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This paper investigates the usefulness of the generator coordinate method~GCM! for treating the
dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the
unimolecular dissociation and isomerization process~proton transfer! are analyzed. The GCM
results, presented in analytical form, provide a very good description and are compared to other
methods like the basis set method and multiconfiguration time dependent self-consistent field.
© 1998 American Institute of Physics.@S0021-9606~98!50934-8#
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I. INTRODUCTION

Tunneling on a multidimensional energy surface is
challenging problem in several areas of physics. In molec
physics, several studies1–12 demonstrated that purely one
dimensional calculations are not able to describe the isom
ization and dissociation processes, as far as the effect
vibrational modes are not negligible. In nuclear physics,
observed fusion cross section of heavy ions collisions at
ergies below the Coulomb barrier is much larger than
prediction of one-dimensional potential models, and can o
be explained by introducing the coupling to other degree
freedom~for a recent review see Ref. 16!.

In the literature, several papers1–3,12–20 have been de-
voted to the development of reliable methods to treat
tunneling coupled to other modes.

In this work we investigate the applicability of the ge
erator coordinate method~GCM! ~Ref. 21! to treat a tunnel-
ing degree of freedom coupled toN harmonic oscillators.
This investigation was largely stimulated by an old paper
Makri and Miller,1 where the authors have analyzed t
isomerization of the Malonaldehyde molecule using a ba
set methodology. We tackle the same problem using an
lytical version of the generator coordinate method.22–24 We
shall prove that it is possible to find an effective Hamiltoni
which takes into account the role of the other degrees
freedom. We will apply the method to systems which a
modeled by quartic and cubic potentials coupled to harmo
oscillators, although it can be applied to general Hamil
nians.

Section II gives a brief account of the generator coor
nate method and how to obtain the effective Hamiltonian
Sec. III we apply the method for two simple Hamiltonia
describing the proton transfer and dissociation proces

a!Electronic mail: fsc1ffs@fsc.ufsc.br
4020021-9606/98/109(10)/4028/7/$15.00
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The formal developments of this section were then applied
the isomerization process of the malonaldehyde molec
Sec. IV, and the unimolecular dissociation, Sec. V. In Se
IV and V the results are compared to the basis set meth1

semiclassical tunneling method3 and multi-configuration
time dependent self-consistent field.2 In Sec. VI we present
some final remarks.

II. THE GENERATOR COORDINATE METHOD

Let us consider a general Hamiltonian of the form

H~p,x,p,q!5H1~q,p!1H2~x,p!1V~x,q!, ~1!

where

H1~q,p!5
p2

2m
1U~q! ~2!

is related to the tunneling degree of freedom and

H2~x,p!5(
i 51

N

h~xi ,p i ! ~3!

is the Hamiltonian describing the intrinsic degrees of fre
dom. They are assumed as an ensemble of harmonic os
tors. The coupling term is of the form:

V~x,q!5(
i 51

N

v i~q!xi . ~4!

The main problem in the treatment of multidimensional tu
neling is how to reduce the system dynamics to the relev
degree of freedom and, at the same time, take into acc
the effects of the other degrees of freedom. The gener
coordinate method, originally derived to face the nucle
many-body problem, can be useful to define this redu
effective dynamics.

The crucial point in this method is how to define a
appropriate variational subspace where the relevant dyn
8 © 1998 American Institute of Physics
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 This a
ics can be realized. This is done by the introduction of
following ansatz for the system wave function~the Griffin-
Hill-Wheeler ansatz!,

C~q,x!5E f ~a,b1 ,b2 , . . . ,bN!uw~q,a!&

^ P i 51
N uf~xi ,b i !&da db1 , . . . ..,dbN , ~5!

whereuw(q,a)& is a generator state associated to the tunn
ing degree of freedom,uf(xi ,b i)& are generator states ass
ciated to the harmonic oscillators andf (a,b1 ,b2 . . . bN) is
the so-called weight function.

The ansatz above@Eq. ~5!# defines a variational wave
function. The generator states constitute a nonorthogona
sis. In some cases the variational subspace generated b
ansatz corresponds to the exact Hilbert space of the orig
problem. In this case the solution of the variational equat

d^CuHuC&

^CuC&
50 ~6!

leads to the exact solution, and the anzatz above can be
as just another representation of the initial problem. Ho
ever, this method is quite powerful when it is necessary
reduce the problem to some relevant degree of freedom
our specific case this should be done on physical grou
that is, on an educated guess.

In nuclear and molecular physics the usual picture of
tunneling energy surface is that the reaction coordinate or
fission ~fusion! degree of freedom, corresponds to two v
leys connected through a saddle point on a barrier. The
thogonal degrees of freedom, usually depicted as parab
with pronounced curvatures, are naturally taken as harm
oscillators. Within that framework we can suppose that
harmonic oscillators are kept along the path close to th
minimum energy states. Thus we can impose a minim
condition, along the path, for the orthogonal degrees of fr
dom:

db i
^w~q,a!u ^ ^P i 51

N f~xi ,b i !uHuw~q,a!&

^ uP i 51
N f~xi ,b i !&50. ~7!

The condition above defines a functional relation betwe
the b i anda and we can rewrite the anzatz in Eq.~5! as:

uC~q,x!&5E f ~a!ua&da, ~8!

where

ua&5uw~q,a!& ^ uP i 51
N f~xi ,b i~a!&. ~9!

The introduction of Eq.~8! in the variational equation
~6! leads to the well known Griffin-Hill Wheeler equation,

E
2`

`

$^auHua8&2E^aua8&% f ~a8!da850. ~10!

As long as it is possible to define this variational spa
as a complete and closed subspace,23 the Griffin-Hill-
Wheeler problem is equivalent to the solution of the Sch¨-
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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dinger equation for the projected Hamiltonian onto the var
tional space. Further on we call this subspace as the effec
space.

The projection operator can be obtained by diagona
ing the overlap kernel of the generator states,^aua8&,

E
2`

`

^aua8&uk~a8!da852plkuk~a!, ~11!

whereuk(a) is the eigenfunction andlk the eigenvalue. This
allows us to define the momentum representation of the
fective space with basis vectors as

uk)5
1

Ap
E da

uk~a!ua&

Alk

, ~12!

where we use round bras and kets for states in the effec
space.~For details see Refs. 23 and 24!.

The effective Hamiltonian in the momentum represen
tion is

Heff5ŜHŜ†, ~13!

where the projection operatorŜ is

Ŝ5E dkuk)~ku. ~14!

Heff can also be written as a function of the effective m
mentum and position operators~see details in Ref. 23!:

Heff5ŜS (
m50

`
1

2m
: P̃mH̃ ~m!~Q̃!: D Ŝ†, ~15!

where the ordering :. . . . : is

~16!

and

~17!

where $P̃,Q̃% are the canonical operators in the effecti
subspace such that

P̃uk)5kuk), ~18!

Q̃uk)52 i ]/]kuk), ~19!

Q̃ux)5xux). ~20!

We should stress that for analytical results it’s importa
to solve exactly the overlap eigenvalue problem in order
obtain a complete and closed representation of the effec
subspace. As it was noted elsewhere24 this is possible for any
overlap of the Hilbert-Schmidt-type. Nevertheless it could
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

1 Jan 2014 19:29:27



aw
a

d

rly

to

to

th
on
fa

he

re

r-

th

eter

onic
lete
xact.
ing:
n
set
n-
s of

iag-

we

e-
,

by
or-

y-

ent
i-
tes

non-
u-
er-
the
-
e

the
ing
and
set

n-

4030 J. Chem. Phys., Vol. 109, No. 10, 8 September 1998 de Souza Cruz, Ruzzi, and Schimdt

 This a
hard to find the solution in some practical cases. Such dr
backs can however be circumvented by a numerical appro
or a generalized Griffin-Hill-Wheeler anzatz.25

III. THE MODEL

Now we use our method to study a system-bath mo
which is well known in the literature. For theproton transfer
case it consists of a quartic double well potential linea
coupled to an harmonic oscillator and for thedissociation
case it is a cubic potential barrier coupled to the oscilla
That is:

H~x,q!5H re~q!1Hosc~x!1cxq ~21!

with

H re~q!5H P2

2m
1

1

2
aoq22

1

3
boq3 dissociation

P2

2m
2

1

2
aoq21

1

4
doq4 proton-transfer

~22!

and

Hosc~x!5
p2

2m
1

1

2
mv2x2. ~23!

For the sake of simplicity we shall restrict ourselves
the case of coupling to a single oscillator. As discussed
Ref. 1, a term

F~q!5
c2q2

2mv2
, ~24!

is sometimes introduced to guarantee that the height of
barrier in the original energy surface remains roughly c
stant with increasing value of the coupling constant. As
as we are interested in the comparison of our method
others presented in the literature, we will mention whet
this term is introduced or not.

To construct our generator states, we start from a di
product of two coherent states,26 ua& ^ ub&[ua,b&, related
respectively to the$q,x% degrees of freedom. That is:

ub&5exp@ba†2b* a#uf0&,

whereuf0& is the harmonic oscillator ground state with cha
acteristic widthA(\/2mv), and

ba†2b* a5Amv

\ S b2b*

A2
D x2

i

Am\v
S b1b*

A2
D p.

~25!

For the reaction degree of freedom, we have

ua&5exp@aA†2a* A#uw0&,

where

aA†2a* A5AmV

\ S a2a*

A2
D q2

i

Am\V
S a1a*

A2
D P

anduw0& is the harmonic oscillator ground state related to
pair $A,A†%. The width of the a coherent state is
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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A(\/2mV), whereV, calledgenerator frequency,is a free
parameter. The results will depend strongly on this param
and its choice will be discussed later.

The reasons to employ coherent states for the harm
oscillator is natural, because they do form an overcomp
basis and the variational space generated by them is e
For the reaction coordinate the reasons are the follow
first, a real parameter coherent state is a localized functio~a
Gaussian!, and as it was already noticed by the basis
approach1 it can provide a good description for barrier pe
etration problems; second, coherent states have a serie
useful analytical properties and they especially have a d
onalizableGaussian overlap.23

In order to obtain a one parameter generator state,
shall enforce the condition~7!:

]b^a,buHua,b&50,

which gives us

b52xa, ~26!

where

x5
c

\v
A \

mv
A \

mV
.

This minimization leads to the constraint relation b
tween the generator coordinatea andb, where we assumed
without loss of generality, thata is real. It was proved
elsewhere23 that the same effective space is generated
either complex or real parameter coherent states. It is imp
tant to notice that the generator statesua& constitute a non-
orthogonal basis. This nonorthogonality implies that the d
namics, given by the Griffin-Hill-Wheeler equation~GHW!
~10!, couples the intrinsic states corresponding to differ
points along the path~here defined by the generator coord
nate a). Hence, if one remembers that the coherent sta
corresponds to displaced harmonic oscillators states, the
diagonal terms of the GHW equation would lead to the co
pling between several harmonic oscillators levels. This p
mits us to consider that, even with the implementation of
minimum condition in Eq.~7!, the effective dynamics de
scribed by Eq.~10! take into account much more than th
average effect of the intrinsic harmonic oscillators along
path. Therefore it allows a better description of the coupl
dynamics and makes the difference between our method
others like the self-consistent field and even the basis
method.1,2

With the constraint relation~26! the ua,b& state can be
described by a single parameter,a, yielding ua,b&
[ua,b(a)&[ua) and the overlap function is

~aua8!5exp@2 1
2 ~11x2!~a2a8!2#. ~27!

This overlap can be easily diagonalized@Eq. ~11!# by a Fou-
rier transform giving the following eigenfunctions and eige
values:

uk~a!5exp@ ika#, ~28!

2plk5A 2p

11x2
expF2

1

2

k2

~11x2!
G . ~29!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
Now, using Eqs.~12!, ~14! and ~15! we obtain the effective
Hamiltonians,

Heff5
P2

2meff
1Veff~q!, ~30!

where

meff5m«m~c,V!,

Veff~q!

55 S 1

2
ao2

1

2

c2

mv2D q22
1

3
boq32cd q dissociation

2S 1

2
ao1

1

2

c2

mv2
2cptD q21

1

3
doq4 proton-transfer.

~31!

The effect of the coupling to the oscillator is present
the enhancement factor, defined as the ratio between th
fective mass and the mass itself,

«m~c,V!5
meff

m
5

@11 ~v/V!~c/mv2!2#2

11~v/V!2~c/mv2!2
, ~32!

and by terms modifying the potential which are characteri
by the coefficients

cd5
3

4

\bo

mv
~v/V!2~c/mv2!2/~11 ~v/V!~c/mv2!2 !,

~33!

cpt5
3

2

\do

mv

~v/V!2~c/mv2!2

11 ~v/V!~c/mv2!2
. ~34!

One can easily see that, independently of the gener
frequencyV, as the coupling strengthc goes to zero, the
effective Hamiltonians revert back to the reaction part of
original ones. This is a desired consistency property. One
also see that as a consequence of the linear coupling an
particular choice of generator states the effective mass is
same for the cubic~dissociation! and for the quartic potentia

~proton transfer!. In the two cases, the factor@ 1
2(c

2/mv2)#)
in the quadratic coefficient can be eliminated if the origin
Hamiltonian has the renormalization termF(q).

The generator frequencyV is a free parameter, howeve
rather than fit, we decided to choose the parameters base
an educated guess. This will be discussed with the prese
tion of the results for each case.

Since the effective mass is common for the two ca
above, we can make some remarks valid for both cases.
mass is, as expected, renormalized by the presence o
other degree of freedom. Thus the effective mass has
enhancement factor which depends on the coupling cons
c, on the parameters of the oscillator and also on the r
(v/V) between the generator frequency and the oscilla
frequency. It doesnot depend on the position, neverthele
the enhancement factor can be quite large in some case

Now we shall deal in detail with each case to present
discuss our results.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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IV. PROTON TRANSFER CASE: SYMMETRIC
DOUBLE WELL POTENTIAL

We applied the method to the proton or H-transfer p
cess in the malonaldehyde molecule which is fairly w
modeled by the double well potential coupled linearly to o
harmonic oscillator. We use two different sets of paramet

In the first case,a0 andd0 were chosen so that the ba
rier height is 7.8 kcal/mol, and the local minima are localiz
at 60.53 Å. We consider two bath frequencies: a slowv
5298 cm21 and a fast onev52982 cm21. Those values
were the same as used in Ref. 1 and this choice allows u
compare our results to the results obtained by the Basis
method. In this case the renormalization termF(q) is
present.

In order to compare our results with a time depend
self-consistent field approximation, we also consider anot
set of values fora0 and d0 such that the frequency at th
local minima is 1530 cm21 and the barrier height is 6.3
kcal/mol.2

Our first task is to choose the generator frequencyV. In
the double well case we have three ‘‘natural’’ frequenci
the oscillator frequency, the bottom of the well frequen
and the barrier frequency~associated to the curvature at th
barrier!. Our intention was to choose among those natu
frequencies a value forV. As far as we are interested in th
tunneling process in the presence of the oscillator, we
special attention to the oscillator frequencyv and the barrier
frequencyvbarrier. It can be seen in the expressions for t
effective potential and mass that (v/V) acts as a multiplica-
tive factor for the coupling. Thus the choice ofV is crucial.
We tried then to find a domain ofVs, within which, changes
of the value ofV would not lead to a meaningful modifica
tion of the dependence of the effective potential and mass
the coupling constant. This would give a region which wou
be the most independent of the choice ofV and which de-
pends almost exclusively on the coupling constant. In or
to do so, we analyzed the curvature of the potential,
height of the barrier and the mass as a function of the g
erator frequency and the coupling constantc, and we chose
V as one of the already mentioned natural frequencies,v or
vbarrier, depending on which one was in this mostV stable
region.

This analysis lead us to the following choices:

~a! for the fast bath case (v.vbarrier) the best choice is
V5v;

~b! for the slow bath case (v,vbarrier) is V5vbarrier.

In Figs. 1 and 2 we have the mass enhancement fa
for the fast and slow bath cases as a function of the coup
constant. We notice that for the slow bath case the enha
ment can be quite large. A typical dependence of the eff
tive potential on the coupling is also depicted in Fig. 3.

We now compare the GCM results with numerica
generated exact results and with the basis set method.1,27

First, for the slow bath case, the GCM results are co
pared to the ones obtained with the effective system Ham
tonian ~ESH! of the basis set method of Makri and Mille
~see Fig. 4!. We can see that the GCM results are better e
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
when compared to the second order corrections.
In the fast bath case the GCM and the second or

corrections for the basis set method cannot be distinguis
from the exact result~see Fig. 5!.

It is worth mentioning that if we had considered only t
diagonal part of the GCM kernel we would have a treatm
equivalent to the self-consistent field method. For the sak
completeness we also compare our results to the ones
tained by the multiconfiguration time dependent se
consistent field presented by the same authors2 ~Fig. 6!. In
this case we use the second set of parameters for the p
tial. The comparison favors again the GCM calculations.

V. DISSOCIATION PROBLEM

The effective potential displays a very familiar quadra
correction2 (c2/ko) x2 which would disappear ifF(q) were
present. There is also a more complicated linear correct

FIG. 1. Mass enhancement factor«m as a function of the square of th
coupling constantc2, for an oscillator frequencyv52980 cm21 and a gen-
erator frequencyV5v.

FIG. 2. Mass enhancement factor«m as a function of the square of th
coupling constantc2, for an oscillator frequencyv5298 cm21 and a gen-
erator frequencyV5vbarrier.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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which depends explicitly on the generator frequencyV, and
is quite similar to one of the quadratic corrections in t
proton transfer case.

The behavior of the effective potential with respect
the coupling can be seen in Fig. 7, where it becomes c
that the effective potential can be extremely sensitive to
coupling constant, which makes the choice of the gener
frequency much more delicate.28 Following the same basic
arguments of the previous section we again examined
behavior of the barrier height, curvature of the potential a
mass as a function of the coupling constant and the gene
frequency. In this case the strong sensitivity of the poten
led us to chose as a first hintV5v, which seems to be a
good zero order choice. In Fig. 8 we have results obtai
with this choice. The results are compared to the one
tained by the Makri and Miller semiclassical tunnelin
model3 and the exact one. The results are good for sm
values of the coupling constant, but we can see that they

FIG. 3. Typical behavior of the effective potential for some values of
coupling constant.

FIG. 4. The tunneling splitting as function of the square coupling forv
5298 cm21, V5vbarrier. The barrier height is 7.8 kcal/mol and th
minima position are60.53 Å. The GCM results~* ! are compared to the
exact results~solid line!, the zero order results~dashed line! and the second
order perturbation theory~dot-dashed line! obtained from the effective sys
tem Hamiltonian~ESH! of the basis set method in Ref. 1.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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to drift apart for values ofc2 around 0.0005~mdyn/!Å 2. This
feature seems to come from the strong dependence o
effective potential with the coupling constant. An analysis
the main features of the effective potential showed that
high coupling, the effective Hamiltonian no longer display
region stable against variations ofV. We try then to intro-
duce a generator frequency depending itself on the coup
constant. Keeping in mind that in the small coupling regi
the initial choiceV5v shows good results, we tried to iden
tify V as a renormalizedv. Observing the presence of th
correction on the quadratic term of the effective potential a
also the mass enhancement factor, we propose the follow
correction:

FIG. 5. The tunneling splitting as function of the square coupling forv
52980 cm21, V5v. The barrier height is 7.8 kcal/mol and the minim
position are60.53 Å. The GCM results~* ! are compared to the exac
results~solid line!, the zero order results~dashed line! obtained from the
effective system Hamiltonian~ESH! of the basis set method in Ref. 1. Th
second order perturbation theory of the basis set method gives results
cannot be distinguished from the GCM and exact ones.

FIG. 6. The GCM tunneling splitting is compared to the results obtai
with the multiconfiguration time dependent self-consistent field~Ref. 2! and
the exact results. In this case, the barrier height is 6.3 kcal/mol and
frequency at the local minima is 1530 cm21. The frequency of the bath
mode is 2980 cm21.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

200.145.3.79 On: Tue, 2
he
f
r

g

d
ng

V5Ak02 ~c2/a0!

meff
5vA12 ~c2/a0mv2!

«m~c,v!
. ~35!

There is a good improvement with this prescription as it c
be seen in Fig. 9. We stress the excellent results obtaine
the small and intermediary regions. We also point out t
this ‘‘intermediary regions’’ present a tunneling rate arou
10 000 times larger than the ones in the small coupling
gion. So, the word ‘‘intermediary’’ is, as a matter of physic
effects, a bit misleading, and the agreement achieved by
method is remarkable.

One of the interesting features of the effective Ham
tonian is the resemblance with the one obtained by Br
et al.,29 with a completely different approach. In fact, bo
are identical in the small coupling region and in the lim
v@vbarrier. In this very region, Brinket al. analyze the
spontaneous fission of239U, and obtain very reasonable re
sults. Due to the completely different approaches it is di
cult to compare the higher order corrections from the form
point of view, however, it seems to have a similar behavi
The relationship between the two methods might be be
discussed in a subsequent paper.

hat

d

e

FIG. 7. Typical behavior of the cubic effective potential as a function of
square of the coupling constant for the dissociation case.

FIG. 8. The GCM results, withV5v, for the log of decay rateT normal-
ized by the decoupled (c50) decay rateT0 are compared to the exact an
semiclassical method~SCM! results~Ref. 3!. The barrier height is 7.4 kcal/
mol and the local maximum occurs at 0.71 Å.
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 This a
VI. CONCLUDING REMARKS

As seen in all results shown, the GCM provided a go
description for the system-bath model. In the proton-trans
process the results are virtually exact, and no further cor
tions on the generator frequencies were needed. In the d
ciation like case the effective Hamiltonian is consistent w
the one obtained with a semiclassical approximation
Brink et al.29 for a nuclear case, and the molecular dissoc
tion rates predicted are quite as good as the ones provide
the semiclassical tunneling model.

In this work, the main results were obtained analytica
which allowed us to analyze in a more transparent way
with no numerical cost the role of the coupling to other d
grees of freedom. As an example, we should mention
role of the mass enhancement factor. The presence of
factor which comes naturally from the method turns out
be, in some cases, more important than the modification
the one-dimensional effective potential. This suggests
sometimes the intrinsic degrees of freedom can affect
system more on its inertia than on its potential. The role
the mass renormalization is also stressed in some pape20

Furthermore the analytical form of the effective Hamiltoni
gave us means to choose the generator frequency on phy
grounds rather than fitting.

The GCM is a variational method and the accuracy
the results depends on a good choice of the generator st
The fact that our effective subspace~variational space! is
virtually the correct one for the isomerization problem sho
that coherent states do provide a good ansatz for this typ
problem. In the dissociation problem we have a good ag
ment for the small coupling region, however, a renormali
tion of the frequency was required for large values of

FIG. 9. The same as the previous figure using the normalized gene
frequency@see Eq.~35!#.
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coupling constant. In this case, a new choice of gener
states could improve the predictions, but, it is quite sure t
we will not have the simplicity of the analytical results w
have with coherent states. Nevertheless we can use the
eralized generator coordinate method as proposed in Ref
In this case, to solve the quantum mechanical problem us
the nonorthogonal basis, we will need only low dimensi
matrices. So we do not expect a large computational c
Such improvements are being presently investigated.

So, the GCM, although based on a very heavy ma
ematical foundation~one of the reasons of its accuracy!, is
fairly simple to apply and it generates an analytical effect
Hamiltonian which allows a rich problem analysis givin
extremely good results.
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