2(12000)4410
�5(01002)3696 + 8(11000)320 � 10(00002)126 + 9(10000)10)t6

+(+(12001)43680 � 2(01003)17280 + 2(20010)720 + 5(11001)3696
�5(00003)672 + 10(10001)144)t7

+(�(01004)64350 + (20011)8085 + 2(11002)23040 � 3(00004)2772
+5(10002)1050 � (03000)7644 � 4(02000)770 � 10(01000)45 � 9(00000)1)t8

+(+(11003)102960 � (00005)9504 + 3(10003)5280 � (11010)3696
�2(02001)8064 � 2(10010)144 � 6(01001)560 � 8(00001)16)t9

+(�(00006)28314 + (10004)20790 � (02002)46800 � 3(01002)3696 � 2(00002)126)t10
+(+(10005)68640 � (01003)17280 + 2(00101)1200 � (00010)16)t11

+(�(01004)64350 + (00102)6930 + (00200)4125 � 2(00011)210 + (00000)1)t12
+(+(00103)29568 � (00012)1440 � (00110)1200 + 2(00001)16)t13
+(�(00013)6930 + (00002)126 + (00100)120)t14 + (00003)672t15 (B.8)
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Appendix C

Computation of higher level character formulas

Higher level character formulas Zh(t) can be obtained from the formal expression(6.13) as follows. Performing a Taylor expansion of the expression (6.13) aroundq = 0, we have
Z(q; t) = Z0(t) + 1X

h=1
qhh! @

h
@qhZ(q; t)jq=0 (C.1)

= Z0(t)h1 + 1X
h=1 fh(t)qh

i ;
where the level h function fh(t) has been de�ned as the expression (6.23). To obtainthese level h functions, we are going to use a method based on Pad�e approximants.Let us explain our method by computing in detail the level one function f1(t).From the expression (6.23), we derive the following expression for the level onefunction

f1(t) = 1X
k=1Nk(tk + t�k) ; (C.2)

expanding the RHS of (C.2) around t = 1 and keeping terms up to some order(relevant for the computations to be done next), we get
f1(t) = 2 1X

k=1Nk + (t� 1)2 1X
k=1 k2Nk � (t� 1)3 1X

k=1 k2Nk + � � � (C.3)
Applying the formula (6.10) to �nd the even momentsPkNk,Pk k2Nk and replacingthem into the equation (C.3), we obtain

f1(t) = 22 + 4(t� 1)2 � 4(t� 1)3 + � � � (C.4)
Using Pad�e approximants, we express the function f1(t) as a rational function

f1(t) �= f [M=N ]1 (t) = 1 +PMj=1 pjtjPNj=0 qjtj ; (C.5)
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for instance, as a pedagogical illustration let us compute explicitly the [2=1] Pad�eapproximant of f1(t)
f [2=1]1 (t) = 1 + p1t+ p2t2q0 + q1t ; (C.6)

expanding the RHS of (C.6) around t = 1, we get
f [2=1]1 (t) = 1 + p1 + p2q0 + q1 + p1q0 + 2p2q0 � q1 + p2q1(q0 + q1)2 (t� 1) (C.7)

+ p2q20 � p1q0q1 + q21(q0 + q1)3 (t� 1)2 � p2q1q20 � p1q0q21 + q31(q0 + q1)4 (t� 1)3 + � � �
Equating the coe�cients of (t� 1)0, (t� 1)1, (t� 1)2, (t� 1)3 in equations (C.4)and (C.7), we get 4 equations for the unknown coe�cients p1, p2, q0, q1

1 + p1 + p2q0 + q1 = 22 ; (C.8)
p1q0 + 2p2q0 � q1 + p2q1(q0 + q1)2 = 0 ;

p2q20 � p1q0q1 + q21(q0 + q1)3 = 4 ;
p2q1q20 � p1q0q21 + q31(q0 + q1)4 = 4 ;

solving these system of equations (C.8) we obtain
p1 = 72 ; p2 = 1 ; q0 = 0 ; q1 = 14 : (C.9)

Computations of higher Pad�e approximants follows in the same way as it wasshown above. The results of these computations are given in table (C.10).
[M=N ] p1, p2, � � �, pM q0, q1, � � �, qN[2/1] 7=2, 1 0, 1=4
[2/2] 20=23, 1 1=46, 2=23, 1=46
[3/1] 1, 18=25, �2=25 1=50, 1=10
[1/3] 43=23 75=5566, 875=5566, �135=2783, 1=121
[3/2] 20=23, 1, 0 1=46, 2=23, 1=46
[2/3] 20=23, 1 1=46, 2=23, 1=46, 0
[3/3] 20=23, 1, 0 1=46, 2=23, 1=46, 0
[4/4] 20=23, 1, 0, 0 1=46, 2=23, 1=46, 0, 0

(C.10)

As we can see by explicit computations, the Pad�e approximants are approachingto the rational function (46 + 40t + 46t2)=(1 + 4t + t2), and therefore we take this
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function as being the level one function f1(t)
f1(t) = 46 + 40t+ 46t21 + 4t+ t2 : (C.11)

By multiplying this function (C.11) with the level zero character Z0(t), we get
Z1(t) = 46� 144t+ 116t2 + 16t3 � 16t5 � 116t6 + 144t7 � 46t8(t� 1)16 ; (C.12)

and therefore, we correctly reproduce the level one character formula given in [9, 12].For the next level h = 2, by using the same strategy shown above, we have foundthat the Pad�e approximant computation gives the following result for the level twofunction
f2(t) = �1 + 12t� 67t2 + 248t3 + 319t4 + 628t5 + 319t6 + 248t7 � 67t8 + 12t9 � t10t4(1 + 4t+ t2) :
By multiplying this level two function f2(t) with the level zero character Z0(t), wecorrectly reproduce the level two character formula found in [9].Computation of higher level functions fh(t) by means of Pad�e approximants,suggest us that these functions can be written like

fh(t) =
P2h+6i=0 Ci;htith+2(1 + 4t+ t2) : (C.13)

We have computed the Ci;h coe�cients up to the level h = 12, the results are givenin the tables (6.25) and (6.26) of chapter 6. Multiplying the functions fh(t) withthe level zero character formula Z0(t), we obtain the characters Zh(t). We havecompared our �rst �ve character formulas with the formulas given in [9] and wehave found agreement.
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