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Abstract We discuss a way to obtain information about
higher dimensions from observations by studying a brane-
based spherically symmetric solution. The three classic tests
of General Relativity are analyzed in detail: the perihelion
shift of the planet Mercury, the deflection of light by the
Sun, and the gravitational redshift of atomic spectral lines.
The braneworld version of these tests exhibits an additional
parameter b related to the fifth-coordinate. This constant b
can be constrained by comparison with observational data
for massive and massless particles.

1 Introduction

Braneworld models have attracted considerable attention of
the scientific community since the outstanding works by Ran-
dall and Sundrum [1,2]. The possibilities raised in such a
framework have been extensively explored since then. In fact,
from particle physics to cosmology, a plethora of braneworld
models were investigated. In particular, the idea of standard
model fields living only on the brane, a necessity in [1], was
rapidly overcome [3].

At least from the gravitational point of view, the very idea
behind braneworld models rests upon our belief that at high
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enough energies, General Relativity (GR) shall be at least
corrected. In this vein, the new scenario provided by the
braneworld picture has served as an interesting framework to
cosmologists [4–8]. Again, this time within cosmology, from
inflation to large scale consequences, the new possibilities for
phenomenology provided by the braneworld paradigm have
been extensively investigated (for a broad review, see [9]). An
important point to be stressed, however, is that even far below
high energy scales (which points to the transition between
classical and quantum gravity) at Solar System size, there
are interesting gravitational effects whose eventual modifi-
cations arising from the braneworld that can be compared
with experiments.

The aim of this work is to explore classic tests of GR in a
spherically symmetric four-dimensional solution embedded
into a five-dimensional space. We use the metric

ds2 = −
(

1 − 2m

r̄

)
(dx̄4)2 + dr̄2(

1 − 2m
r̄

)
+ r̄2dθ̄2 + r̄2 sin2 θ̄dϕ̄2 + (dx̄5)2, (1)

where x̄5 stands for the extra dimension. Let us make a few
remarks about this expression. As usual, this line element
is obtained by the Schwarzschild four-dimensional solution
embedded into the extra dimension in the sense that at each
x̄5 fixed slice we have the standard spherically symmet-
ric solution. Obviously, this line element can be related to
the so-called black-string [10]. Nevertheless it should be
stressed that the solution presented in Eq. (1) is not nec-
essarily related to the black-string, i.e., the four-dimensional
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spherically symmetric metric need not be related to a black
hole. In fact, here we shall set up the mass parameter to
be far below the value necessary for a black-hole solution,
and investigate how the embedding of the solution into the
extra-dimensional scenario can be related to the classic tests
performed in GR.

Let us point out that the classical tests of General Rela-
tivity have been examined for various spherically symmetric
static vacuum solutions of braneworld models in Ref. [11].
Therein, the authors exploit the Gauss–Codazzi approach in
order to find corrections of the GR results by embedding the
brane into the bulk. This must be accomplished by means
of the Israel–Darmois junction conditions, which are valid
only for singular branes, that is, if the brane is infinitely
thin. This can be observed from Eq. (7) in Ref. [11]. The
constraints are imposed over the terms (Eμν in Eq. (17) of
[12]) of the five-dimensional Weyl tensor that carry infor-
mation about the gravitational field outside the brane. Thus
the main difference between the present study and Ref. [11]
is that they deal with singular branes whereas we consider
non-singular, or thick, branes [13]. Throughout the paper,
branes will be understood in the sense that they are not nec-
essarily singular. Note also that in Section 4.1 of Ref. [11],
the authors claim that they obtain a DMPR-type solution
(see Ref. [14]), which is the simplest solution for a spher-
ically symmetric vacuum solution; this, too, does not con-
tradict our results, since their results were found for singu-
lar branes, whereas our solution is a five-dimensional non-
singular, non-spherically symmetric brane solution (only the
four-dimensional section of our solution is spherically sym-
metric).

As we shall see, an additional parameter related to the
extra dimension can be constrained by these tests in a quite
compatible way for both, massive and massless test particles
cases. We shall emphasize that in the context of universal
extra dimensions [3], the fields must not be trapped on the
brane but, instead, they are allowed to travel along the hole
bulk. However, the extra dimension experienced by the fields
shall be small (not to contradict 1/r2 deviations of Newton’s
law [15] in the case of gravitational experiments, and some
key collider experiments [16]). Therefore the experimental
boundaries applied in this work are used in order to make
feasible an universal extra dimension from the point of view
of classic Solar System tests.

This paper is structured as follows: after expressing the
brane-based spherically symmetric solution in light-cone
coordinates, predictions of the solution are confronted with
three classic tests of GR in Sect. 2. In Sect. 2.1, we find that
the solution describes the perihelion shift of Mercury as does
four-dimensional Schwarzschild solution. In Sect. 2.2, we
observe that the solution predicts the deflection of light rays
by massive bodies like our Sun. In Sect. 2.3, we obtain a sim-
ilar result for the gravitational shift of atomic spectral lines.

The results of these tests depend on an additional parameter
b (see Eq. (15)), which is related to the fifth-coordinate. This
constant b can be constrained by comparing with observa-
tional data and in Sect. 2.3, the result is interpreted via the
uncertainty relations along the extra dimension. Section 3
contains some concluding remarks.

2 Classic tests

We consider a light-cone type transformation in spherical
coordinates,

r = r̄ , θ = θ̄ , ϕ = ϕ̄, x4 = x̄4 + x̄5

√
2

, x5 = x̄4 − x̄5

√
2

.

(2)

We shall recast the brane-based spherically symmetric solu-
tion in an appropriate way that suits our purpose. Hence when
expressed in these coordinates, Eq. (1) becomes

ds2 = dr2

1 − 2m
r

+ r2dθ2 + r2 sin2 θdϕ2 + m

r

(
dx4

)2

+m

r

(
dx5

)2 + 2
(
−1 + m

r

)
dx4dx5. (3)

This line element describes the invariant interval on the
curved manifold in which the motion of particles and light
rays will take place. In the next section, we shall study these
aspects in order to test the brane-based spherically symmetric
solution.

2.1 Planetary motion

The motion of test particles is described by the geodesic
equations,

d2xμ

ds2 + �μρν
dxρ

ds

dxν

ds
= 0.

In order to find solutions, this equation is written as

d2r

ds2 − m

r2

1(
1 − 2m

r

)
(

dr

ds

)2

−
(

1 − 2m

r

)
r

(
dθ

ds

)2

−
(

1 − 2m

r

)
r sin2 θ

(
dϕ

ds

)2

+ m

2r2

(
1 − 2m

r

)(
dx4

ds
+ dx5

ds

)2

= 0, (4)

d2θ

ds2 + 2

r

dr

ds

dθ

ds
− sin θ cos θ

(
dϕ

ds

)2

= 0, (5)

d2ϕ

ds2 + 2

r

dr

ds

dϕ

ds
+ 2 cot θ

dθ

ds

dϕ

ds
= 0, (6)
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d2x4

ds2 + m

r2

1(
1 − 2m

r

) dr

ds

(
dx4

ds
+ dx5

ds

)
= 0, (7)

d2x5

ds2 + m

r2

1(
1 − 2m

r

) dr

ds

(
dx4

ds
+ dx5

ds

)
= 0. (8)

We show that the motion lies in a plane as it happens in clas-
sical mechanics for a central force [17]. With an appropriate
orientation of the axis, we can choose the initial conditions
to be

θ0 = π

2
,

(
dθ

ds

)
0

= 0,

for some initial value of s. This choice implies that the motion
of the test particle starts at the ecliptic plane with zero ini-
tial azimuthal velocity. It means also that Eq. (5) gives a

zero initial elevation acceleration,
(

d2θ
ds2

)
0

= 0. Thus, at an

infinitesimal proper instant later, θ�s = π
2 and

( dθ
ds

)
�s = 0,

and similarly after another �s, and so on. As a result, the
motion is confined to the plane θ = π

2 .
The geodesic equations, Eqs. (4)–(8), are then simplified

to

d2r

ds2 − m

r2

1(
1 − 2m

r

)
(

dr

ds

)2

−
(

1 − 2m

r

)
r

(
dϕ

ds

)2

+1

2

m

r2

(
1 − 2m

r

)(
dx4

ds
+ dx5

ds

)2

= 0, (9)

d2ϕ

ds2 + 2

r

dr

ds

dϕ

ds
= 0, (10)

d2x4

ds2 + m

r2

1(
1 − 2m

r

) dr

ds

(
dx4

ds
+ dx5

ds

)
= 0, (11)

d2x5

ds2 + m

r2

1(
1 − 2m

r

) dr

ds

(
dx4

ds
+ dx5

ds

)
= 0. (12)

If we multiply Eq. (10) by r2, we find

r2 dϕ

ds
= h, (13)

where h is a constant related to the conserved angular
momentum of the particle. Similarly, by adding Eqs. (11)
and (12), and by multiplying the result by

(
1 − 2m

r

)
, we are

led to

dx4

ds
+ dx5

ds
= k(

1 − 2m
r

) , (14)

where k is another constant. By subtracting Eq. (11) from
Eq. (12), we find

dx4

ds
− dx5

ds
= b, (15)

where b is constant. From Eqs. (14) and (15), we obtain

dx4

ds
= 1

2

[
k(

1 − 2m
r

) + b

]
, (16)

and

dx5

ds
= 1

2

[
k(

1 − 2m
r

) − b

]
. (17)

In principle, both constants k and b could be associated to
the extra dimension. However, as will be seen, the constant
k does not contribute to the orbital equation obtained below.

By substituting Eqs. (13) and (14) into Eq. (9), it follows
that

d2r

ds2 − m

r2

1(
1 − 2m

r

)
(

dr

ds

)2

−
(

1 − 2m

r

)
h2

r3 + 1

2

m

r2

k2(
1 − 2m

r

) = 0.

As in the classic Kepler problem, we can simplify the inte-
gration processes by considering r as a function of ϕ instead
of s. If we change the variable r to

u = 1

r
,

it is possible to rewrite the last differential equation as

d2u

dϕ2 + m

(1 − 2mu)

(
du

dϕ

)2

+ (1 − 2mu) u − 1

2

k2

h2

m

(1 − 2mu)
= 0. (18)

The term proportional to
(

du
dϕ

)2
can be expressed in another

form. For this, we use the constraint

gμν
dxμ

ds

dxν

ds
= −1, (19)

which leads to

(
du

dϕ

)2

+ (1 − 2mu)

[
u2 + 1

h2

(
1 + b2

2

)]
− 1

2

k2

h2 = 0.

(20)

By inserting Eq. (20) into Eq. (18), we find the orbital equa-
tion,

d2u

dϕ2 + u − m

h2 − 3mu2 − m

h2

b2

2
= 0. (21)
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The first four terms are the usual ones obtained in the stan-
dard four-dimensional GR. The extra term should provide
corrections related to the additional dimension.

Let us make an important remark concerning large dis-
tances. If this case is considered then the terms proportional
to u2 in Eq. (21) should be neglected, thus

d2u

dϕ2 + u − m

h2 − m

h2

b2

2
= 0 . (22)

The first three terms are the usual terms obtained by New-
tonian gravitation. The additional term, proportional to b2,
is open for interpretation. If agreement with measurements
are to be obtained, then either b should be negligibly small
(which would leave us with the usual GR result) or b should
be included in a renormalized value of m. In Sect. 2.2 we
shall use b � 1.

2.1.1 The perihelion shift

Let us rewrite Eq. (21) as follows:

d2u

dϕ2 + u = m

h̄2
+ 3mu2, (23)

with

1

h̄2
= 1

h2

(
1 + b2

2

)
. (24)

Formally the orbital equation is exactly as predicted by GR,
the only difference being the redefinition h → h̄. Then
we know beforehand that the solution in question will pre-
dict a perihelion shift for the orbit of the planets consistent
with GR.

The usual procedure is to obtain a solution of Eq. (23)
through an iterative procedure taking u � u(0) + u(1) [24].
The zero-order is the unperturbed solution of Eq. (22), or
Eq. (23) with 3mu2 = 0. It is utilized as a source term for
the differential equation of u(1), i.e. we shall write 3mu2 =
3m

(
u(0)

)2
. The integration constants are the eccentricity of

the orbit e and an arbitrary initial value ϕ0 for the azimuthal
angle. The constant e is related to the major axis a = rmax

by

a = L

1 − e2 , (25)

where

L = m

h̄2
(26)

is the semi-latus rectum of the orbit. We proceed as in GR
by considering orbits of small eccentricity (like the ones of

Mercury) and find that the perihelion, after a full revolution,
shifts by

�ϕ0 = 6π
m2

h̄2
= 6π

m

L
= 6π

GM

c2a
(
1 − e2

) . (27)

2.1.2 Numerical analysis for the planet Mercury

Here, the quantities of interest are expressed in terms of
orbital parameters of the planet under consideration and the
geometrical mass of the Sun. Let us consider the planet Mer-
cury, with the following orbital data [18]:

a = 0.38709893 AU = 57.909 175 × 106 km,

e = 0.20563069.

The numerical value of the geometrical mass [19] of the Sun
is

m = GMSun

c2 = 1.4766250385 (1) km. (28)

Hence the value of L for Mercury is

L =
(

1 − e2
)

a = 55.460545 × 106 km

and the perihelion shift, from Eq. (27), is

�ϕ0 = 1.59748705π × 10−7 = 0.10351716′′.

This is an extremely small angle, but this is a secular effect
which increases with the number of revolutions. The shift
above is observed in a single Mercury-year; which corre-
sponds to 0.24084960 Earth-years [18]. So, the total shift
per Earth-year is

�ϕE = �ϕ0

0.24084960
= 0.4298′′.

If this effect is accumulated over 100 Earth-years, the total
shift is

�ϕ = 100 �ϕE = 42.98′′.

The conclusion is that the solution is quite similar to the
one obtained with GR Schwarzschild solution for a prediction
of the perihelion shift of Mercury. The difference is that we
can calculate the value for the constant h̄ while in GR we
obtain directly the value of h. The relative difference that
would be obtained using GR calculations and the one done
here is
∣∣∣∣�ϕGR −�ϕ

�ϕGR

∣∣∣∣ =
∣∣∣∣∣∣1 − 1(

1 + b2

2

)
∣∣∣∣∣∣ = b2

2

1(
1 + b2

2

) .

If we consider that “the excess shift is known to about 0.1
percent” [20], then this difference can be used to evaluate an
upper limit for the values of b for Mercury. In this case,
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|b| < 0.045. Of course this analysis does not take into
account the parametrized post-newtonian (PPN) corrections.
If this was done then the upper limit for b would certainly be
smaller.

In 1997, Tegmark argued that there exists no stable orbit
in a four-dimensional spacetime [21], giving rise to a sta-
bility problem for the spacetime described by Eq. (1). Let
us remark that the assertion of instability in the (4, 1) space
is based on Ref. [22], whose analysis is performed on an
n-dimensional spherically symmetric line element (see Eq.
(3.1) of Ref. [22]). Equation (1) is spherically symmetric
only in four dimensions. Within the context of non-singular
branes, the fields are localized around the brane core, but not
restricted to a four-dimensional slice of the spacetime. The
extra dimension being small (that is, the fields being restricted
to a small part of the extra dimension), there is no problem
with the motion through the bulk and no stability problems. If
the fifth dimension (or the fourth space-like dimension) were
infinite, then we would face instability problems. In our case,
we have a three-dimensional spherical elements plus a finite
fourth dimension. Then, rather than a 1/r2 potential (which
would be the case in a four-dimensional manifold with all
coordinates with an infinite domain), as mentioned in the last
paragraph of Ref. [21], we obtain a Yukawa-type potential,
which allows stable orbits (see Section 3.3 of Ref. [23]).

2.2 The deflection of light rays

Having investigated the parameter b for massive particles, let
us turn our attention to the massless case. Light rays consist
of massless test particles which travel at the speed of light.
In special relativity, the photons move along the light-cone,
following a null geodesic: ds2 = 0. We will keep ds2 = 0
for photon traveling in our choice of the background. So the
framework is a curved manifold described by the brane-based
spherically symmetric solution on which the relativistic par-
ticles will propagate. We feel justified in doing so because
the photons are test particles and, by definition, test particles
do not affect the geometry of the background spacetime.

By taking ds2 = 0 in the Schwarzschild-like spacetime,
Eq. (3), and dividing the result by dσ 2 (where σ is an appro-
priate invariant length), the line element becomes

1(
1 − 2m

r

)
(

dr

dσ

)2

+ r2
(

dθ

dσ

)2

+ r2 sin2 θ

(
dϕ

dσ

)2

+ m

r

(
dx4

dσ
+ dx5

dσ

)2

− 2
dx4

dσ

dx5

dσ
= 0. (29)

This constraint replaces the one given by Eq. (19) for mas-
sive particles. All the equations before Eq. (19) remain valid
for the propagation of light, provided that we replace the
invariant length s by σ ; that is,

d2r

dσ 2 − m

r2

1(
1 − 2m

r

)
(

dr

dσ

)2

−
(

1 − 2m

r

)
r sin2 θ

(
dϕ

dσ

)2

+1

2

m

r2

(
1 − 2m

r

)(
dx4

dσ
+ dx5

dσ

)2

= 0, (30)

dϕ

dσ
= h

r2 , (31)

dx4

dσ
= 1

2

[
k(

1 − 2m
r

) + b

]
, (32)

dx5

dσ
= 1

2

[
k(

1 − 2m
r

) − b

]
, (33)

where the initial conditions are θ0 = π/2 and
( dθ

dσ

)
0 = 0.

These conditions imply
(

d2θ
dσ 2

)
0

= 0 and restrict our study to

the plane θ = π/2. Therefore, Eq. (18) is still valid for the
light rays. However, Eq. (20) must be modified, since it was
obtained using ds2 �= 0 and gμνuμuν = −1, whereas here
we have ds2 = 0 and gμνuμuν = 0.

Let us rewrite the new constraint, Eq. (29), by substituting
θ = π/2, dθ/dσ = 0, together with Eqs. (31), (32), and (33):
(

dr

dσ

)2

+
(

1 − 2m

r

)(
b2

2
+ h2

r2

)
− k2

2
= 0.

Since

dr

dσ
= dr

dϕ

dϕ

dσ
= dr

dϕ

h

r2 ,

we have(
dr

dϕ

)2

+
[(

1 − 2m

r

)(
b2

2
+ h2

r2

)
− k2

2

]
r4

h2 = 0.

Now this equation is written as a function of u = 1/r :

(
du

dϕ

)2

+ (1 − 2mu)

[
u2 + 1

h2

b2

2

]
− 1

2

k2

h2 = 0, (34)

which differs only slightly from our previous constraint, Eq.
(20). By substituting Eq. (18) into Eq. (34), one obtains

d2u

dϕ2 + u − 3mu2 + m

h2

b2

2
= 0. (35)

If b � 0, we observe that Eq. (35) reduces to the equation
obtained in the standard four-dimensional GR leading to the
deflection of light rays. In analogy with the previous subsec-
tion, we first set 3mu2 = 0, in order to get an approximate
solution of Eq. (35) by an iterative procedure, starting with
a zero-order solution,

u(0) = 1

R
cos (ϕ − ϕ0)− m

h2

b2

2
, (36)
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where ϕ0 and R are integration constants. The interpretation
of R becomes clear when we set ϕ0 = 0, and introduce a
Cartesian coordinate system x = r cosϕ, y = r sin ϕ, with
origin O at the center of the massive body, which is the source
of the field.

With b = 0, we find that Eq. (36) reduces to R =
r cosϕ = x . This is a straight line parallel to the y-axis,
and R is the minimum distance between the light ray and the
origin O . In this case, u(0) does not bend the straight trajec-
tory of the photon and there is no deflection of light. However,
this is not the best possible approximation, and there is also
a b �= 0 contribution to be taken into account.

The first approximation to Eq. (35) leads to

d2u(1)

dϕ2 + u(1) = − m

h2

b2

2
+ 3m

(
u(0)

)2
,

which becomes

d2u(1)

dϕ2 + u(1) = − m

h2

b2

2
+ 3m

R2 cos2 ϕ

+ 3m3

h4

(
b4

4

)
− 6

m2

h2

(
b2

2

)
1

R
cosϕ.

It is to be noted that if we consider b � 1, then the factor of
b4 can be neglected, and we get

d2u(1)

dϕ2 + u(1) = 3m

R2 cos2 ϕ − m

h2

b2

2
− 6m

m

h2

b2

2

1

R
cosϕ.

A particular solution of this differential equation is

u(1) = m

R2

(
cos2 ϕ + 2 sin2 ϕ

)

− m

h2

b2

2
− 3m

m

h2

b2

2

1

R
ϕ sin ϕ.

Therefore,

u � u(0) + u(1),

= 1

R
cosϕ + m

R2

(
cos2 ϕ + 2 sin2 ϕ

)

− m

h2

b2

2

(
2 + 3m

R
ϕ sin ϕ

)
. (37)

Notice that if b = 0 this equation reduces to the expression
derived in GR [24]. This also means that all possible modifi-
cations predicted by the braneworld picture for the deflection
of light are present in the last term of Eq. (37).

If we multiply Eq. (37) by r R, we have

R = r cosϕ + m

R

(
r cos2 ϕ + 2r sin2 ϕ

)

− m

h2

b2

2
[(2R) r + (3mϕ) r sin ϕ] .

Then, in Cartesian coordinates, we have

x = R − m

R

(
x2 + 2y2√

x2 + y2

)

+ m

h2

b2

2

[
2R
√

x2 + y2 +
(

3m arctan
y

x

)
y

]
.

The second term on the r.h.s. gives the GR’s deviation of
the light ray from the straight line x = R. The last term is
the contribution arising from the extra dimension. In the limit
where y � x (which means great distances from the source),
we obtain the asymptotic solution:

x � R − m

R
(±2y)+ m

h2

b2

2

[
2R (±y)+

(
3m
π

2

)
y
]
,

since limα→+∞ (arctan α) = π/2. Thus, the two possible
values of x are

x+ = R + 2m

R
y + m

h2

b2

2

(
2R + 3π

2
m

)
y,

and

x− = R − 2m

R
y + m

h2

b2

2

(
−2R + 3π

2
m

)
y,

and the deflection is described by the angle

tan δ � x+ − x−
y

.

With tan δ = δ + O
(
δ3
)
, the deflection angle is

δ = 4m

R
+ (2m R)

b2

h2 = m

R

(
4 + 2

R2b2

h2

)
. (38)

A comparison with experimental data [25], where the
deflection for the case under consideration would be

δ = m

R
(3.99966 ± 0.00090) ,

shows that 2 R2b2

h2 is constrained to be 2 R2b2

h2 < 0.00056 ⇒∣∣ b
h

∣∣ < √
0.00056

2R2 . Using the value of radius of the Sun

[26], R = (696,342 ± 65) km, we find
∣∣ b

h

∣∣ < 2.403015 ×
10−8 km−1.

2.3 Gravitational redshift of spectral lines

Next we examine the shift of the atomic spectral lines in the
presence of a gravitational field, also called the gravitational
redshift.

From the line element (3) we define

dτ 2 = −1

2
ds2

as the time interval between two events with vanishing spatial
separation, dr = dθ = dϕ = 0. The minus sign is a result of
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our choice for the signature of the metric, and the factor 1/2 is
chosen in order to allow agreement with the four-dimensional
analog (Schwarzschild solution) when b = 0.

The time interval is related to the coordinate time differ-
ential, dx4, and the additional brane differential coordinate,
dx5, by

−2dτ 2 = m

r

(
dx4

)2 + m

r

(
dx5

)2 + 2
(
−1 + m

r

)
dx4dx5,

(39)

where the differentials are constrained by Eqs. (16) and (17):

dx4

dτ
= 1

2

[
k(

1 − 2m
r

) + b

]
,

dx5

dτ
= 1

2

[
k(

1 − 2m
r

) − b

]
,

so that

dx5 = dx4 − bdτ. (40)

It is to be noted that these are general equations; they are
valid for massive particles, but they have exactly the same
form as for massless particles, such as photons.

Now the time interval in Eq. (39) is expressed as

dτ 2=
(

1 − 2m

r

)(
dx4

)2− m

r

b2

2
dτ 2−

(
1 − 2m

r

)
bdx4dτ.

(41)

For the special case of b = 0, we have

dτ = +
√

1 − 2m

r
dx4, (42)

which is the expected Schwarzschild solution of GR (see Ref.
[24], Eq. (4.92)). The positive sign follows from the natural
assumption that the proper time τ should increase with the
time coordinate x4. With b �= 0, Eq. (41) leads to

(
1 + m

r

b2

2

)
dτ 2+

(
1 − 2m

r

)
b dx4dτ −

(
1 − 2m

r

)(
dx4

)2

= 0.

This is a second-order equation for dτ . By solving for dτ =
dτ
(
dx4

)
, we find

dτ =
− (1 − 2m

r

)
b dx4 ±

√(
1 − 2m

r

)2
b2
(
dx4

)2 + 4
(

1 + m
r

b2

2

) (
1 − 2m

r

) (
dx4

)2
2
(

1 + m
r

b2

2

) .

In order for this expression to agree with Eq. (42) for b = 0,
we must choose the plus sign in the r.h.s., which leads to

dτ =
⎡
⎢⎣
√

1 + b2

4 − b
2

√
1 − 2m

r(
1 + 2m

r
b2

4

)
⎤
⎥⎦
√

1 − 2m

r
dx4. (43)

This distinction between proper time and the time coordi-
nate gives rise to a difference between the proper frequency
and the coordinate frequency of a periodic phenomenon in
the curved spacetime, like the emission of electromagnetic
radiation by an atom. Consider the propagation of electro-
magnetic waves in the limit of geometrical optics. Then the
electromagnetic field can be written as f = a exp (iψ), with
a = a (x, t) the wave amplitude, and the phase ψ = ψ (x, t)
an eikonal function. Then the frequency of the wave can be
expressed as the derivative of ψ with respect to the time,
and one has a coordinate frequency, ω0 = ∂ψ

∂t , and a proper

frequency, ω = ∂ψ
∂τ

.
We callω1 the proper frequency of the wave emitted by an

atom at a point P1. At another point, P2, the observed proper
frequency will be different, say ω2, once the gravitational
field is not the same. They are related so that

ω2

ω1
=
(
∂ψ
∂τ

)
2(

∂ψ
∂τ

)
1

=
∂ψ
∂t

(
∂t
∂τ

)
2

∂ψ
∂t

(
∂t
∂τ

)
1

=
ω0

(
∂x4

∂τ

)
2

ω0

(
∂x4

∂τ

)
1

,

withω0 constant and where x4 is the time coordinate t . From
Eq. (43), we find

(
dx4

dτ

)
1

=
(

1 + 2m
r1

b2

4

)
√

1 + b2

4 − b
2

√
1 − 2m

r1

1√
1 − 2m

r1

and similarly for
(
dx4/dτ

)
2. Then the ratio of the frequencies

is

ω2

ω1
=
(
∂x4

∂τ

)
2(

∂x4

∂τ

)
1

=
(

1 + 2m
r2

b2

4

)
(

1 + 2m
r1

b2

4

)
(√

1 + b2

4 − b
2

√
1 − 2m

r1

)
(√

1 + b2

4 − b
2

√
1 − 2m

r2

)

×
√

1 − 2m
r1√

1 − 2m
r2

. (44)

This exact result can be approximated by taking into
account the fact that regular estimates assume r1 � r2, and
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that b is small. For instance, let us assume that the radi-
ation observed on Earth, at r = r2 ≈ 149.6 × 106 km,
was emitted at the surface of the Sun, at r = r1 =
R ≈ 696 km. Then the approximation r1 � r2 is cer-
tainly valid. Moreover, the quantity m/r1 is very small, since
m = 1.4766250385 (1) km, and the functions in Eq. (44) can
be approximated accordingly. Therefore, for m/r1 � 1 and
m/r2 � 1, the ratio of the frequencies is

ω2

ω1
�
(

1 + 2m

r2

b2

4

)(
1 − 2m

r1

b2

4

)
[√

1 + b2

4 − b
2

(
1 − m

r1

)]
[√

1 + b2

4 − b
2

(
1 − m

r2

)]

×
(

1 − m

r1

)(
1 + m

r2

)
.

If m/r2 is assumed near zero, then this ratio simplifies to

ω2

ω1
�
(

1 − 2m

r1

b2

4

)
[√

1 + b2

4 − b
2

(
1 − m

r1

)]
[√

1 + b2

4 − b
2

]

×
(

1 − m

r1

)
.

Furthermore, if b is also assumed to be very small, b << 1,
this equation becomes

ω2

ω1
� 1 − m

r1

(
1 − b

2

)
, (45)

so that

�ω

ω
= ω2 − ω1

ω1
= −m

R

(
1 − b

2

)
.

When b = 0, this result agrees with GR. The value predicted
by GR using the solar geometrical mass and radius used ear-
lier leads to a redshift of

∣∣�ω
ω

∣∣ = 2.120546 × 10−6. In a
velocity scale, i.e. converting this redshift as if it was due to
a Doppler effect, this redshift corresponds to v ≈ 636 m s−1.
The value estimated in Ref. [27] is 633 m s−1 with an uncer-
tainty �100 m s−1. If we consider this value we can fix
an upper limit for |b| using the lower experimental value
533 m s−1. We obtain |b| < 0.323. If instead of considering
the lower limit we had taken the estimated value we would
have obtained |b| < 0.00857. This would be the case if the
uncertainty of measurements can be considerably reduced
and if the estimated value remains the same.

Now if reconsider the case of light deflection and take this
former value as a limit for |b| for light rays then we are able
to estimate for the values of∣∣∣∣bh
∣∣∣∣ < 2.403015 × 10−8 km−1 <

0.323

|h|
⇒ |h| < 1.34 × 108 km.

We conclude this section by interpreting the obtained
upper limit to the b parameter in terms of the fifth dimension
by using the uncertainty relations. Therefore we find that the
b parameter can be directly related to the extra dimension.
Therefore, its upper limit also means a limit on the velocity
along x5.

Let us assume for the sake of argument that the dispersion
relation for a photon in a four-dimensional space is

p2 = pμ pμ = 0 ⇒ E2 = p2c2 ⇒ E = |p| c = hν,

where E is the energy, p is the 3-momentum, c is the velocity
of light, h is the Planck constant, and ν is the frequency of
the photon.

If we assume a quantum behavior for the photon, then the
following uncertainty relations are expected [28]:

�E�t � h̄

2

�xi�pi � h̄

2
, i = 1, 2, 3.

Hence, if the fifth dimension is supposed to exist, we would
expect the uncertainty relations to be generalized as

�E�t � h̄

2

�xi�pi � h̄

2
, i = 1, 2, 3, 5,

and the dispersion relation as

p2 = 0 ⇒ E2 =
(

p2 + p2
5

)
c2 ⇒ E2 = p2c2

(
1 + p2

5

p2

)

⇒ E = |p| c

√
1 + p2

5

p2 .

If |p5||p| � 1, then we can approximate the relation as

E ≈ |p| c

(
1 + 1

2

p2
5

p2

)
.

When comparing this result with the four-dimensional case,
it is possible to interpret the extra term as a fluctuation of
energy (which is supposed to be small since all influences of
the fifth-dimensional quantities are not directly observed):

�E ≈ 1

2
c

p2
5

|p| .

If this fluctuation of energy is supposed to be consistent with
uncertainty relations, then we would expect, with the best
accuracy:

�E�t ≈ h̄

2
⇒ 1

2
c

p2
5

|p|�t ≈ h̄

2
.
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During this time interval�t , the distance traveled by light in
the fifth dimension is

�x5 = bc�t.

If p5 ≈ �p5, which means that the magnitude of p5 is com-
parable to its uncertainty, then we obtain

1

2

(�p5)
2

|p|
�x5

b
≈ h̄

2
⇒ 1

2

(�p5)
2

|p| b

(
�x5

)2 ≈ h̄

2
�x5.

As stated earlier, if we assume that the accuracy of measure-
ments is the best possible, then �p5�x5 ≈ h̄

2 , so that

1

2

(
h̄

2

)2 1

|p| b
≈ h̄

2
�x5 ⇒ 1

8π

1

b

h

|p| ≈ �x5.

From the de Broglie relation, h
|p| = λ, we find

1

8π

1

b
λ ≈ �x5.

If we assume that �x5 represents an estimate of the size
of the fifth dimension, and keeping in mind that we have
obtained an upper limit for b, then we conclude that our
results lead to

b < b0 ⇒ �x5 � 1

8π

1

b0
λ.

In our case, the value of b0 is estimated with results from
experiments that used a wavelength in the range of 5,188–
5,212 Å. We use the average value to estimate�x5 as follows:

�x5 � 1

8π

1

b0
λ = 1

8π

1

0.323
5,200 × 10−10 m

= 6.4 × 10−8 m.

Therefore, we find that the uncertainty on the measured
position along the fifth dimension is larger than the above
value. The point to be stressed, however, is that this argument
can now be read backwards: the very existence of the fifth
dimension, when scrutinized by quantum particles, has an
associated uncertainty related to its size implying an upper
limit in the velocity, here parameterized by b.

Let us note that if we consider �x5 as the uncertainty of
measurement of lengths along the fifth dimension and if the
size of the fifth dimension is smaller than the value estimated
above, then we will not be able to distinguish its existence
because there will not be sufficient accuracy for that. If the
size of the fifth dimension is larger than shown by our cal-
culations, then it would be possible to notice it. Therefore,
no matter the size of the fifth dimension, our calculation just
established our capability of measuring it. In the absence of
any other evidence, then we conclude that the size of the fifth
dimension must be smaller than what we have estimated.

3 Concluding remarks

In this paper, we have investigated the embedding of a
spherically symmetric gravitational solution into the five-
dimensional braneworld scenario. The classic tests of GR
are considered in order to study the possible influence of the
extra dimension in low energy experiments. In fact, we have
examined three GR classic tests: the perihelion shift of Mer-
cury, the deflection of light by the Sun, and the gravitational
redshift of atomic spectral lines. The investigated solution
gives results similar to the 4D Schwarzschild line element
predictions. More precisely, a new parameter is related to
the extra dimension that brings subtle but important correc-
tions to the usual GR case can be constrained in order not to
contradict any experimental results. Moreover, at least in the
massless (photon) case, it is possible to interpret the obtained
results with fundamental concepts as the uncertainty princi-
ple.

Finally we wish to stress the relevance of the aforemen-
tioned analysis. Firstly it can be used to refine the extra-
dimensional models of General Relativity, by constraining
the new parameters using experimental observations. In addi-
tion the present study can help in explaining small differences
observed in gravitational experiments. The exploration of
GR’s classical tests, with the possible departures, may serve
as an important tool in connecting high energy models to low
energy experiments.
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