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Abstract

Background: In Fucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly
scarce. Nearly half of the recently released Fucalyptus grandis genome is composed by retrotransposons and this data
provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome.

Results: We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy
superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two
Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five
Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among
different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the
lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except
one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and
Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using
EST analysis and gRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In
some families, osmotic stress increases transcript values.

Conclusion: Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and
each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon

activity have differentially affected genome and transcriptome among Eucalyptus species.
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Background

Retrotransposons correspond to class I transposable ele-
ments, inserting into a host genome through an RNA
intermediate [1]. Based on structural features and phylo-
genetic relationships, five orders of retrotransposons were
defined [1]. LTR retrotransposons (LTR-RTEs), an order
related to retroviruses, usually encode two open reading
frames (ORFs): one called gag, which encodes a structural
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protein for virus-like particles, and another called pol,
which encodes enzymatic domains involved in the trans-
position cycle, such as an aspartic protease, a reverse tran-
scriptase, an RNaseH and an integrase [1]. The two major
superfamilies of plant LTR retrotransposons are Copia and
Gypsy, in which pol genes differ in their domain order [1].

In most angiosperm genomes, the LTR-RTEs are the
most significant contributor to genome size, contribut-
ing over 70 % of the nuclear DNA in grasses like maize
[2]. Most LTR retrotransposons families exist in low
copy numbers, but the amplification of few individual
families contribute with large differences in genome size
among closely related species [3, 4].

Despite their stringent regulation, LTR-RTEs are tran-
scriptionally active in plants [5-7]. Although epigenetic
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regulation is an important feature of most plant trans-
posable elements [reviewed in [8], cis-regulation has a
crucial role regulating LTR-RTE transcription, since
LTRs represent promoter sequences. The modulation of
LTR-RTEs transcriptional levels has been observed in dif-
ferent tissues, organs and development stages i.e. [5, 9].
The eucalypts are the most widely planted hardwoods in
the world due to their ability to adapt, grow and provide
quality wood for multiple applications [10]. Species of sub-
genus Symphyomyrtus account for>95 % of the world's
planted eucalypts [11]. These include three members of sec-
tion Latoangulatae: E. grandis, E. urophylla and E. saligna,
broadly planted in tropical areas due to their fast growth
and disease resistance; and E. tereticornis (section Exser-
taria), known for their drought tolerance and rapid growth
[10]. Other species are better known for their potential for
introgressing new traits in breeding, i.e., E. brassiana [12].
The Eucalyptus grandis genome assembly into 11
pseudochromosomes (605 megabases (Mb)), is com-
posed by 44.5 % of retrotransposons, and LTR-RTEs are
the most representative, constituting 21.9 % of the E.
grandis genome [13]. Up to now, TE dynamics were
scarcely studied in the Eucalyptus genus and most analysis
were based on private EST data [i.e. [14]. In the present
study, we identify and comprehensively characterize a se-
lected group of Eucalyptus LTR-RTEs, emphasizing the
characterization of elements with putative transcriptional
activity. We analyzed the phylogenetic pattern of nine E.
grandis LTR-RTEs families and we extended this analysis,
understanding DNA interaction properties of selected en-
coding domains. Comparative classifications of LTR-RTEs
from closely related species were performed on monocots
in which transposable elements (TEs) had previously been
well characterized [15, 16], however this is the first time
this approach was employed in forest trees. Our study is
the first to exhaustively sample and classify transcription-
ally active TEs in Eucalyptus species, identifying their
structure, genomic distribution, insertion time estimation,
genomic polymorphism and transcriptional activity in five
Eucalyptus species and one intrageneric hybrid.

Methods

Eucalyptus grandis transcriptionally active LTR-RTEs:
selection and annotation

LTR-RTEs of Copia and Gypsy superfamilies described
in Wicker and Keller [17] and Lloréns et al. [18] were
used as queries in a BLASTX against Eucalyptus spp
ESTs from the dbEST database at the National Center
for Biotechnology Information (NCBI), website on 10/
10/2011. We selected ESTs that aligned over 200 bp or
more (e-value <le —50) for further analyses, similar to
Rossi et al. [19]. In order to confirm whether the EST
codes for a LTR-RTE, we analyzed sequences using
CENSOR implemented in RepBase [20] and the ones
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where the LTR-RTE sequence matched more than 80 %
of an EST were selected for other analyses.

These selected ESTs were used as queries in a
BLASTN search to identify full-length LTR-RTEs in E.
grandis genome v. 0.6 (http://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Egrandis). The first 50 re-
gions (hits) with over 85 % identity in a region over
250 bp were selected for full-length LTR-RTE screening.
Regions 20 kb up- and downstream from these hits were
analyzed using the LTR-Finder [21] and LTR _STRUC
[22]. Only full-length LTR-RTEs that aligned with ESTs
in BLASTN were retrieved for further analyses, and re-
dundant sequences were discarded. These reference se-
quences were deposited at GenBank under accessions
KM196471 to KM196479. Target site duplications (TSDs)
were identified by submitting the full-length sequences as a
query and subject to a blast2seq on NCBI website. Putative
ORFs were retrieved using FGENESH + tool [23] on
Softberry platform (http://linux1.softberry.com/berry.phtml)
and manually inspected. Conserved domains were anno-
tated using Pfam (http://pfam.xfam.org/). In the case of the
two RLC_egAngela families, 5’ non coding leader sequences
were compared using LALIGN (http://fasta.bioch.virgi
nia.edu/fasta_www?2/fasta_www.cgi?rm=lalign). RNA mini-
mum free energy secondary structure of aligned regions
(376 and 204 nt) was performed using RNAfold (http://
rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).

Phylogenetic analysis and RTE family name assignment
All sequences from two previous large-scale analyses of
plant LTR-RTEs [17, 24] were used to develop phylogen-
etic trees based on a reverse transcriptase fragment. We
used a total of 95 Copia [17, 24] and 37 Gypsy [24] families
to classify the nine Eucalyptus LTR-RTE families. DNA se-
quences were aligned using MUSCLE [25] with default pa-
rameters and the phylogenetic trees were made using
MEGA 6.0 [26], applying the Maximum Likelihood method,
with 1,000 bootstrap replicates. We used the Kimura-2-
parameter substitution model and gap positions were ex-
cluded when present in more than 5 % of the sequences.

Eucalyptus LTR-RTEs were assigned to families within
lineages on the basis of 80 % sequence identity in at least
80 % of their LTRs, based on the universal classification
of TEs [1]. We standardized the name of Eucalyptus
LTR-RTE sequences similar to Domingues et al. [6] ra-
tionale: they were named RLC' (Copia) or 'RLG' (Gypsy),
‘eg' for 'Eucalyptus grandis', the lineage name (e.g. 'Ale’)
and the family number (e.g. '1").

Theoretical protein modeling and molecular dynamics
simulations

We selected amino acid sequence of RLG_egTekay_1 chro-
modomain, integrase and reverse transcriptase, as well as
the integrase of RLC_egAle_1 and reverse transcriptase of
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RLC_egBianca_1 by manual selected translation of nucleo-
tide sequences. The sequences were submitted to HHpred
server [27], and further to MUSCLE [25] and MUSTER
(MUIti-Sources ThreadER) [28]. The best alignments were
used to generate models with Modeller v.9.12 [29]. The
models were calculated with RAMPAGE [30] and ProSA-
web [31] based on structural comparison with template.
DNA/RNA molecules were added to the Integrases and
Reverse Transcriptases theoretical models by superimpos-
ition of DNA binding region.

The best 13 models were submitted to molecular dy-
namics (MD) simulations using Groningen Machine for
Chemical Simulation (GROMACS) v.4.5.3. [32]. The
Charmm force field [33] was chosen with explicit solvent
[34] and a minimum of 50 ns unrestrained simulation.
Theoretical models stability was evaluated by average
root mean square deviation (rmsd)/time graph and by
overall stereochemical and energy quality. Figure and
surface illustrations were generated in CHIMERA [35],
with the electrostatic surface generated by APBS [36],
PDB2PQR server (http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/)
and PROPKA [37].

Copy number determination in E. grandis genome

We used MEGABLAST to extract the full-length copies
of the nine families from the E. grandis genome v 1.0
[13]. All matches that were at least 80 % of the length of
the reference full-length sequences and had a similarity
level higher than 80 % were considered for copy number
analysis. Copies that did not harbor the canonical
5'TG..CA3' were manually removed. Complete copies
were plotted in E. grandis genome using Circos [38].

Estimation LTR-RTE insertion time and average LTR
divergence sequence
The insertion time of intact LTR-RTE families with two
complete LTR sequences and TSDs was calculated based
on the assumption that they are identical at the time of
integration [39]. For each element, we aligned 5 and 3’
LTRs using the MUSCLE program implemented in
MEGA 6.0 [26], with default parameters. Divergence be-
tween LTRs (K) was calculated using MEGA 6.0, using
Kimura-2-parameter distance [40]. The insertion time
(T) for each intact element was calculated with the for-
mula: T = K/2r. The value of 1.5 x 10® substitution per
site per year (r) [41] was recently used for the calcula-
tion of LTR-RTEs age in grape [42].

Average divergence (Pi) of LTRs for each LTR-RTE
family was also calculated, using DnaSp program [43].

In silico transcriptional analysis: Eucalyptus spp EST screening
LTR-RTEs full-length sequences were used as BLASTN
queries against Eucalyptus ESTs from EUCANEXT database
[44, 45], http://bioinfo03.ibi.unicamp.br/eucalyptusdb/).
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ESTs similar to LTR-RTEs were assigned to a family accord-
ing to the criteria adapted from Wicker et al. [1]: 80 %
coverage with 80 % nucleotide identity, in a region over
200 bp.

Plant Material and nucleic acid extraction

For IRAP (Inter-Retrotransposon Amplified Polymorph-
ism) and REMAP (Retrotransposon-Microsatellite Ampli-
flied Polymorphism) analyses, leaves were collected from
10 unrelated individuals of five Eucalyptus species: Euca-
lyptus brassiana S.T. Blake, Eucalyptus grandis W. Hill ex
Maid., Eucalyptus saligna Sm., Eucalyptus tereticornis Sm.
and Eucalyptus urophylla S.T. Blake. These individuals
were maintained in field by Suzano Papel and Cellulose
breeding program. Total DNA was extracted from fresh
young leaves using the protocol described in Ferreira and
Grattapaglia [46].

For all other analyses, Eucalyptus seedlings were grown
under naturally fluctuating conditions of temperature and
air relative humidity, and were fertilized and irrigated as
necessary in a greenhouse from the Suzano Papel and Cel-
lulose breeding program, in Itapetininga, Sdo Paulo, Brazil.
Throughout the experiment, the plants were randomized
periodically to minimize any variation within light envir-
onment. All plants were harvested 90 days after seed
planting.

In the relative quantification of LTR-RTE families, we
used the total DNA of E. grandis (clone GD 33) and E.
urophylla (clone URO11). In this case, genomic DNA
was obtained from young leaves using the DNeasy plant
kit (QIAGEN), as recommended by the manufacturer.

For RNA extraction we used freshly harvested leaves,
stalk and secondary roots from the five Eucalyptus spe-
cies mentioned above and one hybrid E. grandis x E.
urophylla (termed “E. urograndis”). For each tissue, total
RNA was extracted from two groups composed by five
plants each according to modificated CTAB protocol
proposed by Korimbocus et al. [47]. RNA integrity was
checked by electrophoresis, in denaturing agarose gel.
RNA quality and quantification was analyzed by spectro-
photometry at 260 nm and 280 nm (NanoDrop ND-
1000, Thermo Scientific) and stored at -80 °C until used.

IRAP and REMAP profile and data analysis

Sixteen single IRAP primers were designed based on nine
LTR-RTE families of E. grandis genome v. 1. (Additional
file 1: Table S1). The procedures of PCR amplification
were adapted from the protocol of Smykal [48]. Reactions
were done in a total volume of 10 pl, containing 25 ng of
genomic DNA, 0.7 X PCR buffer (750 mM Tris-HCl,
200 mM (NH,),SO,), 25 mM MgCl,, 40 ng of primer,
0.4 mM of each dNTP and 0.3 U of Tag DNA polymerase
(Fermentas). The amplification profile consisted of an ini-
tial denaturation at 94 °C for 4 min, followed by 35 cycles
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at 94 °C for 40 s, 50 °C for 2 min, 72 °C for 3 min and 50 s
and a final extension of 5 min at 72 °C.

For REMAP, we used the combination of sixteen IRAP
primers with 10 SSR primers described in Kalendar et al.
[49] (Additional file 1: Table S1). PCR reactions con-
tained 40 ng of genomic DNA, 1.0 X PCR buffer
(750 mM Tris-HCl, 200 mM (NH4),SO,), 25 mM
MgCl,, 10 ng of each primer, 0.6 mM of each ANTP, and
0.3 U of Taqg DNA polymerase (Fermentas). The amplifi-
cation profile composed of an initial denaturation at 94 °C
for 4 min, followed by 35 cycles at 94 °C for 1 min, 56 °C
for 1 min, 72 °C for 1 min and 50 s, and a final extension
of 5 min at 72 °C. All IRAP and REMAP reactions were
carried out in a PTC-100 thermocycler (M] Research,
Inc.) and PCR products were resolved in 1.8 % agarose
gels stained with ethidium bromide.

Each IRAP and REMAP band was treated as a single
locus. The presence or absence of a given fragment
length in each sample was recorded manually in binary
code. DNA marker data was processed by NTSYS-pc
version 2.10 [50] and using the SIMQUAL module with
the Jaccard genetic similarity coefficient (GSj), and the
similarity data was used to perform an unweighted pair
group method with arithmetic mean (UPGMA) cluster
analysis using the SHAN module, following Fan et al. [51].

LTR-RTE quantification in Eucalyptus urophylla:
quantitative real time PCR

Eight LTR-RTE families from E. grandis were quantified in
E. urophylla using quantitative real time PCR (qPCR)
using the method of Kraitshtein et al. [52] and Baruch and
Kashkush [53], which is based on a comparative g AACt
method, using a single-copy gene as a reference. Our ref-
erence gene was DURS3, a urea transporter, which is a
single-copy gene in several eukaryotes [54, 55], and in E.
grandis genome we found only a single copy in chromo-
some 5 (data not shown).

Primers were designed using PerlPrimer v1.1.17 soft-
ware (http://perlprimer.sourceforge.net) in LTR and in-
ternal regions (Additional file 1: Table S1). In order to
confirm target specificity we cloned and sequenced amp-
lified regions (ABI 3130xl, Applied Biosystems). Quanti-
tative PCR melt curves also revealed single and unique
peaks for each primer pair, confirming high specificity to
the target sequence fragments.

PCR efficiencies of the target and reference genes were
determined by generating standard curves, based on ser-
ial dilutions prepared from cloned DNA templates. We
made serial dilutions of the control DNA from 5x10™" to
5x107 ng/ul, with 0.15 ng of each primer.

Fold amplification in each cycle was calculated accord-
ing to PCR efficiency, which was deduced by the soft-
ware from the slope of the regression line (y) according
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to the equation E=[(10-1/y)-1]x 100. For primers
with 100 % efficiency, the fold equals 2.

qPCR reactions were conducted in a Step One Plus
Real Time PCR System (Applied Biosystems) and ana-
lyzed in Step One 2.1 software (Applied Biosystems).

Each qPCR reaction was performed in 5 pl of GoTaq’
qPCR Master Mix (Promega), with 1.0 ng of each primer
and 3.7 pl of ultra-pure water. The cycling conditions
were as follows: 5 min at 95 °C, followed by 45 cycles
each of 15 s at 95 °C, 60 s at 60 °C. In order to confirm
the reproducibility of our results, reactions were done in
technical triplicates in three independent experiments
using 0.125, 0.25 and 0.5 ng of genomic DNA.

The relative quantities of LTRs and internal regions of
Copia and Gypsy-like LTR-RTEs families were calculated
according to Kraitshtein et al. [52] and Baruch and
Kashkush [53].

LTR-RTE Transcriptional analysis by RT-qPCR

In addition to plant material mentioned above, in RT-
qPCR analysis, we also evaluated the transcriptional impact
of osmotic shock in secondary roots of E. grandis sub-
merged in hydroponic solution with PEG. Plants were har-
vested 0, 6 and 24 h after osmotic stress. Additional details
of this experiment are detailed in Rodrigues et al. [56].

All RNA samples were treated with DNase I (Fermentas)
and reverse transcribed using GoScript™ Reverse Tran-
scription System kit (Promega). RT-qPCR reactions were
performed in technical triplicates from at least two bio-
logical replicates in a StepOnePlus Real Time PCR System
(Applied Biosystems). Primers used for RT-qPCR are
described in Additional file 1: Table S1, and fragments
were cloned and sequenced confirming target amplifica-
tion. Each biological replicate was represented by bulks of
leaves, stalk and secondary roots from five plants.

Reactions contained 5 pl of 2 x mix GoTaq® Master
Mix (Promega), 1.0 ng of each primer, 150 to 280 ng of
¢DNA and ultra-pure water up to a final volume of
10 pl. The cycling conditions were as follows: 5 min at
95 °C, followed by 45 cycles each of 15 s at 95 °C, 60 s
at 60 °C. Relative expression levels were normalized
using the GAPDH gene [57]. The GAPDH stability was
evaluated using geNorm and NormFinder. Expression
stability was <0.15 in geNorm and <0.03 in NormFinder
for all species and tissues (data not shown). These values
were compatible with the most stable normalizers from
a previous publication in Eucalyptus [57]. In geNorm,
stability values below 0.15 do not require an additional
gene as a reference [58, 59].

The tissue/organ with lowest expression (highest Ct)
was used as calibrator (expression value = 1).

RT-qPCR efficiency was calculated using Linreg v.
2013.0 [60], and reactions with efficiency >90 % were
used for analysis. Relative expression was calculated
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using AACt method [61] with the formula (1 +E)*4<,
where E represents the efficiency. The statistical analysis
was performed using Assistat 7.7 beta [62]. We used
one-way analysis of variance (ANOVA) and in cases
where significant differences were found, the Least
Square Deviation (LSD) method for multiple compari-
sons was performed. Results were considered significant
at P <0.05.

Results

LTR-retrotransposons in Eucalyptus: overall view and
phylogenetic structure

By using a homology-based approach, we mined a total
of nine transcriptionally active LTR-RTE families in the
E. grandis genome. Seven families belong to the Copia
superfamily and two correspond to LTR-RTE elements
from the Gypsy superfamily. Copia superfamily LTR-
RTEs were classified into five major plant evolutionary
lineages [17] (Fig. 1la) and two Gypsy lineages [24]
(Fig. 1b). We did not found any Copia element from
GMR and Tar lineages. Three Gypsy lineages - CRM,
Reina and Athila - did not harboured any transcription-
ally active LTR-RTE in our analysis.

The reference full-length sequences of these families
(Table 1) have between 93 and 99 % identity among
5’and 3’'LTRs, and for all reference sequences we anno-
tated at least two internal coding domains among gag,
reverse transcriptase, integrase and RNAseH (Fig. 2).
RLC_egAngela_1 and RLC_egAngela_2 families have >
95 % identity between internal coding domains; however,
LTRs have < 80 % similarity; consequently, we preferred
to classify these elements as separate families. We also
compared 5 non coding region in order to confirm if
they correspond to distinct families, similar to Tanskanen
et al. [63]. The folding pattern of 5 leader region was
completely distinct between the two families (Additional
file 2: Figure S1), confirming that they represent two dif-
ferent families.

Overall size followed previous large-scale reports for
LTR-RTEs, as well for PBS and PPT sequences (Additional
file 1: Table S2). Both Gypsy families have >12 kbp and
the average size of Copia is around 7 kpb (Table 1). LTRs
from Gypsy elements are also larger: only RLC_egMax_1
has LTRs longer than 500 bp (Table 1). Five families con-
tained a spacer region between internal coding domain
and LTRs (Fig. 1).

Structural characterization and molecular dynamics
simulations of LTR retrotransposon domains

By threading modeling, we generated the first theoretical
models of LTR-RTE proteins in plants. We used three do-
mains of RLG_egTekay_1: chromodomain (CD1) (Fig. 3a),
integrase (INT1) (Fig. 3b) and reverse transcriptase (RT1)
(Fig. 3c). We also generated domains theoretical models
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on the domains integrase of RLC_egAle_1 (INT2) (Fig. 4a)
and reverse transcriptase of RLC_egBianca_1 (RT2)
(Fig. 4b). The template used to generate CD1 was the
NMR structure of a chromodomain (PDB id/monomer:
2RSO/A) from Schizosaccharomyces pombe [64]. The tem-
plate used to generate INT1 was the crystallographic
structure of an inhibited retroviral integrase (30YM/A)
from human Spumaretrovirus [65] and M-phase phospho-
protein 8 (PDB id: 3LWE/A) from Homo sapiens [66]. The
template used to generate RT1 was the crystallographic
structure of a reverse transcriptase/ribonuclease H p80
complexed with RNA/DNA hybrid (4HKQ/A) from Schi-
zosaccharomyces pombe [67]. The template used to gener-
ate INT2 was the crystallographic structure of PFV
integrase (30YM/A) from Human spumaretrovirus [65].
The template used to generate RT2 was the crystallo-
graphic structure of Ty3 reverse transcriptase complexed
to RNA/DNA hybrid (4OL8/A) from Saccharomyces cere-
visiae [68]. The CD1, INT1, RT1, INT2 and RT2 had ori-
ginal models with 93.6 %, 98.3 %, 98.5 %, 94.2 % and
96.8 % of residues in favored and allowed region which
were improved to 100 %, 99.7 %, 99.3 % 98.2 % and
98.7 %, respectively, after MD dynamics. These models
started with a Z-score of -0.87, -5.49, -9.7, -4.41 and -3.82
which was either improved or maintained to -1.03, -5.41,
-8.91, -5.04 and -4.02. All of the models were submitted to
50 ns and had its stabilization within the first 30 ns with a
rmsd of 0.35 to 1.25 nm. Thus, the generated models were
stabilized by long MD simulations and validated by differ-
ent approaches.

Quantification of LTR-RTEs

A total of 843 full-length elements from Copia superfam-
ily and 22 from Gypsy superfamily were identified, and
copy number per family ranged from 1 to 623 (Table 1).
The distribution of each family is distinct among E.
grandis chromosomes when compared to gene and re-
peats density (Additional file 2: Figure S2). RLC_egMax_1
is the most ubiquitous, in accordance with the prevalence
of Maximus LTR-RTE families in plants. This family is
dispersed along the chromosome arms in both gene-rich
and repetitive-rich regions (Additional file 2: Figure S2c)
without any specific preference. Full-length RLC_egMax 1
copies correspond to ~1 % of E. grandis genome. RLC_eg-
Bianca_1 and RLC_egAngela_2 families presented a simi-
lar distribution, preferentially inserted in repeat-rich
regions (Additional file 2: Figure S2d,f). RLC_egAngela_1
have only one copy in chromosome 3, also located in a
repeat-rich region (Additional file 2: Figure S3e). Both
LTR-RTEs from Gypsy superfamily also have an inser-
tional preference over repeat-rich regions (Additional file
2: Figure S2j,k). On the other hand, RLC_eglvana_1 was
preferentially inserted in gene-rich regions of chromo-
somes 2, 3, 7 and 9 (Additional file 2: Figure S2g).
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Fig. 1 Domains in Eucalyptus LTR-RTEs. a Copia superfamily; b Gypsy superfamily. Abbreviations and domain color coding: LTR = long terminal
repeat (pink); PBS = protein binding site and PPT = poly-purine tract (dark blue); Gag (blue); RNAseH = Ribonuclease H (light blue);

integrase = Integrase (purple)
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Table 1 Overall features of LTR-RTEs identified in E. grandis genome
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Superfamilies Families Lineages LTR length (bp) LTRs Id® LTR-RTE size (bp) Copy number

Copia RLC_egAle_1 Ale 458/457 99 % 5509 12
RLC_egAle_2 Ale 434/434 96 % 5395 4
RLC_egMax_1 Maximus 904/903 98 % 9670 623
RLC_egBianca_1 Bianca 424/423 99 % 5008 77
RLC_egAngela_1 Angela 162/161 93 % 11280 1
RLC_egAngela_2 Angela 392/392 92 % 7473 67
RLC_eglvana_1 Ivana 247/239 93 % 4440 49

Gypsy RLG_egTat_1 Tat 2199/2257 93 % 18300 15
RLG_egTekay_1 Tekay 555/552 96 % 12159 7

?ld: identity among 5’ and 3'LTRs

Additionally, we also quantified LTRs and internal re-
gions of families by qPCR in E. wurophylla using E.
grandis as a calibrator. E. urophylla is among the most
commonly used species in the paper industry in Brazil
and belongs to the same subgenus of E. grandis [69, 45].

In silico quantification and qPCR had similar results, ex-
cept for RLC_egAle_2 which qPCR analyses showed more
copies than in silico analyses. The proportion of LTRs for
four retrotransposons families, RLC_egAle_1, RLC_eg-
Max_1, RLC_eglvana_1 and RLG_Tat_1, is higher in E.
urophylla than E. grandis (Fig. 6a). This pattern is different
in internal regions, where only two, RLC egAngela 1 and
RLC_egTekay_1, have a higher copy number in E. uro-
phylla, suggesting a diversification in LTR regions. RLC _e-
gAngela_1 and RLC_egAngela_2 families display the most
prominent difference in coding regions, increasing signifi-
cantly in E. urophylla compared to E. grandis (Fig. 6b).

Insertion time of intact elements
We estimated the insertion time of all LTR-RTE families
that harbor at least five intact copies. The 12 RLC_egAle_1

copies were inserted into the genome <1.5 Mya, whereas
most RLC_egMax_1 copies (98.38 %) were inserted into
the genome between 0 — 2.5 Mya (Fig. 5). RLC eg-
Bianca_1 and RLC_egAngela_2 copies have a similar pat-
tern of insertion time where most of the copies were
inserted into the genome 0.5 — 4.5 Mya. Approximately
one third of the copies from RLC_egBianca_1 (24) and
RLC_egAngela_2 (23) insertion has >3.0 Mya, including
two copies dated to >7.5 Mya in both families (Fig. 5).
The majority of RLC_ eglvana_1 copies were inserted in
the genome between 0.25 - 2.0 Mya (Fig. 5). The two
LTR-RTEs from Gypsy superfamily have distinct patterns:
while RLG_eg7at_1 have most of these copies inserted
0.5 — 3.5 Mya (Fig. 5), RLG_egTekay_1 has a uniform
distribution. We found one copy with two identical
LTRs, in RLC_egAngela_2, five identical LTRs in
RLC _egMax_1. The diversity (Pi) of LTRs ranged from
025 (+0.00379) (RLC_egBianca_1) to 035 (+0.17742)
(RLC_egAngela_1) (Additional file 1: Table S3) and both
Gypsy families have an average diversity of 0.31 (+0.023
from RLG_eg7Tat_1 and + 0.045 from RLG_egTekay_1).
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rotated in 180°

Fig. 3 Three dimension theoretical models of RLG_egTekay_1: Integrase (INT1) (a), Reverse Transcriptase (RT1) (b) domains complexed with DNA
and Chromodomain (c). In 1, protein cartoon representation. In 2 and 3, electrostatic surface in red (-4) acid regions and in blue (4) basic regions

IRAP and REMAP polymorphisms within Eucalyptus genus
Fifty Eucalyptus spp unrelated individuals were scored
by IRAP and REMAP, yielding in total 3096 fragments,
among which 700 were polymorphic. IRAP bands ranged
from 250 bp to 2.25 kb (Additional file 2: Figure S3) and
REMAP fragments ranged from 50 bp to 1 kb, except
for primers from RLC_egAle_2 family (Additional file 2:
Figure S4). Fifteen single IRAP primers and 23 REMAP
primer combinations yielded reliable results. The num-
ber of scorable bands per primer in IRAP ranged from
18 (E. urophylla; 2.4 % polymorphic) to 20.8 (E. saligna;
4.6 % polymorphic). For REMAP bands ranged from
11.9 (E. brassiana; 4.3 % polymorphic) to 15.6 (E. uro-
phylla; 2.1 % polymorphic) (Additional file 1: Table S3
and S4).

The genetic relationships of these genotypes were un-
revealed using the UPGMA method based on Jaccard
(ranging from 0 to 0.92) computed with IRAP and RE-
MAP markers (Fig. 7, Additional file 2: Figure S5). E.
brassiana remained an outgroup, and the most related
species were E. tereticornis and E. urophylla. E. grandis
was the second most external species, after E. brassiana.

Transcriptional activity of LTR retrotransposons families
In order to further characterize the transcriptional pro-
file of LTR-RTE families, we performed BLAST searches
against EST of six Eucalyptus species available in the
EUCANEXT database [44, 45]. More than 150 ESTs
matched the selected LTR-RTE families, and results are
shown in Additional file 1: Table S3. RLC_egBianca_1
and RLG_egTat 1 were the most represented families
(Additional file 1: Table S3). RLC_egAle_1, RLC_egAle_2,
and RLG_egTekay_ 1 showed similarity with ESTs from
three of six analyzed Eucalyptus species (Additional file 1:
Table S3), and one EST of E. globulus displayed high simi-
larity RLC_eglvana_1 (Additional file 1: Table S3).
RLC egMax_1 only had similarity with expressed se-
quences from E. globulus, (Additional file 1: Table S3).

A second approach, RT-qPCR of coding regions, was
employed to detect transcriptional levels of LTR-RTE
families in three tissues (leaves, stalk and secondary roots)
from five Eucalyptus species (E. brassiana, E. grandis, E.
saligna, E. tereticornis and E. urophylla) and one hybrid
(E. grandis x E. urophylla — termed “E. urograndis” to fa-
cilitate discussion). E. grandis secondary roots were also
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Fig. 4 Three dimension theoretical models of Integrase (INT2) of RLC_egAle_1 (a) and Reverse Transcriptase (RT2) (b) of RLC_egBianca_1 proteins
complexed with DNA. In 1, protein cartoon representation. In 2 and 3, electrostatic surface in red (-4) acid regions and in blue (4) blue regions

evaluated in osmotic stress imposed by PEG treatment
[61] (Fig. 8).

This analysis expanded and detailed EST analysis, con-
firming that families have differential transcriptional ac-
tivity Eucalyptus spp tissues. RLC_egAle_1 highest
transcriptional levels were in leaves from “E. urograndis”
and E. brassiana, with a remarkable level in stalks of
E. tereticornis and E. grandis (Fig. 8a). Regarding the
RLC _egAle_2 family, leaves from E. urophylla presented

the highest transcriptional activity (Fig. 8b). RLC_eg-
Max_1 family showed a high level of transcriptional ac-
tivity in secondary roots from E. brassiana and E.
grandis, and in “E. urograndis” we observed a notable
difference compared to parentals E. grandis and E. uro-
phylla (Fig. 8c). RLC_egBianca_1 family also displayed a
higher transcriptional level in secondary roots of “E. uro-
grandis”, and it was the most expressed family in stalks
and roots of E. brassiana (Fig. 8d). LTR-RTEs of the
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Fig. 5 Estimative insertion time of LTR-RTE families in Fucalyptus grandis genome
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Angela lineage (primers could not distinguish families)
have a remarkable level in stalks in three Eucalyptus spe-
cies and “E. urograndis”, and a low transcriptional level
in leaves of all Eucalyptus species studied (Fig. 8e). The
RLC_eglvana_1 family had a ubiquitous expression level
(Fig. 8f).

Gypsy elements showed a distinct transcriptional level
according to the family, tissue and Eucalyptus species
evaluated. RLG_eg7at_1 showed a remarkable expression
in leaves of two Eucalyptus species (see Fig. 8g), and in
stalks from E. saligna and secondary roots from “E. uro-
grandis” (Fig. 8g). On the other hand, RLG_egTekay 1
family showed the highest transcriptional activity in
stalks from E. tereticornis (Fig. 8h).

The transcriptional level of LTR-RTEs in roots sub-
mitted to osmotic stress by PEG treatment increased
after 6 h in five families (RLC_egAle_1, RLC_egMax_1,

RLC_egBianca_1, RLC_eglvana_1, RLG_egTat_1 and
RLG_egTekay_1) and decreased after 24 h (Fig. 8). Only
in the RLC_egAle_1 family did we observe a higher expres-
sion after 24 h (Fig. 8). RLC_egAle_2 and RLC_egBianca_1
families showed a reduction in transcription level following
PEG application (Fig. 8).

Discussion

Novel LTR-RTE families in Eucalyptus genus have individual
molecular patterns

This study represents a fine-scale analysis of transcrip-
tionally active LTR-RTEs in Eucalyptus species, taking
advantage of the recently released E. grandis genome
and expanding in silico analyses to a comparative study
in terms of copy number, polymorphism insertion and
tissue-specific transcriptional pattern.

E. grandis
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E. tereticornis

E. urophylla

r - . - - 1 -
0.00 0.25

Genetic Distance Coefficient

Fig. 7 UPGMA dendrogram of five Eucalyptus species using IRAP and REMAP data based on Jaccard distance
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The majority of the identified LTR-RTE families were
from the Copia superfamily, consistent with previous
EST analysis of LTR-RTEs in sugarcane [6] and coffee
trees [7] but in contrast to wheat [70] and maize [5].
These findings confirm that the superfamily transcrip-
tional preference is variable among plant genomes.

Most families from the same evolutionary lineage have
similar size, LTR length and high similarity between PPT
and PBS regions with previous multi-scale reports [17, 24].
Three Copia families displayed a spacer region between
ORF and LTRs: RLC_egMax_1, with a 1 kb spacer region
at 3-UTR. The RLC_egAngela_1 and RLC_egAngela_2 has
a spacer region of 5580 pb and 3205 pb at 5-UTR, respect-
ively. Despite the high identity between internal coding
domains between Angela families, their LTRs display
differences in size and similarity; moreover, folding ana-
lyses of the 5’UTR also support that they represent distinct

families (Additional file 2: Figure S1). RLC_egAngela_1 has
a larger spacer region between LTRs and this region has
99 % identity with an Eucalyptus spp EST (GenBank ac-
cession HS066626, data not shown), suggesting that spacer
regions are also transcriptionally active. RLC_egAngela_1
and RLC egAngela 2 have strikingly high similarity in
coding regions, but they habour dissimilar LTR and un-
translated regions. This feature is particularly common in
Copia superfamily, (ie, BARE1 and 2) [63]. We also dis-
covered that one transcriptionally active LTR-RTE family
initially classified as a member of the Gypsy superfamily
are in fact caulimoviruses, with 58 complete copies in
the E. grandis genome with EST support (data not
shown). Previous studies in plants provided similar re-
sults [15], and the identification of ESTs matching plant
caulimoviruses suggest that these elements may have a
significant impact in transcriptome of angiosperms.
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Gypsy families can be roughly divided according to the
presence of a Chromodomain in the C-terminal of the
integrase domain. RLG_egTekay_1 family is a typical
Chromoviridae member, closely related to the sugarbeet
element Bongo3 [71]. But, differing from Bongo3, a high-
copy element spread throughout all sugarbeet chromo-
somes, only 5 E. grandis chromosomes have full-length
RLG_egTekay_1 copies.

Eucalyptus LTR-RTE proteins interact with DNA and RNA
Up to now, few studies address TEs molecular structure
[72-74] and here we deliver the first study to theoretic-
ally model and stabilize with long MD simulations do-
mains of LTR-RTE proteins in plants. The generated
models posses a wide distribution of unordered regions,
above all the Copia models (Fig. 4) [72]. Comparison of
integrase models (Figs. 3al and 4al representation col-
ored in pink) clearly show variability between members
(rmsd of 7.2 A), although superimposition of DNA inter-
acting region yields lower value (3.17 A). The same is
observed in reverse transcriptases (Figs. 3bl and 4bl
representation colored in dark red) with lower values,
which shows higher structural conservancy. The high
rmsd values are due to the flexibility between cores
given by connecting loops and unordered regions, al-
though the cores are similar explaining the conservancy
of function. The variance between models corroborates
the differences observed in previous sequence analysis,
since RLC_egAle_1 and RLC_egBianca_1 are from differ-
ent families and the RLG_egTekay 1 from a different
superfamily. The electrostatic surface of Integrase and
Reverse Transcriptase show the complementarities re-
gion with RNA/DNA (Figs. 3a3-b2, 4a3-b2). The Chro-
modomain was not modeled with RNA since its
interaction region is not fully understood. This model
consists in its general structure, an N-terminal three-
stranded anti-parallel [-sheet (B-sandwich) packed
against C-terminal a-helix (Fig. 3c1) and it has mostly
acid regions. Further studies should be performed to aid
transposons domains structural comprehension, such as
modeling the whole ORFs from the LTR-RTE.

Most LTR-RTE families are recently inserted in Eucalyptus
grandis genome

Our analysis highlights the fact that even in transcrip-
tionally active LTR-RTEs we could track contrasting in-
sertion peaks. We dated the most part of full-length
LTR-RTEs insertions dated <3 Mya (Fig. 5). This charac-
teristic is similar to other plants, such as rice [75], Vitis
[76] and tomato [77]. The identification of insertions
>3Mya old is difficult in plant genomes [78, 77], because
old LTR-RTEs insertions could be removed by recombin-
ation processes, as well as mutational events on nucleotide
composition.

Page 12 of 16

Six out of 8 analyzed families showed recently
inserted copies (<1.0 Mya), with RLC_egAngela_2 and
RLC_egMax_1 families having copies with estimated
insertion of <0.1 Mya. RLC_egMax_1, which repre-
sents ~1 % of E. grandis genome, has a peak of ampli-
fication between 0.5 and 1.5 Mya. Most insertions
over 4.5 Mya correspond to elements from 2 families:
RLC_egBianca_1 and RLC_egAngela_2, suggesting that
forces driving RLC egAngela 2 amplification are evolu-
tionarily old and still in action. This is consistent with ana-
lyses in other plants genomes that insertion >6 Mya, such
as Populus tricocarpa [79], onion and asparagus [80].

LTR-RTEs in plants can be either localized in gene-
rich regions [81, 77] or in repeat-rich regions [82], which
also represents the scenario of Eucalyptus retrotranspo-
sons here characterized. Although chromosome 3, 5 and
8 concentrated most of annotated full-length copies,
Eucalyptus LTR-RTE families had distinct copy distri-
butions, both in genic and repetitive regions. The most
part of younger (<3Mya) LTR-RTEs inserted in genic
regions, similar to the gene-rich euchromatin distribu-
tion from SALIRE family in Beta vulgaris [83] and LTR-
RTEs in tomato genome [74]. Few full length copies of
RLC_eglvana_1 (5), RLC_egBianca_1 (2), RLC_egAngela_2
(1) and RLC_egMax_1 (9) are inserted near to telomeric
regions, suggesting that these families are not directly re-
lated to telomeric repeats.

The quantification of LTR-RTE families by qPCR has
been performed in several species [84, 53, 16] and we
successfully used this strategy to compare amplification
of Copia and Gypsy elements in E. grandis and E. uro-
phylla. qPCR quantification did not follow in silico
quantification just for RLC_egAle_2 which qPCR ana-
lyses showed more copies than in silico analyses. This
fact may be due to the E. grandis genotype used in qPCR
analyses (Clone GD 33) that is not the same from gen-
ome sequencing (BRASUZ1), and defective LTR-RTEs
may be overrepresented in E. grandis genotype here
sampled.

This approach also helped us to track out the propor-
tion of non-autonomous LTRs and internal regions. E.
grandis (1C =630 Mb) and E. urophylla (1C =640 Mb)
genomes have similar size and diverged <20 Mya [13]
enabling the comparison of LTR-RTE families shared by
both genomes.

RLC_egAle_1 have similar LTR and internal domain
proportions for both genomes, suggesting that this fam-
ily have not gone through an expansion burst since E.
grandis and E. wurophylla divergence. RLC egAle_2,
RLC_egMax_1, RLC_eglvana_1 and RLG_egTat_1 families
had an increase of LTRs compared to internal domains in
E. urophylla, which may indicate the propagation of LTRs,
including non-autonomous elements, in this genome and
may also reflect a fast substitution processes among
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internal domains of these families. RLC_egAngela_1 and
RLG_egTekay_1 had the opposite profile, with a higher
proportion of internal domains. This observation may in-
dicate a higher divergence of LTRs that were not recog-
nized by the primer combination used in our approach
and conservation in coding domains, similar to the pat-
tern of the Angela family within the E. grandis genome.

Three LTR-RTEs families, RLC_egAle_1, RLC_egMax_1
and RLG_eg7at_1, showed an approximate proportion of
two LTRs to each element. These families have most of
their copies have young insertions, indicating that they
probably did not harboured recombination processes. The
qPCR analyses from RLC_egAle_2, RLC_egAngela_1 and
RLC_egBianca_1 families showed more copies of internal
regions than LTRs, which suggest a loss of LTR and in-
ternal region conservation in E. grandis genomes.

IRAP and REMAP markers suggest distinct activities of
LTR-RTEs families in Eucalyptus species

IRAP and REMAP markers may contribute to under-
standing the insertion activity of LTR-RTE families in
Eucalyptus species. Most primer combinations were suc-
cessfully applied in Eucalyptus species, showing the ubi-
quity character of families among the Eucalyptus genus.
E. grandis showed more fragments and polymorphic
bands, indicating that LTR-RTEs families had distinct ac-
tivity after speciation events in this specie. Copia LTR-
RTEs studied in four species from Vitis genus had a
similar pattern, with polymorphic bands suggesting an
amplification burst after speciation events [76].

The average size of REMAP fragments was probably
the result of proximity between LTR and SSR regions
than LTR-RTEs in tandem insertions. The pattern of RE-
MAP fragments per Eucalyptus species reflect the pref-
erential insertion events of LTR-RTE families in SSR
regions with repetition motifs [(CT);0G] and [(AG),0 T],
probably sampling LTR-RTEs located in pericentromeric
regions, which are gene-poor and enriched in repetitive
sequences, especially retrotransposons [85]. The high
level of polymorphisms suggests that LTR-RTEs are ex-
tensively heterogeneous among Eucalyptus species, as
observed in Diospyros sp. and Medicago sativa [24, 86].

This is the first report using IRAP and REMAP
markers for genetic diversity in Eucalyptus, and genomic
polymorphism suggests differential activity among RTEs
within subgenus Symphyomyrtus. Those species occupy
the same clade within subgenus Symphyomyrtus [87] but
it is important to notice that the separation between
those Eucalyptus species was not completely supported
by bootstrap analyses. Distribution of Eucalyptus species
in dendrogram has some differences comparing to molecu-
lar analyses based on DArT markers [87]. E. tereticornis
and E. urophylla were the most close in RTE-based tree
differently from the close relation usually present between
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E. grandis and E. urophylla, also observed for E. brassiana
and E. tereticornis using other nuclear markers. On the
other hand, our analysis shows a small distance between E.
saligna and E. grandis, in agreement with a previous report
using a nuclear gene [88].

Transcriptional activity of Eucalyptus LTR-RTE families is
variable among organs and species

The annotation of ESTs related to LTR-RTEs was an ini-
tial assessment of transcriptional activity of these ele-
ments in Eucalyptus genomes. RLC_egAle_ 1 was the
family with the largest number of ESTs. RLC_egBianca_1
was the most ubiquitous element, with EST in the six
mined Eucalyptus species. Detailed information of ESTs
matching LTR-RTEs is available in Supporting Informa-
tion Additional file 1: Table S6.

RT-qPCR clearly demonstrates that families have dif-
ferences of transcriptional activity among Eucalyptus
spp. tissues and species (Fig. 8). LTR-RTEs copy number
have been suggested a cause to transcriptional increase,
because more copies inserted in gene-rich euchromatin
region [77] and probably near genes. Nevertheless, our
data showed that no relation between LTR-RTEs copy
number and expression level increase.

The transcriptional activity of families with the highest
copy number, RLC_egMax_1, RLC_egBianca_l and
RLC_eglvana_1, was higher in secondary roots when
compared to leaves. On the other hand, families with
lower genomic copies are highly expressed in stalks and
lower expressed in roots, i.e, RLC_egAle_1, RLC_egAle_2
and RLC_egAngela_1.

RLC_egAle_1 and RLC_egAle_2 families, despite their
similar structure, have remarkable differences in their
transcriptional patterns. The most striking differences
can be observed in E. brassiana, E. urophylla and “E.
urograndis” leaves, where each element displayed a
species-specific transcriptional pattern. LTR-RTEs acti-
vation in hybrids was also described in other eudicots,
like sunflower [84, 89] and tobacco [90].The activation
of LTR-RTEs in hybrids may reflect two issues: an
organ-specific deregulation of transcription factors that
target LTRs in “urograndis” and/or a specific deregulation
of silencing mechanisms regulating TE transcription.

The expression levels from RLC_egAle_1 in roots were
lower to other tissues in all Eucalyptus species and “E. uro-
grandis”, RLC egAle_2 has similar expression characteristic
in stalks from Eucalyptus species and “E. urograndis”. Fam-
ilies from the same lineage in sugarcane had distinct tran-
scriptional pattern in leaves and buds [6].

High transcriptional levels in roots were described for
several Copia LTR-RTEs families in different plant spe-
cies, such as citrus [91] and Quercus suber [9].

This is the first work that LTR-RTEs were evaluated in
roots submitted to PEG osmotic stress. E. grandis roots
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submitted to osmotic stress showed variable transcrip-
tional activity. Three families with young insertion (<3
Mya) and with more genomic copies, RLC_eglvana_l1,
RLC_egAle_1 and RLC_egAle_2, had transcriptional ac-
tivity modification, except RLC_egMax_1.

The transcriptional activity from RLC_egAle_1,
RLC_egAngela_1, RLC_eglvana_1 e RLG_egTekay_1
families had a peak after 6 h of osmotic stress by PEG
followed by a decrease in expression level in RLC_eglvana_1
and RLG_eg7at_1 families. This observation suggests
that both families have their transcription triggered by
similar stress conditions, a common feature among TEs
[92]. Future functional studies validating the promoter
specificity of these LTRs may shed a light on the stress
activation of TEs in Eucalyptus.

Conclusions

This study demonstrated that each Copia and Gypsy
families in Eucalyptus have a different amplification
pattern. Particularly in E. grandis and E. urophylla, that
have diverged from a common ancestor ~20 Mya ago,
we observed lower copy number in most LTR-RTEs at
E. urophylla compared to E. grandis. These differences
warrant further investigation to determine if recombin-
ation, nucleotide divergence or a specific burst of ampli-
fication can explain this pattern. Despite conservation to
LTR-RTEs between species, IRAP and REMAP markers
analyses based on transcriptionally active LTR-RTEs
suggest different level of transpositional activity within
Eucalyptus genus. This hypothesis is reinforced taking
account that transcriptional activity is not the same
among Eucalyptus species. Future studies can address if
LTR-RTEs are specifically modulated by other stresses
beside osmotic shock. Another important issue is to ad-
dress if Eucalyptus LTR-RTEs families characterized here
are in expansion in Eucalyptus genus, or even if they are
conserved across other families rather than Myrtaceae,
which may indicate horizontal transfer and/or purifying
selection.

Availability of supporting data
The data sets supporting the results of this article are
available in the Dryad repository, doi:10.5061/dryad.h2t57.
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