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Abstract As quotient spaces, Minkowski and de Sitter are fundamental, non-
gravitational spacetimes for the construction of physical theories. When general
relativity is constructed on a de Sitter spacetime, the usual Riemannian structure is
replaced by a more general structure called de Sitter–Cartan geometry. In the contrac-
tion limit of an infinite cosmological term, the de Sitter–Cartan spacetime reduces to
a singular, flat, conformal invariant four-dimensional cone spacetime, in which our
ordinary notions of time interval and space distance are absent. It is shown that such
spacetime satisfies all properties, including the Weyl curvature hypothesis, necessary
to play the role of the bridging spacetime connecting two aeons in Penrose’s conformal
cyclic cosmology.

Keywords Conformal cyclic cosmology · Initial condition for the universe · Locally
de Sitter spacetime · de Sitter-ruled special relativity

1 Introduction

A possible interpretation of the Planck length is that it represents the minimum attain-
able length in nature. If this comes to be true, it would emerge as an invariant length
parameter, whose existence would modify the physics of the Planck scale. For example,
the spacetime local kinematics at that scale would no longer be described by ordinary
special relativity because, as is well-known, it does not allow the existence of such
invariant scale. One should then look for a modified special relativity. An interesting
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attempt in this direction is the so-called “doubly special relativity” [1,2], obtained by
introducing into the dispersion relation of special relativity scale-suppressed terms of
higher order in the momentum, in such a way to allow the existence of an invariant
length at the Planck scale. The importance of these terms is controlled by a para-
meter κ , which changes the kinematic group of special relativity from Poincaré to
a κ-deformed Poincaré group, in which Lorentz symmetry is explicitly violated. Far
away from the Planck scale these terms are suppressed, Lorentz symmetry is recovered
and one obtains back ordinary special relativity.

A different solution to the same problem shows up from noting that Lorentz trans-
formations do not change the curvature of the homogeneous spacetime in which they
are performed [3–5]. Considering that the scalar curvature R of any homogeneous
spacetime is of the form

R ∼ ± l−2,

with l its pseudo-radius, Lorentz transformations are then found to leave the length
parameter l invariant. Although somewhat hidden in Minkowski space, because what
is left invariant in this case is an infinite length—corresponding to a vanishing scalar
curvature—in de Sitter and anti-de Sitter spacetimes, whose pseudo-radii are finite,
this property becomes manifest. One then sees that, contrary to the usual belief,Lorentz
transformations do leave invariant a very particular length: that defining the scalar
curvature of the homogeneous spacetime.

If the Planck length lP is to be invariant under Lorentz transformations, therefore,
it is natural to assume that it represents the pseudo-radius of spacetime at the Planck
scale, which will then be either a de Sitter or an anti-de Sitter space, with the scalar
curvature given by

R ∼ ± l−2
P � ± 1066 cm−2, (1)

where the + (−) sign refers to the de Sitter (anti de Sitter) case. From now on, taking
into account recent astronomical observations indicating that the universe expansion
is presently accelerating, we will restrict ourselves to the de Sitter case.

Now, as quotient spaces, Minkowski and de Sitter represent different non-
gravitational backgrounds for the construction of physical theories. General relativity,
for instance, can be constructed on any one of them. Of course, in either case gravita-
tion will have the same dynamics, only their local kinematics will be different. If the
underlying spacetime is Minkowski, the local kinematics will be ruled by the Poincaré
group of ordinary special relativity. If the underlying spacetime is de Sitter, the local
kinematics will be ruled by the de Sitter group, which amounts then to replace ordinary
special relativity by a de Sitter-ruled special relativity. It is important to remark that,
even though there is an invariant length-parameter related to the cosmological term,
the Lorentz group remains part of the spacetime kinematics, which means that this
symmetry is not broken at any energy scale. Taking into account the deep connection
between Lorentz symmetry and causality [6], this theory predicts that causality is
always preserved, even at the Planck scale.

When general relativity is constructed on de Sitter, spacetime will no longer present
a Riemannian structure, but will be described by a particular case of a more general
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structure called Cartan geometry [7]. As a matter of fact, it will be described by a
Cartan geometry that reduces locally to de Sitter—and for this reason is called de
Sitter–Cartan geometry [8]. Accordingly, in a locally inertial frame, where inertial
effects exactly compensate for gravitation, the spacetime metric reduces to the de
Sitter metric. One should note that such construction does not change the dynamics
of the gravitational field, which remains described by Einstein equation. The only
change will be in the strong equivalence principle, which passes to state that in a
locally inertial frame, where gravitation goes unnoticed, the laws of physics reduce
to those of de Sitter-ruled special relativity.

Considering a general de Sitter–Cartan spacetime, and making use of the Inönü–
Wigner process of group and algebra contractions [9], the purpose of this paper is
to study both the contraction limit for the pseudo-radius going to infinity l → ∞,
which corresponds to a vanishing cosmological term � → 0, and the contraction
limit for a vanishing pseudo-radius l → 0, which corresponds to an infinite cosmo-
logical term � → ∞. In the first case, the underlying de Sitter spacetime contracts
to Minkowski, and the de Sitter–Cartan geometry reduces to the usual Riemannian
geometry of general relativity. In the second case, the gravitational degrees of freedom
are switched off, and the whole de Sitter–Cartan spacetime contracts to a kinematic
four-dimensional homogeneous, conic spacetime, which is singular at the origin. Such
spacetime has already been shown to bear algebraic, geometric and thermodynamic
properties that fit quite reasonably to what one would expect for an initial condition
of a big bang universe [10]. In this paper we are going to show that it meets also
the properties required for playing the role of the bridging spacetime connecting two
aeons in Penrose’s conformal cyclic cosmology [11].

2 The de Sitter spacetime and group: possible limits

The maximally symmetric de Sitter spacetime, denoted dS, can be seen as a hyper-
surface in the host pseudo-Euclidean space with metric ηAB = (+1,−1,−1,−1,−1)

(A, B, . . . = 0, . . . , 4), whose points in Cartesian coordinates χ A satisfy the relation
[12]

ηAB χ Aχ B = − l2, (2)

or equivalently, in four-dimensional coordinates,

ημν χμχν − (
χ4)2 = − l2. (3)

It has the de Sitter group SO(4, 1) as group of motions, and is homogeneous under the
Lorentz group L = SO(3, 1), that is [13]

dS = SO(4, 1)/L. (4)
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In the ambient Cartesian coordinates χ A, the generators of the infinitesimal de Sitter
transformations are written in the form

LAB = ηAC χC ∂

∂χ B
− ηBC χC ∂

∂χ A
. (5)

They satisfy the commutation relations

[LAB, LCD] = ηBC L AD + ηADLBC − ηBDL AC − ηAC LBD. (6)

On account of the quotient character (4) of the de Sitter spacetime, geometry and
algebra turns out to be deeply connected. As a consequence, any deformation in the
algebra and group will produce concomitant deformations in the geometry of the
corresponding homogeneous spacetime. The use of the Inönü–Wigner contraction,
therefore, constitutes a reliable method for studying geometrical limits of homoge-
neous spacetimes. In what follows we consider first, in the guise of completeness, the
well-known contraction limit l → ∞. Subsequently we consider the contraction limit
l → 0, whose study constitutes the main part of the paper. Since these two limits
require a different parameterisation, they must be performed separately.

2.1 Large pseudo-radius contraction

2.1.1 Parameterisation appropriate for large values of l

The four-dimensional stereographic coordinates {xμ} are obtained through a stereo-
graphic projection from the de Sitter hypersurface into a target Minkowski spacetime.
In the parameterisation appropriate to deal with large values of l, they are defined by
[14]

χμ = � xμ (7)

and

χ4 = −�
(

1 + σ 2/4l2
)

(8)

where � ≡ �(x) is the function

� = (1 − σ 2/4l2)−1 (9)

with σ 2 the Lorentz invariant quadratic form σ 2 = ημν xμxν . In these coordinates,
the infinitesimal de Sitter quadratic interval

ds2 = gαβ dxαdxβ (10)
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is written with the conformally flat metric

gαβ = �2 ηαβ. (11)

The corresponding Christoffel connection is [15]

�λ
μν = �

2l2
(
δλ
μ ηνα xα + δλ

ν ημα xα − ημν x
λ
)

(12)

with the Riemann tensor given by

Rμ
νρσ = �2

l2
(
δμ
ρ ηνσ − δμ

σ ηνρ

)
. (13)

The Ricci and the scalar curvature are, consequently,

Rνσ = 3�2

l2
ηνσ and R = 12

l2
. (14)

In terms of stereographic coordinates {xμ}, the de Sitter generators (5) are written
in the form

Lμν = ημρ xρ Pν − ηνρ xρ Pμ (15)

and

L4μ = l Pμ − 1

4l
Kμ (16)

where

Pμ = ∂μ and Kμ =
(

2ημνx
νxρ − σ 2δρ

μ

)
∂ρ (17)

are, respectively, the generators of translations and proper conformal transformations
[16]. Generators Lμν refer to the Lorentz subgroup, whereas the elements L4μ define
the transitivity on the homogeneous space.1 From Eq. (16) it follows that the de
Sitter spacetime is transitive under a combination of translations and proper confor-
mal transformations—usually called de Sitter “translations”. The relative importance
between these two transformations is determined by the value of the pseudo-radius l.

In order to study the limit of large values of l, it is necessary to parameterise the
generators (16) according to [14]

�μ ≡ L4μ

l
= Pμ − 1

4l2
Kμ. (18)

1 See the “Appendix” for a mathematical definition of transitivity of homogeneous spaces.
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In terms of these generators, the de Sitter algebra (6) assumes the form

[
Lμν, Lρσ

] = ηνρ Lμσ + ημσ Lνρ − ηνσ Lμρ − ημρ Lνσ , (19)
[
�μ, Lρσ

] = ημρ�σ − ημσ �ρ, (20)
[
�μ,�ρ

] = l−2Lμρ. (21)

The last commutator shows that the de Sitter “translation” generators are not really
translations, but rotations; hence the quotation marks.

2.1.2 The contraction limit l → ∞

In the limit l → ∞, we see from Eq. (18) that the de Sitter generators �μ reduce to
generators of ordinary translations

�μ → Pμ. (22)

Concomitantly, the de Sitter algebra (19–21) contracts to

[
Lμν, Lρσ

] = ηνρ Lμσ + ημσ Lνρ − ηνσ Lμρ − ημρ Lνσ (23)
[
Pμ, Lρσ

] = ημρPσ − ημσ Pρ (24)
[
Pμ, Pρ

] = 0 (25)

which is the Lie algebra of the Poincaré group P = L � T , the semi-direct product
of the Lorentz (L) and the translation (T ) groups. As a result of this algebra and group
deformations, the de Sitter spacetime dS contracts to the flat Minkowski space M :

dS → M = P/L. (26)

In fact, as a simple inspection shows, the de Sitter metric (11) reduces to the Minkowski
metric

gμν → ημν, (27)

and the Riemann, Ricci and scalar curvatures vanish identically:

Rμ
νρσ → 0, Rνσ → 0, R → 0. (28)

From (22) we see that Minkowski spacetime M is transitive under ordinary transla-
tions: the point-set of M is determined by ordinary translations.

2.2 Small pseudo-radius contraction

We proceed now to study the contraction limit of a small de Sitter pseudo-radius, which
corresponds to an infinite cosmological term. This is the limit we are most interested
in this paper.
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2.2.1 Parameterisation appropriate for small values of l

To deal with small values of l, it is convenient to define the ‘inverse’ host space
coordinates

χ̄ A = χ A/4l2, (29)

in terms of which relation (3) assumes the form

ημν χ̄μχ̄ν −
(
χ̄4

)2 = − 1

16l2
. (30)

The stereographic projection is now defined by

χ̄μ = �̄ xμ (31)

and

χ̄4 = − l �̄
(

1 + σ 2/4l2
)

(32)

where

�̄ ≡ �

4l2
= 1

4l2 − σ 2 . (33)

In these coordinates, the infinitesimal de Sitter quadratic interval

ds̄2 = ḡαβ dxαdxβ (34)

is written with the metric

ḡαβ = �̄2 ηαβ. (35)

Considering that ḡαβ and gαβ differ by a constant, the corresponding Christoffel
connections will coincide:

�̄λ
μν ≡ �λ

μν = 2�̄
(
δλ
μ ηνα xα + δλ

ν ημα xα − ημν x
λ
)
. (36)

Of course, the same happens to the Riemann tensor

R̄μ
νρσ ≡ Rμ

νρσ = 16 l2 �̄2 (
δμ
ρ ηνσ − δμ

σ ηνρ

)
, (37)

as well as to the Ricci tensor:

R̄νσ ≡ Rνσ = 16 l2 �̄2 ηνσ . (38)
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The scalar curvature, however, due to a further contraction with the metric tensor,
assumes a different form

R̄ ≡ 16 l4R = 192 l2. (39)

Considering that the cosmological term is proportional to

� ∼ l−2, (40)

it relates to the scalar curvature according to

� ∼ R̄

l4
. (41)

The de Sitter generators (15) are the same for both parameterisations. However, in
order to study the limit of small values of l, it is necessary to rewrite generators (16)
in the form [10]

�̄μ ≡ 4l L4μ = 4l2Pμ − Kμ, (42)

in terms of which the de Sitter algebra (6) becomes

[
Lμν, Lρσ

] = ηνρ Lμσ + ημσ Lνρ − ηνσ Lμρ − ημρ Lνσ (43)
[
�̄μ, Lρσ

] = ημρ�̄σ − ημσ �̄ρ (44)
[
�̄μ, �̄ρ

] = 16 l2Lμρ. (45)

2.2.2 The contraction limit l → 0

In the contraction limit l → 0, the generators �̄μ reduce to (minus) the proper con-
formal generators:

�̄μ → −Kμ. (46)

Accordingly, the de Sitter group SO(4, 1) contracts to the conformal Poincaré group
[17]

SO(4, 1) → P̄ = L � T̄ ,

the semi-direct product between the Lorentz L and the proper conformal group T̄ ,
whose Lie algebra is

[
Lμν, Lλρ

] = ηνλ Lμρ + ημρ Lνλ − ηνρ Lμλ − ημλ Lνρ (47)
[
Kμ, Lλρ

] = ημλKρ − ημρKλ (48)
[
Kμ, Kλ

] = 0 . (49)
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The name of this group stems from the fact that it has the same Lie algebra of the
ordinary Poincaré group, but with the translation generators Pμ replaced by the proper
conformal generators Kμ. Concomitant with the group contraction, on account of their
quotient character, the de Sitter spacetime dS reduces to the homogeneous space M̄

dS → M̄ = P̄/L. (50)

The conformal Poincaré group P̄ , like the Poincaré group P , has the Lorentz group L
as the subgroup accounting for the isotropy of the space. The homogeneity, however,
is completely different: instead of ordinary translations, all points of M̄ are equivalent
under special conformal transformations. In other words, the point-set of M̄ is that
determined by special conformal transformations.

In the limit l → 0, the de Sitter metric (35) assumes the conformal invariant form
[18]

ḡμν → η̄μν = σ−4 ημν, (51)

which is the metric on M̄ . The Christoffel connection, on the other hand, reduces to

�̄λ
μν → 0�̄λ

μν = − 2σ−2 (
δλ
μ ηνα xα + δλ

ν ημα xα − ημν x
λ
)
. (52)

The corresponding Riemann, Ricci, and scalar curvatures vanish identically:

R̄μ
νρσ → 0 R̄μ

νρσ = 0, R̄νσ → 0 R̄νσ = 0, R̄ → 0 R̄ = 0. (53)

The cosmological term, however, goes to infinity:

� → ∞. (54)

From these properties one can infer that M̄ is a singular, four-dimensional cone space-
time (see Fig. 1), transitive under proper conformal transformations [10].

Fig. 1 Pictorial view of the de
Sitter spacetime in the
contraction limit l → 0,
showing its deformation into a
four-dimensional cone
spacetime
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It is important to remark that the contraction limit l → 0 is not continuous—
actually a general property of any group contraction. This can be seen by observing
that, whereas the de Sitter group is semi-simple, the conformal Poincaré group is not,
which means that it is not possible to continuously deform the former into the latter.
It is this singular character that produces a decoupling between the scalar curvature
and the cosmological term, making the former going to zero and the latter to infinity.

3 Some attributes of the cone spacetime M̄

As is well-known, in (3 + 1) dimensions there are three homogeneous spaces:
Minkowski, de Sitter and anti-de Sitter. The cone spacetime M̄ is an additional four-
dimensional maximally symmetric spacetime, with the conformal Poincaré group P̄
as kinematic group, which is however singular. In this section we explore some of its
properties.

3.1 Geometric relation between M and M̄

Under the spacetime inversion

xμ → − xμ

σ 2 (55)

the translation generators are led to the proper conformal transformations, and vice
versa [16]:

Pμ → Kμ and Kμ → Pμ. (56)

The Lorentz generators, on the other hand, remain unchanged:

Lμν → Lμν. (57)

This means that, under such inversion, the Poincaré group P is led to the conformal
Poincaré group P̄ , and vice versa. Concomitantly, Minkowski M is transformed into
the four-dimensional cone-spacetime M̄ , and vice versa. The corresponding spacetime
metrics are also transformed into each other:

ημν → η̄μν = σ−4 ημν and η̄μν = σ−4 ημν → ημν. (58)

Minkowski and the cone spacetimes can thus be considered a kind of dual to each other
in the sense that their geometries are determined, respectively, by a vanishing and an
infinite cosmological term. In the same way the Minkowski metric ημν is invariant
under spacetime translations, the conic spacetime metric η̄μν is invariant under proper
conformal transformations.
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3.2 The nature of the spacetime singularity

As we have already seen, the cone spacetime M̄ has vanishing Riemann, Ricci and
scalar curvature tensors. The cosmological term, on the other hand, is infinite, pointing
to a singular spacetime. In fact, its metric tensor η̄μν , given by Eq. (51), is singular at
the vertex of the cone spacetime, located at xμ = 0, in which σ 2 ≡ ημνxμxν = 0.2

However, if we perform a conformal re-scaling of the metric

η̄μν → η̄′
μν = ω2(x) η̄μν, (59)

with the conformal factor given by

ω2(x) = σ 4 α2(x), (60)

the resulting metric tensor

η̄′
μν = α2(x) η̄μν (61)

is no longer singular. This kind of singularity, in which the metric is singular but
the conformal equivalence class of the metric is not, is called a conformal gauge
singularity [19].

3.3 Weyl curvature hypothesis

The conformal gauge singularity is an instrumental part of the Weyl curvature hypoth-
esis. In its original version, the hypothesis states that theWeyl curvature must vanish at
any initial singularity [20]. Of course, as a flat spacetime, the cone spacetime naturally
satisfies the Weyl curvature hypothesis. Afterwards, a new version of the hypothesis
was put forward by Tod [21], which says that every conformal singularity can be
transformed into a smooth spacelike hypersurface by a conformal rescaling in such a
way that geodesics can be extended beyond it. Since the cone singularity is a conformal
gauge singularity, it satisfies also Tod’s version of the Weyl curvature hypothesis.

4 Transitivity and the notion of distance and time

When general relativity is constructed on de Sitter, spacetime will no longer present
a Riemannian structure, but will be described by a more general structure called de
Sitter–Cartan geometry. The name stems from the fact that, in a locally inertial frame,
where inertial effects exactly compensate for gravitation, the spacetime metric reduces
to the (non-gravitational) de Sitter metric. Since any two points of de Sitter spacetime
are connected to each other by a combination of translation and proper conformal

2 It is important to note that ημν xμxν 	= 0 in all other points of the cone. What vanishes in all points of the
cone is the quadratic form written in terms of the five-dimensional ambient space coordinates ηABχ Aχ B =
0, as follows from (2) in the contraction limit l → 0.
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transformations, the same happens locally in a de Sitter–Cartan spacetime. In the
parameterisation appropriate for large values of l, any two points separated by an
infinitesimal distance will be connected to each other by a transformation generated
by

�μ = Pμ − 1

4l2
Kμ (62)

as given by Eq. (18). The invariance of a source lagrangian under the transformations
generated by �μ yields the conservation law [22]

∇μ�μν = 0 (63)

where

�μν = Tμν − 1

4l2
Kμν (64)

is the de Sitter-modified conserved current, with Tμν the symmetric energy-
momentum current, and

Kμν =
(

2ηαρ xρxν − σ 2δν
α

)
Tμα (65)

the proper conformal current [16].
On the other hand, in the parameterisation appropriate to deal with small values of

l, any two points of a locally-de Sitter spacetime separated by an infinitesimal distance
will be connected to each other by a transformation generated by

�̄μ = 4l2Pμ − Kμ. (66)

The invariance of a source lagrangian under such transformation yields the conserva-
tion law

∇̄μ�̄μν = 0 (67)

where

�̄μν = 4l2Tμν − Kμν (68)

is the de Sitter-modified conserved current.
It is important to remark that the inclusion of the proper conformal transformations

in the local spacetime transitivity—and consequently in the notions of space distance
and time interval—does not change the number of the degrees of freedom. In fact, both
Poincaré and de Sitter have ten degrees of freedom. However, there is a kind of internal
freedom which is not present in locally Minkowski spacetimes. This freedom refers to
the fact that now energy-momentum current can transform into proper conformal cur-
rent, and vice versa, while keeping the total, or de Sitter notion of energy-momentum
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current covariantly conserved. As we are going to see in the next section, this pos-
sibility opens up important roads for the study of the cosmological evolution, and in
particular for the study of cyclic models.

5 Final remarks

The de Sitter spacetime is usually interpreted as the simplest dynamical solution of the
sourceless Einstein equation in the presence of a cosmological constant, standing on an
equal footing with all other gravitational solutions—like for example Schwarzschild
and Kerr. However, as a non-gravitational spacetime, the de Sitter solution should
instead be interpreted as a fundamental background for the construction of physical
theories, standing on an equal footing with the Minkowski solution. When general
relativity is constructed on a de Sitter spacetime, since the cosmological term � is now
encoded in the local kinematics, it does not appear explicitly in Einstein equation. As
an immediate consequence, in contrast to what happens in ordinary general relativity,
the second Bianchi identity does not require � to be constant [23,24]. It should be
noted that the curvature tensor in this theory represents both the general relativity
dynamic curvature, whose source is the energy-momentum current, and the kinematic
curvature related to the underlying de Sitter special relativity.

In the de Sitter-modified general relativity, any solution to Einstein field equations
will be a de Sitter–Cartan spacetime. In the contraction limit l → ∞, corresponding
to a vanishing cosmological term �, the underlying de Sitter spacetime contracts
to Minkowski, and the de Sitter–Cartan geometry reduces to the usual Riemannian
geometry of general relativity, which is consistent with the ordinary Poincaré-ruled
special relativity. To study the contraction limit l → 0, which corresponds to an
infinite cosmological term �, one has to use the de Sitter “translation” generators as
given by Eq. (66). In this limit, the translational degrees of freedom are switched off:
only the proper conformal degrees of freedom remain active. Accordingly, the energy-
momentum tensor is suppressed from the conserved current (68), which means that
the proper conformal current turns out to be conserved. One can then say that the
gravitational degrees of freedom are switched off in this limit, and consequently the
Weyl curvature tensor must vanish. All matter content of the universe, therefore, must
be in the form of proper conformal current—that is to say, it must be conformal
invariant. This includes electromagnetic and gravitational waves,3 as well as any other
conformal invariant fields. Furthermore, the general relativistic dynamic curvature
vanishes, leaving only the kinematic de Sitter spacetime, which as we have already
seen contracts to the four-dimensional, flat, singular, conic spacetime M̄ . Due to the
fact that it is transitive under proper conformal transformations, its metric tensor η̄μν

does not have the conventional meaning of a physical metric: it is not dimensionless,

3 Gravitational waves could in principle exist in the cone spacetime. There is a problem, however: the field
equation for a symmetric second-rank tensor (perturbation of the metric) is not conformal invariant [25]. A
Footnote 4 continued
possible solution to this puzzle is to interpret a spin 2 as a 1-form assuming values in the translation group
(perturbation of the tetrad), in which case its field equation turns out to be conformal invariant [26].
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and the interval it defines,

ds̄2 = σ−4 ημν dx
μdxν, (69)

has to do with the proper conformal notions of time interval and space distance. In such
spacetime, therefore, the usual notions of space distance and time interval cannot be
defined. In particular, our conventional (translational) notion of time does not exist on
M̄ [27,28]. This means that local clocks cannot be defined, a result that is somehow in
agreement with the general idea that (our conventional notion of) time should not exist
at the Planck scale [29]. One should note, however, that the proper conformal notion
of time does exist. Considering in addition that the metric on the conic spacetime M̄
is conformal invariant, its singularity is a conformal gauge singularity, and it satisfies
the Weyl curvature hypothesis, one can then consistently interpret M̄ as the bridging
spacetime connecting two aeons in Penrose’s conformal cyclic cosmology [11].

It should be remarked that l → 0 is just a formal limit in the sense that quantum
effects preclude it to be fully performed. It is actually a contraction limit, on an
equal footing with the classical contraction limit in which the speed of light goes to
infinity c → ∞, as well as with other possible contraction limits [30–32]. The cone
spacetime M̄ , which emerges as the output of this limit, should then be thought of
as a kind of frozen geometric structure behind the spacetime quantum fluctuations
taking place at the Planck scale. The conic spacetime M̄ can then be interpreted as
a universe in which all energy content is in form of proper conformal current. The
quantum fluctuations from the cone spacetime with l = 0 to a de Sitter spacetime
with l = lP give rise to a non-singular de Sitter universe with a huge cosmological
term �P � 1066 cm−2, which could drive inflation. Once this transition occurs,
the translational degrees of freedom are turned on, and our usual notions of time
and space emerge, as can be seen from the generators (66). At this point, however,
owing to the tiny value of l, space and time will still be preponderantly determined
by proper conformal transformations. Concomitantly, the proper conformal current
begins transforming into energy-momentum current, giving rise to the baryonic matter
present in the universe.

To finish, by using cosmographic arguments, we present a speculative discussion
on how a de Sitter-ruled special relativity can give rise to a cyclic view of the universe.
As discussed above, at the Planck time tP , the cosmological term assumes the huge
value �P , which gives rise to a rapidly expanding primordial universe. As the proper
conformal current transforms into energy-momentum current, the cosmological term
experiences a decaying process, leading to an era of decelerated expansion. This
process continues until the cosmological term assumes a tiny value, in such a way to
allow the formation of the cosmological structures we see today. In this period, most
of the proper conformal current has already been transformed into energy-momentum
current, and the de Sitter–Cartan structure of spacetime differs slightly from the usual
Riemannian geometry. Accordingly, space distance and time interval in this period are
preponderantly determined by ordinary translations.

Now, cosmological observations indicate that the universe has entered (a few billion
years ago) an accelerated expansion era [33–35]. From the point of view of a de
Sitter-ruled special relativity, this means that the energy-momentum current began
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transforming back into proper conformal current, which produces an increase in the
value of the cosmological term. Such process means that the universe has already begun
moving back towards its initial state, characterised by a huge cosmological term—the
final state of this era, as well as the initial state of the next era, represented by the cone
spacetime M̄ . This picture, together with recent cosmological observations, point to
a cyclic view of the universe, but with a completely new concept of a cyclic universe:
as paradoxical as it may sound, this geometry gives rise to an ever expanding cyclic
universe.
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Appendix: On the notion of transitivity

Spacetimes with constant sectional curvature are maximally symmetric in the sense
that they can lodge the highest possible number of Killing vectors [36]. Their curvature
tensor are completely specified by the scalar curvature R, which is constant throughout
spacetime. Minkowski M , with vanishing curvature, is the simplest one. Its kinematic
group is the Poincaré group P = L � T , the semi-direct product of Lorentz (L) and
the translation (T ) groups. It is a homogeneous space under the Lorentz group:

M = P/L.

The Lorentz subgroup provides an isotropy around a given point of M , and the trans-
lation symmetry enforces this isotropy around any other point. This is the meaning
of homogeneity: all points of Minkowski spacetime are equivalent under spacetime
translations. That is to say, Minkowski is transitive under spacetime translations.

Another example of maximally symmetric spacetime is the de Sitter space dS. It
has non-vanishing sectional curvature, and SO(4, 1) as kinematic group. Furthermore,
it is also homogeneous under the Lorentz group:

dS = SO(4, 1)/L.

Like Minkowski, the Lorentz subgroup provides an isotropy around a given point of
dS. The notion of homogeneity, however, is completely different: as one can see from
the generators (18) or (42), all points of the de Sitter spacetime are equivalent under
a combination of translation and proper conformal transformation—the so-called de
Sitter “translations”. That is to say, de Sitter is transitive under a combination of
translations and proper conformal transformations: in order to move from one point to
any other point of a de Sitter spacetime, one has to perform a de Sitter “translation”.
This is the meaning of transitivity.
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