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a b s t r a c t

The annotation of large data sets by a classifier is a problem whose challenge increases as the number of
labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In
this context, semi-supervised learning methods aim at discovering and labeling informative samples
among the unlabeled ones, such that their addition to the correct class in the training set can improve
classification performance. We present a semi-supervised learning approach that connects unlabeled and
labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path
forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely
connected through sequences of nearby samples than samples from distinct classes, which is usually the
case in data sets with a reasonable relation between number of samples and feature space dimension.
The proposed solution is validated by using several data sets and state-of-the-art methods as baselines.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Data organization, prediction, and retrieval are crucial compo-
nents in many applications, which can be greatly facilitated when
data sets are fully annotated. In pattern recognition, it is assumed
that a supervised classifier can annotate a data set, when an expert
provides labeled samples from all classes. However, as the data
sets grow in size, due to the advances in data acquisition and
storage systems, the design of the pattern classifier becomes more
sensitive to the limited size of the training set and the choice of its
manually annotated samples. In this context, a question that
naturally arises is: can we improve the effectiveness of the clas-
sifier by exploiting the larger amount of unlabeled data? Semi-
supervised learning approaches have tried to answer this question.

Existing methods for semi-supervised learning either
(a) propagate labels to unlabeled training samples, one by one, via
supervised classification [1–4], or (b) explore the spatial distribu-
tion of labeled and unlabeled training samples in the feature space
for label propagation [5,6]. In both categories, the label propaga-
tion process can repeat a few times and a final classifier is created
from the completely labeled set (e.g., from its most confidently
labeled samples).

In this paper, we propose a significant improvement of our
Amorim),
(J.P. Papa),
previous approach, named OPFSEMI, for semi-supervised learning
[5]. The method, named OPFSEMImst, also exploits optimum con-
nectivity between labeled and unlabeled samples for label pro-
pagation, but it can design the final classifier from a single itera-
tion of label propagation. OPFSEMImst is considerably more effi-
cient and more accurate than OPFSEMI, as we will demonstrate in
this work.

We have adopted the Optimum-Path Forest (OPF) methodology
for the design of unsupervised, supervised, and semi-supervised
pattern classifiers. OPF was initially proposed for image processing
[7], and subsequently extended to clustering [8] and supervised
classification [9]. This methodology consists in choosing three
main components: (a) the training samples, (b) some adjacency
relation, and (c) a suitable connectivity function. The training
samples can be labeled, unlabeled, or both, characterizing the
supervised, unsupervised, and semi-supervised learning pro-
cesses, respectively. The adjacency relation aims at linking training
samples in the feature space as nodes of a graph, in order to ex-
plore optimum connectivity between them. The connectivity
function defines a value to any sequence of distinct adjacent
samples (simple path) in the graph, as well as to trivial paths
formed by single nodes. Initially, every node defines one trivial
path and the minimization of the connectivity map computes
optimum paths with terminus at each node, such that (a) the roots
of the paths are first derived from the minima of the connectivity
map and (b) these roots conquer other nodes by offering to them
optimum paths, thus partitioning the graph into an optimum-path
forest (the classifier), which assigns labels to new samples by
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Fig. 1. An example of a training set with two half-moon-shaped classes. (a) Unlabeled samples, (b) a few manually labeled samples in each class. Label propagation to the
remaining samples is computed by (c) SVM with RBF, (d) 1-NN, (e) OPFSUP, and (f) OPFSEMImst (the same for OPFSEMI).

1 It is common to select uniformly distributed samples from each class for the
training set, when comparing classifiers. Note that this option is not often possible
in practice, since the acquired data are initially unlabeled.

2 http://www.support-vector.ws/html/semil.html
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evaluating extended paths to them.
For supervised learning [10], a training set with only labeled

samples is interpreted as a complete graph (the adjacency relation
connects all training samples to each other) and the connectivity
function forces the roots of the forest to be the closest samples be-
tween distinct classes (the most informative ones). In OPFSEMI [5],
the training set consists of labeled and unlabeled samples, and the
classifier requires two executions of the OPF algorithm. In the first
execution, the roots of the forest are forced to be the closest labeled
samples between distinct classes and, in the second execution, the
root set is improved by adding informative samples (previously un-
labeled and now labeled) to it. In both methods, the execution times
to estimate those informative samples (roots of the forest) and to
compute the optimum-path forest are ( )O n2 , for a complete graph
with n nodes. Therefore, OPFSEMI requires four executions of time
cost ( )O n2 , where n is the number of training samples.

In OPFSEMImst, the adjacency relation is defined as the set of arcs
of a Minimum-Spanning Tree (MST) of the complete graph, whose
nodes are the labeled and unlabeled samples, being computed in

( )O n2 for n nodes. We then simplify the choice of the forest roots to be
all labeled samples and the classifier is created from a single execu-
tion of the OPF algorithm, in time ( )O n nlog , on the topology of the
MST. One may say that the supervised classifier [10], named OPFSUP,
could also be used to propagate labels to the unlabeled samples, one
by one, without exploring the spatial distribution of the unlabeled
samples (see category (a) above), and then be retrained from the
completely labeled set. However, the accuracies of OPFSEMI and
OPFSEMImst, as representatives of the category (b) above, are much
higher than the one of OPFSUP for label propagation. Fig. 1 illustrates
this aspect by comparing the performance in label propagation of
OPFSEMImst (which is exactly the same of OPFSEMI in this simple
example) with the performance of methods from category (a), by
using three popular supervised classification models.

Fig. 1 a shows the training set wherein a few labeled samples
are presented in Fig. 1b. Such a set of labeled samples is actually
plausible, given that an expert must select and annotate samples
for it from the initially unlabeled data with unknown distribution
in the feature space.1 The results of label propagation to the re-
maining samples of Fig. 1b are shown in Fig. 1c–e for the classifiers,
SVM with Radial Basis Function (RBF) kernel [11], 1-NN [12], and
OPFSUP [10], respectively. For OPFSEMImst, the connectivity be-
tween labeled and unlabeled samples allows us to propagate la-
bels with no errors in this case (Fig. 1f).

The results of OPFSEMI and OPFSEMImst should be equivalent in
theory, because any path between two nodes in a minimum-
spanning tree is optimum according to the connectivity function
used by both. However, their choices of the roots of the forest are
not the same, and due to that, in practice, we have found that
OPFSEMImst is more accurate than OPFSEMI. Additionally, the OPF-
based semi-supervised methods are (a) free of parameters,
(b) treat multi-class problems in a natural way, (c) do not make
assumptions about the shapes of the classes, and (d) can handle
some overlapping between classes, as long as the roots of the
forest can protect their respective classes.

This paper is organized as follows. Section 2 presents the re-
lated works, with our choice of baselines for the experiments.
Section 3 describes OPFSEMImst. Section 4 shows the experiments
and their results are discussed in Section 5. Section 6 draws con-
clusions and provides directions to future work.
2. Related works

The methods OPFSEMImst and its previous conference version,
OPFSEMI [5], are graph-based approaches for semi-supervised
learning. In this category, we should mention a popular approach
based on harmonic functions and Gaussian fields [13], which has
been implemented in SemiL2 – a tool for solving large-scale
transductive inference problems. This method has been
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Fig. 2. (a) Complete and weighted graph for a simple training set (• labeled samples of class 1, ○ labeled samples of class 2 and □ unlabeled samples). (b) A minimum-
spanning tree from (a) and (c) a trivial path-value map. Labeled samples are forced to be the minima (cost 0) of the map, and unlabeled samples are assigned to infinite cost.
The entries (x, y) over the nodes are, respectively, the cost and the label of the samples. (d) An optimum-path forest after path and label propagation on (b) by starting from
the path-value map in (c). The directed arcs indicate the predecessor nodes in the optimum path. (e) A new sample ▵ and (f) its classification by extending the optimum path
from its the most closely connected root.

a b c d

Fig. 3. A data set with (a) unlabeled samples. (b) A training set with unlabeled and a few labeled samples, (c) test samples inside the classes, and (d) test samples outside the classes.
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successfully used in several domains [14–16].
Basu et al. [1] proposed two semi-supervised learning methods

based on the k-means clustering algorithm. In both methods, la-
beled samples are used to estimate the initial k cluster re-
presentatives. The remaining samples, including the unlabeled
ones, are assigned to the cluster of their closest representatives.
The representatives are recomputed and the process repeats until
convergence. As difference, in one of the methods, the labeled
samples must remain in their initial clusters. It is not clear in these
methods how they guarantee at least one cluster per class, but
alternatives to the problem have been proposed in [17].

Li et al. [2] introduced SVM-KNN – a hybrid semi-supervised ap-
proach based on Support Vector Machines (SVM) and k-Nearest
Neighbors (k-NN). First, an SVM classifier, trained from the labeled
samples, propagates labels to the unlabeled data. The samples near
the boundary between classes are called boundary vectors. By con-
struction, the SVM classification of such informative samples may not
be correct. Then boundary vectors are reclassified by the k-NN algo-
rithm, using the remaining samples labeled by SVM as a training set.

Rosenberg et al. [3] presented a strategy based on self-training
[18]. First, the classifier trained from the labeled samples assigns
labels to the unlabeled data. The samples classified with higher
confidence are added to the training set and the process starts
over until it achieves a convergence criterion. Blum et al. [4] pre-
sented the Co-Training method, in which labeled samples are di-
vided into two subsets. Two supervised classifiers are trained on
each subset and each classifier makes its prediction on the un-
labeled samples, thus teaching the other classifier their labels.
Samples classified with higher confidence are used to increase the
training set of the other classifier, and the retraining process starts
over until it achieves a convergence criterion.

Joachims [6] proposed the Transductive Support Vector Machines
(TSVM), in which the SVM hyperplane of maximum separation be-
tween classes must also satisfy a second criterion of being far away
from unlabeled samples. The idea does not work well for a high
number of unlabeled samples [19], which is usually the case, but
subsequently Collobert et al. [20] introduced the concave–convex
optimization procedure (CCP) to improve TSVM [5,21–24].

Semi-supervised learning has been a topic of continuous pro-
gress over the last 10 years, with methods based on Laplacian
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Fig. 4. Label propagation, classification of test samples inside the classes, classification for test samples inside and outside the classes for (a–c) OPFSEMImst (the same for
OPFSEMI), (d–f) SemiL, (g–i) TSVM, (j–l) LapSVM and (m–o) SSELM, respectively.
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regularization [25], Extreme Learning Machine (ELM) [26,27], and
manifold regularization [28], just to name a few. Manifold reg-
ularization seems to be among the most actively pursued [29–32].
However, in [33], the authors proposed USELM and SSELM – ex-
tensions of ELMs to handle unsupervised and semi-supervised
learning problems, respectively, by using manifold regularization
to cope with the absence or scarcity of labeled data.

Therefore, in view of consolidating OPFSEMImst among the most
popular semi-supervised learning approaches, and also taking into
account the available codes, we have selected the following
methods for comparison: its previous version, OPFSEMI [5], TVSM
with CCP (as implemented in UniverSVM [20],3), SemiL [13]
3 UniverSVM seems to be the strongest competitor, with publicly available
code, in running time and classification performance.
(another graph-based approach), the LapSVM algorithm by Belkin
et al. [28] (manifold regularization), the SSELM algorithm by
Huang et al. [33] (extreme learning machine with manifold reg-
ularization) and two methods based on supervised classification,
OPFSUP [10] and SVM with RBF [20].
3. The improved semi-supervised optimum-path forest
classifier

Let be a data set whose samples ∈s are represented by feature
vectors R

→( ) ∈v s n. We randomly divide into subsets 1 for the
design of the classifier (training) and 2 for testing its generalization
ability. Set = ∪l u

1 1 1 also consists of labeled l
1 and unlabeled u

1
subsets of samples. Additionally, let λ ( ) ∈ { … }s c1, 2, , for c classes be
the true label of each sample ∈s and ( ) ≥d s t, 0 be a symmetric
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distance function between samples, according to their feature vectors,
such as ( ) = ∥ →( ) − →( )∥d s t v t v s, . For training, the method must con-
nect samples from 1 into a graph and propagate labels to u

1 such that
the classifier will be an optimum-path forest rooted at l

1. The classi-
fication of new samples from 2 is performed by evaluating extended
optimum paths. The algorithms for each step are described next.

3.1. Training

In order to train the semi-supervised optimum-path forest classifier,
OPFSEMImst, we first consider an adjacency relation = ×1 1, which
defines a complete and weighted graph ( )d, ,1 , and compute from
( )d, ,1 a minimum spanning-tree ( )d, ,1 , to be used as input
graph for optimum-path forest computation. The arcs in already
connect the closest labeled and unlabeled samples, but a node ∈t u

1

can still be reached by paths from nodes of l
1 with distinct labels.

Therefore, labeled nodes will compete with each other and the label
λ( ) ← ( )L t s1 assigned to t will come from its most closely connected

node ∈s l
1. A label propagation error occurs when λ( ) ≠ ( )L t t1 .

The Optimum-Path Forest algorithm is a variant of Dijkstra's al-
gorithm for multiple sources and more general connectivity functions
[7]. Differently from the original conditions, its correctness requires
constraints applied to only optimum paths. For a given graph, a path
πt with terminus t is simple when it is a sequence 〈 … 〉s s t, , ,1 2 of
distinct adjacent nodes and, when π = 〈 〉tt , it is said to be trivial. A
path πt is optimum for a given connectivity function when

π τ( ) ≤ ( )f ft t for any other path τt with terminus t in the graph, ir-
respective of its origin. Wewrite π π= ·〈 〉s t,t s to indicate the extension
of a path πs by the arc (s,t) in the graph.

For training, we first consider the graph ( )d, ,1 with connectivity
function fmst, which generates ( )d, ,1 – a Minimum-Spanning Tree:
an acyclic and connected graph, where ∑ { ( )}∀( )∈ ⊆ d s t,s t, is mini-
mum. We then consider the MST as input graph with connectivity
function fmax for optimum-path computation purpose:

π

(〈 〉) =
∈

+ ∞

( ·〈 〉) = ( ) ( )

⎧⎨⎩f s
s

f s t d s t

0 for one arbitrary ,

otherwise,

, , , 1

mst

mst s

1

π π

(〈 〉) = ∈
+ ∞

( ·〈 〉) = { ( ) ( )} ( )

⎪

⎪⎧⎨
⎩f s

s

f s t f d s t

0 if ,

otherwise,

, max , , . 2

l

s s

max
1

max max

For fmst, the OPF algorithm is equivalent to Prim's algorithm, as
follows, by transforming the complete graph in Fig. 2a, for ex-
ample, into the minimum-spanning tree of Fig. 2b.

Algorithm 1. The OPF ALGORITHM for fmst.
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For input ( )d, ,1 with connectivity function fmax , the OPF algo-
rithm will minimize a path-cost map C1 (connectivity map) by
considering all possible paths with terminus t and assign to t the
cost ( )C t1 of an optimum path πt, which can be obtained backwards
from a predecessor map P1 – Optimum-Path Forest: an acyclic map
defined for all nodes in 1 as ( ) =P t nil1 , when ∈t l

1 is a root of
the map, or ( ) = ∈P t s1 1, when s is the predecessor of t in the
optimum path πt. Each sample ∈s l

1 will be root of one optimum-
path tree and each class will be represented by its root samples.
The true labels λ ( )s of the roots ∈s l

1 can be propagated to create
a label map L1, where unlabeled samples ∈t u

1 will be assigned to
the label λ( ) ← ( )L t s1 of its most closely connected root ∈s l

1, as
follows.

Algorithm 2. The OPF ALGORITHM FOR fmax .

The MST computation from ( )d, ,1 has time complexity (| | )O 1
2 ,

since the graph is complete, while the time complexity of the
optimum-path forest from ( )d, ,1 is (| | | |)O log1 1 , since
| |⪡| | | |log1 1 . The nodes t of the forest in ′1 are stored in their
non-decreasing order of optimum path values ( )C t1 . This is useful
to speed-up classification as presented next.

3.2. Classification

For classification, optimum paths πs for ∈ ′s 1 must be ex-
tended to new samples ∈t 2 by considering

( ) = { { ( ) ( )}}
( )∀ ∈ ′

C t C s d s tmin max , , ,
3s

2 1
1

and assigning to t the label ( ) ← ( )⁎L t L s2 1 of the sample ∈ ′⁎s 1 for
which π ·〈 〉⁎⁎ s t,s is optimum. Note that classification considers that t is
connected to all nodes in 1, rather than t being an additional node of
the MST. Therefore, classification is based on the same rule used for
the supervised OPF classifier [10], OPFSUP, but now using a much
larger set ′1 than the set l

1. It is also the same classification pro-
cedure used in OPFSEMI. By following the order of nodes in ′1, the
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evaluation of ( )C t2 can halt whenever ( ) ≥ { ( ) ( )}⁎ ⁎C s C s d s tmax , ,1 1 for
some previous ∈ ′⁎s 1. Fig. 2e and f illustrates the classification
process, which can be implemented as follows.

Algorithm 3. OPF CLASSIFICATION ALGORITHM.
Fig. 3 shows a comparison among semi-supervised methods on a
simple data set with unlabeled samples (Fig. 3a), labeled and un-
labeled training samples (Fig. 3b), test samples inside (Fig. 3c) and
outside (Fig. 3d) the classes. The results of label propagation to u

1
and classification of 2 with test samples inside and outside the
classes are presented for OPFSEMImst (they are the same for OPF-
SEMI) (Fig. 4a–c), SemiL [13] (Fig. 4d–f), TSVM [20] (Fig. 4g–i),
LapSVM [28] (Fig. 4j–l), and SSELM [33] (Fig. 4m–o), respectively.
The connectivity between labeled and unlabeled samples in
OPFSEMImst and manifold regularization in LapSVM can con-
siderably reduce classification errors in u

1 and 2, as compared to
SSELM, SemiL and TSVM.

In the case of overlapping among classes, OPFSEMImst becomes
sensitive to the choice of the training samples for manual labeling.
If they are selected in the overlapped class regions of the feature
space, they can protect their classes, reducing label propagation
and classification errors (Fig. 5a–c). However, when this is not the
case, such errors might deteriorate its performance (Fig. 5d–f). This
essentially suggests the use of OPFSEMImst with an active learning
approach, where the objective is to identify and select such in-
formative samples for label correction/confirmation by an expert.
5 http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
4. Experiments

The experiments involved the comparison among supervised
and semi-supervised methods on several data sets with a variety
of feature space dimensions. Among the semi-supervised ap-
proaches, OPFSEMImst was compared with OPFSEMI, its previous
conference version [5], the Transductive Support Vector Machines
(TSVM) with Concave–Convex Optimization (CCP), as im-
plemented in UniverSVM [20], the method based on harmonic
functions and Gaussian fields, SemiL [13], the manifold regular-
ization approach [28] in LapSVM4 and the Semi-Supervised
4 http://manifold.cs.uchicago.edu/manifold_regularization/
approach using Extreme Learning Machine [33] (SSELM5). Among
the supervised methods, OPFSEMImst was compared with the most
popular version of the supervised optimum-path forest classifiers,
OPFSUP [10], and SVM with Radial Basis Function (RBF) kernel [20]
(also used as implemented in UniverSVM). All approaches based
on optimum-path forest used the C library, named LibOPF6 for
their implementation. We will make available OPFSEMImst

in version 3.0 of LibOPF.
Next, we present the data sets, the evaluation methodology,

and the methods used for parameter optimization of the su-
pervised and semi-supervised evaluated approaches.
4.1. Data sets

Table 1 presents the selected data sets with their number of
samples, classes, and attributes. The first six data sets are synthetic
and publicly available. The KddCup is a data set composed by
hundreds of thousands of samples. In this paper, we used a re-
duced data set, which is composed by 10% of the original data set
size. The last two (Cowhide and Parasites) were obtained from real
applications.

The Cowhide data set is composed of five types of regions of
interest in the Wet-Blue7 processing stage, namely: scabies, ticks,
hot-iron, cut, and regions without defect (Fig. 6a–e). The main
reason for selecting samples of cowhide defects is the challenge of
the problem, especially in areas close to the vicinity of different
defects.

The Parasites data set contains samples from 15 species of
protozoa and helminths. These objects were obtained through
faecal exams, by segmentation of optical microscopy images. The
unbalance of samples across classes is a challenge, since the
number of samples per class varies from 33 to 163 (Fig. 6f displays
examples from all species in the data set).
6 www.ic.unicamp.br/afalcao/libopf/
7 Wet-Blue leather is an intermediate stage between untanned and finished

leather.

http://manifold.cs.uchicago.edu/manifold_regularization/
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
http://www.ic.unicamp.br/afalcao/libopf/


Table 1
Number of samples, attributes and classes of the data sets.

Data set Samples Attributes Classes

Statlog [34] 2.310 19 7
Spambase [35] 4.601 57 2
Faces [36] 1.864 162 54
Pendigits [37] 10.992 16 10
KddCup [38] 48.898 41 23
Letter [39] 20.000 16 26

Cowhide [40] 1.690 160 5
Parasites [41] 1.660 262 15

Fig. 5. Importance of informative sample selection. (a) A data set with overlapped classes, showing training (labeled and unlabeled) and test samples. Results of (b) label
propagation and (c) classification for OPFSEMImst, when labeled samples are in the overlapped class regions. (d) When this is not the case, errors in (e) label propagation and
(f) classification increase.
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4.2. Evaluation methodology

Each data set was randomly divided into two parts: 70% for the
training set 1 and 30% for the test set 2. We also evaluated the
methods for different proportions of random samples selected for the
labeled set l

1 and the unlabeled set u
1, with ∪ =l u

1 1 1. The sizes

of l
1 and

u
1 ranged from 1–99% and 10–90% to 50–50%with respect to

the size of 1. The supervised approaches trained on l
1 and the

classifiers were tested on 2, while the semi-supervised methods first
propagated labels from l

1 to
u
1, trained on 1, and then the classifiers

were tested on 2. The performance of the classifiers in accuracy was
measured by giving higher weights to classes with lower number of
samples, as suggested in [9].

For statistical analysis, the above procedure was repeated 100
times and we applied Friedman test [42] on the results. Friedman's
test is a non-parametric test for testing the differences among mul-
tiple classifiers, and is an alternative for repeated measure analysis of
variance, which is used when the same parameter has beenmeasured
under different conditions on the same subjects. When the difference
in performance is statistically significant, the next step is a post hoc
test to detect betweenwhich algorithms those differences appear. We
adopted the Nemenyi test in this case. The difference in performance
for two classifiers is considered statistically significant when their
average ranks differ by more than a critical distance.

4.3. Parameter optimization

TSVM introduces several hyperparameters that need to be tuned.
In our experiments, we tune ∈ { }− − −C 10 , 10 , 10 , 10, 10 , 105 3 1 3 5 and

∈ { }⁎ − − −C 10 , 10 , 10 , 0, 105 3 1 – i.e., the cost parameters concerning
the labeled and unlabeled data, respectively. We also employed the
RBF kernel for both SVM, TSVM and LapSVM with
γ ∈ { }− − −10 , 10 , 10 , 1, 105 3 1 optimized by a 5-fold cross validation.
For SSELM, we used the sigmoid function and the number of hidden
neurons was fixed at 2000. The trade-off parameters C and γ were
selected from the exponential sequence { … }− −10 , 10 , , 106 5 6 (value
set proposed in [33]). The remaining parameters used their default
values. In SemiL, the weight matrices W were calculated with two
different distance functions, Euclidean distance and Cosine distance
with the RBF kernel and we used the hard-label approach with
smoothness maximization (Gaussian Random Field Model – GRFM),
as strongly recommended in [43].



Table 2
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Cowhide data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 82.7170.038 85.1970.035 83.1470.085 83.8170.007 83.4470.007 80.6470.083
10 90 90.8870.107 85.5570.033 84.2570.041 81.6170.016 92.4070.009 84.8770.046
20 80 93.1970.038 85.8670.085 89.4870.019 80.1470.012 92.0670.050 87.0970.042
30 70 93.5970.018 86.4570.050 86.4870.059 81.5870.042 94.3870.043 90.3270.087
40 60 94.2970.031 86.0970.083 86.6870.097 82.6370.075 95.4370.087 93.5470.016
50 50 95.7770.069 87.7670.040 90.0470.057 91.3670.096 96.0170.064 96.7770.076

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 84.5470.076 24.84 0.282 84.5470.069 24.84 0.093
10 90 91.6970.040 12.01 0.286 92.4470.015 10.41 0.094
20 80 93.7570.008 9.50 0.296 94.7970.053 8.76 0.096
30 70 94.4070.076 9.52 0.296 95.8270.053 6.75 0.094
40 60 94.7670.092 8.59 0.311 96.1670.016 5.49 0.096
50 50 95.8070.107 4.56 0.296 96.6870.069 3.89 0.090

Fig. 6. (a) Scabies, (b) Tick, (c) Hot-iron, (d) Cut, (e) without defect and (f) examples of images from each class of the structures of intestinal parasites in our data set.
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5. Results

Tables 2–9 show the mean accuracy (%) and its standard de-
viation for each classifier on 2. The training time (tt.) in seconds
and the percentage of the label propagation errors on u

1 (le.), are
also shown for OPFSEMImst and OPFSEMI. The best results among
the methods of both tables are displayed in bold.

According to the Friedman test [44], the results presented in
Tables 2–9 reject the null hypothesis that all classifiers are
equivalent. Therefore, Figs. 7–8 present a graphical representation
of the Nemenyi test, in which 1 represents the best technique,
while 8 stands for the worst one. Groups of classifiers that are
considered equivalent (at p¼0.05) are connected by using a cal-
culated critical distance (CD) equals to 4.2863 (Fig. 7). Only in the
case of Fig. 8 (regarding the analysis of all data sets together), we
can see a different critical distance (CD) equals to 1.5154 (at
p¼0.05). It is worth noting the importance of the statistical test,
since the mean values in some cases are not sufficient to indicate
the best classifier.

The tests evidenced that OPFSEMImst performed best among



Table 5
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Parasites data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 88.0970.092 78.1570.035 71.7870.016 82.5270.058 82.5670.051 82.4470.059
10 90 96.1170.015 94.4570.029 91.8470.108 88.2570.012 92.2870.026 89.3670.040
20 80 97.2670.084 98.5670.047 89.3270.007 84.3370.073 94.9370.041 90.4270.069
30 70 98.0070.114 98.4170.068 94.2270.035 88.1170.111 94.8570.064 94.1470.020
40 60 97.9370.039 97.7970.013 95.8570.061 86.6670.019 95.6770.034 95.2170.042
50 50 98.4270.031 98.8870.040 94.5670.008 93.4270.064 96.5270.009 97.8770.070

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 91.9470.019 13.03 0.902 92.0170.053 13.03 0.301
10 90 97.8570.094 4.56 0.946 97.9470.038 4.56 0.311
20 80 97.6970.023 4.40 0.909 97.8270.046 3.76 0.298
30 70 98.3670.023 3.14 0.949 98.4370.094 3.14 0.306
40 60 98.4370.069 3.31 0.893 98.4570.094 3.31 0.280
50 50 98.7970.015 2.64 0.916 98.8570.084 1.90 0.281

Table 4
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Faces data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 80.7770.089 75.1370.019 68.4570.070 79.2570.064 80.1270.014 79.6270.095
10 90 85.4770.038 71.3170.051 77.6170.051 83.8170.021 91.0670.005 81.4870.094
20 80 92.9570.072 80.8170.002 84.3870.088 84.3770.082 92.3170.005 85.6370.096
30 70 95.4370.015 82.2470.017 80.3470.052 87.4970.041 95.2870.084 90.7470.036
40 60 97.1570.13 90.2470.013 84.3570.036 90.3870.044 96.6370.017 92.5970.042
50 50 97.4870.023 97.1370.008 90.0470.059 93.6170.094 98.1470.060 96.2870.071

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 88.6270.046 23.21 0.556 89.1570.053 23.21 0.181
10 90 91.7570.084 15.22 0.552 93.3570.031 13.86 0.180
20 80 94.7570.042 9.57 0.558 96.1270.015 6.96 0.182
30 70 97.0270.046 4.26 0.562 98.1470.038 2.40 0.180
40 60 97.7970.061 3.16 0.581 98.3870.137 2.15 0.182
50 50 97.6170.015 3.11 0.617 98.6170.053 1.67 0.187

Table 3
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Statlog data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 84.7570.061 81.4570.022 73.6170.013 78.6270.077 82.5370.065 82.0570.024
10 90 88.7670.031 85.4170.028 88.6870.081 87.2070.111 89.7070.093 85.1870.032
20 80 87.1170.084 90.3370.054 85.0570.042 83.8070.056 90.0470.013 89.0770.068
30 70 91.670.084 92.3370.088 89.1370.048 80.2270.048 92.2170.054 90.8670.010
40 60 92.5470.038 93.2070.033 89.2270.015 88.3870.071 93.5670.043 91.2070.012
50 50 93.1470.051 93.2570.079 89.0170.067 90.2970.080 93.9970.097 94.8470.053

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 85.5670.013 29.10 0.294 85.7270.053 29.10 0.093
10 90 91.7370.107 25.01 0.299 91.7670.044 18.78 0.094
20 80 91.9470.099 24.83 0.293 93.1170.099 16.80 0.091
30 70 91.9170.046 21.76 0.312 93.8570.114 15.38 0.095
40 60 93.1570.081 17.81 0.310 94.4770.031 15.09 0.095
50 50 93.9670.014 16.71 0.316 95.2170.015 14.11 0.091
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the evaluated techniques in most cases, followed by OPFSEMI,
LapSVM, OPFSUP, SVM, SSELM and finally TSVM and SemiL. We
shall highlight the good performance of LapSVM and SVM in
Spambase (Fig. 7e), but overall LapSVM produces better classifi-
cation results than SVM. SVM outperformed its semi-supervised
version, TSVM, in most cases, which did not happen for
OPFSEMImst with respect to OPFSUP in any of the cases. Although
the performance of SSELM was below the one of OPFSEMImst,
SSELM outperformed TSVM and SemiL in most cases. The
performances of TSVM and SemiL considerably improved with the
increase from 1% to 50% of samples in l

1, but they were still not
enough to outperform OPFSEMImst (see, e.g., the Cowhide and
Parasites data sets).

By performing a deeper analysis, we can compare statistically
the pair, OPFSEMI and OPFSEMImst, by using Wilcoxon signed-rank
test [44]. The Wilcoxon test is an important analysis that turns out
to be more sensitive since it does not assume normal distributions.
In this case, for = ( < )−p p3. 640 0.059 , they can be considered



Table 8
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – KddCup data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 89.2370.033 80.4470.029 88.1570.063 73.9270.040 85.4870.052 79.1570.030
10 90 89.6770.088 87.0170.038 90.1270.011 83.5770.021 89.870.065 83.3670.053
20 80 92.9970.072 86.9170.071 91.5470.081 84.3570.039 93.1670.098 88.1470.043
30 70 93.5770.092 87.3070.048 92.6970.093 87.6670.042 93.3770.081 90.7470.077
40 60 93.3370.048 87.1470.034 92.9970.076 90.5470.028 94.5570.059 92.3270.041
50 50 94.8470.086 91.7670.092 94.7670.084 92.2870.060 95.9870.052 94.4770.086

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 85.5770.021 0.77 353.842 90.0670.021 0.53 142.629
10 90 90.5370.025 0.24 346.997 90.6470.057 0.24 141.964
20 80 92.7870.068 0.16 350.471 93.0270.029 0.14 140.428
30 70 93.6970.014 0.13 357.392 93.7370.026 0.12 140.857
40 60 93.7170.024 0.15 367.103 93.7170.083 0.12 141.467
50 50 95.6070.036 0.15 381.697 96.2170.092 0.09 141.231

Table 7
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Pendigits data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 94.3170.076 75.0570.025 74.2370.088 75.2070.015 93.0570.077 94.1670.042
10 90 96.5470.015 70.2770.064 70.4370.083 74.5070.035 97.2070.089 96.7270.083
20 80 98.8870.092 79.0770.028 76.8070.094 86.6070.076 97.4970.055 97.5370.094
30 70 99.1970.099 87.6870.078 88.5770.078 97.6170.010 97.9370.001 98.9070.020
40 60 99.1470.053 91.2270.035 82.8870.023 97.1370.098 98.0570.055 99.0170.024
50 50 99.1770.088 97.8770.020 85.6570.047 98.0670.026 98.2970.063 99.1770.089

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 95.6670.015 7.58 6.957 95.7870.084 7.54 2.141
10 90 98.2770.053 5.89 7.168 99.2270.031 1.05 2.212
20 80 99.1070.076 1.33 7.084 99.3070.069 0.95 2.162
30 70 99.2870.046 1.07 7.214 99.4470.015 0.85 2.155
40 60 98.5670.033 2.62 7.328 99.4470.015 0.73 2.151
50 50 98.6170.053 2.67 7.469 99.5170.071 0.57 2.142

Table 6
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Spambase data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 58.7670.042 60.7570.026 60.3770.082 58.5970.085 65.1270.028 61.4370.045
10 90 65.8970.017 64.1570.066 67.9870.069 62.2070.102 66.2970.037 62.7570.088
20 80 66.1370.038 74.7570.031 70.1370.082 66.3170.078 72.8770.074 66.8970.096
30 70 67.5470.096 76.3970.054 73.4170.014 70.2370.066 76.0170.028 69.0770.022
40 60 68.9970.044 76.9570.075 69.8470.007 71.3470.014 75.3570.081 72.1170.031
50 50 70.1670.099 77.4870.056 71.0370.013 71.8570.099 78.0670.016 73.9170.030

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 64.7870.053 35.07 1.890 65.2270.061 33.49 0.607
10 90 65.9070.027 32.22 1.899 66.1270.056 30.11 0.605
20 80 67.2570.092 30.73 1.950 68.6970.023 27.32 0.619
30 70 68.4670.062 30.42 1.998 71.5370.021 25.43 0.621
40 60 69.5570.058 29.02 2.071 73.4270.061 24.13 0.690
50 50 70.8170.067 27.74 2.133 74.1870.037 19.25 0.693
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statistically different. This confirms the improvement of
OPFSEMImst over its previous conference version in accuracy, since
it is already better in efficiency. OPFSEMImst was on average three
times faster than OPFSEMI for training and it has also demon-
strated to be robust to label propagation errors, which ranged
from 0.11% to 33.49% of the samples in u

1.
6. Conclusion

We introduced a semi-supervised approach, named OPFSEMImst,
based on the Optimum-Path Forest methodology. The method con-
nects labeled and unlabeled samples into a minimum-spanning tree
and computes an optimum-path forest rooted at the labeled nodes.



Table 9
Mean accuracy (%), standard deviation, training time (tt.) in seconds, and percentage of label propagation errors (le.) on u

1 – Letter data set.

l
1 (%) u

1 (%) OPFSUP SVM TSVM SemiL LapSVM SSELM

1 99 75.0570.052 78.6870.070 74.5670.017 73.0370.083 80.9770.037 76.6270.051
10 90 88.7670.069 80.8270.016 79.2370.084 76.4170.082 82.6970.031 77.5370.018
20 80 92.9470.089 84.5670.021 84.0670.059 78.6870.098 84.7370.010 82.0870.063
30 70 94.1770.076 89.2570.035 90.1170.049 91.9570.046 92.3170.060 90.7170.011
40 60 94.3370.058 92.9870.055 93.4270.076 90.8270.092 94.1670.055 93.5570.078
50 50 95.4370.077 93.5870.024 94.2870.073 91.5670.032 96.5070.088 95.1170.060

l
1 (%) u

1 (%) OPFSEMI le. tt. OPFSEMImst le. tt.

1 99 76.9470.059 32.79 45.612 77.5070.084 30.58 15.279
10 90 88.1170.083 20.51 47.494 91.3870.011 15.67 15.419
20 80 89.4470.091 17.99 47.539 94.2870.088 10.31 15.351
30 70 91.4570.046 14.19 48.453 95.2170.034 8.77 15.296
40 60 90.9470.012 15.12 51.003 95.8770.031 7.54 15.743
50 50 93.0170.053 11.10 51.757 96.1770.012 7.12 15.658

Fig. 7. Results of the Nemenyi test for all classifiers. Groups of equivalent classifiers are connected at =p 0.05. (a) Cowhide, (b) Statlog, (c) Faces, (d) Parasites, (e) Spambase,
(f) Pendigits, (g) KddCup and (h) Letter.
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Fig. 8. Results of the Nemenyi test for all classifiers and all data sets. Groups of
equivalent classifiers are connected at =p 0.05.
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The methods exploit optimum connectivity between labeled and
unlabeled samples to correctly classify informative unlabeled sam-
ples, increasing the training set size, and so improving classification
performance on unseen samples. We discussed its pros and cons, and
assessed OPFSEMImst in comparison to two supervised approaches
and five semi-supervised methods on eight data sets with a variety of
feature space dimensions. OPFSEMImst outperformed all approaches
in most cases as statistically verified by Friedman with Nemenyi test.

We may conclude that OPFSEMImst is a significant contribution
for the literature of semi-supervised learning. Its potential to ad-
dress classification problems with a small number of labeled
samples in comparison to the number of unlabeled samples in-
dicates that OPFSEMImst should be further investigated in the de-
velopment of active learning approaches. We then intend to use it
in order to pursue the work recently reported in [45].
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