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A self-contained discussion of integral equations of scattering is presented in the case of centrally
symmetric potentials in one dimension, which will facilitate the understanding of more complex
scattering integral equations in two and three dimensions. The present discussion illustrates in a
simple fashion the concept of partial-wave decomposition, Green’s function, Lippmann–Schwinger
integral equations of scattering for wave function and transition operator, optical theorem, and
unitarity relation. We illustrate the present approach with a Dirac delta potential. ©2001 American

Association of Physics Teachers.
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I. INTRODUCTION

The simple problem of one-dimensional quantum scat
ing continues as an active line of research.1 This problem has
been crucial applications in studying tunneling phenomen
a finite superlattice.2 A self-contained discussion of quantu
scattering in one dimension using the Schro¨dinger equation
has appeared in the literature.3–7 Here we present a compre
hensive description of the integral equations of scatter
using the Green’s function technique in one dimension
close analogy with the two-8 and three-dimensional cases9

Apart from these interests in research, the present stud
one-dimensional scattering is also interesting from a pe
gogical point of view. In a one-dimensional treatment o
does not need special mathematical functions, such as B
functions, while still retaining sufficient physical complexi
to illustrate many of the physical concepts, such as par
wave decomposition, Green’s function, the Lippman
Schwinger ~LS! integral equations of scattering for wav
function and the transition operator, the optical theorem,
the unitarity relation, which occur in two and three dime
sions.

A self-contained discussion of two-dimensional scatter
has appeared in the literature.8 There is an intrinsic differ-
ence between scattering in two and three dimensions and
in one dimension. In one dimension there are only two d
crete scattering directions: forward and backward alon
line. This requires special techniques in one dimension
contrast with two or three dimension where an infinity
scattering directions are permitted characterized by cont
ous angular variables. It is because of the above subtlet
the one-dimensional scattering problem that we prese
complete discussion of the integral-equation formulation
this case. This special feature of one-dimensional scatte
leads to two partial waves. For a centrally symmetric pot
tial these two partial waves are decoupled, with even and
parity.7

Here we present a discussion of the integral equation
scattering in one dimension in momentum and configura
space for a centrally symmetric potentialV(x)5V(2x).
Formánek4 has discussed the importance of this symmetry
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obtaining mathematical simplification. Interesting things c
happen in the nonsymmetric case.5 The two partial waves are
coupled in the nonsymmetric caseV(x)ÞV(2x) and non-
trivial modifications of the standard scattering formulati
are needed.7 For noncentral potentials in three dimensions~in
the presence of a tensor potential! the different partial-wave
components also become coupled. However, in this work
shall be limited to a discussion of the centrally symmet
case.

More specifically, we present a Green-function descript
of scattering in partial-wave form. Also, we derive the L
equation of scattering for the wave function and obtain
suitable transition~t! matrix. The on-the-energy shell~on-
shell! t matrix element is essentially the physical scatter
amplitude. We also derive the unitarity relation for thet ma-
trix and show it to be consistent with the usual form of t
optical theorem in three dimensions.9

In Sec. II we present the LS integral equations. Section
deals with the unitary relations. In Sec. IV we present
illustrative application of the formalism with the delta fun
tion potential. A brief summary is presented in Sec. V.

II. INTEGRAL EQUATION OF SCATTERING

In one dimension the scattering wave functionck
(1)(x) at

positionx satisfies the Schro¨dinger equation

F2
d2

dx2 1V~x!Gck
~1 !~x!5k2ck

~1 !~x!, ~1!

whereV(x) is a centrally symmetric finite-range potential
units of \2/(2m) satisfying V(x)50, r .R and V(x)
5V(2x), where r 5uxu, m the reduced mass,E
[\2k2/(2m) the energy, andk the wave number. The sca
tering wave function is not square integrable and hence d
not satisfy the usual normalization condition of a bound-st
wave function. However it is useful in some cases to ‘‘no
malize’’ it according to

E
2`

`

dx ck
~1 !* ~x!ck8

~1 !
~x!52pd~k2k8!, ~2!
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whered is the Dirac delta function. The previous discussio
on scattering in one dimension are based on the solutio
the differential equation~1! for the wave function supple
mented by the necessary boundary conditions.3–5 The present
discussion will be based on the integral equations of sca
ing which we derive below.

In configuration space the Green’s functionG0
6

[ limh→0(k22H01 ih), with H0 the kinetic energy opera
tor, satisfies

Fk21
d2

dx2GG0
~6 !~x,x8!5d~x2x8! ~3!

together with appropriate boundary conditions. The solut
of this equation is given by10

G0
~6 !~x,x8!57

i

2k
exp~6 ikux2x8u!. ~4!

In analogy with two and three dimensions, one can introd
the following LS equation:

ck
~6 !~x!5fk~x!1E

2`

`

G0
~6 !~x,x8!V~x8!ck

~6 !~x8!dx8.

~5!

In operator form this equation becomes

uck
~6 !&5ufk&1G0

~6 !Vuck
~6 !&. ~6!

The incident plane wavefk(x)[^xufk&[^xuk&5exp(ikx)
satisfies the free Schro¨dinger equationH0fk5k2fk . The6
sign in Eq. ~5! refers to the outgoing and incoming wav
boundary conditions, respectively. The physical scatter
problem corresponds to the positive sign.

Equation ~4! when substituted into Eq.~5! leads to the
following asymptotic form for the wave function:7

lim
r→`

ck
~6 !~x!→exp~ ikx!1

i

k
f k

~6 !~e !exp~6 ikr !, ~7!

where

f k
~6 !~e !57

1

2 E2`

`

exp~7 i ekx8!V~x8!ck
~6 !~x8!dx8. ~8!

The quantityf k
(6)(e) is termed the scattering amplitude. Th

parametere is 11 for x.0 and 21 for x,0 in the
asymptotic region. Definition~8! of the scattering amplitude6

is different from that used in Refs. 3–5:

f̃ k
~6 !~e !57

i

2k E2`

`

exp~7 i ekx8!V~x8!ck
~6 !~x8!dx8.

~9!

The essential difference between the two is in the phase
tor i which does not influence the cross sections. Howe
the present definition has the advantage of leading to an
tical theorem in close analogy with that in three dimensio
as we shall see in the following. The scattering amplitude
Refs. 3–5 leads to an optical theorem distinct from the on
three dimensions. The physical outgoing-wave bound
condition is given by Eq.~7! for ck

(1)(x). There are two
discrete scattering directions in one dimension character
by e561 in the asymptotic region in contrast with the in
nite possibility of scattering angles in two and three dime
sions. The forward~backward! direction is given bye
1011 Am. J. Phys., Vol. 69, No. 9, September 2001
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51(21). The discrete differential cross sections in these t
directions are given by

se5
1

k2 u f k
~1 !~e !u2 ~10!

and the total cross section by3–5

s tot5(
e

se5
1

k2 @ u f k
~1 !~1 !u21u f k

~1 !~2 !u2#. ~11!

The discrete sum in Eq.~11! is to be compared with integral
over continuous angle variables in two and three dimensio
The usual reflection~R! and transmission~T! probabilities
are given byT5u11 i f k

(1)(1)/ku2 andR5u i f k
(1)(2)/ku2.

Here we must comment on the dimension~unit! of cross
section and scattering amplitudes. Cross section is define
be the number of events~particles scattered! per unit time per
unit incident flux. The incident flux is the number of particle
incident per unit time per a section of space. The section
space has units of area and length in three and two dim
sions and is dimensionless in one dimension. The co
sponding incident flux is measured in units ofT21L22,
T21L21, andT21 in these dimensions, respectively, whereT
denotes time andL length. The cross section is an observab
and has units ofL2 andL in three9 and two8 dimensions and
is dimensionless in one dimension. The present cross sec
~11! is dimensionless. Scattering amplitude is not a phys
observable and there could be some flexibility in its defi
tion. The present definition of the scattering amplitude lea
to an optical theorem which is formally similar to the optic
theorem in three dimensions. Other definitions of the scat
ing amplitude in terms of other units are also possible,
example the one given by Eq.~9!.3,4

Next we introduce the on-shell matrix elements of t
transition operatort via the following equations:

^ekut ~6 !~k2!uk&522 f k
~6 !~e !, ~12!

^k8ut ~6 !~k2!uk&5^fk8uVuck
~6 !&

5E
2`

`

exp~7 ik8x8!V~x8!ck
~6 !~x8!dx8,

~13!

with k85ek ande561, so thatk25k82; e511(21) cor-
responds to the forward~backward! direction. The transition
operatort is taken to obeyt (6)(k2)uq8&5Vucq8

(6)& with q82

Þk2. From Eq. ~6! we find that the transition operatort
satisfies

t ~6 !~k2!5V1VG0
~6 !t ~6 !~k2!. ~14!

The usual spectral representation of the free Green’s func
is10

G0
~6 !~x,x8!5

1

2p E
2`

`

dp
exp~ ipx!exp~2 ipx8!

k22p26 i0
. ~15!

Using Eqs.~14! and ~15! one obtains the following explicit
LS equation for the general off-shellt matrix elements
^qut (6)(k2)uq8&(q2Þk2Þq82):
1011Barlette, Leite, and Adhikari
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^qut ~6 !~k2!uq8&5^quVuq8&1
1

2p E
2`

`

dp^quVup&

3
1

k22p26 i0
^put ~6 !~k2!uq8&, ~16!

where

^quVuq8&5E
2`

`

exp~2 iqx!V~x!exp~ iq8x!dx. ~17!

Using the symmetry property ofV, e.g.,V(x)5V(2x), and
Eq. ~17! it can be shown that

^equVuq8&52E
0

`

dr V~r !cos~ q̄8r 1eq̄r !, ~18!

whereq̄5uqu. One can conveniently define the momentu
space partial-wave matrix elements of the potential by

^equVuq8&52(
L50

1

eL^q̄uVLuq̄8&, ~19!

whereVL’s are the desired partial-wave components. Us
Eqs.~18! and ~19! we obtain

^q̄uV0uq̄8&5E
0

`

dr cos~ q̄r !V~r !cos~ q̄8r !

[
1

2 E2`

`

dx cos~ q̄x!V~x!cos~ q̄8x!, ~20!

^q̄uV1uq̄8&5E
0

`

dr sin~ q̄r !V~r !sin~ q̄8r !. ~21!

Defining the partial-wave elements of thet matrix as in Eq.
~19! via

^equt ~6 !~k2!uq8&52(
L50

1

eL^q̄utL
~6 !~k2!uq̄8&, ~22!

one arrives at the following partial-wave projection of the L
equation~16!:

^q̄utL
~6 !~k2!uq̄8&5^q̄uVLuq̄8&1

2

p E
0

`

dp̄^q̄uVLu p̄&

3
1

k22p216 i0
^ p̄utL

~6 !~k2!uq̄8&. ~23!

The integration limits in the partial-wave form extend from
to ` as after partial-wave projection we generate the mo
lus of momentum variable.

III. UNITARITY RELATION

In order to derive the unitarity relation we write the form
solution of the LS equation~23! as

tL
~6 !~k2!5VL1VG~6 !~k2!VL , ~24!

where the full Green’s function is defined byG(6)(k2)
5 limh→0(k22H6 ih)21 with H5H01V the full Hamil-
tonian. Using the complete set of eigenstates of the Ha
tonian H, one has the following spectral decomposition
the full Green’s function:
1012 Am. J. Phys., Vol. 69, No. 9, September 2001
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G~6 !~k2!5(
n

ucn&^cnu
k22en

1
2

p E
0

`

dp
ucp

~1 !^cp
~1 !u

k22p26 i0
, ~25!

where the summation overn refers to the bound statescn of
energyen and the integration overp to the scattering state
cp

(1) with the normalization conditionŝcnucn&51 and
^cq

(1)ucp
(1)&52pd(p2q). From Eq.~25! one realizes that

when this expression is substituted in Eq.~24!, the integral
over the continuum states will contribute a square-root cu
the complex energy plane along the real positive energy a
so that thet matrix will possess this so-called unitarity cu
The discontinuity across this cut is given by the followin
difference:

^q̄utL
~1 !~k2!2tL

~2 !~k2!uq̄8&

524i E
0

`

dp̄d~k22p2!^q̄utL
~1 !~p2!u p̄&^ p̄utL

~2 !~p2!uq̄8&

~26!

or

I^q̄utL
~1 !~k2!uq̄8&52

1

k̄
^q̄utL

~1 !~k2!uk̄&^k̄utL
~2 !~k2!uq̄8&,

~27!

whereI denotes the imaginary part. Whenq̄5q̄85 k̄, Eq.
~27! becomes

I^k̄utL
~1 !~k2!uk̄&52

1

k̄
u^k̄utL

~1 !~k2!uk̄&u2, ~28!

which leads to the following parametrization for the on-sh
t matrix in terms of the phase shiftdL :

^k̄utL
~1 !~k2!uk̄&52 k̄ exp~ idL!sin~dL!. ~29!

From Eqs. ~12!, ~22!, and ~29! we obtain the following
partial-wave projection of the scattering amplitudes:3–5

f k
~1 !~e !5 k̄(

L50

1

eL exp~ idL!sin~dL!. ~30!

The two phase shifts for both amplitudesf k
(1)(1) and

f k
(1)(2) are the same. Now one naturally defines the part

wave amplitudes

f L5 k̄ exp~ idL!sin~dL! ~31!

so that the total cross section of Eq.~11! becomes3–5

s tot52(
L50

1

sin2~dL! ~32!

and satisfies the following optical theorem:7

s tot5
2

k̄
If k

~1 !~1 !, ~33!

in close analogy with the three-dimensional case, wh
f k

(1)(1) is the forward scattering amplitude. The scatteri
amplitude ~9! of Refs. 3–5 leads to the distinct optica
theorem5
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s tot522R f̃ k
~1 !~1 !, ~34!

whereR denotes the real part.

IV. DELTA POTENTIAL

Here we present an illustrative application of the formu
tion using the delta potential:V(x)5ld(x). The configura-
tion space solution of the problem is well known.11 In the
following we show that the integral-equation treatment lea
to the same result. The solutions are analytically known
this simple case. From Eqs.~20! and ~21! we find that
^q̄uV0uq̄8&5l/2 and^q̄uV1uq̄8&50. Hence we have only on
partial wave (L50) in this case. In this case Eq.~23! has the
trivial solution

^q̄ut0
~1 !~k2!uq̄8&5

l/2

12
l

p E
0

` dp

k22p21 i0

5
ikl/2

ik2l/2
. ~35!

In this simple problem thet matrix elements are independe
of the momentum variables. From Eqs.~12!, ~22!, and ~35!
we find that

i

k
f k

~1 !~e !5
l/2

ik2l/2
~36!

for both e511 ande521. Consequently, Eq.~7! becomes

lim
r→`

ck
~1 !~x!→exp~ ikx!1

l/2

ik2l/2
exp~ ikr ! ~37!

→exp~ ikx!1
mv0

i\p02mv0
exp~ ikr !, ~38!

wherel[2mv0 /\2 and \k5p0 . In Eq. ~38! we have re-
stored the factors of massm and\. Equation~38! is essen-
tially Eq. ~4-95! obtained by configuration space treatment
Ref. 11. Although, in the scattering approach, Eqs.~37! and
~38! emerge as asymptotic conditions, they are exact res
valid for all x in this simple analytically soluble problem
From Eqs.~29! and ~35! we find that the phase shiftd0

is defined by tand052l/(2k)52mv0 /(\p0).
11 The bound-

state energy corresponds to the pole of thet matrix ~35!
which happens at k252l2/4 or at E5\2k2/(2m)
52mv0

2/(2\2)—a result well known from configuration
space methods.11 As the t matrix and the scattering ampl
tudes are known, all relevant quantities, such as cross
tions and reflection and transmission probabilities, can n
be calculated. The reflection and transmission probabili
are given by R5u i f k

(1)(2)/ku25l2/(l214k2)
5mv0

2/(2\2E1mv0
2), T5u11 i f k

(1)(1)/ku254k2/(l2

14k2)5E/@E1mv0
2/(2\2)#,11 such thatR1T51, whereas

the cross section is given bys tot5uif k
(1)(1)/ku21uif k

(1)(2)/ku2

52l2/(l214k2)52mv0
2/(2\2E1mv0

2).
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V. SUMMARY

In this paper we have generalized the standard treatm
of two- and three-dimensional scattering to the case of o
dimensional scattering. We have introduced the concep
scattering amplitude, partial wave, phase shift, unitarity,
Lippmann–Schwinger scattering equation for the wave fu
tion, and the t matrix in close analogy with three
dimensional scattering. In this case there are two par
waves:L50 and 1 in contrast with two and three dimensio
where there is an infinite number of partial waves. In o
dimension the algebra is much simpler and mostly analy
This makes the integral equation formulation of scattering
one dimension along with its partial-wave projection eas
tractable. Consequently, difficult concepts of scattering, s
as the optical theorem and unitarity, are easily understa
able. Hence the present formulation will be helpful for teac
ing the formal theory of scattering in two and three dime
sions.

ACKNOWLEDGMENTS

The work is supported in part by the Conselho Nacio
de Desenvolvimento-Cientı´fico e Tecnolo´gico, Fundac¸ão de
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