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This paper investigates the usefulness of the generator coordinate ni€Gtt) for treating the
dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the
unimolecular dissociation and isomerization procga®ton transfer are analyzed. The GCM
results, presented in analytical form, provide a very good description and are compared to other
methods like the basis set method and multiconfiguration time dependent self-consistent field.
© 1998 American Institute of Physids$0021-960808)50934-§

I. INTRODUCTION The formal developments of this section were then applied to
the isomerization process of the malonaldehyde molecule,
Tunneling on a multidimensional energy surface is aSec. IV, and the unimolecular dissociation, Sec. V. In Secs.
challenging problem in several areas of physics. In moleculayy and V the results are compared to the basis set method,
physics, several studitg? demonstrated that purely one- semiclassical tunneling methddand multi-configuration
dimensional calculations are not able to describe the isometime dependent self-consistent fiéldh Sec. VI we present
ization and dissociation processes, as far as the effects gbme final remarks.
vibrational modes are not negligible. In nuclear physics, the
observed fusion cross section of heavy ions collisions at ey, THE GENERATOR COORDINATE METHOD
ergies below the Coulomb barrier is much larger than the
prediction of one-dimensional potential models, and can only
be explained by introducing the coupling to other degrees of H(ar,X,p,q)=H;(q,p)+H(x,7)+V(X,q), (D)
freedom(for a recent review see Ref. 16
In the literature, several papérd*?>~?°have been de-
voted to the development of reliable methods to treat the
tunneling coupled to other modes. Hi(q,p)= ﬁ“LU(q) @
In this work we investigate the applicability of the gen-
erator coordinate methad@GCM) (Ref. 21 to treat a tunnel-
ing degree of freedom coupled 8 harmonic oscillators. N
This investigation was largely stimulated by an old paper of ~ Ha(x,7)= >, h(x;, ) (©)
Makri and Miller! where the authors have analyzed the =t
isomerization of the Malonaldehyde molecule using a basiés the Hamiltonian describing the intrinsic degrees of free-
set methodology. We tackle the same problem using an anaglom. They are assumed as an ensemble of harmonic oscilla-
lytical version of the generator coordinate metéd* We  tors. The coupling term is of the form:
shall prove that it is possible to find an effective Hamiltonian N
which takes into account the role of the other degrees of v/ (x q)=> v,(q)x;. (4)
freedom. We will apply the method to systems which are i=1
modeled by quartic and cubic potentials coupled to harmonige main problem in the treatment of multidimensional tun-
oscillators, although it can be applied to general Hamiltoygjing is how to reduce the system dynamics to the relevant
nians. _ _ _degree of freedom and, at the same time, take into account
Section Il gives a brief account of the generator coordihe effects of the other degrees of freedom. The generator

nate method and how to obtain the effective Hamiltonian. 'ncoordinate method, originally derived to face the nuclear

Sec. Il we apply the method for two simple Hamiltonians many-body problem, can be useful to define this reduced
describing the proton transfer and dissociation processegactive dynamics.

The crucial point in this method is how to define an
dElectronic mail: fsc1ffs@fsc.ufsc.br appropriate variational subspace where the relevant dynam-

Let us consider a general Hamiltonian of the form

where
2

is related to the tunneling degree of freedom and
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ics can be realized. This is done by the introduction of thedinger equation for the projected Hamiltonian onto the varia-
following ansatz for the system wave functigime Griffin-  tional space. Further on we call this subspace as the effective

Hill-Wheeler ansatg, space.
The projection operator can be obtained by diagonaliz-
W(q X):f f(a,B1,Bas - - B @(0@)) ing the overlap kernel of the generator statega’),
RIIN | (i, Bi))dadBy, .....dBN, (5 fﬁx<ala’>uk(a’)da’=2w7xkuk(a), (1)

where|¢(g,a)) is a generator state associated to the tunnelwhereu,(a) is the eigenfunction ankly the eigenvalue. This
ing degree of freedom(x;,/3;)) are generator states asso- allows us to define the momentum representation of the ef-

ciated to the harmonic oscillators afife, 51,82 - . . Bn) IS fective space with basis vectors as
the so-called weight function.
1 f U a)|a)

The ansatz abovgEq. (5)] defines a variational wave )= da (12)
function. The generator states constitute a nonorthogonal ba- N \/)\—k ’

sis. In some cases the variational subspace generated by the ) )
ansatz corresponds to the exact Hilbert space of the origindferé we use round bras and kets for states in the effective

problem. In this case the solution of the variational equatiorsPace{(For details see Refs. 23 and)24
The effective Hamiltonian in the momentum representa-

SWIH[V) | tion is

_ @ - (6
(V) Hog= SHE, (13

leads to the exact solution, and the anzatz above can be Se&Rere the projection operatéris
as just another representation of the initial problem. How-
ever, this method is quite powerful when it is necessary to
reduce the problem to some relevant degree of freedom. In
our specific case this should be done on physical groundi,|
that is, on an educated guess.

In nuclear and molecular physics the usual picture of th

é:f dklk) (k|. (14)

off can also be written as a function of the effective mo-
ementum and position operatofsee details in Ref. 23

tunneling energy surface is that the reaction coordinate or the [z 1 Sm e | At

fission (fusion) degree of freedom, corresponds to two val-  Het=Sl > o PTHT(Q): ]S, (19
. . m=0 2

leys connected through a saddle point on a barrier. The or-

thogonal degrees of freedom, usually depicted as parabolaghere the ordering = ... : is

with pronounced curvatures, are naturally taken as harmonic

oscillators. Within that framework we can suppose that the :P"H™(Q):={P{P, ... {P.H™(Q)}...}}
harmonic oscillators are kept along the path close to their o ators g (16)
minimum energy states. Thus we can impose a minimum

condition, along the path, for the orthogonal degrees of freeand

dom:
_ (—ig)m( 3 §)
(m) — 2 -2
85 (@ @)D (TL6(x; B Hl (g, @) H™(x) f"f e Bt
I, (X, Bi))=0. (@) =Jd§(—i)m
m!

The condition above defines a functional relation betweer
the B, and a« and we can rewrite the anzatz in E§) as: x(

£~ ~ . &
x+-2'|EQ,[Q,...[H,Q]...]llx—i), 17

n commutators

|‘1’(q,X))=f f(a)|a)da, 8

where {P,Q} are the canonical operators in the effective

where subspace such that
@) =|e(a,0))® [T (X ,Bi(a)). ©) Plk)=K|k), (18)
The introduction of Eq(8) in the variational equation BIK) = —ialaklk 1
(6) leads to the well known Griffin-Hill Wheeler equation, Qlk) |919K[K), 19
. Qlx)=x|x). (20)
f_w{<a|H|a’>_E<a|a'>}f(a,)d“' =0. (10 We should stress that for analytical results it's important

to solve exactly the overlap eigenvalue problem in order to
As long as it is possible to define this variational spaceobtain a complete and closed representation of the effective
as a complete and closed subspZcehe Griffin-Hill- subspace. As it was noted elsewl&this is possible for any
Wheeler problem is equivalent to the solution of the Sehro overlap of the Hilbert-Schmidt-type. Nevertheless it could be
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hard to find the solution in some practical cases. Such draw; (ﬁ/zmQ), WhereQ, called generator frequency's a free

backs can however be circumvented by a numerical approagh, ameter. The results will depend strongly on this parameter
or a generalized Griffin-Hill-Wheeler anz&Z. and its choice will be discussed later.

The reasons to employ coherent states for the harmonic
oscillator is natural, because they do form an overcomplete
IIl. THE MODEL basis and the variational space generated by them is exact.
For the reaction coordinate the reasons are the following:
Now we use our method to study a system-bath modefirst, a real parameter coherent state is a localized fun¢ion
which is well known in the literature. For thgoton transfer ~ Gaussiajy and as it was already noticed by the basis set
case it consists of a quartic double well potential linearlyapproach it can provide a good description for barrier pen-
coupled to an harmonic oscillator and for thiéssociation  etration problems; second, coherent states have a series of
case it is a cubic potential barrier coupled to the oscillatoryseful analytical properties and they especially have a diag-

That is: onalizableGaussian overlag®
H(x,q) = H,(q) + Hogd X) + CXq 21) In order to obtain a on(? parameter generator state, we
shall enforce the conditiofv):
with
b2 1 L dg{a,B|H|a,B)=0,
—+—a.02— =b.g® dissociation i i
>m + 5807~ 3 boq which gives us
He®=) pz2 4 1 (22) B=—xa, (26)
o a2+ 2d.ag? -
5m 5 + 4doq proton-transfer where
and c h h
2 X= 5o Vo Vma:
Hosd X) = 5= + = Mw?x°. (23 o . .
0s 2m 2 This minimization leads to the constraint relation be-

For the sake of simplicity we shall restrict ourselves totween the generator coordinateand 8, where we assumed,

the case of coupling to a single oscillator. As discussed “)(wthout loss of generality, thaﬁ_ is real. lt_WaS proved
Ref. 1. a term elsewher® that the same effective space is generated by

either complex or real parameter coherent states. It is impor-
c?qg? tant to notice that the generator states constitute a non-
(29) orthogonal basis. This nonorthogonality implies that the dy-
namics, given by the Griffin-Hill-Wheeler equatig@GHW)
is sometimes introduced to guarantee that the height of thel0), couples the intrinsic states corresponding to different
barrier in the original energy surface remains roughly conjpoints along the patkhere defined by the generator coordi-
stant with increasing value of the coupling constant. As famate «). Hence, if one remembers that the coherent states
as we are interested in the comparison of our method t@orresponds to displaced harmonic oscillators states, the non-
others presented in the literature, we will mention whetheriagonal terms of the GHW equation would lead to the cou-
this term is introduced or not. pling between several harmonic oscillators levels. This per-
To construct our generator states, we start from a direamits us to consider that, even with the implementation of the
product of two coherent staté$|a)®|B)=|a,B), related minimum condition in Eq.(7), the effective dynamics de-
respectively to thdq,x} degrees of freedom. That is: scribed by Eq.(10) take into account much more than the
_ T oo average effect of the intrinsic harmonic oscillators along the
|8)=exi pa’~*a]| bo). path. Therefore it allows a better description of the coupling
where| ) is the harmonic oscillator ground state with char- dynamics and makes the difference between our method and

(q)=—,
(a) P

acteristic widthy/(%/2mw), and others like the self-consistent field and even the basis set
. , . method'
pal— gra= [maw BB ) ! /'B+B With the constraint relatiori26) the |, 3) state can be
il 2 Jmhw| 2 described by a single parametey, vyielding |a,B)
(25  =|a,B(a))=|a) and the overlap function is
For the reaction degree of freedom, we have (ala’)=exd —3(1+xd)(a—a’)?]. (27)
|a)=exd aAT—a* Al|¢o), This overlap can be easily diagonalizZéghy. (11)] by a Fou-
where rier transform giving the following eigenfunctions and eigen-
/ / values:
mQ | a—a* i a+a*
aAT— a* A= — u(a)=exdika], (28
Vi )q 02

2
and| ¢g) is the harmonic oscillator ground state related to the 2N\ = 2_7T ;{ 1_k (29)
5 .

exg — =
pair {A,A"}. The width of the a coherent state is 1+x 2 (1+x?
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Now, using Eqs(12), (14) and (15) we obtain the effective V. PROTON TRANSFER CASE: SYMMETRIC

Hamiltonians, DOUBLE WELL POTENTIAL
Ho— P? V() (30) We applied the method to the proton or H-transfer pro-
e omgy et ) cess in the malonaldehyde molecule which is fairly well
here modeled by the double well potential coupled linearly to one
wi

harmonic oscillator. We use two different sets of parameters.
In the first casea, andd, were chosen so that the bar-

Mei= Me (C,{),
e ml rier height is 7.8 kcal/mol, and the local minima are localized

Vei(Q) at +0.53 A. We consider two bath frequencies: a slow
=298 cm! and a fast onev=2982 cml. Those values
1 1 ¢ , 1 . o were the same as used in Ref. 1 and this choice allows us to
227 5 29T 3 P00~ ¢q g dissociation compare our results to the results obtained by the Basis set
= method. In this case the renormalization ted(q) is

present.
In order to compare our results with a time dependent
(31  self-consistent field approximation, we also consider another
set of values fora; and dy such that the frequency at the

The effect of the coupling to the oscillator is present injgcal minima is 1530 cmt and the barrier height is 6.3
the enhancement factor, defined as the ratio between the §fza1/mol?
fective mass and the mass itself, Our first task is to choose the generator frequeficyin

Mo [1+ (0/Q)(c/mw?)?]? the dou_ble well case we have three “natural” frequencies:
em(C,Q)=—= , (320  the oscillator frequency, the bottom of the well frequency
m  1+(w/Q)*(c/mw?)? and the barrier frequendjassociated to the curvature at the
and by terms modifying the potential which are characterizec?ameo' Qur intention was to choose among those _natural
by the coefficients requencies a valug fdn. As far as we are mterested in the
tunneling process in the presence of the oscillator, we pay
3 hib, ) - - special attention to the oscillator frequensayand the barrier
C4=7 g (/DM (1+ (w/Q)(c/ma™)®), frequencywparier- It can be seen in the expressions for the
(33  effective potential and mass thab/(2) acts as a multiplica-
tive factor for the coupling. Thus the choice Qfis crucial.
3#d, (w/Q)%(c/mw?)? We tried then to find a domain @ls, within which, changes

Cpt=§ Mo 1+ (w/Q)(C/mwz)z' (34) of the value of() would not lead to a meaningful modifica-

tion of the dependence of the effective potential and mass on

One can easily see that, independently of the generatdhe coupling constant. This would give a region which would
frequency(}, as the coupling strengtb goes to zero, the be the most independent of the choice(bfand which de-
effective Hamiltonians revert back to the reaction part of thepends almost exclusively on the coupling constant. In order
original ones. This is a desired consistency property. One cato do so, we analyzed the curvature of the potential, the
also see that as a consequence of the linear coupling and theight of the barrier and the mass as a function of the gen-
particular choice of generator states the effective mass is therator frequency and the coupling constanaind we chose
same for the cubicdissociation and for the quartic potential () as one of the already mentioned natural frequeneiess,
(proton transfex In the two cases, the factps(c?’mw?)])  @parierr depending on which one was in this méststable
in the quadratic coefficient can be eliminated if the originalregion.

Hamiltonian has the renormalization ted(q). This analysis lead us to the following choices:

The generator frequendy is a free parameter, however, @
rather than fit, we decided to choose the parameters based on
an educated guess. This will be discussed with the present?ﬁ)
tion of the results for each case.

Since the effective mass is common for the two cases In Figs. 1 and 2 we have the mass enhancement factor
above, we can make some remarks valid for both cases. THer the fast and slow bath cases as a function of the coupling
mass is, as expected, renormalized by the presence of tigenstant. We notice that for the slow bath case the enhance-
other degree of freedom. Thus the effective mass has ament can be quite large. A typical dependence of the effec-
enhancement factor which depends on the coupling constarttye potential on the coupling is also depicted in Fig. 3.

c, on the parameters of the oscillator and also on the ratio We now compare the GCM results with numerically
(w/Q) between the generator frequency and the oscillatogenerated exact results and with the basis set métfod.
frequency. It doesiot depend on the position, nevertheless  First, for the slow bath case, the GCM results are com-
the enhancement factor can be quite large in some cases. pared to the ones obtained with the effective system Hamil-

Now we shall deal in detail with each case to present andonian (ESH) of the basis set method of Makri and Miller
discuss our results. (see Fig. 4. We can see that the GCM results are better even

1 1 c? , 1.,
- EaO+EW—cpt q +§doq proton-transfer.

for the fast bath casew(> wyarie) the best choice is

for the slow bath cased< wparied IS = Wparrier-
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FIG. 3. Typical behavior of the effective potential for some values of the
FIG. 1. Mass enhancement factey, as a function of the square of the coupling constant.

coupling constant?, for an oscillator frequency=2980 cm ! and a gen-
erator frequency) = w.

which depends explicitly on the generator frequeficyand
is quite similar to one of the quadratic corrections in the
when compared to the second order corrections. proton transfer case.

In the fast bath case the GCM and the second order The behavior of the effective potential with respect to
corrections for the basis set method cannot be distinguishegie coupling can be seen in Fig. 7, where it becomes clear
from the exact resultsee Fig. 3. that the effective potential can be extremely sensitive to the

It is worth mentioning that if we had considered only the coupling constant, which makes the choice of the generator
diagonal part of the GCM kernel we would have a treatmenfrequency much more delicat® Following the same basic
equivalent to the self-consistent field method. For the sake ddrguments of the previous section we again examined the
completeness we also compare our results to the ones oBehavior of the barrier height, curvature of the potential and
tained by the multiconfiguration time dependent self-mass as a function of the coupling constant and the generator
consistent field presented by the same auth@®&. 6). In  frequency. In this case the strong sensitivity of the potential
this case we use the second set of parameters for the potgad us to chose as a first hifit= w, which seems to be a
tial. The comparison favors again the GCM calculations.  good zero order choice. In Fig. 8 we have results obtained
with this choice. The results are compared to the one ob-
tained by the Makri and Miller semiclassical tunneling
modef and the exact one. The results are good for small
values of the coupling constant, but we can see that they start

V. DISSOCIATION PROBLEM

The effective potential displays a very familiar quadratic
correction— (c?/k,) x?> which would disappear i (q) were
present. There is also a more complicated linear correction,

0.0 " T T T T T T T T T
e, e ESH with n=0
» GCM
, , . . 05 RN \\\ Exact results 7]
L N N ESH 2nd order pert. th. |
30t 1 10f .
~ AN e
25} - o T S e
a . .
2
£ = 20} \\\ N e
Saof . L NG
25 o 4
151 T 3.0 1 1 1 N 1 N 1
0.000 0.002 0.004 0.006 0.008 0.010
2 2
0 | . . ‘ ¢ (mdyn/A)
0.000 0.002 0.004 0.006 0.008 0.010 . . . .
R , FIG. 4. The tunneling splitting as function of the square coupling dor
¢“(mdyna/A) =298 cml, O=wy,me. The barrier height is 7.8 kcal/mol and the

minima position are+0.53 A. The GCM result$*) are compared to the
exact resultgsolid line), the zero order resul{glashed lingand the second
order perturbation theorfdot-dashed lineobtained from the effective sys-
tem Hamiltonian(ESH) of the basis set method in Ref. 1.

FIG. 2. Mass enhancement factef, as a function of the square of the
coupling constant?, for an oscillator frequency =298 cnt! and a gen-
erator frequency) = wparier-
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0.00 T T T T v T T T v T 9
*  GCM 1 | =0
001 - . Exact results
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w ~ —_—
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FIG. 7. Typical behavior of the cubic effective potential as a function of the
FIG. 5. The tunneling splitting as function of the square couplinggor ~ Sduare of the coupling constant for the dissociation case.
=2980 cm!, Q=w. The barrier height is 7.8 kcal/mol and the minima
position are+0.53 A. The GCM resultg*) are compared to the exact
results(solid line), the zero order result&lashed ling obtained from the
effective system Hamiltonia(ESH) of the basis set method in Ref. 1. The ko— (c?/ag) 1— (c®/agmw?)
second order perturbation theory of the basis set method gives results that = m —w £(C,w)
cannot be distinguished from the GCM and exact ones. eff mi=»

(35

There is a good improvement with this prescription as it can
be seen in Fig. 9. We stress the excellent results obtained in

. . the small and intermediary regions. We also point out that
2 R 2
to drift apart for values ot~ around 0.0005mdynl) . This this “intermedia ry rzgions” present a tunnsling rate around

featur_e seems to come from th_e strong dependence .Of t% 000 times larger than the ones in the small coupling re-
effective potential with the coupling constant. An analysis of

) . . ion. he word “intermediary” i matter of physical
the main features of the effective potential showed that forg on. So, the word "intermediary™ is, as a matter of physica

. ) . N ) effects, a bit misleading, and the agreement achieved by the
high coupling, the effective Hamiltonian no longer displays & nethod is remarkable.

region stable against variations Of. We try then to intro- . One of the interesting features of the effective Hamil-
duce a generator frequency depending itself on the COUpIInﬁ)nian is the resemblance with the one obtained by Brink

fr? nisr:;c;iml' I?]e?péngg_ln m;]n(?Nthat Indtrhe SITal\INcotlrJipl('jn? :gg:?net al,?® with a completely different approach. In fact, both
€ al ChoiCeir=w SNOWS good results, we tMea to 10en-, . i4entical in the small coupling region and in the limit

tlfyer t?snar:(iﬂormalldzreili). tOPns]er]:/![?]g t?f Fiif\?senct?en%f Ithi > wparier- 1IN this very region, Brinket al. analyze the
C? et(;] omo enﬂui ?ncnff tor v?/e fc c pt%ef ﬁ 3\”” ontaneous fission 6f°U, and obtain very reasonable re-
aiso Ihe mass enhancement tactor, we propose the 1oflo Its. Due to the completely different approaches it is diffi-

correction: . )
cult to compare the higher order corrections from the formal
point of view, however, it seems to have a similar behavior.
The relationship between the two methods might be better
0.00 . . T - . . discussed in a subsequent paper.
oos| x  GOM J
Exact results
R e MC-TDSCF | 2.0 T T
-0.10 | i
— N ] o SCM
|-|<J -0.15 F ‘ i 15F --%--GCM o b
w ) Exact results
2 @
2 020 —~
S £ tor .
-0.25 | E = O X -— X
JEPRSE S *
05| X :
-0.30 | E Jr
n 1 n 1 n 1 n I -
0.00 0.04 0.08 0.12 0.16 0.0 L N
Cz (mdyn//-\)2 0.0000 0.0005 0.0010 0.0015

¢ (mdyn/A)®
FIG. 6. The GCM tunneling splitting is compared to the results obtained
with the multiconfiguration time dependent self-consistent fi&lf. 2 and FIG. 8. The GCM results, witlf) = w, for the log of decay rat& normal-
the exact results. In this case, the barrier height is 6.3 kcal/mol and thézed by the decoupledc0) decay ratel, are compared to the exact and
frequency at the local minima is 1530 ch The frequency of the bath  semiclassical methotSCM) results(Ref. 3. The barrier height is 7.4 kcal/
mode is 2980 cm’. mol and the local maximum occurs at 0.71 A.
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2.0 y T y T y coupling constant. In this case, a new choice of generator
- SCM | states could improve the predictions, but, it is quite sure that
--%--GCM we will not have the simplicity of the analytical results we
15 Exact results o . have with coherent states. Nevertheless we can use the gen-
eralized generator coordinate method as proposed in Ref. 25.
_ ] In this case, to solve the quantum mechanical problem using
501.0 - . the nonorthogonal basis, we will need only low dimension
5 matrices. So we do not expect a large computational cost.
- i ] Such improvements are being presently investigated.
05k i So, the GCM, although based on a very heavy math-
I ematical foundationfone of the reasons of its accuracis
< I fairly simple to apply and it generates an analytical effective
0.0 . ! . ! . Hamiltonian which allows a rich problem analysis giving
0.0000 0.0005 0.0010 0.0015 extreme|y good results.
& (mdyn/A)?
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