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Abstract. In this work, we summarize two different mechanisms to gain energy from the 

presence of dissipation in a time-dependent non-linear system. The particles can gain energy, 

in the average, from two different scenarios: i) for very week dissipation with the creation of an 

attractor with high velocity, and ii) in the opposite limit, for very strong dissipation, the 

particles can also gain energy from a boundary crisis. From the thermodynamic viewpoint both 

results are totally acceptable. 

 

1.   Introduction 

Dissipation, generically, corresponds to a process that consumes energy in such way the particles of 

the system lose energy until stabilizing in a stable configuration. A typical stable configuration for a 

dissipative system corresponds to an attractor. However, depending on the structures of the phase 

space the results can be different of the common sense. 

In a chaotic region of a Hamiltonian system [1], a particle can experiment different velocities 

in the phase space. When this chaotic region is limited by invariant tori, a half of the height of the 

column of chaos gives approximately the mean velocity of the particles moving in the chaotic sea. If in 

the superior limit of the column of chaos there is an island of resonance, then the elliptic fixed point 

from the inside of the island will play a key role in the limit of weak dissipation. On the other hand, 

for strong dissipation, the coexistence of a point attractor with a chaotic attractor may lead to the 

crossing of the stable and unstable manifolds of the point attractor, as the parameter of dissipation is 

varied. This defines a boundary crisis [2] which destroys the chaotic attractor and drives the 

trajectories, which were in the chaotic attractor, toward the point attractor. These mechanisms are 

quite different but both allow the particle to receive part of the energy that would be lost and, in the 

average, an ensemble of particles can attain higher energies than they had without dissipation. The 

paper is organized as follows, in section 2 we present the model, the results are shown in section 3 and 

in section 4 the reader will find the conclusion. 

 

2.  The breathing annular billiard 

The model we consider is the annular billiard with periodic time-dependent boundaries. However, 

before introducing it we present the main aspects of the static annular billiard. This is defined by the 

annulus between two circumferences, which may be concentric or eccentric. The annulus is free of 

potential and is the only accessible space for the particles. The outer radius is set equal to 1; the inner 

one we call by r0 and the distance between both centers, the eccentricity, we call by .  
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For the static case, the particle energy is conserved and the dynamics of a particle moving in the 

annulus is completely described by the coordinates of a collision with the external boundary. These 

coordinates are: i) the incidence angle, , that the trajectory makes with the normal of the external 

circle and ii) the angle,  , that the normal makes with the abscissa axis. The corresponding phase 

space is defined by the variables, S=sin( ) and L=



 2

in such way that S [-1, 1] and L[- ½, ½]. 

We call this plane as geometric phase space. There is an auxiliary circumference, with radius (r +  ) 

called caustic, that allows us distinguish a class of trajectories. The trajectories that never cross the 

caustic are called whispering gallery orbits (WGO) and they correspond to preserving angular 

momentum motions. The dynamics is governed by two maps: i) one called A-motion, corresponding 

to the case in which between two consecutive hits with the external boundary, the trajectory does not 

hit the internal one, and ii) another called B-motion, in which the trajectory collides with the internal 

circumference before hitting the external one. For the static and concentric geometry, besides the 

energy, the angular momentum is always conserved, in such way the system is globally integrable. 

However, for the eccentric geometry, the B-motion implies in no conservation of the angular 

momentum anymore and chaos appears and grows with the eccentricity.   plays the role of 

perturbation parameter, as it increases the destruction of invariant tori in the geometric phase space 

also increases, up the numerical limit r 3   . A more detailed discussion on the static annular 

billiard can be found in [3-4]. 

In order to study how a particle can vary its energy we must introduce a time-dependent 

perturbation. However, to observe confined motions, we need to preserve a global constant of motion; 

in this case the constant is the angular momentum. So, we will consider the concentric billiard but with 

both boundaries periodically breathing in time. We define the ratio between both frequencies of 

oscillation by  . The amplitudes of oscillation and the phases are (  ,R ) and (  ,r ) for the outer 

and inner boundaries respectively. During a collision, the boundaries are not necessarily in the same 

positions they were in the static case, they have new radii given by )cos(1)(   ttR R  and 

) cos()( 0   trtr r  in such way there are two collision zones in which the particles can suffer 

collisions. The collision zone associated with the external circumference is the ring [ RR   1 ,1 ] 

while with the internal one it is [ rr rr   00  , ]. Depending on its velocity the particle entries in a 

collision zone and depending also on the phase of the moving boundary, it may suffer successive 

collisions before leaving the collision zone. This problem of successive collisions may receive two 

different approaches. One called complete problem which consider all possibilities of collisions in the 

algebraic formulation and along the numeric calculations, and another one called simplified problem 

which keeps the boundaries algebraically static but the momentum of the particle is changed in the 

instant of the collision as the boundaries were oscillating. Even though there are small differences 

between both approaches, essentially for low particle velocities, the dynamics are reasonably similar. 

Hence, to avoid so long cpu-times, the calculations have been done with the simplified description. In 

this problem, dissipation is introduced through inelastic collisions between the particle and the 

boundaries. As the breathing corresponds to a radial motion, the tangential component of the particle 

velocity,     )( 1 nn VV  , does not change in a collision. On the other hand, the radial component 

of the particle velocity V  is given by         ) 1 (                1 UeVeV nn   , where (n+1) 

stands for the next collision after the n
th
 collision, e   [0, 1] is the restitution coefficient and U is the 

velocity of the boundary which is the first derivative of the respective radius,  tR


 or )(tr


, depending 

on which boundary the collision occurred. If e = 1 there is no dissipation. A collision is obtained 

through the intersection between the straight lines of the trajectories with the circumferences with 

time-dependent radii. Hence, for each collision, with any boundary, the particle changes its radial 

velocity and we get an iteration of the maps. However, we store only the collisions with the external 
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boundary. Along this work, the circumferences will be kept concentric. The variation of the energy 

due to the time-dependent perturbation defines another plane of phase, which we call energy phase 

plane, defined by the phase of the external boundary   and the radial particle velocity v . The details 

concerning the algebraic derivation of the non-dissipative maps and the ideas of the dynamics can be 

found in [5,6] while the introduction of dissipation is detailed in [7,8]. 

 

3.  Discussion and Results 

A schematic view of the time-dependent annular billiard is shown in figure (1) in which we see a 

straight line trajectory suffering a single collision, figure (1a) and successive collisions, figure (1b), in 

the external collision zone, while in figure (1c) the trajectory goes into the internal boundary before 

hitting the external one. The particle can also suffer successive collisions in the internal collision zone. 

Throughout this work we kept 0  and consider only the concentric case. Figures (1a), (1b) and 

(1c) are authorized to be reproduced from Phys. Rev. E73 (2006) 066229, whose DOI is 

10.1103/PhysRevE.73.066229, by the American Physical Society through the license number 

3607670344906. 

 

                     
(a)                                             (b)                                           (c) 
 

Figure 1. Schematic illustrations of the time-dependent annular billiard. The collision zones are the 

regions denoted by the stylized letters A and B. a) and b) show collisions only with the external 

collision zone, while in c) it is shown the possibility of also happening collisions in the internal 

collision zone.  

 

 

In figure (2) it is presented the energy phase plane for the non-dissipative concentric billiard 

breathing periodically in time. The set of parameters we used were: r0 = 0.4, R = 1,     = 0, e  = 1,   

= 0.5, R  = r = 0.01 and   = 
4

 . We can observe in figure (2a) that there is a chaotic sea for low 

velocities and for the velocity ~0.20 there is an elliptic fixed point inside the resonance island. Even 

though there is a thin layer of chaos above the island, we can expect that the mean velocity of an 

ensemble of particles, starting in the chaotic sea, be approximately < v > ~ 0.10, ~a half of the column 

of chaos. That is confirmed in figure (2b) where we plotted the mean velocity of an ensemble of 1000 

initial conditions starting with    v  = 0.02 and ] 4 ,0 [   . After 10
6
 iterations < v > saturated at 

~ 0.10. Figures (2a), (2b), (3a), (3b), (3c) and (3d) are authorized to be reproduced from Phys. Rev. 

E77 (2008) 036204, whose DOI is 10.1103/PhysRevE.77.036204, by the American Physical Society 

through the license number 3607661418103. 
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  (a)                                                                          (b) 

 

Figure 2. Non-dissipative case. In (a) we see the energy phase plane with invariant tori limiting the 

growth of the particle velocities, chaos for low velocities and an elliptic fixed point at velocity ~0.20. 

In (b) we see the behavior of the mean velocity of an ensemble of particles starting in the chaotic sea. 

It saturates at velocity ~0.10. 

 

 

In order to analyze the effect of the inelasticity of the boundaries we set a very weak dissipation 

with e = 0.9999. In figure (3a) we observe that the invariant tori and the resonance structure have been 

destroyed and the elliptic fixed point became a point attractor. Figure (3b) shows the amplification of 

the neighborhood of this attractor. We started the same ensemble of initial conditions used in figures 

(2) and we observed that the dynamics is driven toward this attractor, which has velocity ~ 0.20. So, it 

is expected that the mean velocity of the ensemble of initial conditions, started with low velocities, be 

higher than the non-dissipative counterpart. Figure (3c) confirms that prediction, the mean velocity 

saturated at ~ 0.167, what implies in a gain of energy of approximately 67% in comparison with the 

non-dissipative case. This value of the restitution coefficient is not the only possibility to observe this 

energy gain. Figure (3d) presents a plot for a range of weak dissipation ]999.0 ,0.1[  e , for which this 

is observed, however the extreme is at e ~ 0.9999. 

 
(a)                                                                          (b) 
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(c)                                                                             (d) 

 

Figure 3. Dissipative case, in (a), (b) and (c) e=0.9999. In a) it is presented the energy phase plane 

with a point attractor at velocity ~ 0.20. In b) we see an enlargement around this point attractor. In c) 

the mean velocity of the same ensemble used in figure (2) converges to the velocity ~ 0.167 (blue 

line). The red line corresponds to the non-dissipative case. In d) it is shown a range of restitution 

values for which the particle can gain energy. The peak is at ~0.9999. 

 

 

We consider now the limit of very strong dissipation. We also set  = 1 and   = 0. Figure (4) 

shows the results we have obtained. In figure (4a) we plot the energy phase plane for the non-

dissipative case, which has some similarity with the one of figure (2a), however now we will keep our 

attention to the elliptic fixed point at −Vη ≈ 0.065 and  ≈ 0.50. In figure (4b) we set e = 0.8671 and 

we observe the coexistence of a chaotic attractor and a point attractor originated from the elliptic fixed 

point cited above. We plot the stable (black) and the unstable (red) manifolds of the saddle point (S) 

originated from the unstable fixed point, partner of the stable one in observation. The upper unstable 

manifold follows toward the attractive fixed point while the bottom one defines the chaotic attractor. 

The branches of the stable manifold generate the boundaries of the attractive fixed point, splitting the 

initial conditions which follow toward the stable focus, from those one heading for the chaotic 

attractor. We call this regime as before the crisis. We decrease slightly the restitution coefficient to γ = 

0.8651, what implies in the collision of the stable manifold, which defines the border of the chaotic 

attractor, with the unstable manifold. These intersections are represented by arrows in figure 4(c). 

From this value of the restitution coefficient, the basin of attraction of the chaotic attractor, and the 

chaotic attractor, do not exist any longer, because a boundary crisis occurred. We observe in the place 

of the chaotic attractor a chaotic transient, which corresponds to the interval of time the initial 

conditions, departing from the region where there was the chaotic attractor, are captured by the 

attractive fixed point. We call this regime as after the crisis. In figure (4d) we plot the average 

velocities of an ensemble the 500 initial conditions started with v = 0.02 and ] 4 ,0 [    for the 

following three cases: i) the non-dissipative case, with γ = 1; ii) before the crisis, with γ = 0.8671 and  

iii) after the crisis, with γ = 0.8651. The values of the mean energies after 5 × 10
6
 iterations are 5.69 × 

10
−2

, 2.51 × 10
−2

 and 6.55 × 10
−2

 respectively for the case ii) and iii). Figures (4a), (4b), (4c) and (4d) 

are authorized to be reproduced from Phys. Rev. E84 (2011) 036204, whose DOI is 

0.1103/PhysRevE.84.036204, by the American Physical Society through the license number 

3607680086928. 
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      (a)                                                                              (b) 

 

 

 
 

    (c)                                                                                (d) 

 

Figure4. a) Energy phase plane for the non-dissipative scenario. Strong dissipation: b) e=0.8671, 

before the crisis and c) e=0.8651, after the crisis; d) the mean velocities for the cases: non-dissipative 

(black), before (red) and after (blue) the crisis. 

 

 

We observe that even in the regime of strong dissipation, the particles that started with low 

velocities attained values of energy that are higher than the ones of the non-dissipative configuration. 

The responsible mechanism for that energy growth is a boundary crisis that destructed the chaotic 

attractor and has driven the particles toward the point attractor, which has higher velocity than the 

chaotic attractor.   

 

 
4. Conclusion 

In this work we summarize two mechanisms for particles gain energy from the dissipation in two 

opposite regimes of dissipation intensity. In the limit of weak dissipation, a point attractor is created in 

the energy phase space with velocity higher than the average velocity of the non-dissipative dynamics. 

So, an ensemble of particles with low initial velocities is driven toward the point attractor and in the 

average these particles gain energy after the introduction of dissipation. In the limit of strong 

dissipation, there are two attractors, a chaotic and a point one. The velocity of the point attractor is 

higher than the velocity of the chaotic attractor. A boundary crisis occurs in the system and destroys 

the chaotic attractor leading to a chaotic transient. The trajectories that were travelling in the chaotic 
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attractor are driven to the point attractor and again they gain energy from the increase of the 

dissipation intensity. These results have been obtained from a specific model, the breathing annular 

billiard, however there is no loss of generality in this approach and the ideas can be applied in any 

system that fulfils the conditions here explained. It is worth noting that all particles that start with 

initial velocities higher than the velocity of the point attractor, will lose energy. 
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