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Abstract

Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the
electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V
alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of
dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance
spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy
and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data
were analyzed by Pearson’s correlation and independent t-tests (a= 0.05). In the corrosion parameters, there was a strong
lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization
resistance) values (p,0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of
dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p,0.05). The acid-treated
groups showed a significant increase in Cdl values and reduced Rp values (p,0.05, t-test). According to the topography,
there was an increase in surface roughness (R2 = 0.726, p,0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the
double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p,0.05) and that of the
treated Ti-6Al-4V alloy increased (p,0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-
4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The
combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with
double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater
susceptibility to corrosion of titanium implants in diabetic patients with associated infections.
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Introduction

Diabetes is a disorder marked by abnormal lipid and glucose

metabolism, often with serious complications leading to premature

death [1], and it is considered a public health concern worldwide

[2]. According to the Centers for Disease Control and Prevention,

10.9 million (26.9%) people aged $65 years and 215,000 people

younger than 20 years old had diabetes in the United States in

2010, with estimated annual treatment costs of $174 billion [3].

Periodontal diseases such as periodontitis are two and a half

times more likely to occur in individuals with diabetes than in

those without it [4]. Additionally, diabetes presents a stalemate

to patients who undergo treatment with dental implants [5].

Hyperglycemia leads to overproduction of superoxide, which con-

tributes to the pathogenesis of diabetic micro- and macrovascular

complications [6–8], predisposing to at least a delay in peri-

implant bone repair or causing peri-implantitis [7–10].

Porphyromonas gingivalis is the most common bacterium contrib-

uting to peri-implantitis in partially and completely edentulous

patients [11]. P. gingivalis and other Gram-negative bacteria

produce lipopolysaccharide (LPS), located in the bacterial cell

walls [12,13], and its presence dictates the prognosis of implant

treatment [12–15].

Dental implants are composed mainly of titanium (Ti) and

feature a strong bond with water or air molecules in the

atmosphere, which promotes the immediate formation of a Ti

oxide layer on the metal surface. This property creates proper

surface energy for osseointegration and corrosion resistance

[16,17]. However, changes in the surrounding oral environment,

such as pH and thermal oscillations, and the presence of biofilm,
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can degrade the oxide layer, allowing for the exchange of Ti ions.

This activity contributes to the corrosion process of the implant

surface [18–20], substantially affecting the mechanical properties

and biocompatibility of the implants, resulting in the failure of

rehabilitative treatment [21–24].

The corrosion resistance of medical and dental Ti implants has

been evaluated in vitro in simulated physiological and systemic

conditions [21,23,25–28]. However, few clinical studies have

reported on the corrosion of Ti in dentistry. Olmedo et al. [29]

reported 2 cases of injury reaction in the peri-implant mucosa,

which suggested that it was caused by Ti particles released into the

surrounding tissue, resulting in corrosion of the osseointegrated

implant surface. In this context, 153 patients rehabilitated with

single implants underwent biopsy of the mucosa adjacent to the

implant cover screws during the period of osseointegration (4–6

months). In total, 41% of these patients showed Ti particles

released from the implant surface, sometimes free or surrounded

by macrophages, denoting foreign body reaction with probable

metal corrosion [30].

Several mechanical and chemical modifications of dental

implant surfaces – such as titanium plasma spray (TPS),

hydroxyapatite coating, electrochemical and mechanical polishing,

acid etching, aluminum oxide sandblasting, and laser irradiation –

have been proposed. These surface treatments have increased the

percentage of bone-implant contact, especially in low-bone-density

areas, and have accelerated the osseointegration phenomenon

[31–38].

Therefore, this study investigated the corrosion and microstruc-

ture behavior of Ti-6Al-4V alloys as a function of the Ti surface

(smooth and modified by treatment with double-acid-etching) in

Table 1. Groups for testing corrosion in SBF as a function of the concentrations of dextrose (DEX), lipopolysaccharide (LPS), and
the association of LPS and dextrose (DEXLPS) (n = 3).

Surface Types of Discs Dextrose Concentration (mM) Concentration of LPS (mg/mL)

Smooth

SBF (control) 0 0

DEX5 5 0

DEX7.5 7.5 0

DEX15 15 0

LPS0.15 0 0.15

LPS15 0 15

LPS150 0 150

DEX5 LPS0.15 5 0.15

DEX5 LPS15 5 15

DEX5 LPS150 5 150

DEX7.5 LPS0.15 7.5 0.15

DEX7.5 LPS15 7.5 15

DEX7.5 LPS150 7.5 150

DEX15 LPS0.15 15 0.15

DEX15 LPS15 15 15

DEX15 LPS150 15 150

Double-acid-etching

SBF (control) 0 0

DEX5 5 0

DEX7.5 7.5 0

DEX15 15 0

LPS0.15 0 0.15

LPS15 0 15

LPS150 0 150

DEX5 LPS0.15 5 0.15

DEX5 LPS15 5 15

DEX5 LPS150 5 150

DEX7.5 LPS0.15 7.5 0.15

DEX7.5 LPS15 7.5 15

DEX7.5 LPS150 7.5 150

DEX15 LPS0.15 15 0.15

DEX15 LPS15 15 15

DEX15 LPS150 15 150

doi:10.1371/journal.pone.0093377.t001
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simulated body fluid (SBF) with different dextrose (0 mM, 5 mM,

7.5 mM, and 15 mM) and LPS (0 mg/mL, 0.15 mg/mL, 15 mg/

mL, and 150 mg/mL) concentrations, used alone or in combina-

tion.

The hypothesis was that the Ti-6Al-4V alloy surface treated

with double-acid-etching would generate a corrosion pattern

different from that observed in the smooth-surface alloy, both in

the combination of dextrose and LPS as well as evaluated

separately. Additionally, it was hypothesized that the presence of

dextrose and LPS would decrease the corrosion resistance of the

Ti-6Al-4V alloy.

Materials and Methods

For the electrochemical test, 96 Ti-6Al-4V alloy discs (15 mm in

diameter and 2 mm in thickness) were fabricated. The tested

surfaces were detailed as below:

1 - Ti-6Al-4V alloy disc with smooth surface, mimicking

implants with machined surface (n = 48); and

2 - Ti-6Al-4V alloy disc modified by treatment with double-

acid-etching (n = 48).

Disc preparation
The specimens were divided into 32 groups (n = 3) according to

type of surface (smooth or etched with acid), dextrose concentra-

tion (0 mM, 5 mM, 7.5 mM, and 15 mM) (Sigma Chemical, St.

Louis, MO, USA), and LPS concentration (0 mg/mL, 0.15 mg/

mL, 15 mg/mL, and 150 mg/mL) (055: B5, Sigma Chemical)

(Table 1). The discs were polished and cleaned by standard

metallographic methods [23,25]. Specimens were polished with

sequential sandpaper of 320, 400, 600, and 800 grit (Carbimet 2,

Buehler, Lake Bluff, IL, USA) in an automatic polisher

(ECOMET 250PRO/AUTOMET 250, Buehler). Subsequently,

a polishing cloth (TextMet Polishing Cloth, Buehler), diamond

paste (MetaDi 9-micron, Buehler), and lubricant (MetaDi Fluid,

Buehler) were used.

Finally, specimens were mirror-finished with polishing cloth

(Chemomet I, Buehler) and colloidal silica (MasterMeD, Buehler).

The discs were ultrasonically cleaned with deionized water, de-

greased with 70% propanol (Sigma Chemical) for 10 min, and

dried with hot air at 250uC. The surface roughness of all samples

was determined, to provide standardization in the finishes of the

Ti-6Al-4V alloy discs [Roughness average (Ra) of

27.6467.43 nm].

Dextrose at a concentration of 15 mM was selected as

equivalent to 270 mg/dL of blood glucose, commonly found in

patients with uncontrolled diabetes or in patients with undiag-

nosed type II diabetes [39–41]. Likewise, for the simulation of

diabetes in the initial stages, the concentration of 7.5 mM dextrose

was used, which corresponds to 135 mg/dL blood glucose. To

simulate healthy patients with blood glucose levels within the

normal range, the concentration of 5 mM dextrose was used,

corresponding to 90 mg/dL blood glucose. Finally, as a control

group, a zero concentration of dextrose was used for comparison

among groups. The LPS concentrations (0 mg/mL, 0.15 mg/mL,

15 mg/mL, and 150 mg/mL) were used according to previous

studies by Barao et al. [23] and Mathew et al. [42], to simulate the

infection process.

Discs with smooth surfaces
After the polishing protocol was applied to the Ti-6Al-4V alloy

discs, 48 discs were randomly selected for the test corresponding to

the smooth surface.

Surface acid modifications
Forty-eight discs were subjected to surface modification

according to market availability. To obtain the treated surface,

we chemically treated the smooth discs with double-acid-etching

(nitric, sulfuric, and hydrochloric acid), according to company

proprietary standards (Military Institute of Engineering - IME, Rio

de Janeiro, Brazil).

Electrochemical test
The electrochemical test protocol followed that described

previously in the literature [23,25]. The tests were performed in

an electrochemical cell made of polysulfone, which has 4 wells

with an electrolyte capacity of 10 mL. All measurements were

performed by a standardized method of three-cell electrodes

according to the instructions of ASTM International [formerly

known as the American Society for Testing and Materials (ASTM)

(G61-86 and G31-72)]. A saturated calomel electrode (SCE) was

used as the reference electrode (RE), a graphite rod as a counter-

electrode (CE), and the exposed surface of the Ti-6Al-4V alloy disc

as a working electrode (WE, exposed area of the smooth Ti =

1.77 cm2, and Ti treated with double-acid-etching = 2.62 cm2). A

potentiostat (Interface 1000, Gamry Instruments, Warminster, PA,

USA) connected to a computer was used to perform the corrosion

measurements. A 10-mL quantity of electrolyte solution (SBF with

or without dextrose and/or LPS) was used for each corrosion

experiment [23,25,43]. The electrolyte for simulating blood

plasma (SBF) has physiologically characteristic temperatures

(37uC) and pH (7.4) [44] to mimic certain clinical conditions.

Initially, the Ti-6Al-4V alloy discs were subjected to a cathodic

potential (20.9 V vs. SCE) for 10 min to ensure the standardi-

zation of the oxide layer from the surface thereof. The open circuit

potential (OCP) was monitored for a period of 3600 s to evaluate

the potential of the material before application of the solution and

to stabilize the system. Electrochemical impedance spectroscopy

(EIS) was used to investigate the formation and growth of the

oxide layer on the Ti surface and the properties of this film

(corrosion kinetics). EIS, through the electrochemical process, can

be represented by an equivalent electric circuit, and the oxide film

properties (capacitance and resistance) were quantified to deter-

mine the corrosion process and related corrosion kinetics. The EIS

measurements were performed at a frequency range of 100 KHz

to 5 mHz, with an AC amplitude curve of 10 mV applied to the

electrode at its corrosion potential (Ecorr) [23,25,42]. These values

were used to determine the real (Z9) and imaginary (Z0)

components of impedance, which were plotted in the Bode plot

or total impedance (|Z|) and phase angle (theta). Finally, the

specimens were anodically polarized from 21.2 V to 1.8 V at a

scan rate of 2 mV/s.

The corrosion parameters were obtained by means of

potentiodynamic polarization curves. Tafel’s method was used to

estimate the corrosion rate (corrosion current density - Icorr) and

the corrosion potential (Ecorr) of the Ti-6Al-4V alloy. The

passivation current density (Ipass) was the amount of current

density in the transition between the active and passive regions in

the polarization curve of the Ti-6Al-4V alloy. The EIS data were

used to model the corrosion process (corrosion kinetics) and to

describe the properties of the oxide film formed on the surfaces of

the Ti-6Al-4V alloy discs. For this, we used Randle’s circuit, in

which the polarization resistance is in parallel with the capacitance

of the double layer while in series with the resistance of solution

(Rsol). Based on such a modeling approach, an electrical circuit can

be developed equivalent to the electrochemical reactions at the

metal-solution interface. Rsol is the uncompensated electrolyte

resistance between the reference and working electrodes; Rp is the

Electrochemical Stability of Titanium
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polarization resistance or the charge transfer resistance at the

interface between the working electrode and the electrolyte, in

relation to the corrosion rate reactions at the passive field; and Cdl

is the specific double-layer capacitance at the working electrode/

electrolyte interface. The capacitance is represented by a constant-

phase element (CPE) as an alternative to an ideal capacitance

element, owing to the inhomogeneous passive layer at the material

surface [25]. For the EIS simulation data (double-layer capaci-

tance - Cdl and polarization resistance - Rp), Gamry Echem

Analyst software (Gamry Instruments) was used. A chi-square

value (goodness of fit) less than 0.001 was considered to indicate an

excellent agreement between the experimental data and the fitted

values [45].

Surface characterization
The evaluation of the corroded surfaces plays an important role

in our understanding of the mechanisms of degradation. Several

techniques for surface characterization were used as described

below.

Atomic Force Microscopy
The Ti-6Al-4V alloy discs with a smooth surface and surface-

treated by acid-etching were analyzed by atomic force microscopy

(AFM) (AFM, Veeco Metrology Inc., Santa Barbara, CA, USA).

The images were transported from the microscope to a computer,

and in the NanoScope Analysis program (2004 Veeco Instruments

Inc., Santa Barbara, CA, USA), the images were initially subjected

to filters (lowpass and medium). Images in 3 dimensions (3D) were

then obtained, and to facilitate a visual comparative analysis

among the groups, a standardized scale of the z-axis was used.

Scanning Electron Microscopy and Energy-dispersive
Spectroscopy

Scanning electron microscopy (SEM) (JEOL, model JSM-

7401F, Portland, OR, USA) was used to characterize possible

irregularities on the surfaces of Ti-6Al-4V alloy discs. Compari-

sons were made between the images obtained from the Ti surfaces

by the pre- and post-corrosion analyses of the tested electrolytes.

In addition, elemental chemical analyses were performed in

small volumes, in the order of 1 mm3, through the technique of

energy-dispersive spectroscopy (EDS) with a spectrometer. This

allows for the simultaneous observation of the entire x-ray

spectrum, which permits the rapid quantitative analysis (mapping)

of the main elements of the Ti surfaces. Comparisons were made

of the chemical composition of the different surfaces analyzed

prior to and after the corrosion test.

Analysis of surface roughness
The surface roughness (Ra - arithmetical mean surface

roughness) of Ti-6Al-4V alloy was investigated before (baseline)

and after the corrosion process by means of a profilometer (Dektak

150-d; Veeco, Plainview, NY, USA). Each specimen was

individually placed in the center of the equipment, with the

measuring tip of the profilometer on the specimen surface. Three

measurements were performed at different areas on each disc

(0.25 mm cut-off at a speed of 0.05 mm/s), and the mean value

was calculated [46].

Microhardness analysis
The microhardness of the Ti-6Al-4V alloy discs was verified at

baseline (before corrosion tests) and after the corrosion tests by

means of a microhardness tester (Shimadzu HMV-2000 Micro

Hardness Tester, Shimadzu Corporation, Kyoto, Japan). This

measurement was performed at room temperature (2262uC). The

applied load was 500 gf for 15 s, and the microhardness was

expressed in units of Vickers Hardness (VHN) [47,48]. The values

of Vickers hardness were calculated according to the following

formula: VHN 2P = sin (136u/2)/d2, where P = applied load and

d = length of the diagonals of indentations. The test was repeated

4 times in 4 randomly distributed points on the surface of each

disc. The average of these 4 replicates corresponded to the value of

the Vickers microhardness.

Statistical Analysis
Pearson’s correlations were used to identify the relationships

between the corrosion parameters (Ecorr, Icorr, Ipass, Cdl, and Rp)

and the concentrations of LPS or dextrose (used alone or

combined). Correlations of roughness and microhardness vs

concentrations of LPS or dextrose (used alone or combined) were

also investigated.

The independent t-test was used to compare the two Ti surface

conditions (smooth or treated with double-acid-etching) for all

parameters described above. All tests were conducted with a

significance level of 5% (SPSS version 17.0 - Statistical Package for

the Social Sciences, Inc., Chicago, IL, USA).

In this study, 3 specimens were used per group, with a power

effect of 0.873 (Cohen effect size statistics).

Results

Electrochemical data
The cyclic potentiodynamic polarization curves, the electro-

chemical data, and EIS can be seen in Figs. 1 to 5. Regions of

active-passive transition were observed in the cyclic polarization

curves of the Ti-6Al-4V alloys in the control group (SBF) and for

all tested groups (Fig 1). A typical passive plateau, which is

common in the case of Ti, was evident with both surfaces (smooth

and acid). The formation of negative hysteresis was obvious in the

curves, as indicated by arrows, which enables us to state that the

passive layer formed is strong and uniform, and that Ti in the

presence of dextrose and/or LPS is not susceptible to corrosion by

pits or cracks.

For the Ti-6Al-4V alloy with the smooth surface, only the

association with dextrose and LPS (DEXLPS) was significantly

correlated with some parameter of corrosion. A negative

correlation with Ecorr was noted (R2 = -0.589, p,0.001)

(Table 2). For the Ti-6Al-4V alloy surface conditioned with

double-acid-etching, the presence of dextrose was significantly

correlated with Rp (R2 = 0.960, p,0.01) (Table 2). The LPS was

correlated with the Ipass (R2 = 0.789, p = 0.011), Cdl (R2 = 0.808,

p = 0.008), and Rp (R2 = -0.931, p,0.01) (Table 2). The combi-

nation of dextrose and LPS was correlated with Icorr (R2 = 0.391,

p = 0.044) and Ipass (R2 = 0.435, p = 0.023) (Table 2).

The double-acid-etching surface treatment significantly in-

creased the Icorr values for most groups (p,0.05, t-test) (Table 3,

Fig 2). The passivation of the groups treated with double-acid-

etching tended to be delayed, a fact evidenced by the values of

Ipass. Conversely, the Ecorr values were lower for the Ti-6Al-4V

alloys with the smooth surface (Table 3, Fig 2).

The kinetics of corrosion and passive film formation was

demonstrated through the Bode plot (impedance IZI vs frequency;

and phase angle vs frequency) (Fig 3). In the phase angle, only a

time constant was observed for all groups, which indicates the

formation of a compact Ti oxide film, homogeneous and a shield

to the metal surface. In high and low frequencies, the overall

impedance values were lower in the presence of 15 mM dextrose,

for both the smooth-surface acid-treated Ti-6Al-4V alloys. In

Electrochemical Stability of Titanium
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general, the Nyquist plot (Zimg vs Zreal) (Fig 4) showed that the

dextrose and LPS alone or combined decreased the semicircular

diameter of the capacitance loop for both Ti-6Al-4V alloy surfaces

compared with the control group (SBF). This suggests a lower

corrosion resistance of the Ti in these situations. LPS increased the

semicircular diameter of the capacitance loop of the smooth Ti-

6Al-4V alloy (Fig 4).

The type of Ti-6Al-4V alloy surface exerted a strong influence

on the corrosion kinetics, as observed in the values of Cdl and Rp.

The groups treated with double-acid-etching showed a significant

increase in Cdl values and reduced values of Rp (p,0.05, t-test),

except for the control group and the dextrose groups, in which the

smooth surface produced greater Rp values (Table 3, Fig 5).

Topographic data
The average surface roughness (Ra) and microhardness values

are shown in Fig 6. Only the association of dextrose and LPS

showed a correlation with the topographic data for both types of

Ti-6Al-4V alloy surfaces. A positive correlation with the Ra

parameter was noted (R2 = 0.726, p,0.0001 for the smooth Ti;

R2 = 0.405, p = 0.036 for the acid Ti). There was a negative

correlation for the microhardness data (R2 = 20.915, p,0.0001)

in the smooth Ti, while for the Ti with double-acid-etching, a

positive correlation was noted (R2 = 0.781, p,0.0001).

When the two surface conditions of the Ti-6Al-4V alloy are

compared, it can be noted that the double-acid-etching treatment

resulted in a significant increase (p,0.05, t-test) in the surface

Figure 1. Representative cyclic potentiodynamic polarization curve of Ti-6Al-4V alloy. Tests were conducted in simulated body fluid - SBF
(control) with different concentrations of dextrose (DEX), lipopolysaccharide (LPS), and combinations of dextrose and lipopolysaccharide (DEXLPS).
doi:10.1371/journal.pone.0093377.g001
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roughness of the material for all groups (Table 3, Fig 6). Overall,

the Ti-6Al-4V alloy with a smooth surface showed lower

microhardness values when compared with the Ti-6Al-4V surface

treated by double-acid-etching (Table 3, Fig 6).

The SEM images of the Ti-6Al-4V alloy with a smooth surface

showed no changes in the microstructure of the Ti, except in the

dextrose group (at a concentration of 15 mM) associated with LPS

(concentrations of 15 and 150 mg/mL), which presented inlays,

probably due to the substrates used (dextrose and/or LPS) (Fig 7).

For the Ti-6Al-4V alloy treated with double-acid-etching, the

comparison between the alloys at baseline and after the corrosion

test did not show any change among the groups tested (Fig 8). The

smooth Ti-6Al-4V alloy possessed a smooth and fairly flat surface

(magnifications of 3006and 10,0006). The white spots identified

mainly at the 10,0006 magnification are due to the presence of

aluminum in the Ti-6Al-4V alloy, confirmed by EDS (Fig 9). The

Ti surface treated with acid showed striations on the entire surface,

with rough microstructure quite evident. EDS analysis of the

elementary chemical composition of the Ti-6Al-4V alloy, in two

stages of the experiment (baseline and after the corrosion test),

showed no change in the constituents of the Ti-6Al-4V alloy (Fig 9).

AFM analysis of the three-dimensional surface of the Ti-6Al-4V

alloy demonstrated superficial changes in the material after the

corrosion test for both the smooth-surface discs and those

conditioned by acid. A greater apparent oxide thickness in the

groups associated with dextrose and LPS (DEXLPS) was noted

(Figs 10, 11).

Discussion

The research hypotheses – that (1) the Ti-6Al-4V alloy with the

surface treated with double-acid-etching generates a corrosion

pattern different from that observed in the smooth surface, and

that (2) the presence of LPS and dextrose decreases the corrosion

resistance of the Ti-6Al-4V alloy – were partially accepted. The

combination of dextrose and LPS negatively affected the

electrochemical stability of the Ti-6Al-4V alloy treated with

Figure 2. Electrochemical data of cyclic potentiodynamic polarization curve. Mean and standard deviation of corrosion potential (Ecorr),
corrosion current density (Icorr), and the passivation current density (Ipass) for the Ti-6Al-4V alloys with a smooth surface and etched with acid, in SBF
with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS), alone or in combination (DEXLPS). * Denotes significant correlation at
the 0.05 level.
doi:10.1371/journal.pone.0093377.g002
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double-acid-etching. Dextrose alone did not impair the corrosion

behavior of Ti-6Al-4V alloy for both surface conditions. The Ti-

6Al-4V alloy with surface modification by acid etching showed a

higher tendency toward corrosion.

Corrosion behavior
In spite of the results obtained by the parameters of corrosion, a

significant decrease (more electronegative) in the corrosion

potential Ecorr (p,0.01) was noticed on the smooth Ti-6Al-4V

alloy when exposed to dextrose and LPS (DEX-LPS). The higher

the concentration of the combined DEX-LPS, the lower the

corrosion potential of the smooth Ti. The reduced values (more

electronegative) of Ecorr suggest that the smooth Ti provides a less

stable surface [21,22] that may be a result of decreased surface

passivity. A previous study related the passivity to the thickening of

the oxide/hydroxide layer in the titanium/electrolyte interface

[21]. The isolated presence of dextrose and LPS alone had no

correlation with the Ecorr values of the smooth Ti-6Al-4V alloy at

any of the concentrations tested (p.0.05).

Messer et al. [22] evaluated the electrochemical behavior of

commercially pure Ti implants (cpTi) in inflammatory and

hyperglycemic conditions. The corrosion potential shifted to noble

values at high concentrations of dextrose (15 mM) at the same

concentration used in this study, as a function of monocyte

Figure 3. Electrochemical impedance spectroscopy (EIS) represented by the Bode plot of the Ti-6Al-4V alloy. Tests were conducted in
simulated body fluid - SBF (control) with different concentrations of dextrose (DEX), lipopolysaccharide (LPS), and combinations of dextrose and
lipopolysaccharide (DEXLPS).
doi:10.1371/journal.pone.0093377.g003

Electrochemical Stability of Titanium

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e93377



cultures and blood cells. However, no change in the corrosion rate

was found when phosphate-buffered saline (PBS) was used as the

medium. Hence it is believed that such inconsistency occurred due

to the differences in the electrolyte used. Messer et al. used

cultured blood cells and PBS. In the present study, SBF was used,

and this medium has a composition similar to that of blood

plasma, which may simulate a real clinical situation. Additionally,

our tests were conducted over a short term, and Ti-6Al-4V was

used instead of cpTi.

The addition of dextrose to the SBF tended to reduce the Rp

values for smooth and acid Ti samples. However, the concen-

tration of dextrose was positively correlated to the Rp in the

Ti-6Al-4V alloy treated with double-acid-etching (p,0.01). This

indicates that the resistance of the material increased with

increasing concentrations of dextrose, showing similar Rp values

at 15 mM of dextrose concentration when compared with SBF

(control), thus protecting the surface of the material. It is believed

that the saccharides and proteins on dental implant surfaces can

enhance the corrosion resistance of the Ti in accordance with the

binding affinity to the specific proteins and cause the release of

metal ions from the surface of the material to the peri-implant

region [21,22]. However, the interaction of the metals and

proteins, blood cells, and their products to promote corrosion

depends on several factors, such as roughness, surface charge,

Figure 4. Electrochemical impedance spectroscopy (EIS) represented by the Nyquist plot of the Ti-6Al-4V alloy. Tests were conducted
in simulated body fluid - SBF (control) with different concentrations of dextrose (DEX), lipopolysaccharide (LPS), and combinations of dextrose and
lipopolysaccharide (DEXLPS).
doi:10.1371/journal.pone.0093377.g004
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material composition, and the affinity agent molecules of the metal

[49], and may even protect the surface of the Ti by protein

absorption through the electrolyte [21].

It was noted that the values of capacitance increased and the

resistance values decreased with the increased concentration of

LPS for Ti-6Al-4V alloys treated with acid (negative action of the

LPS on the corrosion kinetics of the acid Ti). Furthermore, there

was delayed passivation with the increasing concentration of LPS,

due to a positive correlation for the Ipass. Dextrose alone did not

cause any effect on the corrosive properties of the Ti-6Al-4V alloy.

In contrast, when dextrose was added to LPS (DEXLPS), there

was an increase in the rate of corrosion current and less potential

for passivation of Ti, confirming the deleterious effect of the LPS

on the surface of Ti with acid treatment.

In this context, the action of LPS on the corrosion [23] and

tribocorrosion [42] behavior of the Ti was evaluated in vitro. These

Figure 5. Electrochemical data from the EIS test. Means and standard deviations of polarization resistance (Rp) and capacitance (Cdl) for the Ti-
6Al-4V alloys with a smooth surface and etched with acid in SBF with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS), alone
or in combination (DEXLPS). * Denotes significant correlation at the 0.05 level.
doi:10.1371/journal.pone.0093377.g005

Table 2. Correlations between parameters of corrosion, roughness, and hardness with concentrations of dextrose (DEX) and
lipopolysaccharide (LPS) (used alone or together) for Ti-6Al-4V alloys with smooth surfaces and conditioned with
double-acid-etching.

Smooth Double-acid-etching

Dextrose LPS Dextrose+LPS Dextrose LPS Dextrose+LPS

variable R2 P R2 P R2 P R2 P R2 P R2 P

Ecorr 20.479 0.192 20.615 0.078 20.589* 0.001 0.639 0.064 20.246 0.523 20.121 0.547

Icorr 20.664 0.051 0.469 0.203 0.250 0.208 0.382 0.311 0.347 0.361 0.391* 0.044

Ipass 0.534 0.139 0.069 0.860 20.134 0.504 0.500 0.170 0.789* 0.011 0.435* 0.023

Cdl 0.070 0.858 0.477 0.194 0.008 0.967 20.172 0.658 0.808* 0.008 0.104 0.605

Rp 20.557 0.119 0.224 0.562 0.217 0.277 0.960* 0.0001 20.931* 0.0001 0.259 0.193

Roughness 0.0001 1.000 0.105 0.788 0.726* 0.0001 20.326 0.392 0.601 0.087 0.405* 0.036

Microhardness 20.551 0.124 0.218 0.573 20.915* 0.0001 20.342 0.368 0.175 0.653 0.781* 0.0001

* Correlation is significant at the 0.05 level (2-tailed).
doi:10.1371/journal.pone.0093377.t002
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Table 3. Comparisons (independent t-test) between the Ti-6Al-4V alloys with smooth surfaces and double-acid-etching
parameters for corrosion, roughness, and microhardness.

Variables

Groups Ecorr Icorr Ipass Cdl Rp Roughness Microhardness

Baseline - - - - - 0.015* 0.127

SBF (control) 0.008* 0.123 0.040* 0.0001* 0.0001* 0.0001* 0.168

DEX5 0.083 0.161 0.105 0.0001* 0.0001* 0.002* 0.070

DEX7.5 0.002* 0.004 0.162 0.0001* 0.0001* 0.001* 0.0001*

DEX15 0.221 0.003* 0.186 0.0001* 0.0001* 0.0001* 0.005*

LPS0.15 0.019* 0.022* 0.024* 0.0001* 0.565 0.0001* 0.042*

LPS15 0.010* 0.012* 0.677 0.0001* 0.009* 0.0001* 0.259

LPS150 0.001* 0.027* 0.897 0.0001* 0.0001* 0.0001* 0.093

DEX5 LPS0.15 0.001* 0.008* 0.908 0.0001* 0.0001* 0.008* 0.747

DEX5 LPS15 0.003* 0.776 0.010* 0.0001* 0.003* 0.001* 0.391

DEX5 LPS150 0.002* 0.002* 0.001* 0.0001* 0.006* 0.0001* 0.161

DEX7.5 LPS0.15 0.014* 0.004* 0.652 0.001* 0.007* 0.0001* 0.023*

DEX7.5 LPS15 0.003* 0.726 0.029* 0.0001* 0.098 0.001* 0.0001*

DEX7.5 LPS150 0.003* 0.019* 0.215 0.0001* 0.001* 0.0001* 0.001*

DEX15 LPS0.15 0.015* 0.001* 0.009* 0.0001* 0.0001* 0.0001* 0.0001*

DEX15 LPS15 0.006* 0.725 0.010 0.0001* 0.006* 0.0001* 0.0001*

DEX15 LPS150 0.0001* 0.0001* 0.007* 0.0001* 0.009* 0.0001* 0.0001*

* Significant at the 0.05 level (independent t-–test).
doi:10.1371/journal.pone.0093377.t003

Figure 6. Data on surface topography. Means and standard deviations of surface roughness (Ra) (in nm) and Vickers microhardness for the
Ti-6Al-4V alloys with a smooth surface and those etched with acid in SBF with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS),
alone or in combination (DEXLPS). * Denotes significant correlation at the 0.05 level.
doi:10.1371/journal.pone.0093377.g006

Electrochemical Stability of Titanium

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e93377



authors stated that the polysaccharide portion of the LPS can

induce the release of Ti ions, proven by the corrosion kinetics,

through the values of Cdl and Rp. This probably is due to a greater

surface area for electrochemical reactions in the Ti-6Al-4V alloy

treated with double-acid-etching. The results of this present study

contradict those obtained by Messer et al. [21], who evaluated the

Ti surface modified with oxide and phosphate and observed lower

corrosion rates due to inflammatory and hyperglycemic conditions

(concentration = 1 mg/mL of LPS). It is believed that the

concentration of LPS used in the Messer study [21], in simulating

the inflammatory effects, was not able to affect the corrosive

properties of the Ti. Herein, the concentrations of LPS (15 and

150 mg/mL) mimicked infections, and undoubtedly could cause

more harmful effects on the Ti surface. In addition, because the

smooth surface had a smaller contact area with the LPS, there was

less connection with the polysaccharide portion of the Ti surface.

This may have been responsible for the increased Rp values

observed on the smooth Ti surface.

The use of LPS at concentrations that mimic infection with the

smooth cpTi surface has been verified previously [23]. It was

observed that increasing the concentration of LPS caused a

significant increase in the rate of corrosion of the cpTi in artificial

Figure 7. Scanning electron microscope images (3006and 10,0006) of the Ti-6Al-4V alloy with smooth surface, showing the Ti-6Al-4V
alloy surface before and after corrosion in SBF (control - Co) with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS), alone or in
combination (DEXLPS). WD = 8 mm; 15 Kv.
doi:10.1371/journal.pone.0093377.g007

Figure 8. Scanning electron microscope images (3006 and 10,0006) of the Ti-6Al-4V alloy with acid-etched surface, showing the
Ti-6Al-4V alloy surface before and after corrosion in SBF (control - Co) with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS),
alone or in combination (DEXLPS). WD = 8 mm; 15 Kv.
doi:10.1371/journal.pone.0093377.g008
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Figure 9. Representative energy-dispersive spectroscopy (EDS). (a) Ti-6Al-4V alloy with smooth surface before corrosion test. (b) Ti-6Al-4V
alloy with smooth surface after the corrosion test. (c) Ti-6Al-4V with acid-etched surface before the corrosion test. (d) Ti-6Al-4V with acid-etched
surface after the corrosion test.
doi:10.1371/journal.pone.0093377.g009
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saliva. This inconsistency with the present study is mainly because

simulated body fluid was used as an electrolyte, and the material

tested was the Ti-6Al-4V alloy. Therefore, it is clear that the

corrosion behavior of the Ti is dependent on the electrolyte and, to

a certain extent, on its composition.

Surface Topography
Reports in the literature agree that the corrosion process can

increase the surface roughness of Ti [20,42,50]. Changes in Ti

roughness may imply greater adherence of microorganisms [51].

Additionally, Barao et al. [52] inferred that the corrosion process

increased the attachment of P. gingivalis on Ti substrata, increasing

the tendency for peri-implantitis [53] and failure of the Ti implant.

These findings are in agreement with the results from the current

study with respect to the roughness values. In the smooth and

treated Ti surfaces, there was a strong positive correlation for the

combination of dextrose and LPS (DEXLPS), corroborating the

parameters of corrosion.

The increase in Ra values with dextrose and LPS were visually

confirmed by the 3D AFM images. This was especially observed in

the smooth Ti-6Al-4V alloy by increases in the apparent oxide

thickness. SEM images did not show great changes on the Ti-6Al-

4V surfaces. Faverani et al. [46] showed that only substantial

deterioration can be evidenced on the Ti-6Al-4V alloy surface.

Yet, changes in the microstructure of the Ti-6Al-4V alloy in

combination with dextrose and LPS were probably due to the

impregnation of the substrates used herein.

Analysis of the microhardness data showed a strong negative

correlation for the smooth Ti-6Al-4V alloy and a positive

correlation for the Ti-6Al-4V alloy treated with acid, in the

presence of dextrose combined with LPS. Yang et al. [54] also

observed an increase in the microhardness of cpTi with surface

treatment when compared with the smooth Ti. The lattice

Figure 10. 3D AFM images of a Ti-6Al-4V alloy with a smooth surface. Surfaces were characterized before (baseline) and after corrosion in
SBF (control) with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS), alone or in combination (DEXLPS).
doi:10.1371/journal.pone.0093377.g010

Figure 11. 3D AFM images of the Ti-6Al-4V alloy with an acid-etched surface. Surfaces were characterized before (baseline) and after
corrosion in SBF (control) with different concentrations of dextrose (DEX) and lipopolysaccharide (LPS), alone or in association (DEXLPS).
doi:10.1371/journal.pone.0093377.g011
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deformation and the solution hardening during surface treatment

may be the driving force in such data [55]. Clinically, the surface

hardening may be endorsed for load-bearing implants and dental

implants [54]. There is still no scientific support to explain why the

combination of dextrose and LPS during corrosion increased the

surface hardness of the surface-treated group. Therefore, further

studies should focus on this topic. It is important to highlight that

the greater addition of sugars (i.e., dextrose) and LPS certainly

raises the failure rates of dental implants [20,51,53] in the clinical

setting.

Clinical Implications
The in vitro simulations of this study showed that patients with a

combination of hyperglycemia and infections might be more

prone to experience implant failure, due to the reduced

electrochemical stability of the Ti-6Al-4V alloy. It is noteworthy

that it is not only diabetes entails hyperglycemia. Other systemic

disorders also cause elevation of blood glucose levels, such as

pancreatitis [56,57], pancreatic cancer [57–59], Addison’s disease,

Cushing’s syndrome, and other alterations of the adrenal glands

[60–62]. Thus, it can be inferred that the blood glucose levels of

patients undergoing dental implant procedures should be within

normal limits. Furthermore, in view of the increased surface

roughness and higher Rp values for the ‘isolated dextrose’ group,

the hyperglycemic individuals must have good oral hygiene to

reduce local biofilm accumulation.

Limitations and future studies
In this study, the static effects of dextrose, LPS, and the

combination of dextrose and LPS in simulated body fluid were

investigated. However, it is known that the peri-implant environ-

ment is constantly subjected to the action of mechanical

oscillations, especially during masticatory load [63,64]. Thus, as

suggested by Mathew et al. [42], future studies evaluating the

linking of corrosion and wear (tribocorrosion) are warranted.

Moreover, the occurrence of peri-implantitis, bacteremia, or

hyperglycemia in individuals with diabetes may be long-lasting;

however, our electrochemical tests were carried out over the short

term. Further studies to evaluate the effects of these conditions in

the long term (for example, 24 and 48 h after immersion) should

be performed.

Conclusions

The combination of dextrose and LPS has a slight influence on

the corrosion current density of the Ti-6Al-4V alloy treated with

double-acid-etching. However, no dose-response in the corrosion

behavior of the Ti-6Al-4V alloy could be observed. The

capacitance of the double layer increased with the increased

LPS concentration. These results suggest a greater susceptibility of

Ti implant corrosion in diabetic patients with associated infections.
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