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A self-contained discussion of integral equations of scattering is presented in the case of centrally
symmetric potentials in one dimension, which will facilitate the understanding of more complex
scattering integral equations in two and three dimensions. The present discussion illustrates in a
simple fashion the concept of partial-wave decomposition, Green'’s function, Lippmann—Schwinger
integral equations of scattering for wave function and transition operator, optical theorem, and
unitarity relation. We illustrate the present approach with a Dirac delta potentiakoo®American
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[. INTRODUCTION obtaining mathematical simplification. Interesting things can
happen in the nonsymmetric cas€he two partial waves are

The simple problem of one-dimensional quantum scattereoupled in the nonsymmetric casx) #V(—x) and non-
ing continues as an active line of reseatdkhis problem has trivial modifications of the standard scattering formulation
been crucial applications in studying tunneling phenomena imre needed For noncentral potentials in three dimensidims
a finite superlattic.A self-contained discussion of quantum the presence of a tensor potentitide different partial-wave
scattering in one dimension using the Schinger equation components also become coupled. However, in this work we
has appeared in the literatute. Here we present a compre- shall be limited to a discussion of the centrally symmetric
hensive description of the integral equations of scatteringase.
using the Green’s function technique in one dimension in More specifically, we present a Green-function description
close analogy with the twB-and three-dimensional casés. of scattering in partial-wave form. Also, we derive the LS
Apart from these interests in research, the present study @quation of scattering for the wave function and obtain a
one-dimensional scattering is also interesting from a pedasuitable transitiont) matrix. The on-the-energy shelbn-
gogical point of view. In a one-dimensional treatment oneshell) t matrix element is essentially the physical scattering
does not need special mathematical functions, such as Bessghplitude. We also derive the unitarity relation for thma-
functions, while still retaining sufficient physical complexity trix and show it to be consistent with the usual form of the
to illustrate many of the physical concepts, such as partialeptical theorem in three dimensiofs.
wave decomposition, Green’s function, the Lippmann— In Sec. Il we present the LS integral equations. Section Il
Schwinger (LS) integral equations of scattering for wave deals with the unitary relations. In Sec. IV we present an
function and the transition operator, the optical theorem, andlustrative application of the formalism with the delta func-
the unitarity relation, which occur in two and three dimen-tion potential. A brief summary is presented in Sec. V.
sions.

A self-contained discussion of two-dimensional scatterin
has appeared in the literatdt&here is an intrinsic differ- A INTEGRAL EQUATION OF SCATTERING
ence between scattering in two and three dimensions and that
in one dimension. In one dimension there are only two dis
crete scattering directions: forward and backward along
line. This requires special techniques in one dimension in
contrast with two or three dimension where an infinity of
scattering directions are permitted characterized by continu-
ous angular variables. It is because of the above subtlety g¥hereV(x) is a centrally symmetric finite-range potential in
the one-dimensional scattering problem that we present anits of %2%/(2m) satisfying V(x)=0, r>R and V(X)
complete discussion of the integral-equation formulation in=V(—x), where r=|x|, m the reduced massE
this case. This special feature of one-dimensional scattering:72k?/(2m) the energy, and the wave number. The scat-
leads to two partial waves. For a centrally symmetric potentering wave function is not square integrable and hence does
tial these two partial waves are decoupled, with even and odfot satisfy the usual normalization condition of a bound-state

parity. ) ] ) ) wave function. However it is useful in some cases to “nor-
Here we present a discussion of the integral equations ghalize” it according to

scattering in one dimension in momentum and configuration .
space for a centrally symmetric potentisl(x) =V (—x). dx ¢(+)*(X)¢(,+)(x)=2775(k—k’) )
Formanek has discussed the importance of this symmetry in —w k k '

In one dimension the scattering wave functigfi’(x) at
;;:l)ositionx satisfies the Schdinger equation
d2

— g2 VOO [0 =K (x), @
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whered is the Dirac delta function. The previous discussions=1(—1). The discrete differential cross sections in these two
on scattering in one dimension are based on the solution afirections are given by
the differential equatior{1) for the wave function supple-
mented by the necessary boundary conditibrig.he present 1 ()0 12
discussion will be based on the integral equations of scatter- Ue:p“k ()] (10
ing which we derive below.
In configuration space the Green's functio, and the total cross section by
EIim,7_>0(k2—H0+i 7), with Hy the kinetic energy opera-

tor, satisfies 1
2 o= 2 o= IOHPHRIER
k2+ F}Ggﬂ(x,x')zﬁ(x—x’) ©)

X The discrete sum in Eq11) is to be compared with integrals
together with appropriate boundary conditions. The solutiorpver continuous angle variables in two and three dimensions.
of this equation is given BY The usual reflectioR) and transmissiorfT) probabilities

i are given byT=|1+if{"(+)/k|? andR=|if{")(—)/K|%.
GL(x,x") = F s—exp( £ ik|x—x']). (4) Here we must comment on the dimensiamit) of cross
2k section and scattering amplitudes. Cross section is defined to

In analogy with two and three dimensions, one can introduc®® the number of eventparticles scattergger unit time per
the following LS equation: unit incident flux. The incident flux is the number of particles

incident per unit time per a section of space. The section of
space has units of area and length in three and two dimen-
sions and is dimensionless in one dimension. The corre-
(5)  sponding incident flux is measured in units of L2,
T L%, andT ! in these dimensions, respectively, whare
denotes time ant length. The cross section is an observable
)= [ )+ GEEV] ™). (6)  and has units of? andL in thre€ and twd dimensions and
is dimensionless in one dimension. The present cross section
The incident plane wavep,(x)=(x|¢)=(x|k)=expfkx)  (11) is dimensionless. Scattering amplitude is not a physical
satisfies the free Schiinger equatiorH ¢ =k?¢,. The + observable and there could be some flexibility in its defini-
sign in Eq.(5) refers to the outgoing and incoming wave tion. The present definition of the scattering amplitude leads
boundary conditions, respectively. The physical scatteringo an optical theorem which is formally similar to the optical

U (0= () + f legikx,x')vu')w&”(x’)dx’-

In operator form this equation becomes

problem corresponds to the positive sign. theorem in three dimensions. Other definitions of the scatter-
Equation (4) when substituted into Eq5) leads to the ing amplitude in terms of other units are also possible, for
following asymptotic form for the wave functioh: example the one given by E¢).3*
i Next we introduce the on-shell matrix elements of the
lim w(kt)(x)—>exp(ikx)+ Ef(ki)(e)exp(iikr), 7) transition operatot via the following equations:
r—o
k[t (k2)[ky=—2fl"(e), 12
where (ek[t'=)(k*)[k) k (€) (12
© (K[t k)K= (i VI g™

f<i>(e)::3J
k 2

exp( Fiekx )V(x) i (x")dx'. (8)

. =f exp( Fik/ X )V(x") i (x")dx,
The quantityf (k‘)(e) is termed the scattering amplitude. The o

parametere is +1 for x>0 and —1 for x<0 in the (13
asymptotic region. Definitiof8) of the scattering amplitude
is different from that used in Refs. 3-5: with k' = ek ande=*1, so thatk?=k’?; e=+1(—1) cor-
. responds to the forwar@ackward direction. The transition
?ﬁi)(e):;ﬂ 700exp(Iiekx’)V(x’)d/(ki)(x’)dx’. operatort is taken to obeyt™)(k?)|q’)=V| wfﬁ) with q'2

#k?. From Eq.(6) we find that the transition operatar
©) satisfies
The essential difference between the two is in the phase fac-
tor i which does not influence the cross sections. However, t*)(k?)=V+VG{~t)(k?). (14
the present definition has the advantage of leading to an op-
tical theorem in close analogy with that in three dimensionsThe usual spectral representation of the free Green’s function
as we shall see in the following. The scattering amplitude ofs'®
Refs. 3-5 leads to an optical theorem distinct from the one in
three dimensions. The physical outgoing-wave boundary Gy x) * 4 expipx)exp —ipx")
condition is given by Eq(7) for y{")(x). There are two o (XXx)=7—] dp kKX—p2=i0 -
discrete scattering directions in one dimension characterized
by e= =1 in the asymptotic region in contrast with the infi- Using Egs.(14) and (15) one obtains the following explicit
nite possibility of scattering angles in two and three dimen-lS equation for the general off-shetl matrix elements
sions. The forward(backward direction is given bye  (g|t™)(k?)|q’)(g?#k?#q’?):

(15
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1 s
<q|t<i>(k2)|q’>=<QIV|q’>+ﬂf_mdpmlvlp)

1 (£) (12 ’
sz_p—ziio(plt*(k)lq ), (16

where

<q|VIq'>=flexm—iqxw(x)exmq'x)dx. (17

Using the symmetry property of, e.g.,V(x)=V(—x), and
Eq. (17) it can be shown that
(ealViaty=2 [ "drvir)cos@r + ean). a9
0

whereq=|q|. One can conveniently define the momentum-
space partial-wave matrix elements of the potential by

1
(ealVIa) =23, @V, (19

)l 2

2
k“—e,

- (//(+) l/l(+)
fo |l (4| 25

)12\ — b VTR
Gk =2, 7)o Ple—pZ=io-
where the summation overrefers to the bound statefs, of
energye, and the integration ovep to the scattering states
zp(+) with the normalization conditiong,|#,)=1 and
(POyly=2mw5(p—q). From Eq.(25) one realizes that
when this expression is substituted in Eg4), the integral
over the continuum states will contribute a square-root cut in
the complex energy plane along the real positive energy axis,
so that thet matrix will possess this so-called unitarity cut.
The discontinuity across this cut is given by the following
difference:

@t (k) -t (k3]

4 f dpa(k = pA) @It (PAIRNPI (P2

(26)

or

whereV's are the desired partial-wave components. Using

Egs.(18) and(19) we obtain

(QlVolq")= f:dr cogqr)V(r)cogq'r)

E%J'jo dxcoggx)V(x)cogq’'x), (20)

@A) | drsin@nvinsing ). (21

Defining the partial-wave elements of thenatrix as in Eq.
(19) via

1
<eq|t<i><k2>|q'>=2§0 (@It (kA)[T), (22

one arrives at the following partial-wave projection of the LS
equation(16):

@t @) =@V @)+ = [ dapavilp)

1 o
Moz PI KA. (23

The integration limits in the partial-wave form extend from O

to « as after partial-wave projection we generate the modu
lus of momentum variable.

[ll. UNITARITY RELATION

In order to derive the unitarity relation we write the formal
solution of the LS equatiof23) as

t (k) =V + VG (k) V., (24)

where the full Green’s function is defined bg(*)(k?)
—lim, _o(k2—H+i7)1 with H=Ho+V the full Hamil-

1 o
3@t (k3 ar) = —i@t{“(k%lk><k|t<f)<k2)|¢>,
27)

whereJ denotes the imaginary part. Whep=q' =k, Eq.
(27) becomes

K (k) [Ky=— §|<?|t£+’<k2>|?>|2, (28)
k

which leads to the following parametrization for the on-shell
t matrix in terms of the phase shif :

(Kt (k?)[k) =~k exp(i 8,)sin(8,). (29)

From Egs.(12), (22), and (29 we obtain the following
partial-wave projection of the scattering amplitudes:

1

fil (e)=k >, e-exp(isy)sin(3,).

L=0

(30

The two phase shifts for both amplitudd$+)(+) and
f(*)(—) are the same. Now one naturally defines the partial-
wave amplitudes

- fo=kexpis,)sin(s,) (31)
so that the total cross section of Hd4.1) become$™
1
Tror= 220 SIN?(8)) (32
and satisfies the following optical theorém:
2 +
oo=—JF(+), (33
k

in close analogy with the three-dimensional case, where

tonian. Using the complete set of eigenstates of the Hamilf{")(+) is the forward scattering amplitude. The scattering
tonian H, one has the following spectral decomposition ofamplitude (9) of Refs. 3-5 leads to the distinct optical
the full Green'’s function: theorem
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Ciot= _29{]?(k+)(+), (34) V. SUMMARY

In this paper we have generalized the standard treatments
of two- and three-dimensional scattering to the case of one-
dimensional scattering. We have introduced the concept of
scattering amplitude, partial wave, phase shift, unitarity, the
IV. DELTA POTENTIAL Lippmann—Schwinger scattering equation for the wave func-

tion, and thet matrix in close analogy with three-

Here we present an illustrative application of the formula-dimensional scattering. In this case there are two partial
tion using the delta potential/(x) =\ 8(x). The configura- waves:L=0 and 1 in contrast with two and three dimensions
tion space solution of the problem is well knownln the ~ where there is an infinite number of partial waves. In one
following we show that the integral-equation treatment leadslimension the algebra is much simpler and mostly analytic.
to the same result. The solutions are analytically known inThis makes the integral equation formulation of scattering in
this simple case. From Eq$20) and (21) we find that one dimension along with its partial-wave projection easily
(qIVolq’)=N\/2 and(q[V,|q’)=0. Hence we have only one tractable. Consequently, difficult concepts of scattering, such
partial wave (=0) in this case. In this case E@3) has the @S the optical theorem and unitarity, are easily understand-

wherefR denotes the real part.

trivial solution able. Hence the present formulation will be helpful for teach-
) ing the formal theory of scattering in two and three dimen-
@ kAN =g oz
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