SÃO PAULO STATE UNIVERSITY SCHOOL OF AGRICULTURAL AND VETERINARIAN SCIENCES CAMPUS OF JABOTICABAL

GENOMIC STUDY FOR FEMALE SEXUAL PRECOCITY, CARCASS, AND MEAT QUALITY TRAITS IN NELLORE CATTLE

Leonardo Machestropa Arikawa

Animal Scientist

2022

SÃO PAULO STATE UNIVERSITY SCHOOL OF AGRICULTURAL AND VETERINARIAN SCIENCES CAMPUS OF JABOTICABAL

GENOMIC STUDY FOR FEMALE SEXUAL PRECOCITY, CARCASS, AND MEAT QUALITY TRAITS IN NELLORE CATTLE

Leonardo Machestropa Arikawa Advisor: Prof.^a Dra. Lucia Galvão de Albuquerque Co-Advisor: Prof.^a Dra. Ana Fabrícia Braga Magalhães

> Dissertation presented to the School of Agricultural and Veterinarian Sciences – São Paulo State University, Campus of Jaboticabal in partial fulfillment of requirements for the degree of master in Genetics and Animal Breeding.

A699g A699g Arikawa, Leonardo Machestropa Genomic study for female sexual precocity, carcass, and meat quality traits in Nellore cattle / Leonardo Machestropa Arikawa. --Jaboticabal, 2022 151 p. : il., tabs. Dissertação (mestrado) - Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal Orientadora: Lucia Galvão de Albuquerque Coorientadora: Ana Fabrícia Braga Magalhães 1. Beef cattle. 2. Carcass. 3. Genetic parameters. 4. GWAS. 5. Meat quality. 1. Título.

Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca da Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal. Dados fornecidos pelo autor(a).

UNIVERSIDADE ESTADUAL PAULISTA

Câmpus de Jaboticabal

CERTIFICADO DE APROVAÇÃO

TÍTULO DA DISSERTAÇÃO: GENOMIC STUDY FOR FEMALE SEXUAL PRECOCITY, CARCASS, AND MEAT QUALITY TRAITS IN NELLORE CATTLE

AUTOR: LEONARDO MACHESTROPA ARIKAWA ORIENTADORA: LUCIA GALVÃO DE ALBUQUERQUE COORIENTADORA: ANA FABRÍCIA BRAGA MAGALHÃES

Aprovado como parte das exigências para obtenção do Título de Mestre em GENÉTICA E MELHORAMENTO ANIMAL, pela Comissão Examinadora:

141415-1-1-

Profa. Dra. LUCIA GALVÃO DE ALBUQUERQUE (Participaçao Virtual) Departamento de Zootecnia / FCAV Unesp Jaboticabal

Prof. Dr. FERNANDO SEBASTIAN BALDI REY (Participação Virtual) Departamento de Zootecnia / FCAV / UNESP - Jaboticabal

Ph.D./LÚCIO FLAVIO MACÊDO MOTA (Participação Virtual) Department of Agronomy Food Natural Resources Animals and Environment - DAFNAE / University of Padova -Campus Agripolis

Jaboticabal, 24 de fevereiro de 2022

ABOUT THE AUTHOR

Leonardo Machestropa Arikawa – born on May 8, 1995, in Taquaritinga, São Paulo, Brazil, son of Hisanori Arikawa and Sueli Machestropa. He started his undergraduate in Animal Science in March 2013 at School of Agricultural and Veterinarian Sciences, UNESP, campus of Jaboticabal. He performed an extracurricular internship at the Department of Animal Science in the area of Genetics and Animal Breeding, from August 2018 to August 2019, under the supervision of Prof. Dr. Ana Fabrícia Braga Magalhães. From September to November 2019, he completed the mandatory curricular internship at the "Instituto de Zootecnia – Centro Avançado de Pesquisa Tecnológica dos Agronegócios de Bovinos de Corte (APTA)", in the area of Animal Breeding with Prof. Dr. Lucia Galvão de Albuquerque and Prof. Dr. Maria Eugenia Zerlotti Mercadante as advisors. He obtained his bachelor's degree in Animal Science in February 2020. In March 2020, he started his Master of Science (MSc.) studies in the Graduate Program in Genetics and Animal Breeding at School of Agricultural and Veterinarian Sciences, UNESP, campus of Jaboticabal, under the supervision of Prof. Dr. Lucia Galvão de Albuquerque and co-supervision of Prof. Dr. Ana Fabrícia Braga Magalhães. His M.Sc studies have been granted with a scholarship from "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)", from March 2020 to February 2022.

"Who among you can at the same time laugh and be exalted? He who climbeth on the highest mountains, laugheth at all tragic plays and tragic realities. Courageous, unconcerned, scornful, coercive - so wisdom wisheth us; she is a woman, and ever loveth only a warrior."

Friedrich Nietzsche (Thus Spake Zarathustra)

I dedicate this work to all Brazilian researchers who remain resilient, fighting for value and working to promote advances in knowledge, critical thinking, and development, even in the midst of a country that devalues and contests scientific thinking.

ACKNOWLEDGMENTS

Firstly, I thank my family, especially my parents Hisanori and Sueli, for their support at all times, for the education they provided me, and for never measuring efforts to help me, whatever the circumstances. I can only thank you, saying that this achievement belongs to you. To my sister, Amanda, and my nephews, Davi, Henrique, and Nicolas, for their love and affection, and for being an inspiration to me.

To my advisor Prof. Dr. Lucia Galvão de Albuquerque, first of all for having received me and for the opportunity to work in her research group. For all the availability, support, patience, and help offered for the development of this project. Thank you for your extensive professional and personal advice, for believing in my potential and my work. You are a great inspiration to me.

To my co-advisor Dr. Ana Fabricia Braga Magalhães and also Dr. Larissa Fernanda Simielli Fonseca, for all the attention, support, and help they've been offering since undergraduate. I am extremely grateful for being excellent professors and for awakening in me an interest in the area of Genetics and Animal Breeding.

I would like to express my gratitude to Prof. Dr. Roberto Carvalheiro and Dr. Delvan Alves da Silva, for their support, attention, suggestions to improve this work and for dedicating their time to transmit valuable knowledge to me.

To the members of my Master's dissertation and general qualification exam committee, Prof. Dr. Fernando Sebastian Baldi Rey, Dr. Lucio Flavio Macedo Mota, and Dr. Gerardo Alves Fernandes Júnior, for the valuable suggestions that contributed to the improvement of the work.

To the "Albuquerque" team, to the friends and co-workers from graduate program in Genetics and Animal Breeding, who welcomed me, helped, and taught me from the first day I came to the research group.

I thank everyone who gave me strength and encouragement in difficult times and also celebrated the happy times, especially my great friend Daiane. I was very lucky to be around amazing people who were fundamental to my personal growth.

To my brothers from the eternal "Casa Verde", André (Reditube), Felipe (Falo), Jorge (Pran-xana), Lindomar (Libumba), and Matheus (Télson), for the companionship, the coexistence, and all the good times we had living together in Jaboticabal.

To the School of Agricultural and Veterinarian Sciences – UNESP, for the support and structure provided to us, and all the professors from graduate program in Genetics and Animal Breeding, for all the help, classes, and knowledge offered.

To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) for granting the scholarship.

I am very grateful to everyone who contributed directly or indirectly, either with knowledge or support, so that I could succeed during this stage.

This study was financially supported by FAPESP #2009/16118-5; #2017/10630-2; and #2018/20026-8, and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

SUMMARY

	pages
RESUMO	i
ABSTRACT	iii
Chapter 1 – General Considerations	1
1. INTRODUCTION	1
2. LITERATURE REVIEW	3
2.1. Reproductive traits	3
2.2. Carcass traits	5
2.3. Meat quality traits	7
2.4. Genetic correlations	9
2.5. Genome-wide association studies	12
3. OBJECTIVES	18
3.1. General objective	18
3.2. Specific objectives	18
4. REFERENCES	19
Chapter 2 – Genetic parameters estimates using genomic information	for female
sexual precocity, carcass and meat quality traits in Nellore cattle	33
1. INTRODUCTION	34
2. MATERIAL AND METHODS	36
2.1. Database	36
2.1.1. Phenotypic data	36
2.1.2. Genotypic data	39
2.2. Estimates of (co)variance components and genetic parameters	39
3. RESULTS AND DISCUSSION	41
3.1. Genetic parameters for carcass and meat quality traits	41

3.2. Heritability estimates for female sexual precocity and their genetic	correlations
with carcass and meat quality traits	43
4. CONCLUSIONS	45
5. REFERENCES	46
Chapter 3 – Genome-wide scans for carcass and meat quality traits	s in Nellore
cattle	53
1. INTRODUCTION	54
2. MATERIAL AND METHODS	56
2.1. Phenotypic data	56
2.2. Genotypic data	58
2.3. Genome-wide association analysis	58
2.4. Functional analysis	60
3. RESULTS AND DISCUSSION	60
3.1. GWAS for carcass traits	60
3.2. GWAS for meat quality traits	70
4. CONCLUSIONS	80
5. REFERENCES	81
6. SUPPLEMENTARY INFORMATION	100

RESUMO - O Brasil é o maior exportador de carne bovina do mundo e o país com o maior rebanho bovino comercial. O Nelore é a principal raca de gado de corte do país; entretanto, os animais desta raça tendem a produzir carcaças e carne de qualidade inferior às raças Bos taurus. Além disso, as características de carcaça obtidas no postmortem e a qualidade da carne são atributos de expressão tardia e de difícil mensuração e, conseguentemente, são difíceis de selecionar pelos métodos convencionais. Em termos reprodutivos, os zebuínos atingem a puberdade tardiamente e essas características, principalmente as observadas nas fêmeas, são altamente influenciadas por fatores ambientais. Assim, o uso de abordagens genômicas torna-se uma alternativa para contornar esses desafios. Nesse contexto, os objetivos deste estudo foram: i) estimar parâmetros genéticos para características de precocidade sexual de fêmeas, carcaça e qualidade da carne, utilizando informação genômica; ii) conduzir um estudo de associação genômica ampla (GWAS) para características de carcaça e qualidade da carne em bovinos Nelore. A base de dados utilizada é composta por informações de características de carcaça obtidas no post-mortem (AOL: área de olho de lombo, EGS: espessura de gordura subcutânea e PCQ: peso da carcaça quente); qualidade da carne (MAC: maciez, MARM: marmoreio e LIP: teor de lipídios); e precocidade sexual (IPP: idade ao primeiro parto e PE: perímetro escrotal). No Capítulo 2, o conjunto de dados utilizado para estimação de parâmetros genéticos foi de 602.122 registros para características de precocidade sexual e 6.910 para características de carcaca/carne, e registros genotípicos de 15.000 animais Nelore genotipados ou imputados com o Illumina Bovine HD Beadchip. Os componentes de (co)variância e os parâmetros genéticos foram obtidos considerando a abordagem single-step (ssGBLUP) por dois métodos: 1) para características de carcaça e gualidade de carne, um modelo multi-característica e inferência bayesiana foram aplicados usando o software GIBBS2F90, e o peso ao sobreano (PS) foi incluído na análise como característica âncora; 2) modelos bicaracterística e inferência frequentista foram adotados utilizando o software AIREMLF90 para estimar as correlações genéticas entre as características de precocidade sexual com as de carcaça e qualidade da carne. As estimativas de herdabilidade variaram de 0,13 a 0,34 para as características de carcaça e qualidade de carne, e foram de 0,06 e 0,45 para IPP e PE, respectivamente. Correlações genéticas favoráveis foram estimadas entre PS-PCQ (0,79±0,03), PS-AOL (0,28±0,05), PCQ-AOL (0,44±0,05), MARM-LIP (0,90±0,07), MAC-LIP (-0,20±0,11), EGS-MARM (0,29±0,08), EGS-LIP (0,22±0,09), PCQ-MAC (-0,22±0,09) e EGS-IPP (-0.26±0.11). No Capítulo 3, um total de 6.910 animais Nelore fenotipados e 25.000 genotipados foram utilizados para o estudo de GWAS. Os efeitos dos SNP foram estimados com base na abordagem weighted single-step GBLUP (WssGBLUP). As 10 principais regiões genômicas explicaram 8,79%, 12,06% e 9,01% da variância genética aditiva e abrigaram um total de 134, 158 e 93 genes candidatos posicionais para AOL, EGS e PCQ, respectivamente. Para as características de qualidade da carne, as janelas de maior efeito foram responsáveis por 14,72%, 14,79% e 14,13% da variância aditiva, e 137, 163 e 89 genes candidatos foram encontrados para MAC, MARM e LIP, respectivamente. Entre os genes candidatos encontrados, estão PPARGC1A, AQP3, AQP7, MYLK2, PLAGL2, PLAG1, XKR4, MYOD1, KCNJ11, WWOX, CARTPT, RAC1, PSAP, PLA2G16 e PLCB3, genes que foram anteriormente associados a diversas características produtivas, como de crescimento, carcaça, qualidade da carne, ingestão alimentar e reprodutivas em Nelore e outras raças de bovinos.

Palavras-chave: bovinos de corte, carcaça, GWAS, parâmetros genéticos, precocidade sexual, qualidade da carne

GENOMIC STUDY FOR FEMALE SEXUAL PRECOCITY, CARCASS, AND MEAT QUALITY TRAITS IN NELLORE CATTLE

ABSTRACT – Brazil is the largest beef exporter in the world and the country with the largest commercial bovine herd. Nellore is the main beef cattle breed in Brazil; however, animals of this breed tend to produce carcasses and beef of lower quality than Bos taurus. In addition, carcass traits obtained in post-mortem and meat quality are attributes that are late expressed and difficult to measure, consequently, they are difficult to select by conventional methods. In reproductive terms, Zebu cattle reach puberty late and these traits, especially those observed in females, are highly influenced by environmental factors. Thus, the use of a genomic approach becomes an alternative to overcome these challenges. In this context, the aims of this study were: i) to estimate genetic parameters for female sexual precocity, carcass, and meat quality traits, using genomic information; ii) to perform a genome-wide association study (GWAS) for carcass and meat quality traits in Nellore cattle. The database used is composed of information for carcass traits obtained in the post-mortem (LMA: longissimus muscle area, BF: backfat thickness, and HCW: hot carcass weight); meat quality (SF: shear-force tenderness, MARB: marbling, and IMF: intramuscular fat content); and sexual precocity traits (AFC: age at first calving and SC: scrotal circumference). In Chapter 2, the dataset used to estimate genetic parameters consisted of 602,122 records for sexual precocity traits and 6,910 for carcass/meat traits, and genotypic records of 15,000 Nellore animals genotyped or imputed to the Illumina Bovine HD Beadchip. The (co)variance components and genetic parameters were obtained considering a Single-step approach (ssGBLUP) in two methods: 1) for carcass and meat quality traits, a multi-trait model and Bayesian inference were applied using the GIBBS2F90 software, and yearling weight (PW) was included in the analysis as an anchor trait; 2) bi-trait models and frequentist inference were adopted using the AIREMLF90 software to estimate the genetic correlations of sexual precocity traits with carcass and meat quality traits. Heritability estimates ranged from 0.13 to 0.34 for carcass and meat quality traits, and were 0.06 and 0.45 for AFC and SC, respectively. Favorable genetic correlations were estimated between YW-HCW (0.79±0.03), YW-LMA (0.28±0.05), HCW-LMA (0.44±0.05), MARB-IMF (0.90±0.07), SF-IMF (-0.20±0.11), BF-MARB (0.29±0.08), BF-IMF (0.22±0.09), HCW-SF (-0.22±0.09), and BF–AFC (-0.26±0.11). In Chapter 3, a total of 6,910 phenotyped and 25,000 genotyped Nellore animals were used for GWAS. The effects of SNPs were estimated based on the weighted single-step GBLUP (WssGBLUP) approach. The top 10 genomic regions explained 8.79, 12.06, and 9.01% of the additive genetic variance and harbored a total of 134, 158, and 93 positional candidate genes for LMA, BF, and HCW, respectively. For meat quality traits, the windows of greatest effect accounted for 14.72, 14.79, and 14.13% of the additive variance, and 137, 163, and 89 candidate genes were found for SF, MARB, and IMF, respectively. Among the candidate genes found, there are PPARGC1A, AQP3, AQP7, MYLK2, PLAGL2, PLAG1, XKR4, MYOD1, KCNJ11, WWOX, CARTPT, RAC1, PSAP, PLA2G16, and PLCB3, genes that were previously associated with several production traits, such as growth, carcass, quality of meat, feed intake and reproductive traits in Nellore and other cattle breeds.

Keywords: beef cattle, carcass, genetic parameters, GWAS, meat quality, sexual precocity

Chapter 1 – General Considerations

1. INTRODUCTION

With the globalization process combined with the growing demand for safe food, Brazil has become one of the largest producers and exporters of beef, due to its high technological potential, high level of production and, mainly, the quality of its production (Almeida and Michels, 2012; Gomes et al., 2017). Currently, the country stands out on the world stage as the largest exporter of meat, in addition to having the largest cattle herd. In 2018, the Brazilian cattle herd reached about 214.7 million heads. In total, 44.2 million heads were slaughtered, producing, approximately, 10.9 million tons of carcass weight equivalent (CWE). From the total meat produced, 20.2% was exported and the rest supplied the domestic market, guaranteeing average consumption per capita of 49.12 kg/year. Beef exports totaled 1,600 tons, with a value of US\$ 6,572.30 million, representing 3.5% of agribusiness exports (ABIEC, 2019).

The Brazilian bovine population consists of a variety of Taurine (*Bos taurus taurus*) and Zebu (*Bos taurus indicus*) breeds. Approximately 80% of the national herd is made up of zebu animals of different breeds, with Nellore being the most expressive with an aptitude for beef (Costa et al., 2015; Lopes et al., 2016; Magalhães et al., 2016). Thus, Brazilian beef cattle are kept, predominantly, with the genetics of zebu cattle.

Brazilian Nellore has undergone an intense process of genetic improvement over time, becoming the most important national beef cattle breed. Animals of this breed have productive and reproductive attributes that best adapt to tropical climatic conditions. Its rusticity, natural resistance to ecto and endoparasites and to heat, are examples of favorable traits of Nellore in Brazil. Moreover, cows have outstanding reproductive longevity and excellent maternal ability (Santos, 2000; Albuquerque et al., 2006; Lopes et al., 2016; Feitosa et al., 2017). However, *Bos indicus* animals tend to show moderate growth rate and adult weight, late testicular development, and reach puberty at older ages (Cundiff et al., 2004). Compared to Taurine breeds, Nellore animals produce leaner meat, with less marbling index and less tenderness, besides finishing late, partially due to the extensive production system adopted in Brazil (Cundiff et al., 2004; Albuquerque et al., 2006). Albuquerque et al. (2006), in a review paper, concluded that in order to increase animal productivity and, consequently, the production of quality food, besides of selecting Zebu cattle raised extensively, it is important to be concerned with animal welfare and food safety conditions.

In order to reach production levels that meet consumer demand, it is essential to deepen the understanding of the genetic mechanisms involved in the expression of carcass and meat traits in Nellore cattle. So that, it will be possible to identify genetic variants that control these traits, and to assist ranchers in planning breeding programs and achieving their goals related to the final product (Xia et al., 2016; Bhuiyan et al., 2017). However, information for these characteristics obtained *post-mortem* are still insufficient, due to the fact that they are late expressed and difficult to measure, requiring progeny tests since the candidate animals cannot be directly evaluated, which increases the costs and the length of generation intervals (Fernandes Júnior et al., 2016a; Fonseca et al., 2017; Leal-Gutiérrez et al., 2019; Magalhães et al., 2019).

The reproductive traits also are important for the production system, as they have a great economic impact on the production of beef cattle. In this context, sexual precocity has been increasingly explored by breeding programs with the objective of reducing production costs and generation intervals, as well as increasing genetic gain rates (Moorey and Biase, 2020). Furthermore, these traits guarantee a greater number of born calves throughout the productive life of precocious heifers (Eler et al., 2014). Thus, as it is a decisive factor in the total production efficiency, traits associated with female sexual precocity must be included in the indexes as a selection criterion. However, reproductive problems in Brazilian beef cattle are the main limiting on the productive efficiency of a herd, due to the sexual precocity traits, especially those observed in females, are highly influenced by environmental factors and, thus, are little inheritable (Cardoso et al., 2015). Furthermore, considering that Brazilian cattle are predominantly composed of Zebu breeds, heifers tend to reach puberty later than *Bos taurus* animals (Albuquerque et al., 2006; Nascimento et al., 2016).

Thus, in the face of such difficulties in the breeding of Zebu breeds, it is necessary to search for alternative methods, such as those that use genomic approaches, which allow for accurate genetic evaluations, which can be used to improve female sexual precocity, carcass and meat quality traits (Fernandes Júnior et al., 2016a; Magalhães et al., 2019). In this sense, the inclusion of molecular tools in

genetic analysis can improve the scanning of the genetic architecture of these traits, which in turn are of complex inheritance since their variation is determined by many genes with small effects.

Genome-wide association studies (GWAS) aim to associate genomic regions with the phenotypes of interest through statistical analysis, to identify variations in the genome (mainly single nucleotide polymorphisms - SNP) linked to regions of great effect on a given characteristic, providing a better understanding of biological functions and genetic influence on phenotypic expression (Zhang et al., 2012; Yang et al., 2013; Magalhães et al., 2016; Magalhães et al., 2019; Pegolo et al., 2020). The basic principle of GWAS is that a set of phenotypes of a target trait in a sample of animals, is tested for a panel of SNP markers across the genome, in order to identify statistical associations between the trait and all markers, simultaneously, and quantify the size of the effect that each marker contributes to the expression of the characteristic (Goddard and Hayes, 2009).

Therefore, whether in the application of estimates of genetic parameters and/or GWAS, the trend is that, increasingly, the use of molecular tools in genetic analyzes will become effective and routine in animal breeding programs. Thus, due to the small number of studies and the difficulty in improving sexual precocity rates and selecting carcass and meat quality traits using the traditional method, it is essential to develop genomic studies aiming to better understand the expression of these traits in Nellore cattle.

2. LITERATURE REVIEW

2.1. Reproductive traits

Reproductive efficiency plays a key role in the economic sustainability of the livestock production system, especially traits related to sexual precocity in heifers (Brumatti et al., 2011). These traits are directly related to the availability of animals in the herd, influencing, consequently, the intensity of the selection, in order to guarantee greater genetic gains, shorter generation intervals, and the economic success of production (Kluska et al., 2018; Ramos et al., 2020).

In reproductive terms, compared to the Taurine breeds, Zebu cattle reach puberty at a later age (Albuquerque et al., 2006; Nascimento et al., 2016), probably due to low human interference in the selection process of Zebu herds, and may delay the beginning of a cow's reproductive life, impairing the production chain and the profitability of the system. In addition, the sexual precocity traits are generally highly influenced by environmental factors, such as nutrition and heat stress (Samadi et al., 2014; Nepomuceno et al., 2017; Ferraz et al., 2018), which affect the genetic gain per generation (Cardoso et al., 2015; Mota et al., 2020).

The age at first calving (AFC) is one of the main traits used to assess female fertility and sexual maturity. AFC is an economically important trait in beef cattle, as it is directly linked to the reproductive longevity of the cow and the interval between generations, and, in this context, the longevity of beef cows ensures a lower replacement rate and greater utilization of the herd (Perotto et al., 2006). The inclusion of heifers at young ages in reproduction is strongly important so that genetic differences in reproductive capacity are detected early (Boligon et al., 2015), providing a reduction in production costs and increasing rates of genetic gain. However, producing breeding stock that has these attributes is one of the biggest challenges for beef cattle breeders, since reproductive traits, especially those evaluated in females, generally have low heritability, implying the difficulty of direct selection for younger ages at first calving (Boligon et al., 2010).

Several studies conducted on the Nellore breed in recent years have reported heritability for AFC ranging from 0.08 to 0.24 (Boligon et al., 2015; Terakado et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Lacerda et al., 2018; Schmidt et al., 2018; Brunes et al., 2020; Costa et al., 2020). According to Buzanskas et al. (2017), the increase in heritability estimates for AFC could be due to the increase in genetic variability that has been introduced through the selection of sexually precocious heifers and through greater control of environmental factors.

Due to the problems associated with female sexual performance, for many years, the inclusion of easy-to-measure traits, genetically correlated to female reproductive events as selection criteria, was an excellent alternative to decrease the generation interval and increase the genetic gain for sexual precocity in females (Boldt et al., 2016; Kluska et al., 2018). The scrotal circumference (SC), although it has no

economic value, has been widely used to improve sexual precocity and the reproductive performance of cattle herds, since males and females share genes that are involved in physiological mechanisms linked to reproductive events (Toelle and Robinson, 1985). This trait is easy to measure with relatively low cost and it is favorably correlated with young female reproductive traits (Terakado et al., 2015; Buzanskas et al., 2017; Soares et al., 2017). Lacerda et al. (2018) report that SC has been widely used also to improve sexual precocity and reproductive performance in males, such as early onset of spermatogenesis, in addition to being a good indirect indicator of puberty in females, provided it is measured at a young age.

Heritability estimates for SC are generally of moderate to high magnitudes. When measured at yearling, heritability estimates found in the literature for the Nellore breed range from 0.33 to 0.52 (Boligon et al., 2015; Terakado et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Lacerda; et al., 2018; Brunes et al., 2020). Based on the results of a meta-analysis study, which grouped several other studies with Nellore cattle, Oliveira et al. (2017) reported a heritability estimate of 0.56 for SC measured at yearling, indicating that the trait must respond quickly to selection events.

2.2. Carcass traits

Attributes such as carcass are economically important traits, since the beef industry pays producers based on some conditions of the carcass, such as weight and finish (Vaz et al., 2013; Fernandes Júnior et al., 2016a; Mcphee et al., 2020). Measuring carcass traits is necessary to analyze qualitative and quantitative parameters related to the composition of the final product (Tonussi et al., 2015). Besides, selection for these characteristics can lead to improvements in carcass composition, increasing the proportion of edible body parts (Tonussi et al., 2015; Kluska et al., 2018), ensuring a higher percentage of yield from commercial cuts.

The longissimus muscle area (LMA) is a carcass trait expressed in square centimeters (cm²) and measured in the *Longissimus thoracis* dorsal muscle, between the 12th and 13th ribs. LMA is an efficient indicator of muscle mass, carcass composition and edible portion (Caetano et al., 2013; Gordo et al., 2018), and this trait is positively associated with the amount of muscle, growth rates, carcass yield and, mainly, with the proportion of cuts that add commercial value for meat products (Bertrand et al.,

2001; Caetano et al., 2013; Tonussi et al., 2015; Gordo et al., 2018). The heritability coefficients observed in the literature for LMA in Nellore cattle are of moderate to high magnitude, ranging from 0.10 to 0.28 for LMA measured *post-mortem* (Tonussi et al., 2015; Fernandes Júnior et al., 2016a; Gordo et al., 2018;), and from 0.29 to 0.44 when was obtained by ultrasonography (Ceacero et al., 2016; Buzanskas et al., 2017; Kluska et al., 2018; Silva Neto et al., 2020) indicating that selection for LMA can promote a rapid genetic progress.

The backfat thickness (BF) is directly related to the quality of the final product. BF indicates the degree of finishing of the carcass (Tonussi et al., 2015; Gordo et al., 2018). It influences the cooling speed after slaughtering, acting as a thermal insulator, protecting the carcass against the stiffness and darkening of muscles, in addition to avoiding the reduction of weight and tenderness caused by dehydration during the cooling process (Caetano et al., 2013; Baldassini et al., 2017; Silva-Vignato et al., 2017). Scarce fat covering causes problems in the carcass, devaluing its quality but, when in excess, it is undesirable, as it provides a negative look to the consumer, in addition to reducing the edible portion. The heritability estimates for BF in the Nellore breed assume values with wide variation in the literature, between 0.08 and 0.21 for BF obtained *post-mortem* (Fernandes Júnior et al., 2016a; Feitosa et al., 2017; Gordo et al., 2018), and 0.17 to 0.59 for BF measured by ultrasound (Yokoo et al., 2015; Ceacero et al., 2016; Silva Neto et al., 2020).

The hot carcass weight (HCW) is a phenotypic measure expressed in kilograms (kg) and is related to the weight of the newly slaughtered animal, which is obtained from the weighing of the carcass after skinning, evisceration, and carcass toilet processes. This is a classificatory trait used by slaughterhouses and is directly related to the commercial value of the animal, since the amount paid to cattle breeders is, mainly, based on the carcass weight (Fernandes Júnior et al., 2016a; Gordo et al., 2018). Studies with Nellore animals showing HCW genetic parameter estimates are still scarce. The heritability estimates found in the literature for the breed range from 0.11 to 0.39 (Tonussi et al., 2015; Fernandes Júnior et al., 2016a; Gordo et al., 2018; Carvalho et al., 2019). In a review work, Utrera and Van Vleck (2004) reported a mean value of 0.40 for heritability estimates for HCW for several bovine breeds, ranging from 0.09 to 0.92. The authors reported that the wide variation may be associated with

differences in racial groups, estimation methods, model effects, number of observations, measurement errors, animal sex, and farm management.

2.3. Meat quality traits

Meat quality traits are fundamental to guarantee consumers satisfaction (Gordo et al., 2018). The concept of "quality meat" most demanded by buyers includes a series of sensory factors, such as tenderness, juiciness, and flavor, which together contribute to a better palatability of the meat, in addition to a more attractive visual appearance that includes attributes such as color and distribution of the fat (Magnabosco et al., 2016; Xia et al., 2016; Gordo et al., 2018; Leal-Gutiérrez et al., 2019).

Among the meat attributes, tenderness is considered the most important sensory parameter for consumers. This trait is usually determined by shear force (SF) and is influenced by genetic and environmental factors, such as genotype, age, sex, management, *post-mortem* pH drop, and carcass composition (Zhao et al., 2012; Fonseca et al., 2017; Mwangi et al., 2019). Considering the high percentage of Zebu animals in the Brazilian bovine population, the improvement of meat tenderness is essential to meet the quality demanded by buyers, since animals belonging to this genetic group present unfavorable genes for tenderness (Ferraz and Felício, 2010; Magnabosco et al., 2016; Fonseca et al., 2017). Heritability estimates for SF range from low to moderate (0.09 to 0.21) in studies carried out for the Nellore breed (Castro et al., 2014; Tonussi et al., 2015; Gordo et al., 2018; Magalhães et al., 2018; Bonin et al., 2021), suggesting the possibility of obtaining relatively slow genetic progress through selection.

Marbling fat contributes to the juiciness of the meat, providing the necessary lubrication between the muscle fibers, increasing the perception of juiciness, in addition to preventing the loss of water by cooking (Mwangi et al., 2019). Another factor influenced by this trait is the flavor through a complex interaction between precursors of fatty and lean meat components (Arshad et al., 2018; Mwangi et al., 2019). Studies with Nellore animals have reported heritability estimates ranging from 0.11 to 0.32 (Neves et al., 2014; Tonussi et al., 2015; Gordo et al., 2018; Magalhães et al., 2018). In a search to estimate genetic parameters for quality meat traits of Nellore evaluated at different anatomical points of the *Longissimus thoracis* muscle, Bonim et al. (2021)

found heritability estimates of 0.15 and 0.16 for MARB, obtained from samples taken from longissimus in the 5th and 12th ribs, respectively. In addition, the authors found a high genetic association (0.89±0.33) between the different MARB measures used in the study, suggesting that the collection region does not influence the estimates, and any of the measures can be used for selection purposes, with similar direct and correlated responses.

The percentage of lipids can also be associated with the same attributes as the marbling score and it is also used to assess meat guality. The intramuscular fat content (IMF) represents the content of accumulated lipids between fibers or inside muscle cells (Cesar et al., 2015). It is a polygenic trait influenced by several factors (such as sex, age, race, nutrition, and genetics) and is directly associated with the texture and quality of meat, and its quantity in the meat tends to influence acceptability by consumers (Jiang et al., 2017). Intramuscular fat content consists of a variety of fats, including omega-3 long-chain polyunsaturated fatty acids, which are beneficial to the brain and retinal development, in maternal and fetal health during pregnancy, cognitive system, and psychological state in humans (Williams, 2007; Mwangi et al., 2019). In addition, IMF also contains fatty acids resulting from the ruminal biohydrogenation of lipids, such as conjugated linoleic acid (CLA), which is an isomer of linoleic acid from food and has anticarcinogenic properties (Ferraz and Felício, 2010). The lipid content of meat is also rich in monounsaturated fatty acids (MUFA) which influence the melting point of fat, thus reducing the levels of bad cholesterol (LDL) in the bloodstream in humans (Jakobsen et al., 2008; Cesar et al., 2014). Although the many benefits to human health, animal fat consumption levels should be moderated, as beef also has saturated fatty acids (SFA), which, in excess, significantly increase the plasma concentration of low-density lipoprotein cholesterol (LDL), potentially increasing the risk of cardiovascular problems (Feitosa et al., 2017; Nettleton et al., 2017).

For the Nellore breed, there are few studies that estimate genetic parameters for IMF. Feitosa et al. (2017) and Magalhães et al. (2018) observed relatively low values of heritability, 0.07 and 0.13, respectively. In a review, Utrera and Van Vleck (2004) summarized heritability estimates for IMF from works published up to 2004 and the mean estimate was 0.51, ranging from moderate (0.35) to high (0.65) in different taurine breeds.

2.4. Genetic correlations

Researches that seek to investigate genetic associations between sexual precocity and meat quality traits are scarce in the literature. Studying animals Red Angus, McAllister et al. (2011) described estimates of genetic correlation between SC with marbling (MARB) and intramuscular fat content (IMF) of 0.01 and 0.05, respectively, suggesting that selection for SC will not promote a genetic gain in intramuscular fat deposition in the studied breed. In a work carried out in Japan with Wagyu cattle, Oyama et al. (1996) reported a negative and moderate genetic relationship between AFC and MARB (-0.39), higher than that found by Oyama et al. (2004) for the same breed (-0.24). Despite the difference in magnitude, these results indicate the existence of genes acting together in early sexual maturation and intramuscular adipogenesis.

Scrotal circumference was moderately correlated with LMA and BF (0.31 and 0.25, respectively) in the study by Buzanskas et al. (2017), while Kluska et al. (2018) found lower genetic association values for SC–LMA and SC–BF (both 0.17). Despite the differences in magnitude in the works, the results suggest that selection for greater SC, in the long or medium time, should genetically increase LMA and BF.

Some studies with Nellore animals showed negative and desirable genetic correlation estimates of moderate magnitude between BF and AFC (Caetano et al., 2013; Buzanskas et al., 2017; Kluska et al., 2018). Pires et al. (2016) reported an association of -0.69±0.35 between the same traits in Canchim animals, indicating that greater fat deposition can result in benefits in sexual precocity. These findings are biologically expected since lipid production or fat deposition is directly associated with the metabolism of certain hormones (such as steroids and eicosanoids) that modulate reproductive events, in addition to having a direct effect on the transcription of encoding genes of proteins essential for reproduction (Mattos et al., 2000). Also in Nellore, low and close to zero genetic correlations were estimated between LMA and AFC (Buzanskas et al., 2017; Kluska et al., 2018; Caetano et al., 2013) indicating that the progress of one trait doesn't tend to interfere with the other.

Genetic correlations between carcass traits vary greatly in studies found in the literature. Between LMA and BF, some authors found genetic associations low or close to nullity in the Nellore breed (Ceacero et al., 2016; Buzanskas et al., 2017; Kluska et

al., 2018) indicating that selection for one of these traits will not imply in correlated response in the other. On the other hand, other studies have found positive correlations of moderate magnitude in the same breed (Gordo et al., 2012; Caetano et al., 2013). In a meta-analysis study in Nellore, Oliveira et al. (2017) reported a genetic association of 0.1694 between these traits, a result similar to the estimates of the aforementioned authors.

Genetic correlation estimates of HCW with LMA and BF show a wide range from practically null to 0.62. Elzo et al. (2017), studying a multibreed Angus-Brahman population, observed genetic correlations of 0.57±0.08 and 0.12±0.13 of HCW with LMA and BF, respectively. Working with Hanwoo cattle, Do et al. (2016) obtained an association similar to that of Elzo et al. (2017) between HCW and LMA (0.62±0.003), however, they found a higher estimate between HCW and BF (0.31±0.005). Savoia et al. (2019) reported absence of genetic correlation between HCW and LMA (0.003±0.116) in young Piemontese bulls.

In general, the marbling index can be considered a determining factor in the tenderness of beef (Warner et al., 2021). This relationship is supported by the strong and favorable genetic correlation estimates reported by Wheeler et al. (2010) and Mateescu et al. (2014), which were -0.52 and -0.50, respectively, suggesting that a lower shear force is genetically associated with higher marbling scores. Similar, genetic correlations between IMF and SF were estimated by the same authors to be - 0.52 (Wheeler et al., 2010) and -0.47 (Mateescu et al., 2014). However, the role of intramuscular fat content on beef tenderness is still quite controversial. Reverter et al. (2003), studying bovine breeds of temperate climate (TEMP) and breeds adapted to tropical climate (TROP), observed genetic associations between IMF and SF of -0.38 and -0.09, for TEMP and TROP, respectively, concluding that the inconsistencies between the estimates are likely due to differences in genetic architecture between breeds, or to other factors such as age differences and environmental influence on traits.

In the literature, genetic associations between intramuscular fat content and marbling scores are high and positive. Several studies using pure or composite Taurine breeds have obtained estimates ranging from 0.56 to 1.00 (MacNeil et al., 2010; Wheeler et al., 2010; McAllister et al., 2011; Mateescu et al., 2014), which is expected

since these two traits are different ways of measuring the amount of fat in the meat. Working with Nellore animals, Bonin et al. (2021) reported estimates of the genetic correlation between MARB and IMF measured in meat samples taken from the Longissimus muscle in the 5th and 12th ribs, of 0.74 and 0.78, respectively, results consistent with the findings for the *Bos taurus* breeds and their crosses.

Estimates of genetic correlations found in the literature between carcass and meat quality traits vary between studies, from different magnitudes to opposite signs of association. Gordo et al. (2018) reported a correlation of -0.47 between SF and LMA for Nellore cattle, indicating that selection for a higher yield of meat cuts should lead to favorable correlated responses in meat tenderness. In contrast, Wheeler et al. (2010) reported a correlation of 0.28 between SF and LMA, similar to that estimated by Reverter et al. (2003), that obtained a value of 0.27 for the group of Taurine animals (TEMP), and a low relationship between the traits (-0.14) for the group of animals of tropical climate (TROP). Between SF and HCW, Gordo et al. (2018) estimated a genetic correlation of -0.27, in agreement with the findings by Reverter et al. (2003), who reported similar estimates between the two groups of animals studied, of -0.20 (TEMP) and -0.21 (TROP). In turn, Wheeler et al. (2010) reported an association of 0.46, contrary to the results found by the authors previously mentioned. Between SF and BF, the traits were not genetically correlated in the study carried out by Gordo et al. (2018), suggesting that selection for one trait should not imply genetic gains in the other. However, Smith et al. (2007) reported correlation estimates between BF and tenderness at 7- and 14-day of maturation of -0.82 and -0.36, respectively. These divergences may be due to differences between the studied populations, adopted managements, and applied methodologies.

Among the associations between marbling index and carcass composition traits, Gordo et al. (2018) obtained positive correlations of low and moderate magnitude, between MARB–BF (0.14) and MARB–LMA (0.38), respectively, and close to zero between MARB–HCW (-0.04), suggesting that in the long and medium term, the production of carcasses with greater finish or ribeye area should promote genetic progress towards marbling. Smith et al. (2007) estimated a genetic correlation of 0.17 between MARB and LMA, supporting, partially, the one reported by Gordo et al. (2018), however, obtained discordant estimates for MARB–BF (0.04) and MARB–HCW (0.51), indicating that part of genes expressing HCW have an influence on MARB. Wheeler et al. (2010), contrary to the studies cited, reported estimates of -0.13±0.18 and -0.28±0.26 between MARB–LMA, and MARB–HCW, respectively. However, the genetic correlation estimates in the study by Wheeler et al. (2010) showed high standard errors, indicating low predictive reliability, requiring caution in interpreting the results.

The associations of intramuscular fat content and ribeye area indicate an antagonism in the action of shared genes between traits, with correlation estimates ranging from -0.15 to -0.22 (Reverter et al., 2003; Wheeler et al., 2010). For HCW, the genetic associations with IMF were -0.03 and -0.30, according to the studies carried out by Reverter et al. (2003) and Wheeler et al. (2010), suggesting nullity or an antagonism in the expression of characteristics. Torres-Vazquéz et al. (2018), working with an Australian Angus herd, found divergent estimates from the aforementioned authors, of 0.06 for IMF–LMA and 0.21 for IMF–HCW. The authors also reported a low, negative genetic correlation of -0.11 between IMF and BF. Differently, in a recent study with Nellore cattle, Bonin et al. (2021) obtained genetic correlations between IMF and BF of 0.17 and 0.41, when IMF was measured in muscle samples taken from the 5th and 12th rib, respectively, indicating that both IMF and BF must have genes in common acting in the same direction on fat metabolism.

Considering the scarcity of information in the literature, it is necessary to design studies, as well as to develop methodologies and tools that seek to improve the accuracy of genetic evaluations. Moreover, it will be useful to better elucidate the relationship between female sexual precocity, carcass composition and meat quality traits, in order to find economically viable alternatives to improve them and thus achieve sustainable and high-quality production of Nellore meat.

2.5. Genome-wide association studies

Genome-wide association studies (GWAS) aim to associate genomic regions with the phenotypes of interest through statistical analysis. Identification of variations in the genome (mainly single nucleotide polymorphisms - SNP) linked to or in regions (QTL - Quantitative Trait Loci) with great effect on a given characteristic, can provide a better understanding of biological functions and genetic influence on phenotypic expression (Zhang et al., 2012; Yang et al., 2013; Magalhães et al., 2016; Magalhães et al., 2016; Magalhães et al., 2020).

GWAS studies explore the existence of linkage disequilibrium (LD), which is an existing correlation structure between SNP and variants in the genome, resulting from evolutionary events, such as mutation, drift, and selection (Visscher et al., 2012; Visscher et al., 2017). Thus, LD structures arise because, when molecular markers are passed from one generation to another, in the absence of recombination, markers close to each other tend to be inherited together, causing alleles or SNP to correlate with each other in close regions in the DNA sequence (Lee et al., 2017).

SNP are sequence polymorphisms, caused by the mutation of a single nucleotide at a specific locus in the DNA sequence. For a variation to be considered a molecular marker of the SNP type, the least frequent allele (MAF) must be present in at least 1% in the population (Brookes, 1999; Vignal et al., 2002). Currently, SNP are the most used markers in association studies, as they are widely distributed across the genome, with the necessary density for fine mapping (Vignal et al., 2002), in addition to the possibility of being in LD with the regions responsible for the expression of economically important traits (Zhang et al., 2012). With the emergence and availability of high-density SNP panels, it became possible to measure the variability found within the bovine genome in studies of genomic similarity, in order to characterize genomic regions and genetic profiles associated with several phenotypes (Mudado et al., 2016).

One of the methods widely used in genomic evaluations is the single-step GBLUP (ssGBLUP), which was initially proposed by Misztal et al. (2009) and adapted for association analysis (ssGWAS) by Wang et al. (2012). This procedure, simultaneously, combines pedigree information, phenotypes and genotypes in a single step analysis, through the construction of relationship matrix H which encompass genomic (G) and pedigree-based (A) relationship matrices (Wang et al., 2012). The advantages of ssGWAS are that the method allows obtaining more accurate genomic evaluations in a simple way and fast computation, it can incorporate data from non-genotyped animals without the need to use pseudophenotypes, besides calculating the effects of each SNP and to estimate variations of these effects in the genome (Aguilar et al., 2010; Wang et al., 2012).

In beef cattle, few studies have identified genetic variants associated with carcass traits and meat quality in Nellore breed (Tizioto et al., 2013; Espigolan et al., 2015; Fernandes Júnior et al., 2016b; Lemos et al., 2016; Magalhães et al., 2016; Castro et al., 2017; Oliveira Silva et al., 2017). Using high-density (~770k) SNP genotyping data in Nellore cattle, Fernandes Júnior et al. (2016b) confirmed the polygenic nature of carcass traits, reporting important genomic regions distributed in 16 of 29 autosome chromosomes. In the study, the authors highlighted regions on chromosomes 5, 7, 8, 10, 12, 20, and 29 explaining 8.72% of the additive genetic variance for the eye area of the Longissimus muscle (LMA). Among the genes found, *TSHR*, *CDKN2A/CDKN2B*, *SLC38A1/SLC38A2* and *WWC1* stand out (Fernandes Júnior et al.; 2016b). These genes are involved in thyroid cell metabolism, cell cycle regulation, amino acid transport, and cell proliferation, respectively (van den Heuvel, 2005; Klimienė et al., 2008; Schiöth et al., 2013; Wennmann et al., 2014; Fernandes Júnior et al., 2016b), functions that can influence muscle growth.

Oliveira Silva et al. (2017), identified genomic regions located on chromosomes 1, 6, 7, 8, 14, 15, 21, 24, and 28 associated with LMA in Nellore cattle and highlighted the genes ALKBH3 and HSD17B12 both playing a role in DNA repair, being related to fibroblast death (Nay et al., 2012) and steroid metabolism (Visus et al., 2011), respectively. Saatchi et al. (2014) conducted a series of genomic association studies using 50k panel genotyped data for different *Bos taurus* breeds. The authors identified QTL in the genomic regions in BTA6 and BTA14, regions later identified in the study by Oliveira Silva et al. (2017) and in BTA5, later identified by Fernandes Júnior et al. (2016b). These QTL, also harbor genes that have been associated with birth weight, weaning weight, yearling weight, mature weight, carcass weight, carcass yield, lipid content, and calving ease, indicating that QTL have pleiotropic properties (Saatchi et al., 2014).

Liu et al. (2019) performed a GWAS to systematically detect additive and dominance variants for different traits in Chinese Simmental cattle. The authors detected *FGF5* gene, in additive association with carcass weight (HCW), which is a gene of the Fibroblast Growth Factor (FGF) family, a group that is involved in embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion (Ornitz and Itoh, 2015; Liu et al.; 2019). Working with a Nellore cattle

population, Espigolan et al. (2015) identified the *EFCAB8* and *VSTM2L* genes, both related to skeletal muscle formation and development (Maki et al., 2002; Rossini et al., 2011; Espigolan et al., 2015), and might be excellent candidates for HCW. Furthermore, *EFCAB8* belongs to the EF-hand calcium binding family, a set of genes that act directly on calpain and sorcin, proteins related to muscle synthesis and modulation of cellular Ca²⁺ channels, respectively (Espigolan et al., 2015).

Through haplotype block analysis, Utsunomiya et al. (2017) reported that a mutation in the *PLAG1* gene was associated with body size, weight, and reproduction in cattle. Functional evidences report that *PLAG1* expresses a transcription factor that regulates IGF-2, insulin-like growth factor 2 (Van Dyck et al., 2007; Fortes et al., 2013; Utsunomiya et al., 2017). Fernandes Júnior et al. (2016b) identified and highlighted *PLAG1* (BTA14) as the most promising gene associated with carcass weight, as it has a pleiotropic effect on several traits of economic interest in livestock (Fortes et al., 2013). Oliveira Silva et al. (2017) reported the same genomic region in BTA14, explaining 1.89% of the additive variance, linked to the expression of subcutaneous fat thickness (BF) in Nellore cattle. Comparing different approaches for GWAS studies (ssGWAS, Bayes A and Bayes B), Hay and Roberts (2018) identified *LYN* and *RPS20* in BTA14 associated with BF in the three methods used, consistent with the reports by Oliveira Silva et al. (2017), showing the high influence of the 24Mb region on chromosome 14 for carcass traits.

In the study by Oliveira Silva et al. (2017), 16 windows were associated with BF explaining more than 14% of the total genetic variance. The authors found the *XKR4* gene, located on chromosome 14, previously identified as a candidate for rump fat thickness (Porto Neto et al., 2012). The gene *XKR4* has been linked to the regulation of prolactin secretion in cattle (Bastin et al., 2014). In research conducted in hamsters, Cincotta and Meier (1987) observed a reduction in abdominal fat stores due to inhibition of prolactin secretion, concluding that the hormone plays an important role in the regulation of fat metabolism.

In the search for candidates related to variation in meat and carcass traits in Nellore cattle, Tizioto et al. (2013) found a cluster of 20 genes associated with BF, acting in neuroactive ligand-receptor interaction pathway, indicating that the genes connected to this pathway play a role in the deposition of fat in beef cattle. Investigating

the regulation of adipogenesis in a transcriptome study, Khan et al. (2020) confirmed the evidence of Tizioto et al. (2013) by identifying differentially expressed genes involved in the fat deposition process in cattle, acting in neuroactive ligand-receptor interaction pathway.

Also, in the study by Tizioto et al. (2013), genes for calpain and calpastatin associated with measures of meat tenderness at different stages of maturation were identified. The proteolytic system of calpain (CAPN1) is the main factor responsible for myofibrillar proteolysis during the *post-mortem* period, providing tenderness to meat. Calpastatin (CAST) is a regulator of *post-mortem* proteolysis, acting in the inhibition of CAPN1 and its increased activity leads to reduced tenderization of the meat (Koohmaraie, 1996). In this sense, it can be said that calpain and calpastatin genes are excellent candidates based on their biological functions and associations with beef tenderness. Several studies have reported CAPN1 and CAST associated with the tenderness of Bos taurus meat (Smith et al., 2000; Gill et al., 2009; Bolormaa et al., 2011; McClure et al., 2012; Ramayo-Caldas et al., 2016). However, few studies have observed the same genes related to meat quality traits in Bos indicus populations and their crosses (Tizioto et al., 2013; Magalhães et al., 2016; Leal-Gutiérrez et al., 2018). In a study associating µ-Calpain and Calpastatin polymorphisms with meat tenderness in a multibreed Angus-Brahman herd, Leal-Gutiérrez et al. (2018) found a significant effect on meat tenderness (p<0.0001) in animals with more than 80% Angus composition, thus it is expected that crossbreds tend to segregate a higher percentage of tenderness related alleles than pure Zebu breeds. These references show that genetic polymorphisms discovered in Bos taurus animals cannot be predictive in Bos indicus populations (Leal-Gutiérrez et al., 2019).

Given the genetic differences between zebu and taurine animals, different regions of QTL have been reported in the literature associated with the marbling index (MARB). For example, Bedhane et al. (2019), when performing a genome-wide scanning study for meat quality traits in Hanwoo cattle, identified the *GALR1* gene close to the most significant SNP in BTA24 for MARB. *GALR1* is responsible for binding neuropeptides and peptide hormones (Jurkowski et al., 2013), in addition to being associated with the synthesis of bioactive lipids, lipids that affect cell functions due to changes in their concentration (Contos et al., 2002; Bedhane et al., 2019).

Several bioactive lipids were associated with the marbling index in Wagyu–dairy cross beef cattle (Bermingham et al., 2018) and, considering that all Wagyu's fame is attributed to the high degree of marbling of its meat, *GALR1* becomes a candidate gene option for MARB.

In the Nellore breed, Magalhães et al. (2016) located genomic regions associated with marbling, on chromosomes 5, 15, 16, and 25, explaining 3.89% of the total additive genetic variance. The authors observed that marbling and tenderness of the meat shared the same QTL in the BTA5, an interesting result since there is evidence that the marbling score gives the meat a feeling of tenderness (Wheeler et al., 2010; Mateescu et al., 2017; Luo et al., 2018). In the same study, the *TNFRSF12A* (BTA25) gene was identified, a TNF receptor superfamily member, associated with MARB. There are no reports in the literature on the role of this family of genes in regulating pathways associated with intramuscular fat deposition. However, Fonseca et al. (2020) through transcriptomics analysis, identified the *TNFRSF12A* gene differentially expressed in muscle tissue of Nellore cattle, associated with a low marbling score, corroborating with the finding by Magalhães et al. (2016).

Another way to assess the intramuscular fat content of beef is by determining the percentage of lipids (IMF) through chemical analysis. However, studies investigating genomic regions associated with this measure are scarce in the literature, especially for Zebu breeds. In a survey conducted in Taurine animals, Hay and Roberts (2018) identified LYN and LYPLA1 associated with intramuscular fat content and subcutaneous fat thickness, genes that were previously related to feeding intake and growth in cattle (Lindholm-Perry et al., 2011). In addition, the region of chromosome 14 that harbors these genes has been associated with several other phenotypes of economic interest in livestock (Lindholm-Perry et al., 2011; Fortes et al., 2013; Fernandes Júnior et al., 2016b; Oliveira Silva et al., 2017; Magalhães et al., 2016; Hay and Roberts, 2018). In the same study, Hay and Roberts (2018) identified the SCD5 gene in a QTL on BTA6 that explained 1.47% of the additive genetic variance for IMF. SCD5 is a member of the family of genes that encode stearoyl-coenzyme A desaturase (SCD), an integral membrane protein of the endoplasmic reticulum, associated with increased fat accumulation, which catalyzes the conversion of saturated to monounsaturated fatty acids in several body tissues (Zheng et al., 2001; Lengi and

Corl, 2008). Considering the important role that these genes play in lipid biosynthesis, *SCD5* may be of interest to improve the quality and accumulation of fat in beef.

In general, traits of economic importance in beef cattle are polygenic in nature and are under the control of genetic and environmental factors. Therefore, detecting variations within the genome associated with carcass composition and meat quality traits can be a great challenge, mainly because these traits are controlled by numerous genes with small effects. Thus, conducting genome-wide association studies, aiming to investigate regions of great effect on carcass and meat quality traits, is of importance to identifying new genes, as well as validating those already found in the literature, in order to better understand the biological processes involved in the expression and, consequently, the phenotypic variability of these traits.

3. OBJECTIVES

3.1. General objective

To estimate genetic parameters for female sexual precocity, carcass and meat quality traits and carry out a genomic-wide association study (GWAS) for carcass and meat quality traits in Nellore cattle, aiming to better understand the genetic inheritance of these traits in order to contribute for the genetic evaluation including genomic information in beef cattle in Brazil.

3.2. Specific objectives

- Estimate (co)variance components and genetic parameters for female sexual precocity (age at first calving and scrotal circumference), carcass (longissimus muscle area, backfat thickness, and hot carcass weight), and meat quality traits (tenderness, marbling, and intramuscular fat content) in Nellore cattle, using genomic information;
- Conduct GWAS in order to identify genomic regions and potential candidate genes acting in biological processes and metabolic pathways of meat and carcass traits.

4. REFERENCES

- Aguilar, I.; Misztal, I.; Johnson, D. L.; Legarra, A.; Tsuruta, S.; Lawlor, T. J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, v. 93, n. 2, p. 743-752, 2010.
- Albuquerque, L. G. Mercadante, M. E. Z.; Eler, J. P. Recents studies on the genetic basis for the selection of Bos indicus for beef production. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006. Instituto Prociência, 2006. p. 03-22.
- Almeida, A. K.; Michels, I. L. O Brasil e a economia-mundo: o caso da carne bovina. Ensaios FEE, v. 33, n. 1, 2012.
- Arshad, M. S.; Sohaib, M.; Ahmad, R. S.; Nadeem, M. T.; Imran, A.; Arshad, M. U.; Kwon, J. H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids in health and disease, v. 17, n. 1, p. 223, 2018.
- Associação Brasileira Das Indústrias Exportadoras De Carne (ABIEC). Beef Report:
 Perfil da Pecuária no Brasil. 2019. Disponível em: http://abiec.com.br/publicacoes/beef-report-2019/.aspx. Acesso em: 07 de abr. 2020.
- Baldassini, W. A.; Chardulo, L. A. L. et al. Meat quality traits of Nellore bulls according to different degrees of backfat thickness: a multivariate approach. Animal Production Science, v. 57, n. 2, p. 363-370, 2017.
- Bastin, B. C., Houser, A. et al. A polymorphism in XKR 4 is significantly associated with serum prolactin concentrations in beef cows grazing tall fescue. **Animal genetics**, v. 45, n. 3, p. 439-441, 2014.
- Bedhane, M.; van der Werf, J.; Gondro, C.; Duijvesteijn, N.; Lim, D.; Park, B.; Park, M. N.; Hee, R. S.; Clark, S. Genome-Wide Association Study of Meat Quality Traits in Hanwoo Beef Cattle Using Imputed Whole-Genome Sequence Data. Frontiers in genetics, v. 10, p. 1235, 2019.
- Bermingham, E. N.; Reis, M. G.; Subbaraj, A. K.; Cameron-Smith, D.; Fraser, K.; Jonker, A.; Craigie, C. R. Distribution of fatty acids and phospholipids in different

table cuts and co-products from New Zealand pasture-fed Wagyu-dairy cross beef cattle. **Meat science**, v. 140, p. 26-37, 2018.

- Bertrand, J. K.; Green, R. D.; Herring, W. O.; Moser, D. W. et al. Genetic evaluation for beef carcass traits. Journal of animal science, v. 79, n. suppl_E, p. E190-E200, 2001.
- Bhuiyan, M. S. A.; Kim, H. J.; Lee, D. H.; Lee, S. H.; Cho, S. H.; Yang, B. S.; Kim, S. D.; Lee, S. H. Genetic parameters of carcass and meat quality traits in different muscles (longissimus dorsi and semimembranosus) of Hanwoo (Korean cattle).
 Journal of animal science, v. 95, n. 8, p. 3359-3369, 2017.
- Boldt, R. J.; Speidel, S. E.; Thomas, M. G.; Keenan, L.; Enns, R. M. Genetic parameters for production traits and heifer pregnancy in Red Angus cattle. **Journal of Animal Science**, v. 94, p. 187-187, 2016.
- Boligon, A. A.; Albuquerque, L. G.; Mercadante, M. E. Z.; Lôbo, R. B. Study of relations among age at first calving, average weight gains and weights from weaning to maturity in Nellore cattle. **Revista Brasileira de Zootecnia**, v. 39, p. 746-751, 2010.
- Boligon, A. A.; Silveira, F. A.; Silveira, D. D.; Dionello, N. J. L.; Santana Junior, M. L.; Bignardi, A. B.; Souza, F. R. P. Reduced-rank models of growth and reproductive traits in Nelore cattle. **Theriogenology**, v. 83, n. 8, p. 1338-1343, 2015.
- Bolormaa, S.; Porto Neto, L. R.; Zhang, Y. D.; Bunch, R. J.; Harrison, B. E.; Goddard,
 M. E.; Barendse, W. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of animal science, v. 89, n. 8, p. 2297-2309, 2011.
- Bonin, M. N.; Pedrosa, V. B. et al. Genetic parameters associated with meat quality of Nellore cattle at different anatomical points of longissimus: Brazilian standards. Meat Science, v. 171, p. 108281, 2021.
- Brookes, A. J. The essence of SNPs. Gene, v. 234, n. 2, p. 177-186, 1999.
- Brumatti, R. C.; Ferraz, J. B. S.; Eler, J. P.; Formigonni, I. B. Desenvolvimento de índice de seleção em gado corte sob o enfoque de um modelo bioeconômico. Archivos de zootecnia, v. 60, n. 230, p. 205-213, 2011.
- Brunes, L. C.; Baldi, F.; e Costa, M. F. O.; Lobo, R. B.; Lopes, F. B.; Magnabosco, C.
 U. Genetic-quantitative analysis for reproductive traits in Nellor cattle selected for sexual precocity. Animal Production Science, v. 60, n. 7, p. 896-902, 2020.

- Buzanskas, M. E.; Pires, P. S.; Chud, T. C. S.; Bernardes, P. A.; Rola, L. D.; Savegnago, R. P.; Lôbo, R. B.; Munari, D. P. Parameter estimates for reproductive and carcass traits in Nelore beef cattle. **Theriogenology**, v. 92, p. 204-209, 2017.
- Caetano, S. L.; Savegnago, R. P.; Boligon, A. A.; Ramos, S. B.; Chud, T. C. S.; Lôbo,
 R. B.; Munari, D. P. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livestock Science, v. 155, n. 1, p. 1-7, 2013.
- Cardoso, R. C.; Alves, B. R. C.; Sharpton, S. M.; Williams, G. L.; Amstalden, M. Nutritional programming of accelerated puberty in heifers: involvement of proopiomelanocortin neurones in the arcuate nucleus. Journal of neuroendocrinology, v. 27, n. 8, p. 647-657, 2015.
- Carvalho, M. E.; Baldi, F. S. et al. Genomic regions and genes associated with carcass quality in Nelore cattle. **Genetics and Molecular Research**, v. 18, n. 1, p. 1-15, 2019.
- Carvalho, T. H.; Fernandes, E. A. Demandas de importação e exportação: uma análise para o setor agropecuários brasileiro. Revista de Desenvolvimento e Políticas Públicas, v. 1, n. 1, p. 55-69, 2017.
- Castro, L. M.; Rosa, G. J. M.; Lopes, F. B.; Regitano, L. C. A.; Rosa, A. J. M.; Magnabosco, C. U. Genomewide association mapping and pathway analysis of meat tenderness in Polled Nellore cattle. Journal of animal science, v. 95, n. 5, p. 1945-1956, 2017.
- Ceacero, T. M.; Mercadante, M. E. Z.; Cyrillo, J. N. S. G.; Canesin, R. C.; Bonilha, S. F. C.; Albuquerque, L. G. Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. PLoS One, v. 11, n. 8, p. e0161366, 2016.
- Cesar, A. S. M.; Regitano, L. C. A. et al. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. **BMC genetics**, v. 15, n. 1, p. 1-15, 2014.
- Cesar, A. S. M.; Regitano, L. C. A. et al. Putative regulatory factors associated with intramuscular fat content. **PIoS one**, v. 10, n. 6, p. e0128350, 2015.
- Cincotta, A. H.; Meier, A. H. Reduction of body fat stores by inhibition of prolactin secretion. **Experientia**, v. 43, n. 4, p. 416-417, 1987.
- Contos, J. J. A.; Ishii, I.; Fukushima, N.; Kingsbury, M. A.; Ye, X.; Kawamura, S.;

Beown, H.; Chun, J. Characterization of Ipa2 (Edg4) and Ipa1/Ipa2 (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to Ipa2. **Molecular and cellular biology**, v. 22, n. 19, p. 6921-6929, 2002.

- Costa, E. V.; Ventura, H. T.; Veroneze, R.; Silva, F. F.; Pereira, M. A.; Lopes, P. S. Estimated genetic associations among reproductive traits in Nellore cattle using Bayesian analysis. Animal reproduction science, v. 214, p. 106305, 2020.
- Costa, N. V.; Aboujaoude C.; Vieira, G. S.; Paiva, V. V.; Moraes Neto, R. A.; Gondim, V. S.; Alves, L. R.; Torres, M. C. L.; Antunes, R. C. Carcass and meat quality traits in Nellore and F1 Nellore-Araguaia crosses. Genetics and Molecular Research, v. 14, n. 2, p. 5379-5389, 2015.
- Crouse, J. D.; Cundiff, L. V.; Koch, R. M.; Koohmaraie, M.; Seideman, S. C. Comparisons of Bos indicus and Bos taurus inheritance for carcass beef characteristics and meat palatability. Journal of Animal Science, v. 67, n. 10, p. 2661-2668, 1989.
- Cundiff, L. V. Genetic selection to improve the quality and composition of beef carcasses. In: **Proc. Rec. Meat Conference, Colorado State University**. 1992. p. 123-31.
- Cundiff, L. V.; Pond, W. G.; Bell, A. W. Beef cattle: Breeds and genetics. **Encyclopedia** of Animal Science. Ithaca: Cornell University, p. 74-76, 2004.
- Do, C.; Park, B.; Kim, S.; Choi, T.; Yang, B.; Park, S.; Song, H. Genetic parameter estimates of carcass traits under national scale breeding scheme for beef cattle.
 Asian-Australasian journal of animal sciences, v. 29, n. 8, p. 1083, 2016.
- Eler, J. P.; Bignardi, A. B.; Ferraz, J. B. S.; Santana Junior, M. L. Genetic relationships among traits related to reproduction and growth of Nelore females. **Theriogenology**, v. 82, n. 5, p. 708-714, 2014.
- Elzo, M. A.; Mateescu, R. G. et al. Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livestock Science, v. 202, p. 58-66, 2017.
- Espigolan, R.; Baldi, F. et al. Associations between single nucleotide polymorphisms and carcass traits in Nellore cattle using high-density panels. **Genetics and Molecular Research**, v. 22, p. 11133-11144, 2015.

- Feitosa, F. L. B.; Olivieri, B. F. et al. Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot. Journal of applied genetics, v. 58, n. 1, p. 123-132, 2017.
- Fernandes Júnior, G. A. F.; Rosa, G. J. M. et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. **Genetics Selection Evolution**, v. 48, n. 1, p. 7, 2016a.
- Fernandes Júnior, G. A.; Costa, R. B. et al. Genome scan for postmortem carcass traits in Nellore cattle. Journal of animal science, v. 94, n. 10, p. 4087-4095, 2016b.
- Ferraz, J. B. S.; Felício, P. E. Production systems–An example from Brazil. Meat science, v. 84, n. 2, p. 238-243, 2010.
- Ferraz, M. V. C.; Pires, A. V.; Santos, M. H.; Silva, R. G.; Oliveira, G. B.; Polizel, D. M.;
 Biehl, M. V.; Sartori, R.; Nogueira, G. P. A combination of nutrition and genetics is able to reduce age at puberty in Nelore heifers to below 18 months. animal, v. 12, n. 3, p. 569-574, 2018.
- Fonseca, L. F. S.; Gimenez, D. F. J.; Santos Silva, D. B.; Barthelson, R.; Baldi, F.; Ferro, J. A.; Albuquerque, L. G. Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness. **BMC genomics**, v. 18, n. 1, p. 945, 2017.
- Fonseca, L. F. S.; Santos Silva, D. B.; Gimenez, D. F. J.; Baldi, F.; Ferro, J. A.; Chardulo, L. A. L.; Albuquerque, L. G. Gene expression profiling and identification of hub genes in Nellore cattle with different marbling score levels. **Genomics**, v. 112, n. 1, p. 873-879, 2020.
- Fortes, M. R. S.; Kemper, K. et al. Evidence for pleiotropism and recent selection in the PLAG1 region in Australian B eef cattle. **Animal genetics**, v. 44, n. 6, p. 636-647, 2013.
- Gill, J. L.; Bishop, S. C.; McCorquodale, C.; Williams, J. L.; Wiener, P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genetics Selection Evolution, v. 41, n. 1, p. 1-12, 2009.
- Goddard, M. E.; Hayes, B. J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. **Nature Reviews Genetics**, v. 10, n. 6, p.

381-391, 2009.

- Gomes, R. C.; Feijó, G. L. D.; Chiari, L. Evolução e Qualidade da Pecuária Brasileira. **EMBRAPA**, 2017.
- Gordo, D. G. M.; Baldi, F; Lôbo, R. B.; Koury Filho, W.; Sainz, R. D.; Albuquerque, L.
 G. Genetic association between body composition measured by ultrasound and visual scores in Brazilian Nelore cattle. Journal of Animal Science, v. 90, n. 12, p. 4223-4229, 2012.
- Gordo, D. G. M.; Espigolan, R.; Bresolin, T.; Fernandes Júnior, G. A.; Magalhães, A.
 F. B.; Braz, C. U.; Fernandes, W. B.; Baldi, F.; Albuquerque, L. G. Genetic analysis of carcass and meat quality traits in Nelore cattle. Journal of animal science, v. 96, n. 9, p. 3558-3564, 2018.
- Hay; E. H.; Roberts, A. Genome-wide association study for carcass traits in a composite beef cattle breed. **Livestock Science**, v. 213, p. 35-43, 2018.
- Jakobsen, M. U.; Overvad, K.; Dyerberg, J.; Heitmann, B. L. Intake of ruminant trans fatty acids and risk of coronary heart disease. **International journal of epidemiology**, v. 37, n. 1, p. 173-182, 2008.
- Jiang, M.; Fan, W. L. et al. Effects of balanced selection for intramuscular fat and abdominal fat percentage and estimates of genetic parameters. **Poultry science**, v. 96, n. 2, p. 282-287, 2017.
- Jurkowski, W.; Yazdi, S.; Elofsson, A. Ligand binding properties of human galanin receptors. **Molecular membrane biology**, v. 30, n. 2, p. 206-216, 2013.
- Khan, R.; Raza, S. H. A. et al. RNA-seq reveal role of bovine TORC2 in the regulation of adipogenesis. Archives of biochemistry and biophysics, v. 680, p. 108236, 2020.
- Klimienė, I.; Mockeliūnas, R.; Spakauskas, V.; Černauskas, A.; Sakalauskienė, R. Review Metabolic changes of thyroid hormones in cattle. Vet. Zootech. v. 42, n. 64, 2008.
- Kluska, S.; Olivieri, B. F. et al. Estimates of genetic parameters for growth, reproductive, and carcass traits in Nelore cattle using the single step genomic BLUP procedure. Livestock science, v. 216, p. 203-209, 2018.
- Koohmaraie, M. Biochemical factors regulating the toughening and tenderization processes of meat. **Meat science**, v. 43, p. 193-201, 1996.

- Lacerda, V. V.; Campos, G. S.; Roso, V. M.; Souza, F. R. P.; Brauner, C. C.; Boligon,A. A. Effect of mature size and body condition of Nelore females on the reproductive performance. Theriogenology, v. 118, p. 27-33, 2018.
- Leal-Gutiérrez, J. D.; Elzo, M. A.; Johnson, D. D.; Hamblen, H.; Mateescu, R. G. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC genomics, v. 20, n. 1, p. 151, 2019.
- Leal-Gutiérrez, J. D.; Elzo, M. A.; Johnson, D. D.; Scheffler, T. L.; Scheffler, J. M.; Mateescu, R. G. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a brahman–angus population. **Frontiers in genetics**, v. 9, p. 56, 2018.
- Lee, S.; Yang, J.; Huang, J.; Chen, H.; Hou, W.; Wu, S. Multi-marker linkage disequilibrium mapping of quantitative trait loci. **Briefings in bioinformatics**, v. 18, n. 2, p. 195-204, 2017.
- Lengi, A. J.; Corl, B. A. Comparison of pig, sheep and chicken SCD5 homologs: Evidence for an early gene duplication event. Comparative Biochemistry and Physiology Part B: **Biochemistry and Molecular Biology**, v. 150, n. 4, p. 440-446, 2008.
- Lindholm-Perry, A. K. Kuehn, L. A.; Smith, T. P. L.; Ferrell, C. L.; Jenkins, T. G.; Freetly,
 H. C.; Snelling, W. M. A region on BTA14 that includes the positional candidate genes LYPLA1, XKR4 and TMEM68 is associated with feed intake and growth phenotypes in cattle 1. Animal genetics, v. 43, n. 2, p. 216-219, 2011.
- Liu, Y.; Xu, L. et al. Genomic Prediction and Association Analysis with Models Including Dominance Effects for Important Traits in Chinese Simmental Beef Cattle. **Animals**, v. 9, n. 12, p. 1055, 2019.
- Lopes, F. B.; Magnabosco, C. U. et al. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks. **Journal of Animal Breeding and Genetics**, v. 137, n. 5, p. 438-448, 2020.
- Luchiari Filho, A. **Pecuária da carne bovina**. 1. ed. São Paulo: Edição do autor, 2000. 134p.
- Luo, L.; Guo, D.; Zhou, G.; Chen, K. An investigation on the relationship among marbling features, physiological age and Warner–Bratzler Shear force of steer

longissimus dorsi muscle. **Journal of food science and technology**, v. 55, n. 4, p. 1569-1574, 2018.

- MacNeil, M. D.; Nkrumah, J. D.; Woodward, B. W.; Northcutt, S. L. Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators. Journal of animal science, v. 88, n. 2, p. 517-522, 2010.
- Magalhães, A. F. B.; Camargo, G. M. F. et al. Genome-wide association study of meat quality traits in Nellore cattle. **PloS one**, v. 11, n. 6, p. e0157845, 2016.
- Magalhães, A. F. B.; Schenkel, F. S. et al. Genomic selection for meat quality traits in Nelore cattle. **Meat science**, v. 148, p. 32-37, 2019.
- Magalhães, A. F. B.; Teixeira, G. H. A. et al. Prediction of meat quality traits in Nelore cattle by near-infrared reflectance spectroscopy. Journal of animal science, v. 96, n. 10, p. 4229-4237, 2018.
- Magnabosco, C. U.; Lopes, F. B.; Fragoso, R. R.; Eifert, E. C.; Valente, B. D.; Rosa, G. J. M.; Sainz, R. D. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle. Journal of animal science, v. 94, n. 7, p. 2752-2760, 2016.
- Maki, M.; Kitaura, Y.; Satoh, H.; Ohkouchi, S.; Shibata, H. Structures, functions and molecular evolution of the penta-EF-hand Ca²⁺-binding proteins. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, v. 1600, n. 1-2, p. 51-60, 2002.
- Martins, T. S.; Sanglard, L. M. P. et al. Molecular factors underlying the deposition of intramuscular fat and collagen in skeletal muscle of Nellore and Angus cattle. PLoS One, v. 10, n. 10, p. e0139943, 2015.
- Mateescu, R. G.; Garrick, D. J.; Garmyn, A. J.; VanOverbeke, D. L.; Mafi, G. G.; Reecy, J. M. Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle. Journal of animal science, v. 93, n. 1, p. 21-27, 2014.
- Mateescu, R. G.; Garrick, D. J.; Reecy, J. M. Network analysis reveals putative genes affecting meat quality in Angus cattle. **Frontiers in genetics**, v. 8, p. 171, 2017.
- Mattos, R.; Staples, C. R.; Thatcher, W. W. Effects of dietary fatty acids on reproduction in ruminants. **Reviews of reproduction**, v. 5, n. 1, p. 38-45, 2000.

McAllister, C. M.; Speidel, S. E.; Crews Jr., D. H.; Enns, R. M. Genetic parameters for

intramuscular fat percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle. **Journal of animal science**, v. 89, n. 7, p. 2068-2072, 2011.

- Mcclure, M. C.; Ramey, H. R. et al. Genome-wide association analysis for quantitative trait loci influencing W arner–B ratzler shear force in five taurine cattle breeds. **Animal genetics**, v. 43, n. 6, p. 662-673, 2012.
- Mcphee, M. J.; Walmsley, B. J.; Dougherty, H. C.; McKiernan, W. A.; Oddy, V. H. Live animal predictions of carcass components and marble score in beef cattle: model development and evaluation. **Animal**, p. 1-10, 2020.
- Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, v. 92, n. 9, p. 4648-4655, 2009.
- Moorey, S. E.; Biase, F. H. Beef heifer fertility: importance of management practices and technological advancements. **Journal of Animal Science and Biotechnology**, v. 11, n. 1, p. 1-12, 2020.
- Mota, L. F. M.; Fernandes Jr, G. A.; Herrera, A. C.; Scalez, D. C. B.; Espigolan, R.; Magalhães, A. F. B.; Carvalheiro, R.; Baldi, F.; Albuquerque, L. G. Genomic reaction norm models exploiting genotypex environment interaction on sexual precocity indicator traits in Nellore cattle. **Animal Genetics**, v. 51, n. 2, p. 210-223, 2020.
- Mudadu, M. A.; Porto-Neto, L. R. et al. Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. Bmc Genomics, v. 17, n. 1, p. 235, 2016.
- Mwangi, F. W.; Charmley, E.; Gardiner, C. P.; Malau-Aduli, B. S.; Kinobe, R. T.; Malau-Aduli, A. E. O. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. **Foods**, v. 8, n. 12, p. 648, 2019.
- Nascimento, A. V.; Matos, M. C.; Seno, L. O.; Romero, A. R. S.; Garcia, J. F.; Grisolia,
 A. B. Genome wide association study on early puberty in Bos indicus. Genet Mol
 Res, v. 15, n. 1, p. 1-6, 2016.
- Nay, S. L.; Lee, D. H.; Bates, S. E.; O'Connor, T. R. Alkbh2 protects against lethality and mutation in primary mouse embryonic fibroblasts. **DNA repair**, v. 11, n. 5, p. 502-510, 2012.

- Nepomuceno, D. D.; Pires, A. V.; Junior, M. V. F.; Biehl, M. V.; Gonçalves, J. R.; Moreira, E. M.; Day, M. L. Effect of pre-partum dam supplementation, creepfeeding and post-weaning feedlot on age at puberty in Nellore heifers. Livestock Science, v. 195, p. 58-62, 2017.
- Oliveira Silva, R. M.; Stafuzza, N. B. et al. Genome-wide association study for carcass traits in an experimental Nelore cattle population. **PIoS one**, v. 12, n. 1, 2017.
- Oliveira, H. R.; Ventura, H. T.; Costa, E. V.; Pereira, M. A.; Veroneze, R.; Duarte, M. S.; Siqueira, O. H. G. B. D.; Fonseca e Silva, F. Meta-analysis of genetic-parameter estimates for reproduction, growth and carcass traits in Nellore cattle by using a random-effects model. Animal Production Science, v. 58, n. 9, p. 1575-1583, 2017.
- Ornitz, D. M.; Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, v. 4, n. 3, p. 215-266, 2015.
- Oyama, K.; Katsuta, T.; Anada, K.; Mukai, F. Genetic parameters for reproductive performance of breeding cows and carcass traits of fattening animals in Japanese Black (Wagyu) cattle. **Animal Science**, v. 78, n. 2, p. 195-201, 2004.
- Oyama, K.; Mukai, F.; Yoshimura, T. Genetic relationships among traits recorded at registry judgment, reproductive traits of breeding females and carcass traits of fattening animals in Japanese Black cattle. **Animal Science and Technology** (Japan), 1996.
- Pegolo, S.; Cecchinato, A.; Savoia, S.; Di Stasio, L.; Pauciullo, A.; Brugiapaglia, A.; Bittante, G.; Albera, A. Genome-wide association and pathway analysis of carcass and meat quality traits in Piemontese young bulls. **Animal**, v. 14, n. 2, p. 243-252, 2019.
- Pires, B. C.; Tholon, P. et al. Genetic analyses on bodyweight, reproductive, and carcass traits in composite beef cattle. **Animal Production Science**, v. 57, n. 3, p. 415-421, 2016.
- Porto Neto, L. R.; Bunch, R. J.; Harrison, B. E.; Barendse, W. Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle. **Animal genetics**, v. 43, n. 6, p. 785-789, 2012.
- Ramayo-Caldas, Y.; Renand, G.; Ballester, M.; Saintilan, R.; Rocha, D. Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality

traits in three French beef cattle breeds. **Genetics Selection Evolution**, v. 48, n. 1, p. 1-9, 2016.

- Ramos, P. V. B.; Fonseca e Silva, F. et al. Genomic evaluation for novel stayability traits in Nellore cattle. **Reproduction in Domestic Animals**, v. 55, n. 3, p. 266-273, 2020.
- Reverter, A.; Johnston, D. J. et al. Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 4. Correlations among animal, carcass, and meat quality traits. Australian Journal of Agricultural Research, v. 54, n. 2, p. 149-158, 2003.
- Rodrigues, R. T. S.; Chizzotti, M. L.; Vital, C. E.; Baracat-Pereira, M. C.; Barros, E.; Busato, K. C.; Gomes, R. A.; Ladeira, M. M.; Martins, T. S. Differences in beef quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and phosphoproteomic approach. **PIoS one**, v. 12, n. 1, 2017.
- Rossini, L.; Hashimoto, Y. et al. VSTM2L is a novel secreted antagonist of the neuroprotective peptide Humanin. **The FASEB Journal**, v. 25, n. 6, p. 1983-2000, 2011.
- Saatchi, M.; Schnabel, R. D.; Taylor, J. F.; Garrick, D. J. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC genomics, v. 15, n. 1, p. 1-17, 2014.
- Samadi, F.; Blache, D.; Martin, G. B.; D'Occhio, M. J. Nutrition, metabolic profiles and puberty in Brahman (Bos indicus) beef heifers. Animal reproduction science, v. 146, n. 3-4, p. 134-142, 2014.
- Santos, R. Nelore: A vitória Brasileira. Uberaba: Agropecuária Tropical, 2000, v. 4, 260 p.
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Cecchinato, A.; Bittante, G. Heritability and genetic correlations of carcass and meat quality traits in Piemontese young bulls. **Meat science**, v. 156, p. 111-117, 2019.
- Sbardella, A. P.; Watanabe, R. N.; Costa, R. M.; Bernardes, P. A.; Braga, L. G.; Baldi Rey, F. S.; Lôbo, R. B.; Munari, D. P. Genome-Wide Association Study Provides Insights into Important Genes for Reproductive Traits in Nelore Cattle. **Animals**, v. 11, n. 5, p. 1386, 2021.

- Schiöth, H. B.; Roshanbin, S.; Hägglund, M. G.; Fredriksson, R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. **Molecular aspects of medicine**, v. 34, n. 2-3, p. 571-585, 2013.
- Schmidt, P. I.; Campos, G. S.; Lôbo, R. B.; Souza, F. R. P.; Brauner, C. C.; Boligon,
 A. A. Genetic analysis of age at first calving, accumulated productivity, stayability
 and mature weight of Nellore females. Theriogenology, v. 108, p. 81-87, 2018.
- Silva Neto, J. B.; Peripolli, E. et al. Genetic correlation estimates between age at puberty and growth, reproductive, and carcass traits in young Nelore bulls. Livestock Science, v. 241, p. 104266, 2020.
- Silva-Vignato, B.; Coutinho, L. L.; Cesar, A. S. M.; Poleti, M. D.; Regitano, L. C. A.; Balieiro, J. C. C. Comparative muscle transcriptome associated with carcass traits of Nellore cattle. **BMC genomics**, v. 18, n. 1, p. 506, 2017.
- Smith, T. P. L.; Casas, E.; Rexroad, C. E.; Kappes, S. M.; Keele, J. W. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. Journal of animal science, v. 78, n. 10, p. 2589-2594, 2000.
- Smith, T.; Domingue, J. D.; Paschal, J. C.; Franke, D. E.; Bidner, T. D.; Whipple, G. Genetic parameters for growth and carcass traits of Brahman steers. Journal of Animal Science, v. 85, n. 6, p. 1377-1384, 2007.
- Soares, A. C. C.; Guimarães, S. E. F.; Kelly, M. J.; Fortes, M. R. S.; Silva, F. F.; Verardo, L. L.; Mota, R.; Moore, S. Multiple-trait genomewide mapping and gene network analysis for scrotal circumference growth curves in Brahman cattle. Journal of animal science, v. 95, n. 8, p. 3331-3345, 2017.
- Terakado, A. P. N.; Boligon, A. A.; Baldi, F.; Silva, J. A. II V.; Albuquerque, L. G. Genetic associations between scrotal circumference and female reproductive traits in Nelore cattle. Journal of Animal Science, v. 93, n. 6, p. 2706-2713, 2015.
- Tizioto, P. C.; Decker, J. E. et al. Genome scan for meat quality traits in Nelore beef cattle. **Physiological genomics**, v. 45, n. 21, p. 1012-1020, 2013.
- Toelle, V. D.; Robison, O. W. Estimates of genetic correlations between testicular measurements and female reproductive traits in cattle. **Journal of animal science**, v. 60, n. 1, p. 89-100, 1985.
- Tonussi, R. L.; Espigolan, R. et al. Genetic association of growth traits with carcass

and meat traits in Nellore cattle. **Genetics and Molecular Research**, v. 14, n. 4, p. 18713- 18719, 2015.

- Torres-Vázquez, J. A.; Van Der Werf, J. H. J.; Clark, S. A. Genetic and phenotypic associations of feed efficiency with growth and carcass traits in Australian Angus cattle. **Journal of animal science**, v. 96, n. 11, p. 4521-4531, 2018.
- Utrera, A. R.; Van Vleck, L. D. Heritability estimates for carcass traits of cattle: a review. 2004.
- Utsunomiya, Y. T.; Milanesi, M. et al. A PLAG1 mutation contributed to stature recovery in modern cattle. **Scientific reports**, v. 7, n. 1, p. 1-15, 2017.
- van den Heuvel, S. Cell-cycle regulation. WormBook: The Online Review of C. elegans Biology [Internet], 2005.
- Van Dyck, F.; Declercq, J.; Braem, C. V.; Van de Ven, W. J. M. PLAG1, the prototype of the PLAG gene family: versatility in tumour development. International journal of oncology, v. 30, n. 4, p. 765-774, 2007.
- Vaz, F. N.; Restle, J.; Pádua, J. T.; Fonseca, C. A.; Pacheco, P. S. Características de carcaça e receita industrial com cortes primários da carcaça de machos nelore abatidos com diferentes pesos. Ciência Animal Brasileira, v. 14, n. 2, p. 199-207, 2013.
- Vignal, A.; Milan, D.; SanCristobal, M; Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, v. 34, n. 3, p. 275, 2002.
- Visscher, P. M.; Brown, M. A.; McCarthy, M. I.; Yang, J. Five years of GWAS discovery. **The American Journal of Human Genetics**, v. 90, n. 1, p. 7-24, 2012.
- Visscher, P. M.; Wray, N. R.; Zhang, Q.; Sklar, P.; McCarthy, M. I.; Brown, M. A.; Yang, J. 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, v. 101, n. 1, p. 5-22, 2017.
- Visus, C.; Ito, D.; Dhir, R.; Szczepanski, M. J.; Chang, Y. J.; Latimer, J. J.; Grant, S. G.; DeLeo, A. B. Identification of Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas. Cancer immunology, immunotherapy, v. 60, n. 7, p. 919-929, 2011.

Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W. M. Genome-wide association

mapping including phenotypes from relatives without genotypes. **Genetics Research**, v.94, n.2, p.73-83, 2012.

- Warner, R.; Wheeler, T. L. et al. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. **Meat Science**, p. 108657, 2021.
- Wennmann, D. O.; Schmitz, J. et al. Evolutionary and molecular facts link the WWC protein family to Hippo signaling. Molecular biology and evolution, v. 31, n. 7, p. 1710-1723, 2014.
- Wheeler, T. L.; Cundiff, L. V.; Shackelford, S. D.; Koohmaraie, M. Characterization of biological types of cattle (Cycle VIII): Carcass, yield, and longissimus palatability traits. Journal of animal science, v. 88, n. 9, p. 3070-3083, 2010.
- Williams, P. Nutritional composition of red meat. **Nutrition & Dietetics**, v. 64, p. S113-S119, 2007.
- Xia, J.; Qi, X. et al. Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle. Mammalian Genome, v. 27, n. 5-6, p. 246-255, 2016.
- Yang, J.; Lee, S. H.; Goddard, M. E.; Visscher, P. M. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. In: Genome-wide association studies and genomic prediction. Humana Press, Totowa, NJ, 2013. p. 215-236.
- Yokoo, M. J.; Lôbo, R. B.; Magnabosco, C. U.; Rosa, G. J. M.; Forni, S.; Sainz, R. D.; Albuquerque, L. G. Genetic correlation of traits measured by ultrasound at yearling and 18 months of age in Nellore beef cattle. Livestock Science, v. 180, p. 34-40, 2015.
- Zhang, H.; Wang, Z.; Wang, S.; Li, H. Progress of genome wide association study in domestic animals. Journal of animal science and biotechnology, v. 3, n. 1, p. 26, 2012.
- Zhao, C.; Tian, F. et al. Muscle transcriptomic analyses in Angus cattle with divergent tenderness. **Molecular biology reports**, v. 39, n. 4, p. 4185-4193, 2012.
- Zheng, Y.; Prouty, S. M.; Harmon, A.; Sundberg, J. P.; Stenn, K. S.; Parimoo, S. Scd3—a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. **Genomics**, v. 71, n. 2, p. 182-191, 2001.

Chapter 2 – Genetic parameters estimates using genomic information for female sexual precocity, carcass and meat quality traits in Nellore cattle

ABSTRACT - The objective of the present study was to estimate genetic parameters for longissimus muscle area (LMA), backfat thickness (BF), hot carcass weight (HCW), shear-force tenderness (SF), marbling score (MARB), intramuscular fat content (IMF), age at first calving (AFC), and scrotal circumference (SC) in Nellore cattle. The dataset available for this study were from 602,122 animals phenotyped for sexual precocity traits and 6,910 for carcass/meat traits and a total of 15,000 genotyped Nellore animals. The animals were genotyped using the Illumina Bovine HD Beadchip and the GeneSeek® Genomic Profilers HDi 75K and Low-Density 35K. The animals genotyped with GGP panels were imputed to the HD panel by the FImpute v3 software, using the ARS-UCD1.2 reference map. The (co)variance components and genetic parameters were estimated in two different ways, considering the Single-step (ssGBLUP) approach: 1) in a multi-trait analysis, performed for carcass and meat quality traits, by Bayesian inference using the GIBBS2F90 software; 2) and bi-trait analyzes, performed for sexual precocity traits with carcass and meat quality traits, by frequentist inference using the AIREMLF90 software. The animal model included additive and residual genetic effects as random; the fixed effects of GC (for all traits) and date of analysis as classes (for BF, SF, and MARB); and the linear effects of age at slaughter (all carcass and meat traits) and age at yearling (YW and SC) as covariates. Heritability estimates ranged from 0.13 to 0.34 for carcass and meat quality traits, and were 0.06 and 0.45 for AFC and SC, respectively. Favorable genetic correlations were estimated between YW-HCW (0.79±0.03), YW-LMA (0.28±0.05), HCW-LMA (0.44±0.05), MARB-IMF (0.90±0.07), SF-IMF (-0.20±0.11), BF-MARB (0.29±0.08), BF-IMF (0.22±0.09), HCW-SF (-0.22±0.09), and BF-AFC (-0.26±0.11); and an undesirable correlation between AFC-HCW (0.24±0.10). The results indicate that carcass traits and SC should respond quickly to selection; meat quality traits, with lower heritability estimates, will show a slower response, while AFC should not respond to selection efficiently. In general, the correlations between carcass traits and those of meat quality were low to moderate, thus, in the short or medium term, selection will imply small gains in correlated responses. Thus, to achieve significant genetic advances in carcass composition and meat quality traits, both groups of traits must compose selection indices. Overall, carcass and meat quality traits were not genetically correlated with the indicative traits of female precocity. Despite the report of the existence of genetic correlations between AFC with HWC and BF in this study, the selection to obtain correlated responses in the other trait should not be efficient, since AFC showed practically null heritability, and HCW and BF are traits evaluated in the post-mortem, so the candidates for selection are slaughtered and cannot be subjected to reproduction.

Keywords: beef cattle, carcass, genetic parameters, meat quality, Nellore, sexual precocity

1. INTRODUCTION

Widespread throughout the national territory, Brazilian beef cattle industry is one of the main economic activities in the country. With the globalization process, combined with the growing demand for safe food, Brazil has become one of the largest meat producers and exporters in the world. Currently, the country has the largest cattle herd, is the largest exporter, and second-largest consumer of beef, standing out on the world stage (ABIEC, 2019). Associated with the growing demand for food, there is a great demand for products of animal origin with superior quality. Therefore, new technologies that aim to increase production and the quality of the final product must be developed and validated, in order to meet this growing global demand for safe food.

For development of breeding programs, it is essential to fully understand the characteristics with economic relevance in beef cattle, in order to define the objectives and selection criteria, which will guide the improvement of animals (Rosa et al., 2013; EI-Hack et al., 2018) based on animals' genetic evaluation. In this context, attributes such as carcass traits are economically important, since they are related to meat production and carcass yield and finishing. Furthermore, the beef industry pays producers based on some conditions of the carcass, such as weight and finish (Vaz et al., 2013; Fernandes Júnior et al., 2016a; Mcphee et al., 2020). In addition, the final product quality influences consumer acceptance and purchase intention (Pegolo et al., 2019), through the combination of a series of sensory factors, such as tenderness, juiciness, and flavor, which together contribute to a better meat palatability, besides to a more attractive visual appearance that includes attributes such as color and distribution of the fat (Magnabosco et al., 2016; Xia et al., 2016; Gordo et al., 2018; Leal-Gutiérrez et al., 2019). Thus, improving meat quality traits should lead to an increase in demand for beef (Mateescu et al., 2015).

Despite the importance of these characteristics in beef cattle, their evaluation is not part of the routine in breeding programs in Brazil and, therefore, they are not included in most of the selection indexes. To indirectly select for carcass composition, visual scores such as carcass conformation, finishing precocity and muscling, have been considered in some Nellore indexes (Shiotsuki et al. 2009). These traits are moderately correlated with carcass traits in Nellore (Bonin et al., 2015; Gordo et al, 2016; Silveira et al., 2018). Limitations to directly select for carcass and meat quality traits, obtained *post-mortem*, include their late expression and the costs and difficulty of measuring. Moreover, it is necessary to carry out progeny tests, as potential candidates to selection are slaughtered, increasing costs and the generations interval (Fernandes Júnior et al., 2016a; Leal-Gutiérrez et al., 2019; Magalhães et al., 2019). Because of this, most of genetic parameter estimates for these traits in Brazilian Zebu cattle have been obtained using small data sets, which reduces the accuracy of the estimates. Consequently, heritability estimates for carcass and meat quality traits obtained after slaughtering in the Nellore breed assume values in a wide range, varying from 0.09 to 0.59 and from 0.07 to 0.28, respectively (Castro et al., 2014; Neves et al., 2015; Fernandes Júnior et al., 2016a; Feitosa et al., 2017; Gordo et al., 2018; Silva et al., 2018; Magalhães et al., 2018; Carvalho et al., 2019; Bonin et al., 2021).

For using these traits as selection criteria, is fundamental to know how they relate with others of economic importance, as those indicators of sexual precocity. Compared to European breeds, Nellore females present late sexual precocity (Cundiff et al., 2004). The reduction in age at puberty together with the increase in the conception rate of young heifers results in the dilution of herd replacement costs, greater heifers' longevity, greater availability of animals for sale or reproduction, betteraccumulated productivity per animal, and, consequently, greater profitability for the producer (Eler et al., 2014; Guarini et al., 2014, Terakado et al., 2015). However, direct selection for sexual precocity is generally difficult to apply. Age at first calving, the most common trait used as an indicator of sexual precocity, is strongly influenced by environmental factors (Mota et al., 2020). In general, females are exposed to reproduction on a certain age or weight and in a short breeding season, affecting heritability estimates (Dias et al., 2004). Studies conducted on the Nellore breed in recent years have reported heritability estimates for age at first calving ranging from 0.08 to 0.24 (Boligon et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Schmidt et al., 2018; Brunes et al., 2020; Costa et al., 2020). Another sexual precocity indicator trait, scrotal circumference, is included in almost all Nellore breeding program selection indexes, as it is ease and relatively of low-cost to measure. Moreover, it presents moderate to high heritability estimates (0.33 to 0.52) and is favorably genetic correlated with AFC, with estimates ranging from -0.22 to -0.60 (Boligon et al., 2015; Terakado et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Brunes et al., 2020; Costa et al., 2020). In this sense, bulls with higher SC values tend to reach puberty earlier, and transmit precocity to their progeny (Regatieri et al., 2017; Schmidt et al., 2019).

One could hypothesize that selecting for early finishing would increase female sexual precocity, since fat deposition is directly associated with the metabolism of steroids and eicosanoids, hormones that modulate reproductive events (Mattos et al., 2000). In this sense, in some studies using ultrasonography in Nellore animals, moderate and negative genetic correlation estimates between backfat thickness and age at first calving were found, indicating that long term selection for greater fat deposition can result in benefits in sexual precocity (Caetano et al., 2013; Buzanskas et al., 2017; Kluska et al., 2018).

Genetic correlation estimates between carcass and meat quality traits, obtained after slaughtering, and sexual precocity indicator traits in Nellore, are rare. Thus, the aim of this study was to estimate the (co)variance components and genetic parameters for carcass and meat quality traits and their genetic correlations with sexual precocity indicator traits in Nellore cattle, in order to providing subsidies for improving the genetic evaluation of these traits.

2. MATERIAL AND METHODS

2.1. Database

2.1.1. Phenotypic data

The dataset available for this study were from 755,798 Nellore animals, born between 1984 and 2018, belonging to commercial herds, located in different regions of the country, which are part of the breeding programs of DeltaGen, Cia do Melhoramento, Paint (CRV Lagoa) and Nelore Qualitas. The animals were raised in grazing systems, with mineral supplementation during the dry season and water for consumption *ad libitum*, and were confined only in the finishing stage, for a period of around 90 days, with a diet based on roughage.

The database is composed of information for:

 carcass traits obtained in the *post-mortem*: longissimus muscle area (LMA), backfat thickness (BF), and hot carcass weight (HCW);

- meat quality traits: shear force tenderness (SF), marbling (MARB), and intramuscular fat content (IMF);
- reproductive traits: age at first calving (AFC) and scrotal circumference (SC);
- and yearling weight (YW).

As for reproductive management, producers adopt two breeding seasons, in the first, lasting 60 days, the heifers are exposed to the first mating at around 16 months of age. Heifers that don't conceive have a second chance in the last breeding season, which occurs over a period of approximately 70 days, where all females participate, both heifers and multiparous. This process, which began in the 1990s, is carried out to identify precocious heifers in an out-of-season breeding season and generate data to be used in genetic evaluations. Recently, some of the breeders started to expose females to reproduction around 14 months of age, in a 90 days breeding season, seeking to intensify selection for sexual precocity. Reproduction is carried out through artificial insemination of females or through natural mating, where they are exposed to the bull. The diagnosis of pregnancy in heifers is performed by rectal palpation, approximately 60 days after the end of the breeding season, and females that conceived neither in the first nor second breeding season were discarded. Thus, AFC was defined by the difference in days between the date of first calving and the date of birth of the heifer. SC was measured in centimeters at yearling, with the aid of a tape measure.

The animals were slaughtered in commercial plants located in several states of the country, with an average age of 706.5±79.6 days. In Brazil, it is common for cattle to be slaughtered intact, since this category has a better performance in terms of weight gain, feed conversion, better muscle:bone ratio with a lower proportion of fat (Arthaud, 1977).

In the process of slaughtering, after the skinning and evisceration steps, the carcasses were divided in half and the two halves were weighed, obtaining the HCW, in kilograms. Then, the half carcasses were stored in the cooling chamber for a period of 24 to 48 hours (*post-mortem*). After that, boning was performed and samples of the *Longissimus thoracis* muscle were collected between the 12th and 13th ribs of the left half carcass to measure LMA (in square centimeters) using the points quadrants method; BF (in millimeters) with the assistance of a caliper and for additional meat

analysis. It is important to note that the carcasses didn't undergo to a maturation process, since this is the routine procedure in Brazil.

For the analysis of tenderness, 2.54 cm thick samples of the *Longissimus thoracis* muscle were prepared according to the standardized procedure proposed by Wheeler et al. (1995). The meat tenderness was determined using the Salter Warner-Bratzler Shear Force equipment. For the intramuscular fat content, the methodology described by Bligh and Dyer (1959) was adopted to determine the percentage of lipids in the samples. The marbling index was defined using a visual grading scale based on the USDA – Quality and Yield Grade (2000), receiving scores from 1 to 10 according to the marbling score.

For carcass and meat traits the contemporary groups (CG) included the variables: year and season of birth, farm (at birth, weaning, and yearling stages), and slaughter date. For reproductive traits and YW, CG was composed by: year and season of birth, farm and management group (at weaning and yearling stages), and yearling valuation date. The season of birth was divided into Spring (for animals born from August to January) and Autumn (from February to July).

For data consistency, the assumptions of normality and homogeneity were tested by Shapiro-Wilk test using the software R (R Core Team 2020). For a better data uniformity, backfat thickness (BF) was submitted to transformation by the root cubic. Also, observations with measurements of 3.5 standard deviations above or below the CG mean and CG with less than 5 animals were excluded from the analysis. The number of animals and descriptive statistics for each trait after the data consistency are shown in Table 1.

Yearling weight was included only in the multi-trait analysis, along with carcass and meat quality traits. All animals in the database had phenotypes for YW. However, only those animals that had information for meat and carcass traits, their paternal siblings and all other animals sharing the same contemporary group as the previous ones were included in the analyzes, reaching a total of ~27,000 animals with YW records. **Table 1.** Descriptive statistics of phenotypic information for scrotal circumference (SC), age at first calving (AFC), yearling weight (YW), hot carcass weight (HCW), longissimus muscle area (LMA), subcutaneous fat thickness (BF), marbling score (MARB), shear force tenderness (BF), and intramuscular fat content (IMF).

Trait	Ν	Mean	SD	*CV	Min	Max	NCG
AFC (days)	174,236	1,008.53	134.19	13.31	701	1,220	8,416
SC (cm)	427,886	27.03	3.77	13.93	15.40	38.80	12,522
YW (kg)	27,129	310.85	41.01	13.19	200	524	737
HCW (kg)	6,611	290.24	34.02	11.72	166	424.60	108
LMA (cm ²)	6,190	70.56	9.63	13.64	40	112	103
BF (mm)	6,128	5.32	2.62	49.28	1	23	101
MARB	6,276	2.76	0.58	21.18	1.10	6	102
SF (kgf)	6,295	6.22	1.93	30.95	1.60	12.84	102
IMF (%)	3,812	0.78	0.37	48.20	0.12	3.61	75

*Percentage representation

N: number of observations; SD: standard deviation; CV: coefficient of variation; Min and Max: minimum and maximum values; NCG: number of contemporary groups.

2.1.2. Genotypic data

The genotypic dataset contained 15,000 Nellore animals that were genotyped using the Illumina Bovine HD Beadchip (770K, Illumina Inc., San Diego, CA, USA), the GeneSeek® Genomic Profiler HDi 75K (GeneSeek In / c., Lincoln, NE) and the GeneSeek® Genomic Profile Low-Density 35K (GeneSeek In / c., Lincoln, NE). The animals genotyped with GGP panels (75K and 35K) were imputed to the HD panel using the FImpute v3 software (Sargolzaei et al., 2014), using the ARS-UCD1.2 reference map. All animals with records for carcass and meat quality traits were genotyped.

2.2. Estimates of (co)variance components and genetic parameters

The (co)variance components and genetic parameters were obtained considering the Single-step approach (ssGBLUP) proposed by Misztal et al. (2009). For carcass and meat quality traits, it was applied a multi-trait model via Bayesian inference using the GIBBS2F90 software (Misztal et al., 2002). Yearling weight (YW) was included in the multi-trait analysis as an anchor trait, in order to minimize the

influence of sequential selection (Fernandes Júnior et al., 2016a). The average heritabilities for AFC and SC, and their genetic correlations with carcass and meat quality traits, were estimated with bi-trait models and frequentist inference using the AIREMLF90 software (Misztal et al., 2002).

The animal model included additive and residual genetic effects as random, and the fixed effects of GC (for all traits) and date of analysis as classes (for BF, SF, and MARB) and the linear effects of age at slaughter (all carcass and meat traits) and age at yearling (YW and SC) as covariates.

The matrix representation of the model is:

$y = X\beta + Za + e$

where, **y** is a vector of observations; $\boldsymbol{\beta}$ is the vector of fixed effects; **a** is the vector of direct additive genetic effects; **e** is the vector of residual effects; **X** is the fixed effects incidence matrix relating $\boldsymbol{\beta}$ to **y**; and **Z** is the incidence matrix of random effects relating **a** to **y**. It was assumed that $E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$; $Var(\mathbf{a}) = \mathbf{H} \otimes S_a$, $Var(\mathbf{e}) = \mathbf{I} \otimes S_e$, where S_a is the additive genetic covariance matrix; S_e is the residual covariance matrix; \mathbf{H} is the matrix that combines the relationship matrices, based on the pedigree (**A**), and the genomic information (**G**); **I** is the identify matrix; and \otimes denotes the direct product between the matrices.

In the ssGBLUP approach, the inverse of the relationship matrix (A^{-1}) based on pedigree is combined with a genomic relationship matrix into a genomic-pedigree relationship H^{-1} (Aguilar et al., 2010):

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$$

where, \mathbf{H}^{-1} is the inverse of the modified relationship matrix; A_{22}^{-1} is the inverse of the pedigree relationship matrix for genotyped animals; and G^{-1} is the inverse of the genomic relationship matrix (VanRaden, 2008), which is described as:

$$G = \frac{ZZ'}{2\sum_{i=1}^{m} p_i(1-p_i)}$$

where, Z = (M - P), in which M is the SNP incidence matrix, with m columns representing the number of markers and n lines representing the number of genotyped animals. Each element in M was set to -1, 0 or 1, for genotypes aa, Aa, and AA,

respectively. *P* is the matrix containing the allele frequencies expressed in $2p_i$, where p_i is the frequency of the second allele at locus i.

The multi-trait analysis was done by Bayesian inference. A total of 800,000 iterations were generated, with a burn-in of 10% (80,000 samples) and a sampling interval equal to 50. The posterior averages and standard deviations were estimated using the POSTGIBBSF90 software (Misztal et al., 2009), which summarizes the samples obtained in the Gibbs sampling programs. The convergence of data was verified by graphical analysis, through the Bayesian Output Analysis (BOA) package of software R (Smith, 2007).

3. RESULTS AND DISCUSSION

3.1. Genetic parameters for carcass and meat quality traits

The estimated heritabilities for the carcass traits and YW ranged from 0.28 to 0.34 (Table 2), indicating that they have enough genetic variability to obtain quick responses to selection. As for meat quality traits, estimates were of lower magnitude (0.13 to 0.18), showing greater environmental influence, and should respond slower to selection.

Studies that used part of the same database as in the present work (Tonussi et al., 2015; Fernandes Júnior et al., 2016a; Gordo et al., 2018), reported lower heritability estimate for LMA (0.10 to 0.28) and BF (0.08 to 0.21). Other studies carried out in Nellore cattle obtained heritability estimates closer to the obtained in this study (from 0.29 to 0.44) for LMA (Ceacero et al., 2016; Buzanskas et al., 2017; Kluska et al., 2018; Silva Neto et al., 2020), while for BF, the heritabilities showed a wide variation, from 0.17 to 0.59 (Yokoo et al., 2015; Ceacero et al., 2016; Silva Neto et al., 2020), for both traits obtained by ultrasound, indicating that selection events can promote rapid progress. Research with Nellore animals estimating genetic parameters for HCW are still scarce. The heritability estimates found in the literature for the breed range from 0.11 to 0.39 (Tonussi et al., 2015; Fernandes Júnior et al., 2016a; Gordo et al., 2018; Carvalho et al., 2019).

Table 2. Estimates of heritability coefficients (in bold on the diagonal), genetic correlations (above the diagonal) and their respective standard errors for yearling weight (YW), hot carcass weight (HCW), longissimus muscle area (LMA), backfat thickness (BF), marbling score (MARB), shear force tenderness (SF), and intramuscular fat content (IMF), obtained by multitrait analysis.

Trait	YW	́нсw	LMA	BF	MARB	SF	IMF
YW	0.31±0.02	0.79±0.03	0.28±0.05	0.14±0.06	0.03±0.07	0.01±0.08	0.06±0.08
HCW		0.28±0.02	0.44±0.05	0.06±0.07	0.05±0.09	-0.22±0.09	0.17±0.11
LMA			0.34±0.02	-0.19±0.06	-0.03±0.07	-0.04±0.08	-0.11±0.09
BF				0.28±0.02	0.29±0.08	0.02±0.09	0.22±0.09
MARB					0.17±0.02	-0.06±0.09	0.90±0.07
SF						0.13±0.02	-0.20±0.11
IMF							0.18±0.03

As for genetic correlations, YW was shown to be highly correlated with HCW, suggesting that these traits are largely under the additive effects of the same genes. Furthermore, YW showed positive genetic correlations of moderate and low magnitude with LMA and BF, respectively (Table 2). These results indicate that selection for YW ould lead, as a correlated response, to heavier carcasses and, in the long-term, in the degree of finish and yield of commercial cuts in this population.

Estimates of genetic correlations between carcass traits (Table 2) showed that HCW is moderate and positively associated with LMA, indicating that improvements in one trait should lead to genetic gains in the other. On the other hand, LMA and BF showed a negative and low correlation, suggesting that long-term selection for increasing LMA can produce animals with lower fat deposition. This result is superior to those found by Ceacero et al. (2016) and Kluska et al. (2018), who found low or close to null genetic associations between LMA and BF (0.09±0.10 and 0.06±0.06, respectively) in the Nellore breed, indicating that selection for one of these traits will not imply in correlated response in the other. In contrast to our results, studies have found positive correlations of moderate magnitude in the same breed, ranging from 0.19 to 0.36 (Gordo et al., 2012; Caetano et al., 2013; Buzanskas et al., 2017). Genetic correlations of HCW with LMA and BF show a wide range from practically null to high estimates in cattle of different breeds (Do et al., 2016; Elzo et al., 2017; Savoia et al., 2019).

The estimate of genetic correlation between MARB and IMF was high and positive, which is expected from a biological point of view, since both traits assess the lipid content in meat, visually and chemically, respectively (Table 2). In this sense, the marbling score can be considered a good indicator of meat lipid content. IMF was negatively correlated with SF, indicating that in the long term, selection for increased tenderness can lead to higher intramuscular fat content in meat. Consistently, several studies using pure or composite Taurine breeds obtained estimates of genetic association between these traits, ranging from 0.56 to 1.00 (MacNeil et al., 2010; Wheeler et al., 2010; McAllister et al., 2011; Mateescu et al., 2014), while in the Nelore breed, Bonin et al. (2021) reported estimates of the genetic correlation between MARB and IMF measured in meat samples taken from the *Longissimus* muscle on the 5th and 12th ribs, of 0.74 and 0.78, respectively.

Most genetic correlations between carcass and meat traits were very low, practically null, indicating that these traits do not share the same genomic regions (Table 2). Both MARB and IMF showed positive and low-moderate genetic correlation estimates with BF. This result is superior to those found by Gordo et al. (2018), which obtained a positive correlation, but of low magnitude (0.14 ± 0.16), between MARB and BF, suggesting that in the long term, the production of carcasses with higher finishing can promote genetic progress for marbling. A negative but relatively low genetic association was estimated between HCW and SF, suggesting that selection for higher carcass weight should have as a correlated response, increased meat tenderness. These results corroborate the results found by Gordo et al. (2018), which estimated a genetic correlation of -0.27 ± 0.14 between HCW and SF in Nellore cattle. They are also in agreement with the findings by Reverter et al. (2003), who reported similar estimates between two groups of animals studied, of -0.20 (temperate animals) and -0.21 (tropically adapted animals).

3.2. Heritability estimates for female sexual precocity and their genetic correlations with carcass and meat quality traits

The low heritability estimate (Table 3) for AFC indicates a substantial influence of gene combinations and environmental effects on the expression of this trait. For SC

it was estimated a high heritability (Table 3), indicating that this trait must respond quickly to selection events.

Several studies conducted on the Nellore breed in recent years have reported heritability for AFC ranging from 0.08 to 0.24 (Boligon et al., 2015; Terakado et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Lacerda et al., 2018; Schmidt et al., 2018; Brunes et al., 2020; Costa et al., 2020). According to Buzanskas et al. (2017), the increase in heritability estimates for AFC could be due to the increase in genetic variability that has been introduced through the selection of sexually precocious heifers and through greater control of environmental factors.

Heritability estimates for SC are generally of moderate to high magnitudes. When measured at yearling, heritability estimates found in the literature for the Nellore breed range from 0.33 to 0.52 (Boligon et al., 2015; Terakado et al., 2015; Buzanskas et al., 2017; Kluska et al., 2018; Lacerda; et al., 2018; Brunes et al., 2020). Based on the results of a meta-analysis study, which grouped several other studies with Nellore cattle, Oliveira et al. (2017) reported a heritability estimate of 0.56 for SC at yearling.

¹ Traits	AFC	SC			
	Heritability coefficients (h²)				
	0.06±0.005	0.45±0.006			
	Genetic correlations (r _G)				
HCW	0.24±0.10	0.10±0.06			
LMA	0.08±0.08	0.04±0.05			
BF	-0.26±0.11	0.11±0.06			
MARB	0.07±0.12	-0.08±0.07			
SF	-0.05±0.17	0.09±0.11			
IMF	0.18±0.16	0.03±0.10			

Table 3. Estimates of heritability coefficients (for AFC and SC), genetic correlations,and their respective standard errors between reproductive with carcass andmeat quality traits, obtained by bi-trait analysis.

¹AFC: age at first calving; SC: scrotal circumference; HCW: hot carcass weight; BF: backfat thickness; MARB: marbling score; SF: shear force tenderness; IMF: intramuscular fat content.

In general, carcass and meat quality traits were not genetically correlated with the indicative traits of female precocity. The estimate of genetic correlation between AFC and HCW was positive and, therefore, unfavorable, suggesting that precocious heifers tend to generate progenies that have lighter carcasses, as well as bulls with merit to carcass weight would generate daughters that reach puberty later.

In contrast, the genetic correlation between AFC and BF was negative and of moderate magnitude, suggesting that additive genetic effects act antagonistically on these traits, however, this association was favorable, in view of that long-term selection to decrease AFC or increase BF must lead to a desirable correlated response in the other trait. Some studies with Nellore animals have also found negative and desirable genetic correlation estimates of moderate magnitude between BF and AFC (Caetano et al., 2013; Buzanskas et al., 2017; Kluska et al., 2018). Pires et al. (2016) reported an association of -0.69±0.35 between the same traits in Canchim animals, indicating that greater fat deposition can result in benefits in sexual precocity. These findings are biologically expected since lipid production or fat deposition is directly associated with the metabolism of certain hormones (such as steroids and eicosanoids) that modulate reproductive events, in addition to having a direct effect on the transcription of encoding genes of proteins essential for reproduction (Mattos et al., 2000).

4. CONCLUSIONS

Carcass traits have enough genetic variability to respond quickly to selection, while low heritability estimates for meat quality traits indicate a slower response. In general, the correlations between carcass traits and those of meat quality were low to moderate, so, in the short or medium term, selection will imply small gains in correlated responses. Thus, to achieve significant genetic advances in carcass composition and meat quality, these traits must compose selection indices. In general, carcass and meat quality traits were not genetically correlated with the indicative traits of female precocity.

Despite the report of the existence of genetic correlations between age at first calving (AFC) with hot weight carcass (HWC) and backfat thickness (BF) in this study, the selection to obtain correlated responses in the other trait should not be efficient, since AFC showed practically null heritability, and HCW and BF are traits evaluated in the *post-mortem*, so the candidates for selection are slaughtered and cannot be subjected to reproduction.

5. REFERENCES

- Aguilar, I.; Misztal, I.; Johnson, D. L.; Legarra, A.; Tsuruta, S.; Lawlor, T. J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, v. 93, n. 2, p. 743-752, 2010.
- Arthaud, V. H.; Mandigo, R. W.; Koch, R. M.; Kotula, A. W. Carcass composition, quality and palatability attributes of bulls and steers fed different energy levels and killed at four ages. Journal of Animal Science, v. 44, n. 1, p. 53-64, 1977.
- Associação Brasileira Das Indústrias Exportadoras De Carne (ABIEC). Beef Report: Perfil da Pecuária no Brasil. 2019. Disponível em: http://abiec.com.br/publicacoes/beef-report-2019/.aspx. Acesso em: 07 de abr. 2020.
- Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification, **Canadian Journal. Biochemistry and Physiology**, v.37, p.911–917, 1959.
- Boligon, A. A.; Silveira, F. A.; Silveira, D. D.; Dionello, N. J. L.; Santana Junior, M. L.; Bignardi, A. B.; Souza, F. R. P. Reduced-rank models of growth and reproductive traits in Nelore cattle. **Theriogenology**, v. 83, n. 8, p. 1338-1343, 2015.
- Bonin, M. N.; Ferraz, J. B. S. et al. Visual body-scores selection and its influence on body size and ultrasound carcass traits in Nellore cattle. Journal of animal science, v. 93, n. 12, p. 5597-5606, 2015.
- Bonin, M. N.; Pedrosa, V. B. et al. Genetic parameters associated with meat quality of Nellore cattle at different anatomical points of longissimus: Brazilian standards.
 Meat Science, v. 171, p. 108281, 2021.
- Brunes, L. C.; Baldi, F.; e Costa, M. F. O.; Lobo, R. B.; Lopes, F. B.; Magnabosco, C.
 U. Genetic-quantitative analysis for reproductive traits in Nellor cattle selected for sexual precocity. Animal Production Science, v. 60, n. 7, p. 896-902, 2020.
- Buzanskas, M. E.; Pires, P. S.; Chud, T. C. S.; Bernardes, P. A.; Rola, L. D.; Savegnago, R. P.; Lôbo, R. B.; Munari, D. P. Parameter estimates for reproductive and carcass traits in Nelore beef cattle. **Theriogenology**, v. 92, p. 204-209, 2017.
- Caetano, S. L.; Savegnago, R. P.; Boligon, A. A.; Ramos, S. B.; Chud, T. C. S.; Lôbo,
 R. B.; Munari, D. P. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livestock Science, v. 155, n. 1, p. 1-7, 2013.

- Carvalho, M. E.; Baldi, F. S. et al. Genomic regions and genes associated with carcass quality in Nelore cattle. **Genetics and Molecular Research**, v. 18, n. 1, p. 1-15, 2019.
- Castro, L. M.; Magnabosco, C. U.; Sainz, R. D.; Faria, C. U.; Lopes, F. B. Quantitative genetic analysis for meat tenderness trait in Polled Nellore cattle. **Revista Ciência Agronômica**, v. 45, p. 393-402, 2014.
- Ceacero, T. M.; Mercadante, M. E. Z.; Cyrillo, J. N. S. G.; Canesin, R. C.; Bonilha, S. F. C.; Albuquerque, L. G. Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. **PLoS One**, v. 11, n. 8, p. e0161366, 2016.
- Costa, E. V.; Ventura, H. T.; Veroneze, R.; Silva, F. F.; Pereira, M. A.; Lopes, P. S. Estimated genetic associations among reproductive traits in Nellore cattle using Bayesian analysis. Animal reproduction science, v. 214, p. 106305, 2020.
- Cundiff, L. V.; Pond, W. G.; Bell, A. W. Beef cattle: Breeds and genetics. **Encyclopedia** of Animal Science. Ithaca: Cornell University, p. 74-76, 2004.
- Dias, L. T.; El Faro, L.; Albuquerque, L. G. Efeito da idade de exposição de novilhas à reprodução sobre estimativas de herdabilidade da idade ao primeiro parto em bovinos Nelore. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 56, p. 370-373, 2004.
- Do, C.; Park, B.; Kim, S.; Choi, T.; Yang, B.; Park, S.; Song, H. Genetic parameter estimates of carcass traits under national scale breeding scheme for beef cattle.
 Asian-Australasian journal of animal sciences, v. 29, n. 8, p. 1083, 2016.
- Elango, R.; Ball, R. O.; Pencharz, P. B. Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino acids, v. 37, n. 1, p. 19, 2009.
- Eler, J. P.; Bignardi, A. B.; Ferraz, J. B. S.; Santana Junior, M. L. Genetic relationships among traits related to reproduction and growth of Nelore females. Theriogenology, v. 82, n. 5, p. 708-714, 2014.
- El-Hack, M. E. A.; Abdelnour, S. A.; Swelum, A. A.; Arif, M. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. **Molecular biology reports**, v. 45, n. 5, p. 1445-1456, 2018.

- Elzo, M. A.; Mateescu, R. G. et al. Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livestock Science, v. 202, p. 58-66, 2017.
- Feitosa, F. L. B.; Olivieri, B. F. et al. Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot. Journal of applied genetics, v. 58, n. 1, p. 123-132, 2017.
- Fernandes Júnior, G. A. F.; Rosa, G. J. M. et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. **Genetics Selection Evolution**, v. 48, n. 1, p. 7, 2016a.
- Gordo, D. G. M.; Baldi, F; Lôbo, R. B.; Koury Filho, W.; Sainz, R. D.; Albuquerque, L.
 G. Genetic association between body composition measured by ultrasound and visual scores in Brazilian Nelore cattle. Journal of Animal Science, v. 90, n. 12, p. 4223-4229, 2012.
- Gordo, D. G. M.; Espigolan, R. et al. Genetic parameter estimates for carcass traits and visual scores including or not genomic information. **Journal of Animal Science**, v. 94, n. 5, p. 1821-1826, 2016.
- Gordo, D. G. M.; Espigolan, R.; Bresolin, T.; Fernandes Júnior, G. A.; Magalhães, A.
 F. B.; Braz, C. U.; Fernandes, W. B.; Baldi, F.; Albuquerque, L. G. Genetic analysis of carcass and meat quality traits in Nelore cattle. Journal of animal science, v. 96, n. 9, p. 3558-3564, 2018.
- Guarini, A. R.; Neves, H. H. R.; Schenkel, F. S.; Carvalheiro, R.; Oliveira, J. A.; Queiroz, S. A. Genetic relationship among reproductive traits in Nellore cattle. animal, v. 9, n. 5, p. 760-765, 2015.
- Kluska, S.; Olivieri, B. F. et al. Estimates of genetic parameters for growth, reproductive, and carcass traits in Nelore cattle using the single step genomic BLUP procedure. **Livestock science**, v. 216, p. 203-209, 2018.
- Lacerda, V. V.; Campos, G. S.; Roso, V. M.; Souza, F. R. P.; Brauner, C. C.; Boligon,A. A. Effect of mature size and body condition of Nelore females on the reproductive performance. Theriogenology, v. 118, p. 27-33, 2018.
- Leal-Gutiérrez, J. D.; Elzo, M. A.; Johnson, D. D.; Hamblen, H.; Mateescu, R. G. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. **BMC**

genomics, v. 20, n. 1, p. 151, 2019.

- MacNeil, M. D.; Nkrumah, J. D.; Woodward, B. W.; Northcutt, S. L. Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators.
 Journal of animal science, v. 88, n. 2, p. 517-522, 2010.
- Magalhães, A. F. B.; Schenkel, F. S. et al. Genomic selection for meat quality traits in Nelore cattle. **Meat science**, v. 148, p. 32-37, 2019.
- Magalhães, A. F. B.; Teixeira, G. H. A. et al. Prediction of meat quality traits in Nelore cattle by near-infrared reflectance spectroscopy. Journal of animal science, v. 96, n. 10, p. 4229-4237, 2018.
- Magnabosco, C. U.; Lopes, F. B.; Fragoso, R. R.; Eifert, E. C.; Valente, B. D.; Rosa, G. J. M.; Sainz, R. D. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle. Journal of animal science, v. 94, n. 7, p. 2752-2760, 2016.
- Mateescu, R. G.; Garrick, D. J.; Garmyn, A. J.; VanOverbeke, D. L.; Mafi, G. G.; Reecy, J. M. Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle. Journal of animal science, v. 93, n. 1, p. 21-27, 2014.
- Mattos, R.; Staples, C. R.; Thatcher, W. W. Effects of dietary fatty acids on reproduction in ruminants. **Reviews of reproduction**, v. 5, n. 1, p. 38-45, 2000.
- McAllister, C. M.; Speidel, S. E.; Crews Jr., D. H.; Enns, R. M. Genetic parameters for intramuscular fat percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle. Journal of animal science, v. 89, n. 7, p. 2068-2072, 2011.
- Mcphee, M. J.; Walmsley, B. J.; Dougherty, H. C.; McKiernan, W. A.; Oddy, V. H. Live animal predictions of carcass components and marble score in beef cattle: model development and evaluation. **Animal**, p. 1-10, 2020.
- Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, v. 92, n. 9, p. 4648-4655, 2009.
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D. H. Blupf90 and related programs (BGF90). In: Proc. 7th World Congress on Genetics Applied to Livestock Production, v.28, p.19-23, 2002.

- Mota, L. F. M.; Fernandes Jr, G. A.; Herrera, A. C.; Scalez, D. C. B.; Espigolan, R.; Magalhães, A. F. B.; Carvalheiro, R.; Baldi, F.; Albuquerque, L. G. Genomic reaction norm models exploiting genotypex environment interaction on sexual precocity indicator traits in Nellore cattle. **Animal Genetics**, v. 51, n. 2, p. 210-223, 2020.
- Mwangi, F. W.; Charmley, E.; Gardiner, C. P.; Malau-Aduli, B. S.; Kinobe, R. T.; Malau-Aduli, A. E. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. **Foods**, v. 8, n. 12, p. 648, 2019.
- Neves, H. H. R.; Dos Reis, F. P.; Paterno, F. M.; Guarini, A. R.; Carvalheiro, R.; Silva, L. R.; Oliveira, J. A.; Queiroz, S. A. Herd-of-origin effect on the post-weaning performance of centrally tested Nellore beef cattle. **Tropical animal health and production**, v. 46, n. 7, p. 1235-1241, 2014.
- Oliveira, H. R.; Ventura, H. T.; Costa, E. V.; Pereira, M. A.; Veroneze, R.; Duarte, M. S.; Siqueira, O. H. G. B. D.; Fonseca e Silva, F. Meta-analysis of genetic-parameter estimates for reproduction, growth and carcass traits in Nellore cattle by using a random-effects model. **Animal Production Science**, v. 58, n. 9, p. 1575-1583, 2017.
- Pegolo, S.; Cecchinato, A.; Savoia, S.; Di Stasio, L.; Pauciullo, A.; Brugiapaglia, A.; Bittante, G.; Albera, A. Genome-wide association and pathway analysis of carcass and meat quality traits in Piemontese young bulls. **Animal**, v. 14, n. 2, p. 243-252, 2019.
- Pires, B. C.; Tholon, P. et al. Genetic analyses on bodyweight, reproductive, and carcass traits in composite beef cattle. **Animal Production Science**, v. 57, n. 3, p. 415-421, 2016.
- R Core Team. R: a language and environment for statistical computing and graphics. R Foundation for Statistical Computing: St. Louis, 2020.
- Regatieri, I. C.; Boligon, A. A. et al. Association between single nucleotide polymorphisms and sexual precocity in Nellore heifers. **Animal reproduction science**, v. 177, p. 88-96, 2017.
- Reverter, A.; Johnston, D. J. et al. Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 4. Correlations among animal, carcass, and meat quality traits. **Australian**

Journal of Agricultural Research, v. 54, n. 2, p. 149-158, 2003.

- Rosa, A. N.; Martins, E. N.; Menezes, G. R. O.; Silva, L. O. C. Melhoramento genético aplicado em gado de corte: Programa Geneplus-Embrapa. Brasília, DF: Embrapa; Campo Grande, MS: Embrapa Gado de Corte, 2013.
- Sargolzaei, M.; Chesnais, J. P.; Schenkel, F. S. A new approach for efficient genotype imputation using information from relatives. **BMC genomics**, v. 15, n. 1, p. 478, 2014.
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Cecchinato, A.; Bittante, G. Heritability and genetic correlations of carcass and meat quality traits in Piemontese young bulls. **Meat science**, v. 156, p. 111-117, 2019.
- Schmidt, P. I., Campos, G. S.; Roso, V. M.; Souza, F. R. P.; Boligon, A. A. Genetic analysis of female reproductive efficiency, scrotal circumference and growth traits in Nelore cattle. **Theriogenology**, v. 128, p. 47-53, 2019.
- Schmidt, P. I.; Campos, G. S.; Lôbo, R. B.; Souza, F. R. P.; Brauner, C. C.; Boligon,A. A. Genetic analysis of age at first calving, accumulated productivity, stayabilityand mature weight of Nellore females. Theriogenology, v. 108, p. 81-87, 2018.
- Shiotsuki, L.; Silva, J. A. II; Albuquerque, L. G. Associação genética da prenhez aos
 16 meses com o peso à desmama e o ganho de peso em animais da raça
 Nelore. Revista Brasileira de Zootecnia, v. 38, n. 7, p. 1211-1217, 2009.
- Silva, R. P.; Berton, M. P. et al. Genomic regions and enrichment analyses associated with carcass composition indicator traits in Nellore cattle. Journal of animal breeding and genetics, v. 136, n. 2, p. 118-133, 2019.
- Silva Neto, J. B.; Peripolli, E. et al. Genetic correlation estimates between age at puberty and growth, reproductive, and carcass traits in young Nelore bulls. Livestock Science, v. 241, p. 104266, 2020.
- Silveira, D. D.; De Vargas, L.; Pereira, R. J.; Campos, G. S.; Vaz, R. Z.; Lôbo, R. B.; Souza, F. R. P.; Boligon, A. A. Quantitative study of genetic gain for growth, carcass, and morphological traits of Nelore cattle. Canadian Journal of Animal Science, v. 99, n. 2, p. 296-306, 2018.
- Smith, B. J. boa: an R package for MCMC output convergence assessment and posterior inference. **Journal of statistical software**, v. 21, n. 11, p. 1-37, 2007.

Terakado, A. P. N.; Boligon, A. A.; Baldi, F.; Silva, J. A. II V.; Albuquerque, L. G.

Genetic associations between scrotal circumference and female reproductive traits in Nelore cattle. **Journal of Animal Science**, v. 93, n. 6, p. 2706-2713, 2015.

- Tonussi, R. L.; Espigolan, R. et al. Genetic association of growth traits with carcass and meat traits in Nellore cattle. **Genetics and Molecular Research**, v. 14, n. 4, p. 18713- 18719, 2015.
- United States Departament Of Agriculture (USDA). U.S. Standards for Grades of Feeder Cattle. Washington: USDA, 2000. 4p.
- Vanraden, P. M. Efficient methods to compute genomic predictions. Journal of dairy science, v. 91, n. 11, p. 4414-4423, 2008.
- Vaz, F. N.; Restle, J.; Pádua, J. T.; Fonseca, C. A.; Pacheco, P. S. Características de carcaça e receita industrial com cortes primários da carcaça de machos nelore abatidos com diferentes pesos. Ciência Animal Brasileira, v. 14, n. 2, p. 199-207, 2013.
- Wheeler, T. L.; Cundiff, L. V.; Shackelford, S. D.; Koohmaraie, M. Characterization of biological types of cattle (Cycle VIII): Carcass, yield, and longissimus palatability traits. Journal of animal science, v. 88, n. 9, p. 3070-3083, 2010.
- Wheeler, T. L.; Koomaraie, M.; Shackelford, S. D. Standardized warner-bratzler shear force procedures for meat tenderness measurement. Clay Center: Roman L. Hruska U. S. MARC. USDA, 1995. 7p.
- Xia, J.; Qi, X. et al. Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle. Mammalian Genome, v. 27, n. 5-6, p. 246-255, 2016.
- Yokoo, M. J.; Lôbo, R. B.; Magnabosco, C. U.; Rosa, G. J. M.; Forni, S.; Sainz, R. D.; Albuquerque, L. G. Genetic correlation of traits measured by ultrasound at yearling and 18 months of age in Nellore beef cattle. Livestock Science, v. 180, p. 34-40, 2015.

Chapter 3 – Genome-wide scans for carcass and meat quality traits in Nellore cattle

ABSTRACT – Beef plays a significant role in human nutrition and meat quality is defined by traits that guarantee consumers satisfaction. Carcass composition is of great importance for the beef industry, as its measurements are directly associated with the quantity and quality of the final product. However, although carcass and meat quality traits are important for the profitability of the production system, these have been little explored by breeding programs in Brazil. The present study aims to identify genomic regions responsible for the expression of economic important traits, in order to seek potential candidate genes acting in biological processes and metabolic pathways, associated with carcass (LMA: longissimus muscle area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force tenderness, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6,910 uncastrated males were feedlot finished and slaughtered at commercial slaughterhouses with an average age of 706.5 ± 79.6 days. The animals were genotyped using the Illumina Bovine HD Beadchip and the GeneSeek® Genomic Profilers HDi 75K and Low-Density 35K, and those genotyped with GGP panels were imputed to the HD panel using the FImpute v3 software, using the ARS-UCD1.2 reference map. The SNPs effects were estimated based on the weighted single-step GBLUP (WssGBLUP) approach, where two iterations were performed. The results of the GWAS analyzes were presented based on the proportion of additive variance explained by 1 Mb windows. The top 10 genomic regions explained 8.79, 12.06, and 9.01% of the additive genetic variance and harbored a total of 134, 158, and 93 positional candidate genes for LMA, BF, and HCW, respectively. For meat guality traits, the windows of greatest effect accounted for 14.72, 14.79, and 14.13% of the additive variance, and 137, 163, and 89 candidate genes were found for SF, MARB, and IMF, respectively. Among the candidate genes found, some stand out, such as PPARGC1A, AQP3, AQP7, MYLK2, PLAGL2, PLAG1, XKR4, MYOD1, KCNJ11, WWOX, CARTPT, RAC1, PSAP, PLA2G16, and PLCB3. These genes were previously associated with several traits, such as growth, carcass, quality of meat, feed intake and reproductive traits in Nellore and other cattle breeds. In general, the potential candidate genes found are involved in several signaling pathways such as: FoxO, which mediate the synthesis of growth factors and stress-regulated transcription factors that are involved in many physiological events; TGF-β, which mediates the fibrogenesis process by activating protein signaling to induce the expression of fibrogenic genes; mTOR, which is involved in the regulation of lipid synthesis through multiple effectors; flavor transduction pathway, which is involved in the biological processes of sensory perception of taste and acts in the regulation of food intake, thus defining the ingestive behavior; collagen chain trimerization, in which collagen, a protein abundantly expressed in connective tissue, influences the tenderness and texture of meat: lipid metabolism, which mediates the synthesis and degradation of lipids in cells; among other signaling pathways.

Keywords: beef cattle, carcass, genes, GWAS, meat quality, Nellore

1. INTRODUCTION

Due to the accelerated population growth, the demand for animal protein is expected to increase significantly in the coming decades, simultaneously with the decline or, at best, the constant availability of land dedicated to food production, as a result of climate change and alternative land uses. Given this scenario, the search for new technologies that allow a better understanding of the characteristics of economic interest for beef cattle farming is essential to achieve better rates of productivity, resource efficiency, and adaptation to changing environments (Simianer, 2016).

Beef plays a significant role in human nutrition. It is rich in bioactive nutrients and antioxidants beneficial to human health (Mann, 2018), in addition to presenting all essential amino acids (Williams, 2007; Mwangi et al., 2019) including high levels of lysine and methionine, compared to cereals and legumes, which have relatively low concentrations of these amino acids, respectively (Elango et al., 2009). Thus, the consumption of quality animal protein is essential for human growth, development, and health.

Meat quality is defined by traits that guarantee consumers satisfaction. The concept of "quality meat", most demanded by buyers, includes a series of sensory factors such as tenderness, juiciness, and flavor, which together contribute to a better meat palatability (Gordo et al., 2018). Meat tenderness is considered the most important sensory parameter, as it determines consumer satisfaction and purchase intention (Warner et al., 2021). The marbling score and intramuscular fat content are two different ways to assess the intramuscular fat content of meat. Intramuscular fat is directly linked to the quality of meat, contributing to the flavor, and preventing water loss from cooking (Mwangi et al., 2019).

Carcass composition is of great importance for the beef industry, as its measurements are directly associated with the quantity and quality of the final product. The longissimus muscle area (LMA) is an efficient indicator of muscle mass, carcass composition and edible portion (Gordo et al., 2018), and this trait is associated with the proportion of cuts that add commercial value for meat products (Caetano et al., 2013). The backfat thickness (BF) indicates the degree of carcass finishing and acts as a thermal insulator, protecting the carcass against the stiffness, darkening of muscles, and water loss, ensuring meat tenderness (Caetano et al., 2013; Baldassini et al.,

2017). The hot carcass weight (HCW) is directly related to the commercial value of the animal, since the amount paid to cattle breeders is, mainly, based on the carcass weight (Fernandes Júnior et al., 2016a; Gordo et al., 2018).

Considering that the Brazilian cattle herd is predominantly composed of animals with Zebu genetics (about 80%), the quality of meat produced in Brazil tends to be low. Zebu breeds produce leaner meat, with a lower marbling index and less tenderness, compared to European breeds, besides finishing late, partially due to the extensive production system adopted in Brazil (Cundiff et al., 2004; Albuquerque et al., 2006).

Livestock improvement through traditional methods, which combine phenotypic data and relatedness records for genetic evaluation of animals through statistical models, have been widely used for many years to achieve improvements in the capacity and functionality of production (Georges et al., 2019). However, although carcass composition and meat quality traits are important for the profitability of the production system, these have been little explored by breeding programs in Brazil. The difficulty in applying traditional selection on these characteristics is the main reason for this. Traits measurements can be expensive, both in terms of time and money, since meat quality traits, and sometimes those of the carcass, are measured in the *postmortem*, which means that they cannot be measured in the potential candidates for breeding themselves, requiring the execution of progeny tests (Fernandes Júnior et al., 2016a; Fonseca et al., 2017; Leal-Gutiérrez; et al., 2019; Magalhães et al., 2019).

The use of genomic approaches becomes an alternative to partially overcome these obstacles that limit the improvement in the quality of *Bos indicus* beef. In this sense, Genome-wide Association Studies (GWAS) become a powerful tool to investigate the genetic architecture and identify genes that control the expression of economically important traits. GWAS have been used to discover quantitative trait loci (QTL) associated with phenotypes of interest. In this method, a complete genome scan is performed through statistical analysis, to identify genetic variants (mainly single nucleotide polymorphisms - SNP) in linkage disequilibrium with QTL of great effect on a certain trait, providing a better understanding of biological functions and genetic influence on phenotypic expression (Zhang et al., 2012; Yang et al., 2013; Magalhães et al., 2016; Magalhães et al., 2019; Pegolo et al., 2020).

Some GWAS already performed by our research group have identified candidate genes associated with the expression of carcass and meat traits (Lemos et al., 2016; Fernandes Júnior et al., 2016b; Magalhães et al., 2016; Oliveira Silva et al., 2017). However, those researches have been performed using the bovine genome map UMD3 or earlier versions in the GWAS analyzes. With the development of the new updated version of the reference map of the bovine genome (ARS-UCD1.2), which improves the location of the markers and contains additional SNP, allowing better detection of QTL and genomic predictions (Null et al., 2019), and the increase in the number of phenotyped and genotyped animals, the present study aims to identify genomic regions responsible for the expression of economic important traits using the reference map ARS-UCD1.2 and updated sets of phenotypes and genotypes, in order to seek potential candidate genes acting in biological processes and metabolic pathways, associated with carcass and meat quality traits in Nellore cattle.

2. MATERIAL AND METHODS

2.1. Phenotypic data

The database used in the present study is composed of information for carcass traits obtained in the *post-mortem*: longissimus muscle area (LMA), backfat thickness (BF), and hot carcass weight (HCW); and meat quality traits: shear force tenderness (SF), marbling score (MARB), and intramuscular fat content (IMF). Measurements were made on 6,910 Nellore males, born between 2008 and 2018, belonging to commercial herds that are part of four breeding programs (DeltaGen, Cia do Melhoramento, Paint – CRV Lagoa, and Nelore Qualitas) which integrate the Alliance Nellore database (www.gensys.com.br).

The animals were basically raised in grazing systems, with mineral supplementation during the dry season, and were confined in the finishing stage, fed a roughage-based diet, and slaughtered intact in commercial plants distributed in several Brazilian states, with a mean age of 706.5±79.6 days.

HCW was obtained in kilograms by weighing the carcasses after the skinning and evisceration stages. To determine LMA (in square centimeters), the points quadrant method was used, and the BF (in millimeters) was measured with a caliper. For SF, meat samples were prepared according to the standardized procedure proposed by Wheeler et al. (1995) and meat tenderness was determined using the Salter Warner-Bratzler Shear Force equipment. For IMF, the methodology described by Bligh and Dyer (1959) was adopted to determine the percentage of lipids in the meat samples. MARB was defined using a visual grading scale based on the USDA – Quality and Yield Grade (2000), attributing scores from 1 to 10 according to the marbling level. LMA, BF and meat measurements were obtained from samples of the *Longissimus thoracis* muscle collected between the 12th and 13th ribs of the left half carcass. It is important to note that the carcasses did not undergo to a maturation process, since this is the routine procedure in Brazil.

The contemporary groups (CG) for all traits included the variables: year and season of birth, farm (at birth, weaning, and yearling stages), and slaughter date. The birth season were: Spring (for animals born from August to January) and Autumn (from February to July).

For data consistency, observations with measurements of 3.5 standard deviations above or below the CG mean and CG with less than 5 animals were excluded from the analysis. The number of animals and descriptive statistics for each trait after the data consistency are shown in Table 4.

Table 4. Descriptive statistics of phenotypic information for hot carcass weight (HCW),longissimus muscle area (LMA), subcutaneous fat thickness (BF), marbling score(MARB), shear force tenderness (BF), and intramuscular fat content (IMF).

Trait	Ν	Mean	SD	*CV	Min	Мах	NCG
HCW (kg)	6,611	290.24	34.02	11.72	166	424.60	108
LMA (cm ²)	6,190	70.56	9.63	13.64	40	112	103
BF (mm)	6,128	5.32	2.62	49.28	1	23	101
MARB	6,276	2.76	0.58	21.18	1.10	6	102
SF (kgf)	6,295	6.22	1.93	30.95	1.60	12.84	102
IMF (%)	3,812	0.78	0.37	48.20	0.12	3.61	75

*Percentage representation

N: number of observations; SD: standard deviation; CV: coefficient of variation; Min and Max: minimum and maximum values; NCG: number of contemporary groups.

2.2. Genotypic data

A total of 25,000 genotyped Nellore animals were used in this study. These animals were genotyped using the Illumina Bovine HD Beadchip (770K, Illumina Inc., San Diego, CA, USA), the GeneSeek® Genomic Profiler HDi 75K (GeneSeek In / c., Lincoln, NE) and the GeneSeek® Genomic Profile Low-Density 35K (GeneSeek In / c., Lincoln, NE), and those genotyped with GGP panels (75K and 35K) were imputed to the HD panel using the FImpute v3 software (Sargolzaei et al., 2014), using the ARS-UCD1.2 reference map.

The QCF90 software (Masuda et al., 2019) was used for the quality control of SNP markers and samples. Only SNP located in the autosomes and with a GeneCall score higher than 0.80 were considered in the analyzes. Furthermore, SNP located at the same genomic position, with MAF (Minor allele frequency) \leq 0.05, Call rate \leq 0.90, HWE (Hardy-Weinberg equilibrium) with p-value \leq 10⁻⁵ and monomorphic SNP were removed. For samples, a Call rate threshold > 0.90 was set, and samples below this value were also excluded.

2.3. Genome-wide association analysis

The animal model used in GWAS analyzes included as random: additive and residual genetic effects; as fixed effects: CG (for all traits); date of analysis as classes (for BF, SF, and MARB) and; the linear effect of age at slaughter (for all traits) as covariate.

The matrix representation of the model is:

$y = X\beta + Za + e$

where, **y** is a vector of observations for each trait; $\boldsymbol{\beta}$ is the vector of fixed effects; **a** is the vector of direct additive genetic effects, assumed as $\boldsymbol{a} \sim N(0, \boldsymbol{H}\sigma_a^2)$, where \boldsymbol{H} is the matrix that combines the kinship matrices, based on the pedigree (\boldsymbol{A}), and the genomic relationship matrix (\boldsymbol{G}) and σ_a^2 is the additive genetic variance; \boldsymbol{e} is the vector of residual effects associated with \boldsymbol{y} , assumed as $\boldsymbol{e} \sim N(0, \boldsymbol{I}\sigma_e^2)$, where \boldsymbol{I} is an identity matrix and σ_e^2 is the variance of residual effects; \boldsymbol{X} is the fixed effects incidence matrix relating $\boldsymbol{\beta}$ and \boldsymbol{y} ; and \boldsymbol{Z} is the incidence matrix of random effects relating \boldsymbol{a} and \boldsymbol{y} . In the ssGBLUP procedure, the inverse of the numerator of the A^{-1} kinship matrix is replaced by the combined matrix of the genomic-pedigree relation H^{-1} (Aguilar et al., 2010):

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$$

where, \mathbf{H}^{-1} is the inverse of the modified kinship matrix; \mathbf{A}_{22}^{-1} is the inverse of the additive kinship matrix for genotyped animals; and \mathbf{G}^{-1} is the inverse of the genomic relationship matrix (VanRaden, 2008), which is described as:

$$G = \frac{ZZ'}{2\sum_{i=1}^{m} p_i(1-p_i)}$$

where, Z = (M - P), in which *M* is the SNP incidence matrix, with *m* columns representing the number of markers and *n* lines representing the number of genotyped animals. Each element in *M* was set to -1, 0 or 1, for genotypes aa, Aa, and AA, respectively. *P* is the matrix containing the allele frequencies expressed in 2p_i, where p_i is the frequency of the second allele at locus i.

The effects of SNP were obtained iteratively based on the genomic values (GEBV) of the genotyped animals, using the POSTGSF90 software (Wang et al., 2012). The equation for computing the effect of SNP can be described as:

$$\hat{u} = \lambda DZ' G^{*-1} \hat{a}_g = DZ' [ZDZ']^{-1} \hat{a}_g$$

where, \hat{u} is the effect vector of each SNP; D is a diagonal matrix containing weights for the effect of SNP; Z' is the transposed matrix that relates the genotypes of each locus; G^{*-1} is the inverse matrix of weighted genomic relationships; $\hat{a}g$ is the vector with the predicted genetic values for genotyped animals, which is represented by a function of the effects of SNP ($\hat{a}_g = Zu$); λ represents the proportion of genetic variation explained by the variation of SNP.

In the WssGBLUP procedure (Wang et al., 2012), the effect that each SNP contributes to the total genetic variance is calculate, using weights and iteratively, where the GEBV is computed only once and to estimate the effects of SNP two iterations are performed. In the first, **D** it is an identity matrix (D = I) and for second iteration, **D** was transformed into a diagonal matrix containing the weights for SNP effects computed in the first step. According to Wang et al. (2014), this procedure

allows to increase the weights of the SNP with greater effect and to reduce those with small effects.

The proportion of genetic variation explained by windows of 1 Mb, were calculated as presented by Wang et al. (2012):

$$\frac{\text{Var}(a_i)}{\sigma_a^2} \times 100\% = \frac{\text{Var}(\sum_{j=1} Z_j \hat{u}_j)}{\sigma_a^2} \times 100\%$$

where, a_i is the genetic value of the ith region of 1 Mb; σ_a^2 is the total genetic variance; Z_j is the vector with the genotype of the jth SNP for all animals; and \hat{u}_j is the estimated effect for the jth SNP within the i-th region.

2.4. Functional analysis

Manhattan plots containing the genetic variance explained by 1 Mb windows were constructed to identify the chromosomal regions with the greatest effect on the expression of carcass and meat traits, using CMplot package for R. Candidate genes were identified in the SNP windows of greatest effect using the National Center for Biotechnology Information (NCBI) genome data visualization tool, considering the reference bovine genome map ARS-UCD1.2. A functional enrichment analysis was performed for each trait gene set using DAVID 6.8 Functional Annotation Tools (Huang et al., 2009a; 2009b) and GeneCodis Gene Annotations Co-occurrence Discovery (Carmona-Saez et al., 2007; Nogales-Cadenas et al., 2009; García-Moreno et al., 2021).

3. RESULTS AND DISCUSSION

3.1. GWAS for carcass traits

The top 10 genomic regions were located on chromosomes BTA 3, 4, 5, 9, 10, 11, 13, 14, 20, and 22 for Longissimus muscle area (Figure 1), on BTA 1, 2, 3, 13, 15, 17, 18, 20, 25, and 29 for backfat thickness (Figure 2), and on BTA 1, 2, 3, 5, 11, 12, 14, 17, and 23 for hot carcass weight (Figure 3). These top 10 regions accounted for 8.79, 12.06, and 9.01% of additive genetic variance and harbored a total of 134, 158, and 93 positional candidate genes for LMA, BF, and HCW, respectively (Tables 5, 6, and 7).

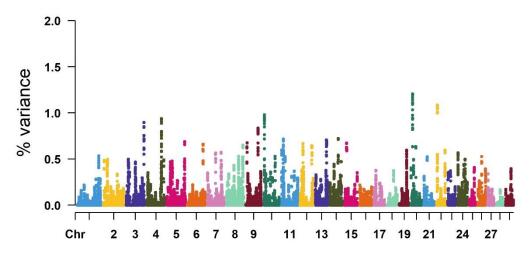


Figure 1. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for LMA.

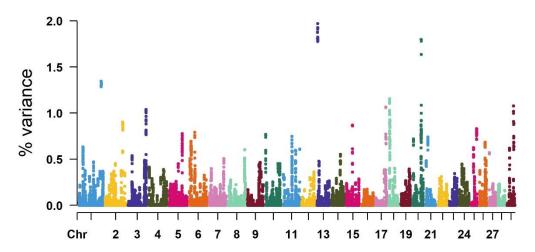


Figure 2. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for BF.

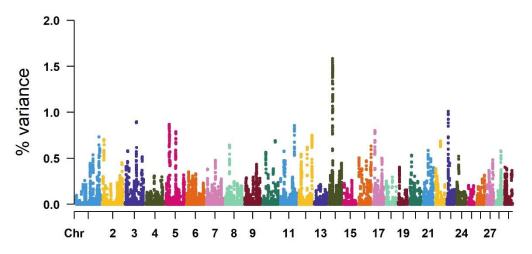


Figure 3. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for HCW.

The functional enrichment analysis performed using DAVID software showed that 13 GO terms were significantly enriched in the biological process category for LMA (Table S1). Overall, the candidate genes are related to transcription from RNA polymerase II promoter (GO:0006366), lipid metabolic process (GO:00066290), cellcell signaling (GO:0007267), protein stabilization (GO:0050821), protein phosphorylation (GO:0006468), oxidation-reduction process (GO:0055114), cell adhesion (GO:0007155), negative regulation of cell proliferation (GO:0008285), negative regulation of apoptotic process (GO:0043066), signal transduction (GO:0007165), regulation transcription. DNA-templated of (GO:0006355), transcription, DNA-templated (GO:0006351), and innate immune response (GO:0045087).

GeneCodis functional enrichment analysis (Table S1) clustered *TGFBR2* (transforming growth factor beta receptor 2), *STK4* (serine/threonine kinase 4), *CCNB1* (cyclin B1) and *ATG12* (autophagy related 12) genes, which acting on the FoxO signaling pathway (bta04068). FoxO (Forkhead box transcription factors) proteins are growth factor and stress-regulated transcription factors that are involved in many physiological events such as apoptosis, cell-cycle control, cellular differentiation, cell proliferation, glucose metabolism, and oxidative stress resistance (Gomes et al., 2008; Farhan et al., 2017). Studying Hanwoo cattle, Srikanth et al. (2020) used protein-protein interaction network to identify significant SNP that harbor genes that interact physically and found genes acting on the FoxO signaling pathway in association with carcass traits. Furthermore, polymorphisms in the gene encoding FoxO proteins were associated with growth traits in Qinchuan cattle (Sun et al., 2016).

The gene *CARTPT* (CART prepropeptide – BTA20, Table 5) is associated with satiety in response to leptin levels (Elias et al, 1998). Polymorphisms in leptin-promoting regions are associated with growth, body weight, feed intake, feeding behavior, and carcass traits in cattle (Nkrumah et al., 2005; Schenkel et al., 2005; Ferraz et al., 2009; Kulig and Kmieé, 2009). Fernandes Júnior et al. (2016b) identified the *CARTPT* gene in association with the Longissimus muscle area in the Nellore breed, whose biological function is related to protein turnover, a process that is associated with growth and carcass traits obtained by ultrasound in Nellore cattle (Gomes et al., 2013).

SLC30A5 (solute carrier family 30 member 5) gene, located on BTA20 (Table 5), was reported by Karisa et al. (2013) in association with carcass traits in beef cattle. This gene encodes membrane-spanning molecules, many of which mediate the transport of zinc into beta cells to produce insulin (Karisa et al., 2013; Ackland and Michalczyk, 2016), which is related to ontogenesis of skeletal muscle (Gotoh et al., 2014).

ACTG2 (actin gamma 2, smooth muscle) on BTA11 (Table 5), provides instructions for the production of γ -actin proteins, which are components of the cytoskeleton, act on internal cell motility in different cell types (Papponen et al., 2009; Selga et al., 2011; Zhou et al., 2011), and forms multimers with myosin inside muscle cells to control cell contraction (James et al., 2021). In a study comparing Chinese Simmental steers and bulls, Zhou et al. (2011) found the ACTG2 gene differentially expressed in the Longissimus muscle tissue of steers suggesting that the respective gene may play an important role in the regulation of steer meat quality.

The *TGFBR2* gene (BTA22, Table 5) is responsible for the expression of the transforming growth factor-beta receptor type 2 (TGF-β2) protein and plays a critical role in growth regulation and development (Lawrence, 1996). This receptor has two extremities, one projects to the outside and the other remains inside the cell. A TGF-β (transforming growth factor-beta) protein binds to the extracellular domain of the TGF- β 2 receptor, forming a complex that transmits signals into the cell that trigger various responses, such as proliferation, differentiation, motility, apoptosis, and extracellular matrix synthesis (Lawrence, 1996; Levéen et al., 2002). The fibrogenesis process is mainly mediated by TGF- β signaling pathway, which activates SMAD proteins signaling (Gosselin et al., 2004; Decologne et al., 2007) to induce the expression of fibrogenic genes including collagen synthesis and enzymes catalyzing collagen cross-linking (Massague and Chen, 2000). Tizioto et al. (2013a) identified genes associated with meat tenderness from Nellore cattle acting in the TGF- β pathway. Also working with Nellore animals, Fernandes Júnior et al. (2016b) reported two genes for LMA that are associated with the cell cycle, process that involves genes of the TGF- β family.

Chr	Location	Genes	VarA (%)
20	9800684_10800005	CARTPT, MCCC2, LOC101907652, LOC101902413, BDP1, SERF1A, LOC100847365, SMN2, NAIP, GTF2H2, OCLN, MIR7858, MARVELD2, RAD17, AK6, TAF9, LOC101902475, CCDC125, TRNAE- CUC, CDK7, MRPS36, LOC101902030, CENPH, LOC101902547, CCNB1, SLC30A5	1.20728
22	4765831_5764445	MIR1814B, LOC100140865, TGFBR2, GADL1, LOC112443548, LOC112443493	1.08537
10	4207216_5202403	CCDC112, LOC787551, FEM1C, LOC107132809, LOC780975, TICAM2, LOC107132816, TMED7, LOC104973018, CDO1, ATG12, AP3S1, LVRN, LOC101903795, ARL14EPL, KIAA1191, SIMC1, LOC613765, THOC3	0.98042
4	95388046_96386085	LOC785077, MIR320B, PLXNA4	0.93865
3	115689141_116684814	ASB18, TRNAE-UUC, IQCA1, TRNAG-CCC, ACKR3, LOC104971869, LOC100335382, LOC112445895, COPS8, LOC101906731	0.89811
9	79237934_80236183	NMBR, GJE1, VTA1, ADGRG6, TRNAC-GCA, MIR2284AA-4, HIVEP2	0.83692
14	52539717_53537941	TRNAE-UUC, LOC112449580, TRNAC-ACA	0.7236
11	10375999_11374851	SLC4A5, MTHFD2, MOB1A, BOLA3, TET3, LOC112448751, DGUOK, ACTG2, LOC101909718, STAMBP, C11H2orf78, DUSP11, LOC112448897, MIR2295, TPRKB, NAT8, ALMS1, LOC112448860, EGR4, FBXO41, CCT7, PRADC1, SMYD5, NOTO, LOC112448868, LOC101903026, LOC101903097, RAB11FIP5, MIR2294, SFXN5	0.71747
13	72546080_73486255	TOX2, JPH2, TRNAG-CCC, OSER1, GDAP1L1, FITM2, R3HDML, HNF4A, LOC112449432, TTPAL, SERINC3, PKIG, LOC112449399, LOC112449400, ADA, LOC101902669, LOC112449454, WISP2, KCNK15, RIMS4, YWHAB, PABPC1L, TOMM34, STK4, KCNS1, WFDC5	0.70879
5	114142382_115139027	MPPED1, LOC112446781, TRNAC-GCA, EFCAB6, SULT4A1, PNPLA5, LOC786474, PNPLA3, SAMM50, PARVB, TRNAC-GCA, PARVG, SHISAL1, RTL6	0.69028

Table 5. Chromosome (Chr), location, identification of genes and proportion of additive
genetic variance (VarA) explained by windows with largest effects on LMA.

For BF, DAVID functional enrichment analysis (Table S2) revealed genes involved in apoptotic process (GO:0006915), cilium assembly (GO:0042384), angiogenesis (GO:0001525), intracellular signal transduction (GO:0035556), and regulation of transcription, DNA-templated (GO:0006355) processes. On the other hand, the GeneCodis results (Table S2) pointed to a genes' cluster including *LSS* (lanosterol synthase), *PLCB3* (phospholipase C beta 3), *PRLH* (prolactin releasing hormone), *PLA2G16* (phospholipase A2, group XVI), *NAA40* (N-α-acetyltransferase 40, NatD catalytic subunit), associated with the lipid metabolic process (GO:0006629)

The *NAA40* gene located on BTA29 (Table 6) produces N-α-acetyltransferase 40 histone, which is associated with the cellular acetyl-CoA levels, implying lipid synthesis and insulin signaling (Charidemou et al., 2022). Furthermore, in a meta-analysis, *NAA40* was identified as involved in the metabolism/transport of fatty acids or lipids in swine (Zhang et al., 2019). Also, on BTA29 (Table 6), *PLA2G16* encodes phospholipase A2 group XVI also known as adipocyte-specific phospholipase A2 (AdPLA) (Jaworski et al., 2009). AdPLA catalyzes the release of free fatty acids, mainly arachidonic acid, from membrane phospholipid stores, inducing eicosanoid biosynthesis (Funk et al., 2014). Arachidonic acid and eicosanoids have been implicated in several biological processes in adipose tissue, including regulation of differentiation (Forman et al., 1995; Reginato et al., 1998; Fajas et al., 2003), lipolysis (Kather and Simon, 1979; Fain et al., 2000) and glucose transport (Nugent et al., 2001). Jaworski et al. (2009) reported that AdPLA ablation prevents obesity in mice. Sun et al. (2012) identified polymorphisms in the *PLA2G16* gene that had significant effects on growth traits of Chinese cattle.

LGALS12 is another gene on BTA29 (Table 6) that encodes galectin-12, a member of the galectin family of β -galactosides binding proteins, which is an important regulator of adipose tissue development, acting on signal transduction that leads to hormonal stimulation for the induction of adipogenic factors essential for adipocyte differentiation (Yang et al., 2004). In mice, *LGALS12* was preferentially expressed by adipocytes and its ablation led to increased mitochondrial respiration of adipocytes, reduced adiposity, and improved insulin resistance (Yang et al., 2011). In production species, *LGALS12* was associated with intramuscular and subcutaneous fat development (Wu et al., 2019) and lean meat percentage (Ruan et al., 2021) in swine.

The *PRLH* located on BTA3 (Table 6) is a gene expressed in different tissues, including subcutaneous adipose tissue (ENSBTAG00000017615) and is associated with the regulation of prolactin expression and release in mammals (Gebreyesus et al., 2019). Prolactin is a highly versatile hormone whose functions are involved in reproductive processes, growth and development, osmoregulation, metabolism, immune regulation, brain function, and behavior (Carré and Binart, 2014). Furthermore, this hormone has been shown to induce lipogenesis in several tissues (Barber et al., 1991) and stimulate the expression of genes involved in lipid metabolism and milk protein synthesis (Shiu and Friesen, 1980; Akersr et al., 1981; Lamberts and Macleod, 1990). In research conducted in hamsters, Cincotta and Meier (1987) observed a reduction in abdominal fat stores due to inhibition of prolactin secretion, concluding that the hormone plays an important role in the regulation of fat metabolism. In cattle, mutations in the *PRLH* gene were associated with heat tolerance in African *Bos indicus* (Kim et al., 2017) and Chinese breeds (Zeng et al., 2018).

The *WWOX* (WW domain containing oxidoreductase) gene, on BTA18 (Table 6), influences multiple pathways, including cholesterol homeostasis and fatty acid biosynthesis/triglyceride metabolism, processes that play a role in intramuscular fatty acid composition (Iatan et al., 2014; Grigoletto et al. al., 2020). This gene has been previously associated with loin eye area (Grigoletto et al. al., 2020), subcutaneous fat thickness (Fernandes Júnior et al., 2016b), and meat color (Lee et al., 2018) in different breeds of cattle, suggesting that *WWOX* may be an excellent candidate to improve the composition and quality of the final product.

The genes *PLCB3* (BTA29) and *RAC1* (ras-related C3 botulinum toxin substrate 1 – BTA25), possible candidates for BF (Table 6), were previously associated with lipid metabolism in membrane formation (Anitei et al., 2017). In cattle, it has been shown that *PLCB3* signaling is physiologically involved in ovulatory follicles and acts as a mediator of LH-induced differentiation responses of granulosa cells (Donadeu et al., 2011; Barros et al., 2013), and *RAC1* was associated with uterine capacity for pregnancy and fertility (Neupane et al., 2017). These findings indicate that both genes have pleiotropic properties and support the existence of a favorable genetic association (Caetano et al., 2013; Buzanskas et al., 2017; Kluska et al., 2018) between subcutaneous fat deposition and precocious/fertility traits of bovine females.

Chr	Location	Genes	VarA (%)
13	4307133_5305558	LOC101901915	1.9714
20	55672257_56658421	LOC112442956, LOC112442957, LOC112442958, LOC112442959, LOC112442960, LOC112442961, LOC615245, LOC112442962, LOC107131579, LOC100849014, BASP1, LOC100849043, LOC112443053, MYO10, RETREG1	1.79816
1	145109735_146106955	LOC112448009, LOC101907800, COL18A1, LOC112448014, SLC19A1, LOC100849587, PCBP3, LOC107132220, LOC784761, COL6A1, COL6A2, FTCD, SPATC1L, LSS, MCM3AP, YBEY, C1H21orf58, PCNT	1.34585
18	4968105_5965662	VAT1L, LOC112442427, CLEC3A, WWOX	1.15543
29	41737020_42719759	LOC517475, HRASLS5, LGALS12, LOC613617, LOC536947, LOC618367, LOC614402, LOC100336631, PLA2G16, ATL3, RTN3, C29H11orf95, SPINDOC, LOC112444891, MARK2, MIR2406, RCOR2, NAA40, COX8A, OTUB1, MACROD1, FLRT1, STIP1, FERMT3, TRPT1, NUDT22, DNAJC4, VEGFB, FKBP2, PPP1R14B, PLCB3, BAD, GPR137, KCNK4, CATSPERZ, ESRRA, TRMT112, PRDX5, CCDC88B, RPS6KA4, TRNAE- UUC	1.07803
17	65998516_66991682	SEZ6L, ASPHD2, HPS4, SRRD, TFIP11, TPST2, CRYBB1, CRYBA4, LOC100847159, LOC614881, TRNAG-ACC, LOC112442108, LOC100849610	1.06754
3	116841860_117838843	COL6A3, LOC513039, LOC104970680, MLPH, RAB17, PRLH, LOC112446041, LRRFIP1, RBM44, RAMP1, MIR2902, UBE2F, LOC101904947, SCLY, ESPNL, KLHL30, ERFE, ILKAP, LOC101905228, HES6, PER2, TRAF3IP1, ASB1, LOC107132358	1.04075
2	113715036_114713312	NYAP2, LOC104969981, LOC614695	0.90257
15	39704690_40704354	TEAD1, MIR2314, PARVA, TRNAG-UCC, MICAL2, TRNAV-CAC, LOC112441627, LOC112441626, DKK3	0.87059
25	37292301_38290028	TRRAP, TMEM130, TRNAG-CCC, NPTX2, LOC112444329, LOC101905575, LOC112444336, BAIAP2L1, LOC107131845, BRI3, TECPR1, BHLHA15, LMTK2, LOC104975913, LOC107131857, LOC112444303, LOC100850875, CCZ1, RSPH10B, PMS2, AIMP2, EIF2AK1, ANKRD61, LOC100848385, USP42, CYTH3, TRNAG-CCC, LOC100140431, LOC112444304, RAC1	0.83187

Table 6. Chromosome (Chr), location, identification of genes and proportion of additive
genetic variance (VarA) explained by windows with largest effects on BF.

Genome scan analysis showed that the region with the greatest effect on HCW is contained on chromosome 14, explaining 1.59% of the additive genetic variance (Table 7). This region harbors genes that have been associated with growth, carcass, feed intake, and reproduction traits (Lindholm-Perry et al., 2011; Saatchi et al., 2014), suggesting that the 22–26Mb region on BTA14 has a high influence on multiple traits of economic interest in livestock. Among all in this region, the genes *XKR4* (Kell blood group complex subunit–related family, member 4), *TMEM68* (transmembrane protein 68), *TGS1* (trimethylguanosine synthase 1), *LYN* (LYN proto-oncogene, Src family tyrosine kinase), *RPS20* (ribosomal protein S20), *MOS* (v-mos Moloney murine sarcoma viral oncogene homolog), *PLAG1* (pleomorphic adenoma gene 1 zinc finger), and *CHCHD7* (coiled-coil-helix-coiled-coil-helix domain containing 7) stand out.

XKR4 (Table 7) encodes a protein whose amino acid sequence plays important biological roles in cellular and lipid metabolism (Lindholm-Perry et al., 2011). Polymorphisms in or near to the *XKR4* gene have been identified and associated with birth weight, metabolic weight, growth traits, feed intake, and rump fat thickness in studies conducted in different bovine breeds (Bolormaa et al., 2011; Lindholm-Perry et al., 2011; Utsunomiya et al., 2013; Martínez et al., 2014; Terakado et al., 2018; An et al., 2019; Smith et al., 2019). Utsunomiya et al. (2013) reported that *XKR4* is a suggestive candidate gene for weight and carcass traits, that should be further explored in future studies in cattle.

TMEM68 is a gene expressed in the rumen, abomasum, intestine, and adipose tissue in cattle which may affect the biosynthetic processes of lipids (Srivastava et al., 2020). The *LYN* gene encodes a Src family kinase that is involved in cell proliferation, survival, differentiation, migration, adhesion, apoptosis, and cytokine release (Tatosyan and Mizenina, 2000; Taye et al., 2018). *RPS20* encodes a protein component of the 40S small ribosomal subunit, which is involved in protein synthesis. In mice, mutations in the *RPS20* gene cause pigmentary abnormalities with a pleiotropic effect on body size (McGowan et al., 2008). The gene *TGS1* produces an enzyme that methylates small nuclear and nucleolar RNAs (snRNAs and snoRNAs) and is involved in pre-mRNA splicing, transcription, and ribosome production (Blandino-Rosano et al., 2021). *MOS* transcribes a serine/threonine kinase that is expressed mainly in oocytes and regulates meiotic maturation (Sagata, 1997; Sahu et

al., 2018). Accumulation of MOS protein in the skeletal muscle of mice suggests that the gene plays an important role in the development of this tissue (Leibovitch et al., 1991). The *CHCHD7* gene transcribes essential factors for the assembly of mitochondrial cytochrome C oxidase (Cox) enzyme (Barros et al., 2004; Cavallaro, 2010; Banci et al., 2012; Oliveira et al., 2014). Cox acts as a terminal enzyme in the mitochondrial respiratory chain and is essential in the cellular energy production process (Tsukihara et al., 1996). Although the mechanisms of direct action on the expression of productive traits are unknown, all these genes were associated with several of these traits in cattle, such as growth, carcass, meat quality, feed intake, and reproductive traits (Pausch et al., 2011; Pryce et al., 2011; Lindholm-Perry et al., 2012; Utsunomiya et al., 2013; Cánovas et al., 2014; Ramayo-Caldas et al., 2014; Fernandes Júnior et al., 2016; Magalhães et al., 2016; Oliveira Silva et al., 2017; Hay and Roberts, 2018; Campos et al., 2020).

PLAG1 gene was associated with body size, weight, carcass/meat quality, and reproduction in cattle (Fortes et al., 2013; Utsunomiya et al., 2013; Saatchi et al., 2014; Camargo et al., 2015; Fernandes Júnior et al., 2016b, Magalhães et al., 2016). Functional evidences indicate that *PLAG1* expresses a transcription factor that regulates IGF-2, insulin-like growth factor 2 (Van Dyck et al., 2007; Akhtar et al., 2012; Utsunomiya et al., 2017). IGF-2 is a cell growth and differentiation factor that plays an important role in muscle growth and myoblast proliferation and differentiation in mammals (Huang et al., 2014). Working with part of the database used in this study, Fernandes Júnior et al. (2016b) also identified and highlighted *PLAG1* as the most promising gene associated with carcass weight, as it has a pleiotropic effect on several traits of economic interest in livestock (Fortes et al., 2013).

Two members of the leucine-rich family of small proteoglycan genes (LUM – lumican and DCN – decorin) located in BTA5 (Table 7) were associated with HCW. Leucine-rich proteoglycans make up connective tissue and play an important role in regulating of collagen fibril formation and stabilization of collagen fibers (lozzo, 1999). *LUM* gene is involved in the positive regulation of transforming growth factor β 1 production (GO:0032914). *DCN* is also involved in the regulation of the activity of transforming growth factor β 1 and participates in cell proliferation and differentiation (Yamaguchi et al., 1990; Nishimura et al., 2002).

Chr	Location	VarA (%)	
14	22487908_23486962	XKR4, TRNAT-AGU, TMEM68, TGS1, LYN, RPS20, LOC112449628, LOC112449630, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6	1.585
23	8267805_9265203	HMGA1, SMIM29, NUDT3, LOC112443858, LOC112443903, LOC107131710, LOC100296311, RPS10, PACSIN1, SPDEF, C23H6orf106, LOC112443899, LOC112443896, SNRPC, UHRF1BP1, LOC112443807, TAF11, ANKS1A, TCP11, SCUBE3, LOC101907009, ZNF76	1.01081
3	73392593_74391971	NEGR1, TRNAW-CCA, ZRANB2, MIR186, PTGER3	0.89777
5	20906335_21905700	KERA, TRNAC-ACA, LUM, DCN, LOC112446653, LOC107132462, LOC112446654, SNORD107, LOC104972363	0.87
11	89469532_90462309	RNF144A, TRNAC-GCA, RSAD2, CMPK2	0.85603
17	11330319_12328005	TTC29, LOC112442098, LOC100336258, POU4F2, SLC10A7, LOC101906679, REELD1, LSM6, LOC112442132	0.8047
5	62868893_63864715	APAF1, LOC112446819, ANKS1B, LOC101907622, LOC101903783, LOC789481, FAM71C, LOC112441540	0.78994
12	83608794_84605248	ABHD13, TNFSF13B, MYO16, TRNAY-AUA, LOC112449089, LOC101905776, LOC101905821	0.751
1	149114698_150106142	HLCS, LOC112448075, RIPPLY3, LOC112448285, PIGP, TTC3, DSCR3, DYRK1A, KCNJ6	0.73471
2	10704067_11695087	FSIP2, LOC112443625, LOC100138706, LOC789157, LOC100138018, ZNF804A, LOC614531	0.70506

Table 7. Chromosome (Chr), location, identification of genes and proportion of additive genetic variance (VarA) explained by windows with largest effects on HCW.

3.2. GWAS for meat quality traits

The results of this study showed windows that stood out in terms of explained variance for all meat quality traits analyzed (Figures 4, 5, and 6). The 10 windows of greatest effect for shear-force tenderness, marbling, and intramuscular fat content explained 14.72, 14.79, and 14.13% of the additive genetic variance, respectively. These windows are located on chromosomes BTA 1, 5, 6, 7, 10, 11, 15, 23, and 26 for SF, on BTA 4, 7, 8, 10, 11, 12, 13, 15, and 20 for MARB, and on BTA 8, 9, 11, 12, 13, 19, 22, and 28 for IMF, totaling 137, 163 and 89 candidate genes, respectively (Tables 8, 9 and 10).

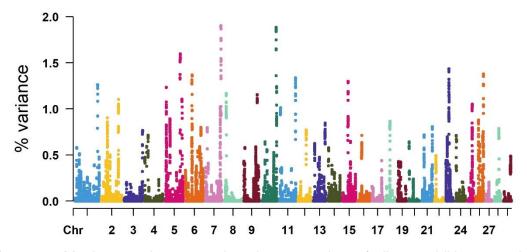


Figure 4. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for SF.

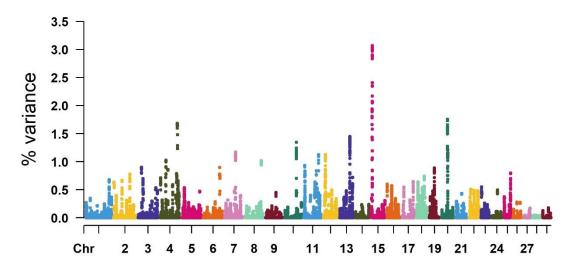


Figure 5. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for MARB.

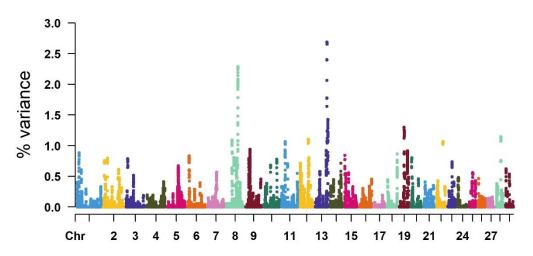


Figure 6. Manhattan plot presenting the proportion of direct additive genetic variance explained by windows of 1 Mb for IMF.

The DAVID software enrichment analysis (Table S4) for meat shear force (SF) revealed a cluster of genes of BTA5 (T2R12, T2R10C, T2R65A, BOTA-T2R10B, TAS2R7. TAS2R10, TAS2R42. TAS2R46, LOC100140395, LOC782957, LOC528422) that participate in the functional pathway of flavor transduction (bta04742) and are involved in the biological processes of sensory taste perception (GO:0050909) and detection of chemical stimulus involved in sensory perception of bitter taste (GO:0001580). The type two taste receptor family (TAS2R) and bitter taste receptor family (T2R) are G protein-coupled receptors responsible for distinguishing bitter-tasting compounds. Studies have shown that the activation of G protein-coupled receptors is involved in the maintenance of skeletal muscle and may supposedly mediate myofibrillar maturation and growth (Guttridge, 2011). Furthermore, it is probably that TAS2R and T2R genes act in the regulation of food intake, being determining factors in food choice, thus defining the ingestive behavior (Wu et al., 2002; Henslee et al., 2020). Given the importance of feed and nutrition in aspects of meat quality (Wood et al., 1999; Maltin et al., 2003), these groups of genes may have a strong influence on meat tenderness in Nellore cattle.

The *MEP1A* (meprin A subunit alpha) gene located on BTA23 (Table 8), is associated with several biological pathways, including the collagen chain trimerization pathway (Jang et al., 2018). Collagen is a protein abundantly expressed in connective tissue and influences tenderness and texture of meat. These desirable properties seem to be associated with *post-mortem* collagen degradation and the action of collagenases, which imply the alteration of the connective tissue structure, guaranteeing the desired softness and texture. (Weston et al., 2002). From GWAS analysis, Jang et al. (2018) identified *MEP1A* as a candidate gene contributing to tenderness in Berkshire pigs.

Functional evidence suggests that the *GLRX3* (glutaredoxin 3) gene on BTA26 (Table 8), plays a role in protecting mammalian cells against oxidative stress (Lillig et al., 2008). Oxidative stress can influence the reduction of collagen synthesis by intramuscular fibroblasts in some muscles, which can lead to decreased collagen degradation and, therefore, increased meat toughness (Archile-Contreras and Purslow, 2011). Thus, *GLRX3* can have a great influence on meat quality, ensuring its tenderness.

The gene encoding peroxisome proliferator-activated receptor-γ coactivator-1α (*PPARGC1A*) was located within a region on BTA6 (Table 8). *PPARGC1A* is a coactivator of oxidative phosphorylation genes that control glucose and lipid transport and oxidation, skeletal muscle fiber formation, and mitochondrial biogenesis (Puigserver et al., 1998; Soria et al., 2009). Furthermore, *PPARGC1A* mediates the expression of genes involved in adipogenesis, leading to an increase in intramuscular fat content, which suggests a potential influence on tenderness (Rosen et al., 2002; Li et al., 2012). The *PPARGC1A* gene has been associated with several production traits, such as growth, carcass, meat quality, and reproductive traits in different breeds of cattle (Soria et al., 2009; Komisarek and Walendowska, 2012; Sevane et al., 2013; Shin and Chung, 2013; Ramayo-Caldas et al, 2014).

The *MYOD1* (myogenic differentiation 1) bovine gene mapped on chromosome 15 (Table 8), is a member of the *MYOD* gene family. The *MYOD* family consists of four structurally and functionally related genes that regulate skeletal myogenesis (Te Pas et al., 1999). *MYOD* genes regulate myoblast differentiation by inducing cell cycle arrest, a prerequisite for myogenic initiation (Braun et al., 1994), and are involved in the regulation of skeletal muscle growth, development, and repair, from the embryonic stage to its postnatal maturation and function (Te Pas et al., 1999; Dedieu et al., 2002). Skeletal muscle development is an important physiological process in meat-producing animals, and thus, because of their roles in muscle growth and development, these genes are considered potential candidates for meat production traits (Rexroad et al., 2001; Bhuiyan et al., 2009; Du et al., 2013; Tizioto et al., 2013a).

Also, on BTA15 (Table 8), *KCNJ11* (potassium voltage-gated channel subfamily J member 11) encodes a membrane protein that controls the flow of K⁺ into the cell (Tizioto et al., 2013b). Supposedly high levels of K⁺ ions are related to meat tenderness (Mateescu et al., 2013) as well, the addition of K-lactate to freshly slaughtered beef muscle leads to more tender meat (Walsh et al., 2010). In addition, this gene plays a role in glycogen storage, a mechanism involved in the *post-mortem* conversion of muscle to meat (Alekseev et al., 2010; Tricario et al., 2016).

Although they are not located in the window explaining the greatest proportion of additive genetic variance in this study, *MYOD1* and *KCNJ11* can be considered promising candidate genes for SF, since they are located in BTA15, within/near a region that harbors a QTL which influences meat tenderness (Rexroad et al., 2001), including in the Nellore breed (Tizioto et al., 2013a; 2013b).

 Table 8. Chromosome (Chr), location, identification of genes and proportion of additive genetic variance (VarA) explained by windows with largest effects on SF.

Chr	Location	Genes	VarA (%)
7	99989561_100987050	ST8SIA4, LOC112447567, LOC112447498, LOC112447568	1.90475
10	92728846_93718657	SEL1L, TRNAK-UUU, TRNAK-CUU, LOC785767	1.8849
5 98191406_99099643		ETV6, LOC112446828, LOC112446741, LOC616478, LOC112446742, LOC100140395, TAS2R42, SMIM10L1, T2R45P, TAS2R46, LOC782957, LOC101903336, T2R43P, T2R65A, LOC100141277, T2R12, BOTA- T2R10B, LOC100138383, TAS2R10, T2R10C, TAS2R9, TAS2R8, TAS2R7, LOC104972542, YBX3, STYK1, MAGOHB, KLRA1, LOC101902742, LOC101902704, LOC513869	1.59902
23	20043222_21035197	MEP1A, ADGRF5, LOC112443908, ADGRF1, LOC100296156, TNFRSF21, CD2AP, ADGRF2, ADGRF4, OPN5, LOC107131722	1.43652
26	49416849_50414892	GLRX3, LOC112444515, LOC112444512, TRNAC-ACA, TCERG1L, SYCE1, CYP2E1, LOC528422, LOC112444506	1.3799
6	42520487_43518582	LOC112447151, LOC104972733, LOC112447204, PPARGC1A	1.36901
11	103686161_104681538	LHX3, QSOX2, LOC787891, GPSM1, LOC101902280, DNLZ, CARD9, SNAPC4, ENTR1, PMPCA, INPP5E, SEC16A, NOTCH1, LOC112448856, EGFL7, MIR126, AGPAT2, LOC101902839, LOC101902895, FAM69B, LOC107132967, LOC112448923, LOC112448928, LOC789606, LOC100848307, LOC112448857, ABO, LOC112448956, SURF6, MED22, RPL7A, LOC112448907, LOC112448908, LOC112448904, LOC112448903, LOC112448905, LOC100139115, SURF2, SURF4, STKLD1, LOC107132968, REXO4, ADAMTS13, CACFD1, SLC2A6, LOC112448858, TRNAC-GCA, MYMK, ADAMTSL2, FAM163B, DBH, SARDH, VAV2	1.33734
15	34666995_35656053	SERGEF, TRNAC-ACA, KCNC1, MYOD1, OTOG, USH1C, ABCC8, KCNJ11, NCR3LG1, NUCB2, LOC112441567, PIK3C2A, LOC101904314, RPS13, PLEKHA7, LOC112441697	1.30066
1	146784680_147763482	RUNX1, LOC112448042, MIR2285A, LOC112448047	1.26233
10	95715171_96714876	MIR2293	1.24236

For MARB, GeneCodis functional analysis (Table S5) revealed genes that act in the mTOR (bta04150), TGF- β (bta04350), lipid metabolism (bta00561, bta00564), thermogenesis (bta04714), and actin cytoskeleton regulation (bta04810) signaling pathways, in addition to regulating biological processes involved in the skeletal muscle cell/satellite cell differentiation (GO:0014816, GO:0035914) and regulation of muscle filament sliding (GO:0032971). This suggests a relationship between muscle and lipid metabolism in intramuscular fat deposition. According to Silva et al. (2020), the variation in the content of MARB may be due to the processes of absorption, synthesis, and degradation of intramyocellular and extramyocellular lipids, which involves the metabolic pathways in myofibers.

Based on enrichment analysis, it was found that TXN (thioredoxin) and TXNDC8 (thioredoxin domain containing 8), both located on BTA8 (Table 9), participate in the glycerol ether metabolic process (GO:0006662). Glycerol ethers are ether lipid precursors, which are important structural components of cell membranes (Dean and Lodhi, 2018) and have been identified as potential endogenous ligands of the peroxisome proliferator-activated receptor-gamma (PPARy), a key receptor in adipose tissue development and lipid metabolism (Davies et al., 2001; Zhang et al., 2004; Tsukahara et al., 2006; Ahmadian et al., 2013). Also, one study investigated the interaction between TXNIP (thioredoxin-interacting protein) and TXN in adipocyte development, and the authors found that TXNIP binds to TRX inhibiting its function, affecting the adipogenesis process (Chutkow and Lee, 2011). Correspondingly, another study demonstrated that TXNIP deficiency led to increased adipogenesis in preadipocytes and fibroblasts of embryonic mice, while TXNIP overexpression resulted in impaired adipocyte differentiation (Rojanathammanee et al., 2014). These results elucidate the important role of thioredoxin in adipogenesis, suggesting a strong influence on marbling fat.

MYLK2 (BTA13 – Table 9), a gene that participates in myosin light chain binding (GO:0032027), is predominantly expressed in skeletal muscle fibers and is essential for muscle contraction, composing the main myofibrillar proteins in muscle cells (Janin et al., 2018). This gene is a regulatory target of Ca²⁺/calmodulin and is responsible for myosin light chain phosphorylation, playing an important role in insulin-stimulated glucose transport in adipocytes (Choi et al., 2006). In this sense, knowing the

importance of glucose in the synthesis of fatty acids, glycerol, and ATP in adipocytes, *MYLK2* can influence the deposition of intramuscular fat. In a transcriptome study, Silva et al. (2020) found differentially expressed alternative splicing transcripts belonging to the *MYLK2* gene in Nellore animals pooled for high intramuscular fat.

Functional analysis revealed that RICTOR (BTA20 – Table 9) is involved in the mTOR signaling pathway (bta04150). The mammalian (mechanistic) target of rapamycin (mTOR) is a serine/threonine protein kinase, which consists of two complexes called mTORC1 and mTORC2, which RICTOR is a component. mTOR signaling is involved in the regulation of lipid synthesis through multiple effectors, such as sterol regulatory element-binding proteins (SREBP) and PPARy (Lamming and Sabatini, 2013). SREBP are transcription factors that modulate proteins involved in fatty acid synthesis (Mihaylova and Shaw, 2011) and its interaction with mTOR is critical for the activation of lipogenic genes in response to nutrient intake (Caron et al., 2015). PPARy, as mentioned earlier, plays an important role in lipid metabolism, as it promotes the uptake of free fatty acids and accumulation of triacylglycerol in adipose tissue (Ahmadian et al., 2013), and mTOR is a critical mediator of the lipogenic actions of PPARy activation (Blanchard et al., 2012). There is evidence that mTOR ablation resulted in insulin resistance and inhibited the development of adipose tissue in mice (Shan et al., 2016), elucidating the important role of the mTOR signaling pathway in adipogenesis.

The *PLAGL2* (pleomorphic adenoma gene-like 2), located on chromosome 13 (Table 9), is a homolog of the *PLAG1* gene, which plays a role in regulating important aspects of dietary lipid absorption (Van Dyck et al., 2007). In a recent GWAS study the *PLAGL2* gene was associated to subcutaneous and rump fat thickness in Montana Tropical composite beef cattle (Grigoletto et al., 2020), reinforcing the gene role in lipid metabolism. Although there is no concrete functional evidence of how *PLAGL2* acts in the signaling pathways of lipid metabolism, it is necessary that the gene be further investigated in order to associate it, not only with the marbling index, but with other productive traits in Nellore cattle, since *PLAGL2* is a homolog of *PLAG1*, a promising gene with a pleiotropic effect on several traits of economic interest in livestock

Table 9. Chromosome (Chr), location, identification of genes and proportion of additive						tive			
genetic	variance	(VarA)	explained	by	windows	with	largest	effects	on
MARB.									

Chr	Location	Genes	VarA (%)
15	6703457_7694135	LOC112441715, CEP126, ANGPTL5, LOC787373, TRPC6, LOC787452	3.07144
20	35294968_36279695	FYB1, RICTOR, OSMR, LOC104975274, LOC101906686, LOC101906739, LIFR, EGFLAM, LOC104975277	1.7577
4	105450260_106449584	MGAM, LOC100296901, LOC112446429, LOC101902292, PRSS58, LOC780846, LOC780933, PRSS1, LOC112446443, LOC101902375, LOC615948, LOC101907820, LOC789121, LOC100297263, LOC104972311, LOC101903084, LOC101904744, LOC112441528, LOC112446430, LOC100299076, LOC101902875, LOC112446437, LOC617189, LOC112446444, LOC104972445, LOC112446433, LOC617183, LOC112446434, LOC112446445, LOC104972274, LOC112446431, LOC783945, LOC112446448, LOC107132437, LOC112446449, LOC101904319, LOC100851681, LOC509513, LOC101904045, LOC101909872, LOC112446440, LOC101904045, LOC101903590, LOC101910001, LOC112446447, LOC101903590, LOC101903755, LOC112446446, LOC101903933, LOC101903865, LOC112446445, LOC101903933, LOC101902874, LOC101904075, LOC112446439, LOC101902874, LOC101904075, LOC101902921, LOC101902797, LOC112446436, LOC107132438, LOC112446442, LOC101902515, LOC101902455, LOC112446442, LOC786254, PRSS2, LOC505349, EPHB6, TRPV6, TRPV5, LLCFC1, KEL, LOC107132447, OR6V1, LOC107132448 REM1, HM13, LOC101906008, ID1, COX4I2, BCL2L1,	1.68442
13	61076541_62074803	REM1, HM13, LOC101906008, ID1, COX4I2, BCL2L1, LOC107133075, TPX2, MYLK2, FOXS1, LOC618409, DUSP15, TTLL9, PDRG1, XKR7, CCM2L, HCK, TM9SF4, PLAGL2, POFUT1, KIF3B, ASXL1, NOL4L, LOC112449324, LOC104973860	1.45244
10	69813228_70811343	CCDC198, SLC35F4, ARMH4, LOC101905452, LOC101906445, ACTR10, TRNAK-CUU, PSMA3, ARID4A, TOMM20L, TIMM9, KIAA0586	1.34905
7	64637123_65634855	GRIA1, LOC100140426, LOC104969225, FAM114A2, LOC112447577, MFAP3, SMIM15, GALNT10	1.17019
12	11635245_12628866	LOC107132986, VWA8, DGKH, AKAP11, LOC112449151	1.127
11	89658792_90657611	RNF144A, TRNAC-GCA, RSAD2, CMPK2, LOC107132955	1.12498
4	35671229_36666662	LOC112446326, SEMA3A, LOC112446369	1.02808
8	99166550_100157127	LOC112447758, PALM2, LOC107132734, LOC112447963, AKAP2, C8H9orf152, TXN, TXNDC8, SVEP1	1.02085

The main pathways enriched by GeneCodis for IMF (Table S6) were glycosaminoglycan biosynthesis (bta00532, bta00533, bta00534), glycosphingolipid biosynthesis (bta00601), vasopressin-regulated water reabsorption (bta04962), ubiquitin mediated proteolysis (bta04120), sphingolipid metabolism (bta00600), mTOR signaling pathway (bta04150), regulation of lipolysis in adipocytes (bta04923), thermogenesis (bta04714), and metabolic pathways (bta01100).

Nuclear receptor 3 coactivator (*NCOA3*) is located within the region (BTA13) explaining the greatest proportion of the additive variance of intramuscular fat content (Table 10) in this study. This gene plays an important role in lipid metabolism, as well as adipogenesis and obesity, by regulating the expression of the peroxisome proliferator-activated receptor γ (PPAR γ), a factor master of adipocyte differentiation and metabolism (Louet et al., 2006; Lefterova et al., 2014). Studies with swine provide evidence that *NCOA3* may be associated with intramuscular fat deposition or metabolism (Han et al., 2017; Wang et al., 2020c).

AQP3 and AQP7, both located on chromosome 8 (Table 10), encode aquaglyceroporins (AQP), a subgroup of proteins belonging to the aquaporin family. AQP are integral membrane proteins that drive the transport of water, glycerol, and other small solutes in adipocytes, in response to osmotic gradients (Hara-Chikuma and Verkman, 2006). The production of glycerol and its flow in adipocytes modulate lipid and glycemic homeostasis and, eventually, control the accumulation of body fat (Hibuse et al., 2005; Prudente et al., 2007). Aquaglyceroporin genes have been associated with obesity in humans and mice (Hara-Chikuma et al., 2005; Miranda et al., 2010), intramuscular adipogenesis in swine (Wang et al., 2020a), and subcutaneous fat deposition in cattle (Fernandes Júnior et al., 2016b). According to Fernandes Júnior et al. (2016b), lipid metabolism occurs in a similar way among mammals, and given the reports of association with similar traits in other species, *AQP3* and *AQP7* are plausible candidate genes.

The *DDIT4* (DNA damage-inducible transcript 4) gene, located in BTA28 (Table 10), regulates cell growth, proliferation, and survival by inhibiting mTOR1 (mechanistic target of rapamycin complex 1) activity in response to hypoxia and/or nutrient restriction (Sofer et al., 2005; DeYoung et al., 2008). mTORC1 is involved in increasing the biosynthesis and storage of lipids in response to insulin (Porstmann et al., 2008),

and considering its role as an inhibitor of mTORC1, *DDIT4* can be involved in lipogenesis and/or adipogenesis processes. In a study evaluating the fatty acid profile in intramuscular fat of the Longissimus thoracis muscle, Lemos et al. (2018) reported the same region that harbors *DDIT4* (BTA28), in association with lauric acid from Nellore cattle intramuscular fat.

The prosaposin (*PSAP*), located on chromosome 10 (Table 10), is a gene widely expressed in different tissues. This gene is an important factor in lipid metabolism since *PSAP* expression patterns suggest that the gene is associated with fat development due to its high expression in the early stage of adipocyte differentiation (Wang et al., 2020b). Polymorphisms in this gene were related to morphological, growth, carcass, and meat quality traits in different bovine breeds (Guo et al., 2016; Wang et al., 2020b; Zhao et al., 2021).

TRDN (triadin), located on BTA9 (Table 10), regulates the release of Ca²⁺ in the sarcoplasmic reticulum to promote muscle contraction (Arce-Recinos et al., 2021), however, its biological role in lipid deposition is not elucidated. Investigating gene expression patterns associated with fat deposition in bovine Longissimus muscle, Sasaki et al. (2005) observed higher levels in the expression of *TRDN* in the low marbling steers group than in the high marbling steers group. The researchers suggested that the decrease in *TRDN* expression might promote the proliferation, differentiation, or maturation of cells of the adipocyte lineage, weakening the structural integrity of the sarcomere and resulting in deposition of intramuscular fat (Sasaki et al., 2005). In a study conducted in pigs, *TRDN* was associated with intramuscular fat deposition (Serão et al., 2010), which suggests that the gene might be a candidate for improving the intramuscular fat content of Nellore beef.

 Table 10. Chromosome (Chr), location, identification of genes and proportion of additive genetic variance (VarA) explained by windows with largest effects on IMF.

Chr	Location	Genes	VarA (%)
13	75697375_76695701	EYA2, LOC112449339, ZMYND8, LOC101905203, LOC112449409, LOC104973934, LOC112449425, LOC112449385, NCOA3, SULF2, LOC112449340, LOC112449386, LOC100847661, LOC112449341, TRNAK-UUU, TRNAG-GCC, LOC100295371	2.69118
8	74248099_75247877	STMN4, TRIM35, LOC112447822, PTK2B, CHRNA2, EPHX2, LOC781381, GULO, LOC107132711, HTD2, LOC781261, APTX, DNAJA1, SMU1, B4GALT1, SPINK4, BAG1, CHMP5, NFX1, AQP7, AQP3, NOL6, UBE2R2	2.29019
13	81732628_82730117	DOK5, TRNAL-UAA, LOC101903665, LOC112449388, LOC112449389	1.42923
19	31528976_32528184	HS3ST3A1, LOC112442639, COX10, HS3ST3B1	1.30097
28	27356520_28353587	UNC5B, SLC29A3, LOC107131944, CDH23, C28H10orf105, VSIR, PSAP, CHST3, LOC104969714, SPOCK2, ASCC1, LOC112444781, LOC783294, ANAPC16, LOC112444748, DDIT4, LOC112444749, LOC112444774	1.14615
12	53954994_54953149	LOC112449133, LOC112449162, LOC112449159, RBM26, NDFIP2, LOC617043, LOC104973609	1.10554
8	36503847_37501041	PTPRD, DMAC1	1.09309
22	41598889_42597887	FHIT, LOC112443500, C22H3orf67	1.0693
11	23094939_24091589	LOC615674	1.06621
9	27149972_28146296	NKAIN2, MIR2478, TRDN, LOC112448023, LOC112448021, LOC112448022, LOC112448154, LOC101904186, LOC100848869	0.94167

4. CONCLUSIONS

The genome-wide association study (GWAS) indicated regions of great effect on different chromosomes harboring candidate genes with biological functions that can be directly or indirectly associated with the expression of carcass and meat quality traits in the Nellore breed. Some of these genomic regions harbor genes that have been previously associated with growth, carcass, meat quality, feed intake, and reproductive traits in Nellore and other cattle breeds, such as *PPARGC1A*, *AQP3/AQP7*, *MYLK2*, *PLAGL2*, *PLAG1*, *XKR4*, *MYOD1*, *KCNJ11*, *WWOX*, *CARTPT*, *RAC1*, *PSAP*, *PLA2G16*, and *PLCB3*. In general, the potential candidate genes found are involved in several signaling pathways such as: FoxO, which mediate the synthesis of growth factors and stress-regulated transcription factors; TGF-β, which mediates the fibrogenesis process; mTOR, which is involved in the regulation of lipid synthesis; flavor transduction pathway, which is involved in the biological processes of sensory perception of taste and acts in the regulation of food intake; collagen chain trimerization, which influences tenderness and texture of meat; lipid metabolism, which mediates the synthesis and degradation of lipids in cells; among other signaling pathways. The combination of the results obtained from the GWAS and functional enrichment analysis allow us to better understand important biological processes, providing references for the understanding, in genetic-molecular terms, of these characteristics.

5. REFERENCES

- Ackland, M. L.; Michalczyk, A. A. Zinc and infant nutrition. **Archives of biochemistry and biophysics**, v. 611, p. 51-57, 2016.
- Aguilar, I.; Misztal, I.; Johnson, D. L.; Legarra, A.; Tsuruta, S.; Lawlor, T. J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, v. 93, n. 2, p. 743-752, 2010.
- Ahmadian, M.; Suh, J. M.; Hah, N.; Liddle, C.; Atkins, A. R.; Downes, M.; Evans, R. M. PPARγ signaling and metabolism: the good, the bad and the future. Nature medicine, v. 19, n. 5, p. 557-566, 2013.
- Akersr, M. R., Bauman, D. E.; Capuco, A. V.; Goodman, G. T.; Tucker, A. H. Prolactin regulation of milk secretion and biochemical differentiation of mammary epithelial cells in periparturient cows. **Endocrinology**, v. 109, n. 1, p. 23-30, 1981.
- Akhtar, M.; Holmgren, C.; Göndör, A.; Vesterlund, M.; Kanduri, C.; Larsson, C.; Ekström, T. J. Cell type and context-specific function of PLAG1 for IGF2 P3 promoter activity. International journal of oncology, v. 41, n. 6, p. 1959-1966, 2012.
- Albuquerque, L. G. Mercadante, M. E. Z.; Eler, J. P. Recents studies on the genetic basis for the selection of Bos indicus for beef production. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006. Instituto Prociência, 2006.

p. 03-22.

- Alekseev, A. E.; Reyes, S. et al. Sarcolemmal ATP-sensitive K+ channels control energy expenditure determining body weight. **Cell metabolism**, v. 11, n. 1, p. 58-69, 2010.
- An, B.; Xia, J. et al. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Animal genetics, v. 50, n. 4, p. 386-390, 2019.
- Anitei, M.; Stange, C. et al. Spatiotemporal control of lipid conversion, actin-based mechanical forces, and curvature sensors during clathrin/AP-1-coated vesicle biogenesis. **Cell reports**, v. 20, n. 9, p. 2087-2099, 2017.
- Arce-Recinos, C.; Chay-Canul, A. J.; Alarcón-Zúñiga, B.; Ramos-Juárez, J. A.; Vargas-Villamil, L. M.; Aranda-Ibáñez, E. M.; Sánchez-Villegas, N. D. C.; Costa, R. L. D.
 Feed efficiency indexes in hair sheep: meat quality and associated genes.
 Review. Revista mexicana de ciencias pecuarias, v. 12, n. 2, p. 523-552, 2021.
- Archile-Contreras, A. C.; Purslow, P. P. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International, v. 44, n. 2, p. 582-588, 2011.
- Arthaud, V. H.; Mandigo, R. W.; Koch, R. M.; Kotula, A. W. Carcass composition, quality and palatability attributes of bulls and steers fed different energy levels and killed at four ages. Journal of Animal Science, v. 44, n. 1, p. 53-64, 1977.
- Baldassini, W. A.; Chardulo, L. A. L. et al. Meat quality traits of Nellore bulls according to different degrees of backfat thickness: a multivariate approach. Animal Production Science, v. 57, n. 2, p. 363-370, 2017.
- Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Jaiswal, D.; Neri, S.; Peruzzini, R.; Winkelmann,
 J. Structural characterization of CHCHD5 and CHCHD7: two atypical human twin
 CX9C proteins. Journal of structural biology, v. 180, n. 1, p. 190-200, 2012.
- Barber, M. C.; Finley, E.; Vernon, R. G. Mechanisms whereby prolactin modulates lipogenesis in sheep mammary gland. Hormone and metabolic research, v. 23, n. 03, p. 143-145, 1991.
- Barros, C. M.; Satrapa, R. A.; Castilho, A. C. S.; Fontes, P. K.; Razza, E. M.; Ereno,R. L.; Nogueira, F. G. Effect of superstimulatory treatments on the expression of genes related to ovulatory capacity, oocyte competence and embryo development

in cattle. Reproduction, Fertility and Development, v. 25, n. 1, p. 17-25, 2012.

- Bhuiyan, M. S. A.; Kim, N. K.; Cho, Y. M.; Yoon, D.; Kim, K. S.; Jeon, J. T.; Lee, J. H. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livestock Science, v. 126, n. 1-3, p. 292-297, 2009.
- Blanchard, P. G.; Festuccia, W. T. Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion [S]. Journal of lipid research, v. 53, n. 6, p. 1117-1125, 2012.
- Blandino-Rosano, M.; Romaguera-Llacer, P.; Lin, A.; Reddy, J. K.; Bernal-Mizrachi, E. TGS1: a novel regulator of β-cell mass and function. **bioRxiv**, 2021.
- Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification, **Canadian Journal. Biochemistry and Physiology**, v.37, p.911–917, 1959.
- Bolormaa, S.; Porto Neto, L. R.; Zhang, Y. D.; Bunch, R. J.; Harrison, B. E.; Goddard,
 M. E.; Barendse, W. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of animal science, v. 89, n. 8, p. 2297-2309, 2011.
- Braun, T.; Bober, E.; Rudnicki, M. A.; Jaenisch, R.; Arnold, H. H. MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. **Development**, v. 120, n. 11, p. 3083-3092, 1994.
- Buzanskas, M. E.; Pires, P. S.; Chud, T. C. S.; Bernardes, P. A.; Rola, L. D.; Savegnago, R. P.; Lôbo, R. B.; Munari, D. P. Parameter estimates for reproductive and carcass traits in Nelore beef cattle. **Theriogenology**, v. 92, p. 204-209, 2017.
- Caetano, S. L.; Savegnago, R. P.; Boligon, A. A.; Ramos, S. B.; Chud, T. C. S.; Lôbo,
 R. B.; Munari, D. P. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livestock Science, v. 155, n. 1, p. 1-7, 2013.
- Camargo, G. M. F.; Porto-Neto, L. R.; Kelly, M. J.; Bunch, R. J.; McWilliam, S. M.; Tonhati, H.; Lehnert, S. A.; Fortes, M. R. S.; Moore, S. S. Non-synonymous mutations mapped to chromosome X associated with andrological and growth traits in beef cattle. **BMC genomics**, v. 16, n. 1, p. 1-10, 2015.
- Campos, G. S.; Sollero, B. P. et al. Tag-SNP selection using Bayesian genomewide association study for growth traits in Hereford and Braford cattle. **Journal of Animal Breeding and Genetics**, v. 137, n. 5, p. 449-467, 2020.
- Cánovas, A.; Reverter, A. et al. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. **PIoS one**, v. 9, n. 7, p.

e102551, 2014.

- Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J. M.; Pascual-Montano, A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. **Genome biology**, v. 8, n. 1, p. 1-8, 2007.
- Caron, A.; Richard, D.; Laplante, M. The roles of mTOR complexes in lipid metabolism. **Annual review of nutrition**, v. 35, p. 321-348, 2015.
- Carré, N.; Binart, N. Prolactin and adipose tissue. **Biochimie**, v. 97, p. 16-21, 2014.
- Cavallaro, G. Genome-wide analysis of eukaryotic twin CX 9 C proteins. **Molecular BioSystems**, v. 6, n. 12, p. 2459-2470, 2010.
- Charidemou, E.; Tsiarli, M. A.; Theophanous, A.; Yilmaz, V.; Pitsouli, C.; Strati, K.; Griffin, J. L.; Kirmizis, A. Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. **BMC biology**, v. 20, n. 1, p. 1-18, 2022.
- Choi, Y. O.; Ryu, H. J.; Kim, H. R.; Song, Y. S.; Kim, C.; Lee, W.; Choe, H.; Leem, C. H.; Jang, Y. J. Implication of phosphorylation of the myosin II regulatory light chain in insulin-stimulated GLUT4 translocation in 3T3-F442A adipocytes. Experimental & molecular medicine, v. 38, n. 2, p. 180-189, 2006.
- Chutkow, W. A.; Lee, R. T. Thioredoxin Regulates Adipogenesis through Thioredoxininteracting Protein (Txnip) Protein Stability*♦. Journal of Biological Chemistry, v. 286, n. 33, p. 29139-29145, 2011.
- Cincotta, A. H.; Meier, A. H. Reduction of body fat stores by inhibition of prolactin secretion. **Experientia**, v. 43, n. 4, p. 416-417, 1987.
- Cundiff, L. V.; Pond, W. G.; Bell, A. W. Beef cattle: Breeds and genetics. **Encyclopedia** of Animal Science. Ithaca: Cornell University, p. 74-76, 2004.
- Davies, S. S.; Pontsler, A. V. et al. Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor γ ligands and agonists. **Journal of Biological Chemistry**, v. 276, n. 19, p. 16015-16023, 2001.
- Dean, J. M.; Lodhi, I. J. Structural and functional roles of ether lipids. **Protein & cell**, v. 9, n. 2, p. 196-206, 2018.
- Decologne, N.; Kolb, M.; Margetts, P. J.; Menetrier, F.; Artur, Y.; Garrido, C.; Gauldie, J.; Camus, P.; Bonniaud, P. TGF-β1 induces progressive pleural scarring and subpleural fibrosis. The Journal of Immunology, v. 179, n. 9, p. 6043-6051, 2007.

- Dedieu, S.; Mazeres, G.; Cottin, P.; Brustis, J. J. Involvement of myogenic regulator factors during fusion in the cell line C2C12. International Journal of Developmental Biology, v. 46, n. 2, p. 235-241, 2002.
- DeYoung, M. P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L. W. Hypoxia regulates TSC1/2–mTOR signaling and tumor suppression through REDD1-mediated 14–3–3 shuttling. Genes & development, v. 22, n. 2, p. 239-251, 2008.
- Donadeu, F. X.; Esteves, C. L.; Doyle, L. K.; Walker, C. A.; Schauer, S. N.; Diaz, C. A. Phospholipase Cβ3 mediates LH-induced granulosa cell differentiation. **Endocrinology**, v. 152, n. 7, p. 2857-2869, 2011.
- Du, X. H.; Gan, Q. F.; Yuan, Z. R.; Gao, X.; Zhang, L. P.; Gao, H. J.; Li, J. Y.; Xu, S.
 Z. Polymorphism of MyoD1 and Myf6 genes and associations with carcass and meat quality traits in beef cattle. Genet. Mol. Res, v. 12, p. 6708-6717, 2013.
- Elias, C. F.; Lee, C.; Jelly, J.; Aschkenasi, C.; Ahima, R. S.; Couceyro, P. R.; Kuhar,
 M. J.; Saper, C. B.; Elmquist, J. K. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron, v. 21, n. 6, p. 1375-1385, 1998.
- Fain, J. N.; Leffler, C. W.; Bahouth, S. W. Eicosanoids as endogenous regulators of leptin release and lipolysis by mouse adipose tissue in primary culture. **Journal** of lipid research, v. 41, n. 10, p. 1689-1694, 2000.
- Fajas, L.; Miard, S.; Briggs, M.R.; Auwerx, J. Selective cyclo-oxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase. **Journal of lipid research**, v. 44, n. 9, p. 1652-1659, 2003.
- Farhan, M.; Wang, H.; Gaur, U.; Little, P. J.; Xu, J.; Zheng, W. FOXO signaling pathways as therapeutic targets in cancer. International journal of biological sciences, v. 13, n. 7, p. 815, 2017.
- Fernandes Júnior, G. A. F.; Rosa, G. J. M. et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. **Genetics Selection Evolution**, v. 48, n. 1, p. 7, 2016a.
- Fernandes Júnior, G. A.; Costa, R. B. et al. Genome scan for postmortem carcass traits in Nellore cattle. **Journal of animal science**, v. 94, n. 10, p. 4087-4095, 2016b.
- Ferraz, J. B. S.; Pinto, L. F. B.; Meirelles, F. V.; Eler, J. P.; Rezende, F. M.; Oliveira,E. C. M.; Almeida, H. B.; Woodward, B.; Nkrumah, D. Association of single

nucleotide polymorphisms with carcass traits in Nellore cattle. **Genet. Mol. Res**, v. 8, n. 4, p. 1360-1366, 2009.

- Fonseca, L. F. S.; Gimenez, D. F. J.; Santos Silva, D. B.; Barthelson, R.; Baldi, F.; Ferro, J. A.; Albuquerque, L. G. Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness. **BMC genomics**, v. 18, n. 1, p. 945, 2017.
- Forman, B. M.; Tontonoz, P.; Chen, J.; Brun, R. P.; Spiegelman, B. M.; Evans, R. M. 15-deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARy. **Cell**, v. 83, n. 5, p. 803-812, 1995.
- Fortes, M. R. S.; Kemper, K. et al. Evidence for pleiotropism and recent selection in the PLAG1 region in Australian B eef cattle. **Animal genetics**, v. 44, n. 6, p. 636-647, 2013.
- Funk, C. D.; Song, W. -C.; Fitzgerald, G. A. Prostaglandins and other lipid mediators in reproductive medicine. In: Yen & Jaffe's Reproductive Endocrinology. WB Saunders, 2014. p. 108-123. e4.
- García-Moreno, A.; López-Domínguez, R.; Ramirez-Mena, A.; Pascual-Montano, A.; Aparicio-Puerta, E.; Hackenberg, M.; Carmona-Saez, P. GeneCodis 4: Expanding the modular enrichment analysis to regulatory elements. **bioRxiv**, 2021.
- Gebreyesus, G.; Buitenhuis, A. J.; Poulsen, N. A.; Visker, M. H. P. W.; Zhang, Q.; van Valenberg, H. J. F.; Sun, D.; Bovenhuis, H. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. **BMC genomics**, v. 20, n. 1, p. 1-16, 2019.
- Georges, M.; Charlier, C.; Hayes, B. Harnessing genomic information for livestock improvement. **Nature Reviews Genetics**, v. 20, n. 3, p. 135-156, 2019.
- Gomes, A. R.; Brosens, J. J.; Lam, E. W. -F. Resist or die: FOXO transcription factors determine the cellular response to chemotherapy. **Cell Cycle**, v. 7, n. 20, p. 3133-3136, 2008.
- Gomes, R. C.; Silva, S. L. et al. Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Embrapa Gado de Corte-Artigo em periódico indexado (ALICE), 2013.

Gordo, D. G. M.; Espigolan, R.; Bresolin, T.; Fernandes Júnior, G. A.; Magalhães, A.

F. B.; Braz, C. U.; Fernandes, W. B.; Baldi, F.; Albuquerque, L. G. Genetic analysis of carcass and meat quality traits in Nelore cattle. Journal of animal science, v. 96, n. 9, p. 3558-3564, 2018.

- Gosselin, L. E.; Williams, J. E.; Deering, M.; Brazeau, D; Koury, S; Martinez, D. A. Localization and early time course of TGF-β1 mRNA expression in dystrophic muscle. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, v. 30, n. 5, p. 645-653, 2004.
- Gotoh, T.; Takahashi, H.; Nishimura, T.; Kuchida, K.; Mannen, H. Meat produced by Japanese Black cattle and Wagyu. **Animal Frontiers**, v. 4, n. 4, p. 46-54, 2014.
- Grigoletto, L.; Ferraz, J. B. S.; Oliveira, H. R.; Eler, J. P.; Bussiman, F. O.; Silva, B. C.
 A.; Baldi, F.; Brito, L. F. Genetic architecture of carcass and meat quality traits in Montana tropical[®] composite beef cattle. Frontiers in genetics, v. 11, p. 123, 2020.
- Guo, P.; Zhao, Z.; Yan, S.; Li, J.; Xiao, H.; Yang, D.; Zhao, Y.; Jiang, P.; Yang, R.
 PSAP gene variants and haplotypes reveal significant effects on carcass and meat quality traits in Chinese Simmental-cross cattle. Archives Animal Breeding, v. 59, n. 4, p. 461-468, 2016.
- Guttridge, D. C. Making Muscles Grow by G Protein–Coupled Receptor Signaling. Science Signaling, v. 4, n. 201, p. pe45-pe45, 2011.
- Han, H.; Gu, S.; Chu, W.; Sun, W.; Wei, W.; Dang, X.; Tian, Y.; Liu, K.; Chen, J. miR-17-5p regulates differential expression of NCOA3 in pig intramuscular and subcutaneous adipose tissue. Lipids, v. 52, n. 11, p. 939-949, 2017.
- Hara-Chikuma, M.; Sohara, E.; Rai, T.; Ikawa, M.; Okabe, M.; Sasaki, S.; Uchida, S.;
 Verkman, A. S. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. Journal of Biological Chemistry, v. 280, n. 16, p. 15493-15496, 2005.
- Hara-Chikuma, M.; Verkman, A. S. Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cellular and Molecular Life Sciences CMLS, v. 63, n. 12, p. 1386-1392, 2006.
- Hay; E. H.; Roberts, A. Genome-wide association study for carcass traits in a composite beef cattle breed. **Livestock Science**, v. 213, p. 35-43, 2018.

Henslee, D.; Murdoch, B.; Yelich, J.; Taylor, J. B.; Ellison, M. Comparative genomics

of the sheep Tas2r repertoire to cattle, goat, human, dog, and mice. **Animal Gene**, v. 17, p. 200107, 2020.

- Hibuse, T.; Maeda, N. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proceedings of the National Academy of Sciences, v. 102, n. 31, p. 10993-10998, 2005.
- Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research, v. 37, n. 1, p. 1-13, 2009a.
- Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. **Nature protocols**, v. 4, n. 1, p. 44-57, 2009b.
- Huang, Y. Z.; Zhan, Z. Y. et al. SNP and haplotype analysis reveal IGF2 variants associated with growth traits in Chinese Qinchuan cattle. Molecular biology reports, v. 41, n. 2, p. 591-598, 2014.
- Iatan, I.; Choi, H. Y. et al. The WWOX gene modulates high-density lipoprotein and lipid metabolism. Circulation: Cardiovascular Genetics, v. 7, n. 4, p. 491-504, 2014.
- Iozzo, R. V. The biology of the small leucine-rich proteoglycans: functional network of interactive proteins. Journal of Biological Chemistry, v. 274, n. 27, p. 18843-18846, 1999.
- James, K. N.; Lau, M. et al. Expanding the genotypic spectrum of ACTG2-related visceral myopathy. **Molecular Case Studies**, v. 7, n. 3, p. a006085, 2021.
- Jang, D.; Yoon, J.; Taye, M.; Lee, W.; Kwon, T.; Shim, S.; Kim, H. Multivariate genome-wide association studies on tenderness of Berkshire and Duroc pig breeds. **Genes & genomics**, v. 40, n. 7, p. 701-705, 2018.
- Janin, A.; Bessière, F.; Chauveau, S.; Chevalier, P.; Millat, G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. **Gene**, v. 676, p. 110-116, 2018.
- Jaworski, K.; Ahmadian, M. et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. **Nature medicine**, v. 15, n. 2, p. 159-168, 2009.
- Karisa, B. K.; Thomson, J.; Wang, Z.; Bruce, H. L.; Plastow, C. S.; Moore, S. S.

Candidate genes and biological pathways associated with carcass quality traits in beef cattle. **Canadian Journal of Animal Science**, v. 93, n. 3, p. 295-306, 2013.

- Kather, H.; Simon, B. Biphasic effects of prostaglandin E2 on the human fat cell adenylate cyclase. **The Journal of Clinical Investigation**, v. 64, n. 2, p. 609-612, 1979.
- Kim, J.; Hanotte, O. et al. The genome landscape of indigenous African cattle. **Genome biology**, v. 18, n. 1, p. 1-14, 2017.
- Kluska, S.; Olivieri, B. F. et al. Estimates of genetic parameters for growth, reproductive, and carcass traits in Nelore cattle using the single step genomic BLUP procedure. Livestock science, v. 216, p. 203-209, 2018.
- Komisarek, J.; Walendowska, A. Analysis of the PPARGC1A gene as a potential marker for productive and reproductive traits in cattle. Folia Biologica (Kraków), v. 60, n. 3-4, p. 171-174, 2012.
- Kulig, H.; Kmieć, M. Association between leptin gene polymorphisms and growth traits in Limousin cattle. **Russian journal of genetics**, v. 45, n. 6, p. 738-741, 2009.
- Lamberts, S. W. L.; Macleod, R. M. Regulation of prolactin secretion at the level of the lactotroph. **Physiological Reviews**, v. 70, n. 2, p. 279-318, 1990.
- Lamming, D. W.; Sabatini, D. M. A central role for mTOR in lipid homeostasis. **Cell metabolism**, v. 18, n. 4, p. 465-469, 2013.
- Lawrence, D. A. Transforming growth factor-beta: a general review. **European** cytokine network, v. 7, n. 3, p. 363-374, 1996.
- Leal-Gutiérrez, J. D.; Elzo, M. A.; Johnson, D. D.; Hamblen, H.; Mateescu, R. G. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC genomics, v. 20, n. 1, p. 151, 2019.
- Lee, S.; Min-Wook, H.; So-Young, C.; Kim, J. WPSII-5 Genome-wide association analysis to identify QTL for carcass traits in Korean native cattle. Journal of Animal Science, v. 96, n. Suppl 3, p. 516, 2018.
- Lefterova, M. I.; Haakonsson, A. K.; Lazar, M. A.; Mandrup, S. PPARγ and the global map of adipogenesis and beyond. **Trends in Endocrinology & Metabolism**, v. 25, n. 6, p. 293-302, 2014.

Leibovitch, S. A.; Guillier, M.; Lenormand, J. L.; Leibovitch, M. P. Accumulation of the

c-mos protein is correlated with post-natal development of skeletal muscle. **Oncogene**, v. 6, n. 9, p. 1617-1622, 1991.

- Lemos, M. V. A.; Chiaia, H. L. J. et al. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. **BMC genomics**, v. 17, n. 1, p. 213, 2016.
- Lemos, M. V. A.; Peripolli, E. Association study between copy number variation and beef fatty acid profile of Nellore cattle. Journal of applied genetics, v. 59, n. 2, p. 203-223, 2018.
- Levéen, P.; Larsson, J.; Ehinger, M.; Cilio, C. M.; Sundler, M.; Sjöstrand, L. J.; Holmdahl, R.; Karlsson, S. Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood, The Journal of the American Society of Hematology, v. 100, n. 2, p. 560-568, 2002.
- Li, W. Z.; Zhao, S. M.; Huang, Y.; Yang, M. H.; Pan, H. B.; Zhang, X.; Ge, C. R.; Gao,
 S. Z. Expression of lipogenic genes during porcine intramuscular preadipocyte differentiation. Research in veterinary science, v. 93, n. 3, p. 1190-1194, 2012.
- Lillig, C. H.; Berndt, C.; Holmgren, A. Glutaredoxin systems. **Biochimica et Biophysica Acta (BBA)-General Subjects**, v. 1780, n. 11, p. 1304-1317, 2008.
- Lindholm-Perry, A. K. Kuehn, L. A.; Smith, T. P. L.; Ferrell, C. L.; Jenkins, T. G.; Freetly,
 H. C.; Snelling, W. M. A region on BTA14 that includes the positional candidate genes LYPLA1, XKR4 and TMEM68 is associated with feed intake and growth phenotypes in cattle 1. Animal genetics, v. 43, n. 2, p. 216-219, 2011.
- Louet, J. F.; Coste, A.; Amazit, L.; Tannour-Louet, M.; Wu, R. C.; Tsai, S. Y.; Tsai, M. -J.; Auwerx, J.; O'Malley, B. W. Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. **Proceedings of the National Academy of Sciences**, v. 103, n. 47, p. 17868-17873, 2006.
- Magalhães, A. F. B.; Camargo, G. M. F. et al. Genome-wide association study of meat quality traits in Nellore cattle. **PloS one**, v. 11, n. 6, p. e0157845, 2016.
- Magalhães, A. F. B.; Schenkel, F. S. et al. Genomic selection for meat quality traits in Nelore cattle. **Meat science**, v. 148, p. 32-37, 2019.
- Maltin, C.; Balcerzak, D.; Tilley, R.; Delday, M. Determinants of meat quality: tenderness. **Proceedings of the Nutrition Society**, v. 62, n. 2, p. 337-347, 2003.

- Mann, N. J. A brief history of meat in the human diet and current health implications. **Meat science**, v. 144, p. 169-179, 2018.
- Martínez, R.; Gómez, Y.; Rocha, J. F. M. Genome-wide association study on growth traits in Colombian creole breeds and crossbreeds with Zebu cattle. Genet Mol Res, v. 13, n. 3, p. 6420-6432, 2014.
- Massagué, J.; Chen, Y. -G. Controlling TGF-β signaling. **Genes & developmen**t, v. 14, n. 6, p. 627-644, 2000.
- Masuda, Y.; Legarra, A.; Aguilar, I.; Misztal, I. 331 Efficient quality control methods for genomic and pedigree data used in routine genomic evaluation. **Journal of Animal Science**, v. 97, n. Supplement_3, p. 50-51, 2019.
- Mateescu, R. G.; Garmyn, A. J. Genetic parameters for concentrations of minerals in longissimus muscle and their associations with palatability traits in Angus cattle. **Journal of Animal Science**, v. 91, n. 3, p. 1067-1075, 2013.
- McGowan, K. A.; Li, J. Z. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. **Nature genetics**, v. 40, n. 8, p. 963-970, 2008.
- Mihaylova, M. M.; Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. **Nature cell biology**, v. 13, n. 9, p. 1016-1023, 2011.
- Miranda, M.; Escote, X.; Ceperuelo-Mallafre, V.; Alcaide, M. J.; Simon, I.; Vilarrasa, N.; Wabitsch, M.; Vendrell, J. Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots. The journal of clinical endocrinology & metabolism, v. 95, n. 7, p. 3470-3479, 2010.
- Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, v. 92, n. 9, p. 4648-4655, 2009.
- Mwangi, F. W.; Charmley, E.; Gardiner, C. P.; Malau-Aduli, B. S.; Kinobe, R. T.; Malau-Aduli, A. E. O. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. **Foods**, v. 8, n. 12, p. 648, 2019.
- Neupane, M.; Geary, T. W.; Kiser, J. N.; Burns, G. W.; Hansen, P.J.; Spencer, T. E.; Neibergs, H. L. Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle. **PLoS One**, v. 12, n. 12, p. e0188997, 2017.

Nishimura, T.; Futami, E.; Taneichi, A.; Mori, T.; Hattori, A. Decorin expression during

development of bovine skeletal muscle and its role in morphogenesis of the intramuscular connective tissue. **Cells Tissues Organs**, v. 171, n. 2-3, p. 199-214, 2002.

- Nkrumah, J. D.; Li, C.; Yu, J.; Hansen, C.; Keisler, D. H.; Moore, S. S. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. Journal of Animal Science, v. 83, n. 1, p. 20-28, 2005.
- Nogales-Cadenas, R.; Carmona-Saez, P.; Vazquez, M.; Vicente, C.; Yang, X.; Tirado, F.; Carazo, J. M.; Pascual-Montano, A. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic acids research, v. 37, n. suppl_2, p. W317-W322, 2009.
- Nugent, C.; Prins, J. B.; Whitehead, J. P.; Wentworth, J. M.; Chatterjee, V. K. K. Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane: Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor y. **Journal of Biological Chemistry**, v. 276, n. 12, p. 9149-9157, 2001.
- Null, D.; VanRaden, P. M.; Rosen, B.; O'Connell, J.; Bickhart, D. Using the ARS-UCD1. 2 reference genome in US evaluations. **Interbull Bulletin**, n. 55, p. 30-34, 2019.
- Oliveira Silva, R. M.; Stafuzza, N. B. et al. Genome-wide association study for carcass traits in an experimental Nelore cattle population. **PIoS one**, v. 12, n. 1, 2017.
- Oliveira, A. S. F.; Campos, S. R.; Baptista, A. M.; Soares, C. M. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochimica et Biophysica Acta (BBA)-Bioenergetics, v. 1857, n. 6, p. 759-771, 2016.
- Papponen, H.; Kaisto, T.; Leinonen, S.; Kaakinen, M.; Metsikko, K. Evidence for γactin as a Z disc component in skeletal myofibers. Experimental Cell Research, v. 315, n. 2, p. 218-225, 2009.
- Pausch, H.; Flisikowski, K.; Jung, S.; Emmerling, R.; Edel, C.; Götz, K. U.; Fries, R. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. **Genetics**, v. 187, n. 1, p. 289-297, 2011.
- Pegolo, S.; Cecchinato, A.; Savoia, S.; Di Stasio, L.; Pauciullo, A.; Brugiapaglia, A.; Bittante, G.; Albera, A. Genome-wide association and pathway analysis of carcass

and meat quality traits in Piemontese young bulls. **Animal**, v. 14, n. 2, p. 243-252, 2019.

- Porstmann, T.; Santos, C. R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J. R.; Chung, Y. L.; Schulze, A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell metabolism, v. 8, n. 3, p. 224-236, 2008.
- Prudente, S.; Flex, E. A functional variant of the adipocyte glycerol channel aquaporin
 7 gene is associated with obesity and related metabolic abnormalities. **Diabetes**,
 v. 56, n. 5, p. 1468-1474, 2007.
- Pryce, J. E.; Hayes, B. J.; Bolormaa, S.; Goddard, M. E. Polymorphic regions affecting human height also control stature in cattle. **Genetics**, v. 187, n. 3, p. 981-984, 2011.
- Puigserver, P.; Wu, Z.; Park, C. W.; Graves, R.; Wright, M.; Spiegelman, B. M. A coldinducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, v. 92, n. 6, p. 829-839, 1998.
- Ramayo-Caldas, Y.; Fortes, M. R. S. et al. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. Journal of Animal Science, v. 92, n. 7, p. 2832-2845, 2014.
- Reginato, M. J.; Krakow, S. L.; Bailey, S. T.; Lazar, M. A. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor γ. **Journal of Biological Chemistry**, v. 273, n. 4, p. 1855-1858, 1998.
- Rexroad III, C. E.; Bennett, G. L.; Stone, R. T.; Keele, J. W.; Fahrenkrug, S. C.; Freking,
 B. A.; Kappes, S. M.; Smith, T. P. Comparative mapping of BTA15 and HSA11 including a region containing a QTL for meat tenderness. Mammalian Genome,
 v. 12, n. 7, p. 561-565, 2001.
- Rojanathammanee, L.; Rakoczy, S.; Kopchick, J.; Brown-Borg, H. M. Effects of insulinlike growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. **Age**, v. 36, n. 4, p. 1-13, 2014.
- Rosen, E. D.; Hsu, C. H.; Wang, X.; Sakai, S.; Freeman, M. W.; Gonzalez, F. J.; Spiegelman, B. M. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes & development, v. 16, n. 1, p. 22-26, 2002.

- Ruan, D.; Zhuang, Z. et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. **Genes**, v. 12, n. 1, p. 117, 2021.
- Saatchi, M.; Schnabel, R. D.; Taylor, J. F.; Garrick, D. J. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC genomics, v. 15, n. 1, p. 1-17, 2014.
- Sagata, N. What does Mos do in oocytes and somatic cells?. **BioEssays**, v. 19, n. 1, p. 13-21, 1997.
- Sahu, K.; Gupta, A. et al. Role of granulosa cell mitogen-activated protein kinase 3/1 in gonadotropin-mediated meiotic resumption from diplotene arrest of mammalian oocytes. **Growth Factors**, v. 36, n. 1-2, p. 41-47, 2018.
- Sargolzaei, M.; Chesnais, J. P.; Schenkel, F. S. A new approach for efficient genotype imputation using information from relatives. **BMC genomics**, v. 15, n. 1, p. 478, 2014.
- Sasaki, Y.; Nagai, K. Exploration of genes showing intramuscular fat depositionassociated expression changes in musculus longissimus muscle. **Animal Genetics**, v. 37, n. 1, p. 40-46, 2006.
- Schenkel, F. S.; Miller, S. P. et al. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. Journal of animal science, v. 83, n. 9, p. 2009-2020, 2005.
- Seabury, C. M.; Oldeschulte, D. L. et al. Genome-wide association study for feed efficiency and growth traits in US beef cattle. **BMC genomics**, v. 18, n. 1, p. 1-25, 2017.
- Selga, E.; Pérez-Cano, F. J.; Franch, À.; Ramírez-Santana, C.; Rivero, M.; Ciudad, C. J.; Castellote, C.; Noé, V. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling. BMC genomics, v. 12, n. 1, p. 1-13, 2011.
- Serão, N. V. L.; Veroneze, R.; Ribeiro, A. M. F.; Verardo, L. L.; Braccini Neto, J.; Gasparino, E.; Campos, C. F.; Lopes, P. S.; Guimarães, S. E. F. Candidate gene expression and intramuscular fat content in pigs. Journal of Animal Breeding and Genetics, v. 128, n. 1, p. 28-34, 2011.
- Sevane, N.; Armstrong, E.; Cortés, O.; Wiener, P.; Wong, R. P.; Dunner, S.; Gemqual

Consortium. Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. **Meat Science**, v. 94, n. 3, p. 328-335, 2013.

- Shan, T.; Zhang, P.; Jiang, Q.; Xiong, Y.; Wang, Y.; Kuang, S. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. **Diabetologia**, v. 59, n. 9, p. 1995-2004, 2016.
- Shin, S.; Chung, E. Novel SNPs in the bovine ADIPOQ and PPARGC1A genes are associated with carcass traits in Hanwoo (Korean cattle). **Molecular biology reports**, v. 40, n. 7, p. 4651-4660, 2013.
- Shiu, R. P. C.; Friesen, H. G. Mechanism of action of prolactin in the control of mammary gland function. Annual Review of Physiology, v. 42, n. 1, p. 83-96, 1980.
- Silva, D. B. S., Fonseca, L. F. S. et al. Spliced genes in muscle from Nelore Cattle and their association with carcass and meat quality. Scientific reports, v. 10, n. 1, p. 1-13, 2020.
- Simianer, H. Genomic and other revolutions—why some technologies are quickly adopted and others are not. **Animal Frontiers**, v. 6, n. 1, p. 53-58, 2016.
- Smith, J. L.; Wilson, M. L.; Nilson, S. M.; Rowan, T. N.; Oldeschulte, D. L.; Schnabel,
 R. D.; Decker, J. E.; Seabury, C. M. Genome-wide association and genotype by
 environment interactions for growth traits in US Gelbvieh cattle. BMC genomics,
 v. 20, n. 1, p. 1-13, 2019.
- Sofer, A.; Lei, K.; Johannessen, C. M.; Ellisen, L. W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Molecular and cellular biology, v. 25, n. 14, p. 5834-5845, 2005.
- Soria, L. A.; Corva, P. M. Association of a novel polymorphism in the bovine PPARGC1A gene with growth, slaughter and meat quality traits in Brangus steers. **Molecular and cellular probes**, v. 23, n. 6, p. 304-308, 2009.
- Srikanth, K.; Lee, S. -H. et al. A gene-set enrichment and protein–protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in hanwoo cattle. **Genes**, v. 11, n. 3, p. 316, 2020.
- Srivastava, S.; Srikanth, K.; Won, S.; Son, J. -H.; Park, J. -E.; Park, W.; Chai, H. -H.; Lim, D. Haplotype-based genome-wide association study and identification of

candidate genes associated with carcass traits in Hanwoo cattle. **Genes**, v. 11, n. 5, p. 551, 2020.

- Stafuzza, N. B.; Oliveira Silva, R. M.; Oliveira Fragomeni, B.; Masuda, Y.; Huang, Y.; Gray, K.; Lourenco, D. A. L. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. **BMC genomics**, v. 20, n. 1, p. 1-11, 2019.
- Sun, J.; Zhu, J.; Xue, J.; Zhang, C.; Lan, X.; Lei, C.; Chen, H. Haplotype combinations of AdPLA gene polymorphisms associate with growth traits in Chinese cattle. **Molecular biology reports**, v. 39, n. 6, p. 7069-7076, 2012.
- Sun, Y.; Xue, J.; Guo, W.; Li, M.; Huang, Y.; Lan, X.; Lei, C.; Zhang, C.; Chen, H. Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle. **Journal of genetics**, v. 93, n. 2, p. 8-14, 2016.
- Tatosyan, A. G.; Mizenina, O. A. Kinases of the Src family: structure and functions. **BIOCHEMISTRY C/C OF BIOKHIMIIA**, v. 65, n. 1, p. 49-58, 2000.
- Taye, M.; Yoon, J.; Dessie, T.; Cho, S.; Oh, S. J.; Lee, H. -K.; Kim, H. Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes & genomics, v. 40, n. 1, p. 63-75, 2018.
- Te Pas, M. F. W.; Soumillion, A.; Harders, F. L.; Verburg, F. J.; Van den Bosch, T. J.; Galesloot, P.; Meuwissen, T. H. E. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. Journal of Animal Science, v. 77, n. 9, p. 2352-2356, 1999.
- Terakado, A. P. N.; Costa, R. B. et al. Genome-wide association study for growth traits in Nelore cattle. **Animal**, v. 12, n. 7, p. 1358-1362, 2018.
- Tizioto, P. C.; Decker, J. E. et al. Genome scan for meat quality traits in Nelore beef cattle. **Physiological genomics**, v. 45, n. 21, p. 1012-1020, 2013a.
- Tizioto, P. C.; Gasparin, G. et al. Identification of KCNJ11 as a functional candidate gene for bovine meat tenderness. **Physiological Genomics**, v. 45, n. 24, p. 1215-1221, 2013b.
- Tricarico, D.; Selvaggi, M. et al. ATP sensitive potassium channels in the skeletal muscle function: involvement of the KCNJ11 (Kir6. 2) gene in the determination of mechanical warner bratzer shear force. Frontiers in physiology, v. 7, p. 167, 2016.

- Tsukahara, T.; Tsukahara, R. et al. Different residues mediate recognition of 1-Ooleyllysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor γ. **Journal of Biological Chemistry**, v. 281, n. 6, p. 3398-3407, 2006.
- Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. The whole structure of the 13subunit oxidized cytochrome c oxidase at 2.8 Å. Science, v. 272, n. 5265, p. 1136-1144, 1996.
- United States Departament Of Agriculture (USDA). U.S. Standards for Grades of Feeder Cattle. Washington: USDA, 2000. 4p.
- Utsunomiya, Y. T.; Carmo, A. S. et al. Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. **BMC genetics**, v. 14, n. 1, p. 1-12, 2013.
- Van Dyck, F.; Braem, C. V. et al. Loss of the PlagL2 transcription factor affects lacteal uptake of chylomicrons. **Cell metabolism**, v. 6, n. 5, p. 406-413, 2007.
- Vanraden, P. M. Efficient methods to compute genomic predictions. Journal of dairy science, v. 91, n. 11, p. 4414-4423, 2008.
- Walsh, H.; Martins, S.; O'Neill, E. E.; Kerry, J. P.; Kenny, T.; Ward, P. The effect of sodium lactate, potassium lactate, carrageenan, whey protein concentrate, yeast extract and fungal proteinases on the cook yield and tenderness of bovine chuck muscles. **Meat science**, v. 85, n. 2, p. 230-234, 2010.
- Wang, H.; Misztal, I. et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. **Frontiers in genetics**, v. 5, p. 134, 2014.
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W. M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research, v.94, n.2, p.73-83, 2012.
- Wang, L.; Li, J.; Hou, X.; Yan, H.; Zhang, L.; Liu, X.; Gao, H.; Zhao, F.; Wang, L. Genome-Wide Identification of RNA Editing Sites Affecting Intramuscular Fat in Pigs. Animals, v. 10, n. 9, p. 1616, 2020c.
- Wang, S.; Zhao, H. Exploring of InDel in bovine PSAP gene and their association with growth traits in different development stages. **Animal Biotechnology**, p. 1-12,

2020b.

- Wang, X.; Yang, J.; Yao, Y.; Shi, X. E.; Yang, G.; Li, X. AQP3 Facilitates Proliferation and Adipogenic Differentiation of Porcine Intramuscular Adipocytes. **Genes**, v. 11, n. 4, p. 453, 2020a.
- Warner, R.; Wheeler, T. L. et al. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. **Meat Science**, p. 108657, 2021.
- Weston, A. R.; Rogers, R. W.; Althen, T. G. The role of collagen in meat tenderness. **The Professional Animal Scientist**, v. 18, n. 2, p. 107-111, 2002.
- Wheeler, T. L.; Koomaraie, M.; Shackelford, S. D. Standardized warner-bratzler shear force procedures for meat tenderness measurement. Clay Center: Roman L. Hruska U. S. MARC. USDA, 1995. 7p.
- Williams, P. Nutritional composition of red meat. **Nutrition & Dietetics**, v. 64, p. S113-S119, 2007.
- Wood, J. D.; Enser, M.; Fisher, A.; Nute, G. R.; Richardson, R. I.; Sheard, P. R. Manipulating meat quality and composition. Proceedings of the nutrition society, v. 58, n. 2, p. 363-370, 1999.
- Wu, S. V.; Rozengurt, N.; Yang, M.; Young, S. H.; Sinnett-Smith, J.; Rozengurt, E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. **Proceedings of the National Academy of Sciences**, v. 99, n. 4, p. 2392-2397, 2002.
- Wu, W.; Zhang, D.; Yin, Y.; Ji, M.; Xu, K.; Huang, X.; Peng, Y.; Zhang, J. Comprehensive transcriptomic view of the role of the LGALS12 gene in porcine subcutaneous and intramuscular adipocytes. **BMC genomics**, v. 20, n. 1, p. 1-13, 2019.
- Yamaguchi, Y.; Mann, D. M.; Ruoslahti, E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. **Nature**, v. 346, n. 6281, p. 281-284, 1990.
- Yang, J.; Lee, S. H.; Goddard, M. E.; Visscher, P. M. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. In: Genome-wide association studies and genomic prediction. Humana Press, Totowa, NJ, 2013. p. 215-236.
- Yang, R. -Y.; Hsu, D. K.; Yu, L.; Chen, H. -Y.; Liu, F. -T. Galectin-12 is required for adipogenic signaling and adipocyte differentiation. **Journal of Biological**

Chemistry, v. 279, n. 28, p. 29761-29766, 2004.

- Yang, R. -Y.; Yu, L.; Graham, J. L.; Hsu, D. K.; Lloyd, K. C. K.; Havel, P. J.; Liu, F. -T. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. **Proceedings of the National Academy of Sciences**, v. 108, n. 46, p. 18696-18701, 2011.
- Zeng, L.; Chen, N.; Ning, Q.; Yao, Y.; Chen, H.; Dang, R.; Zhang, H.; Lei, C. PRLH and SOD 1 gene variations associated with heat tolerance in Chinese cattle. **Animal genetics**, v. 49, n. 5, p. 447-451, 2018.
- Zhang, C.; Baker, D. L. et al. Lysophosphatidic acid induces neointima formation through PPARγ activation. **The Journal of experimental medicine**, v. 199, n. 6, p. 763-774, 2004.
- Zhang, H.; Wang, Z.; Wang, S.; Li, H. Progress of genome wide association study in domestic animals. Journal of animal science and biotechnology, v. 3, n. 1, p. 26, 2012.
- Zhang, J.; Zhang, Y. et al. Landscape of Loci and Candidate Genes for Muscle Fatty Acid Composition in Pigs Revealed by Multiple Population Association Analysis. Frontiers in genetics, p. 1067, 2019.
- Zhao, H.; Wu, M.; Yi, X.; Tang, X.; Chen, P.; Wang, S.; Sun, X. Functional analysis of haplotypes in bovine PSAP gene and their relationship with beef cattle production traits. **Animals**, v. 11, n. 1, p. 49, 2021.
- Zhou, Z. -K., Gao, X.; Li, J. -Y.; Chen, J. -B.; Xu, S. -Z. Effect of castration on carcass quality and differential gene expression of longissimus muscle between steer and bull. **Molecular Biology Reports**, v. 38, n. 8, p. 5307-5312, 2011.

6. SUPPLEMENTARY INFORMATION

Description	Annotation_ID	Pvalue	Genes
DAVID			
Basal transcription factors	bta03022	0.016738078	CDK7, TAF9, GTF2H2
Transcription from RNA polymerase II promoter	GO:0006366	0.020995988	CDK7, TAF9, GTF2H2, HIVEP2
FoxO signaling pathway	bta04068	0.022747109	CCNB1, STK4, ATG12, TGFBR2
Lipid metabolic process	GO:0006629	0.025126808	HNF4A, ALMS1, PNPLA5
Cell-cell signaling	GO:0007267	0.038412782	LVRN, CARTPT, WISP2
Protein stabilization	GO:0050821	0.078791872	TAF9, STK4, CCT7
Endocytosis	bta04144	0.101560155	VTA1, STAMBP, RAB11FIP5, TGFBR2
Cell cycle	bta04110	0.113700722	CDK7, CCNB1, YWHAB
Protein phosphorylation	GO:0006468	0.129054957	DGUOK, GTF2H2, STK4
Hippo signaling pathway	bta04390	0.154468523	MOB1A, YWHAB, TGFBR2
RNA transport	bta03013	0.167548022	SMN2, THOC3, PABPC1L
Oxidation-reduction process	GO:0055114	0.174331953	KIAA1191, MRPS36, MTHFD2, CDO1
Cell adhesion	GO:0007155	0.186378144	PARVG, PARVB, WISP2
Purine metabolism	bta00230	0.195947052	DGUOK, AK6, ADA
Metabolic pathways	bta01100	0.202860526	MCCC2, DGUOK, LOC786474, MTHFD2, PNPLA3, GADL1, AK6, CDO1, ADA
Negative regulation of cell proliferation	GO:0008285	0.260106203	HNF4A, STK4, COPS8
Innate immune response	GO:0045087	0.277044467	TICAM2, SERINC3, ATG12
Negative regulation of apoptotic process	GO:0043066	0.309163283	TAF9, ALMS1, NAIP
Signal transduction	GO:0007165	0.549412418	LVRN, HIVEP2, WISP2
Regulation of transcription, DNA-templated	GO:0006355	0.765818005	EGR4, GTF2H2, HIVEP2
Transcription, DNA-templated	GO:0006351	0.767445213	EGR4, HNF4A, GTF2H2
GeneCodis			
Basal transcription factors	bta03022	0.037671679	CDK7, GTF2H2, TAF9

 Table S1. Results of functional enrichment analyzes performed in DAVID and GeneCodis for LMA.

Taurine and hypotaurine metabolism	bta00430	0.037671679	GADL1, CDO1
FoxO signaling pathway	bta04068	0.083006507	TGFBR2, STK4, CCNB1, ATG12
L-cysteine catabolic process	GO:0019448	0.101601765	CD01
regulation of triglyceride biosynthetic process	GO:0010866	0.101601765	FITM2
hypoxanthine salvage	GO:0043103	0.101601765	ADA
bicellular tight junction assembly	GO:0070830	0.101601765	MARVELD2, OCLN
purine deoxyribonucleoside metabolic process	GO:0046122	0.101601765	DGUOK
protein stabilization	GO:0050821	0.101601765	CDK7, CCT7, STK4, TAF9
taurine biosynthetic process	GO:0042412	0.101601765	CD01
fatty-acyl-CoA catabolic process	GO:0036115	0.101601765	FITM2
actin cytoskeleton reorganization	GO:0031532	0.101601765	PARVG, PARVB
ornithine metabolic process	GO:0006591	0.101601765	HNF4A
dAMP salvage	GO:0106383	0.101601765	DGUOK
regulation of cell differentiation involved in embryonic placenta development	GO:0060800	0.101601765	STK4
response to interleukin-12	GO:0070671	0.101601765	TICAM2
cell-cell junction organization	GO:0045216	0.101601765	MARVELD2, OCLN
positive regulation of substrate-dependent cell migration, cell attachment to substrate	GO:1904237	0.101601765	STK4
sequestering of triglyceride	GO:0030730	0.101601765	FITM2
detection of virus	GO:0009597	0.101601765	SERINC3
negative regulation of adenosine receptor signaling pathway	GO:0060169	0.101601765	ADA
polynucleotide 5' dephosphorylation	GO:0098507	0.101601765	DUSP11
adenosine catabolic process	GO:0006154	0.101601765	ADA
regulation of transferase activity	GO:0051338	0.101601765	PKIG
positive regulation of interleukin-18-mediated signaling pathway	GO:2000494	0.101601765	TICAM2
oculomotor nerve development	GO:0021557	0.101601765	ACKR3
dGTP metabolic process	GO:0046070	0.101601765	DGUOK
positive regulation of epinephrine secretion	GO:0032812	0.101601765	CARTPT
bombesin receptor signaling pathway	GO:0031989	0.101601765	NMBR
nucleotide metabolic process	GO:0009117	0.101601765	DGUOK, ADA
inosine biosynthetic process	GO:0046103	0.101601765	ADA
positive regulation of blood-brain barrier permeability	GO:1905605	0.101601765	OCLN
organic substance biosynthetic process	GO:1901576	0.101601765	DGUOK
positive regulation of transmission of nerve impulse	GO:0051971	0.101601765	CARTPT
vascular associated smooth muscle contraction	GO:0014829	0.102419661	ACTG2
tight junction organization	GO:0120193	0.102419661	OCLN

C-terminal protein lipidation GC/006501 0.102419661 ATG12 protein insertion into mitochondrial outer membrane GC/0045040 0.102419661 SAMM50 primitive hemopolesis GC/0055088 0.102419661 STK4 cell differentiation involved in embryonic placenta development GC/0055088 0.102419661 FITM2 cellular triglyceride homeostasis GC/00053566 0.102419661 FITM2 CCP9 signalosome assembly GC/0010387 0.102419661 FITM2 purine ribonclosside monophosphate biosynthetic process GC/0003157 0.102419661 STK4 endocardium development GC/0003157 0.102419661 STK4 cytoplasmic sequestering of protein GC/0003157 0.102419661 STK4 negative regulation of organ growth GC/0003157 0.102419661 TPRKB TRAM-dependent toll-like receptor 4 signaling pathway GC/00046620 0.102419661 TPRKB negative regulation of bone resorption GC/0046674 0.109898828 STK4 viral mRNA expont from host cell nucleus GC/0046774 0.109898828 ACRT2 mega	phosphorylation	GO:0016310	0.102419661	MOB1A, CDK7, DGUOK, TGFBR2, AK6, STK4
primitive hemopoiesis GC:0060215 0.102419661 STK4 lipid homeostasis GO:005608 0.102419661 HNF4A, FITM2 cell differentiation involved in embryonic placenta development GC:0005008 0.102419661 STK4 cellular triglyceride homeostasis GC:00010387 0.102419661 FITM2 COP9 signalosome assembly GC:00010387 0.102419661 ADA endocardium development GC:0003157 0.102419661 STK4 cytoplasmic sequestering of protein GC:0003157 0.102419661 TPRKB TRAM-dependent toll-like receptor 4 signaling pathway GC:0003669 0.102419661 TICAMZ negative regulation of organ growth GC:0004779 0.102419661 TICAMZ negative regulation of organ growth GC:00046784 0.10989828 STK4 viral mRNA export from host cell nucleus GC:00046784 0.10989828 SIX4 DINA-templated transcription, termination GC:00046784 0.10989828 SAM2 mesenchyme migration GC:0004679 0.10989828 SIX4 medati on transport GC:00046760	C-terminal protein lipidation	GO:0006501	0.102419661	ATG12
lipid homeostasis GO:0055088 0.102419661 HNF4A, FITM2 cell differentiation involved in embryonic placenta development GO:0060706 0.102419661 STK4 cellular triglyceride homeostasis GO:0010387 0.102419661 FITM2 COP9 signalosome assembly GO:00010387 0.102419661 COP58 purine ribonucleoside monophosphate biosynthetic process GO:00010377 0.102419661 ADA endocardium development GO:000157 0.102419661 STK4 cytoplasmic sequestering of protein GO:0005170 0.102419661 TVMHAB tRNA threonylcarbamoyladenosine modification GO:0002490 0.102419661 TVMHAB TRAM-dependent toll-like receptor 4 signaling pathway GO:0005669 0.102419661 TVCAMZ megative regulation of organ growth GO:0046821 0.109898828 STK4 viral mRNA export from host cell nucleus GO:0046779 0.109898828 CARTPT DNA-templated transcription, termination GO:00046779 0.109898828 SAMA2 mesenchyme migration GO:00046820 0.109898828 SAM50 positive	protein insertion into mitochondrial outer membrane	GO:0045040	0.102419661	SAMM50
cell differentiation involved in embryonic placenta development GC:0060706 0.102419661 STK4 cellular triglyceride homeostasis GC:0013376 0.102419661 FITM2 COPP signalosome assembly GC:0010387 0.102419661 COPSs purine ribonuclooside monophosphate biosynthetic process GC:0009168 0.102419661 ADA endocardium development GC:0002949 0.102419661 STK4 cytoplasmic sequestering of protein GC:0002949 0.102419661 TPRKB IRNA threonylcarbarnoyladenosine modification GC:00047682 0.102419661 TICAM2 megative regulation of organ growth GC:0046784 0.109898628 TRCA viral mRNA export from host cell nucleus GC:00046784 0.109898628 CARTPT DNA-templated transcription, termination GC:00046784 0.109898828 ACT62 cobalt ion transport GC:0006824 0.109898828 ACT62 megative regulation of bone remodeling GC:0006824 0.109898828 ACT62 cobalt ion transport GC:0006824 0.109898828 CARTPT mitochondrial respiratory ch	primitive hemopoiesis	GO:0060215	0.102419661	STK4
cellular triglyceride homeostasis GC:0035356 0.102419661 FITM2 COP9 signalosome assembly GC:0010387 0.102419661 COP88 purine riboucloside monophosphate biosynthetic process GC:0009168 0.102419661 ADA endocardium development GC:0003157 0.102419661 STK4 cytoplasmic sequestering of protein GC:000249 0.102419661 TYR4F IRNA threonyclachosine modification GC:00035669 0.102419661 TYRAF angative regulation of organ growth GC:0046784 0.10989828 STK4 viral mRNA export from host cell nucleus GC:0046784 0.109898828 THOC3 megative regulation of bone resorption GC:0046779 0.109898828 CARTPT DNA-templated transcription, termination GC:0006353 0.109898828 ACTG2 cobalt ion transport GO:0006824 0.109898828 ACTG2 notochridial respiratory chain complex assembly GO:0006824 0.109898828 SAMM50 positive regulation of bone remodeling GO:0006760 0.109898828 SAMM50 positive regulation of response to cytoki	lipid homeostasis	GO:0055088	0.102419661	HNF4A, FITM2
COP9 signalosome assemblyGO:00103870.102419661COPS8purine ribonucleoside monophosphate biosynthetic processGO:00091680.102419661ADAendocardium developmentGO:00031570.102419661STK4cytoplasmic sequestering of proteinGO:00031570.102419661YWHABtRNA threonylcarbamoyladenosine modificationGO:00029490.102419661TPRKBTRAM-dependent toll-like receptor 4 signaling pathwayGO:00356690.102419661TICAM2negative regulation of organ growthGO:00466210.10989828STK4viral mRNA export from host cell nucleusGO:00467840.109898828THOC3megative regulation of one resorptionGO:00053530.109898828CARTPTDNA-templated transcription, terminationGO:00068530.109898828SLC30A5mesenchyme migrationGO:00068540.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00031080.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:0033140.109898828TAF9regulation of response to cytokine stimulusGO:00047000.109898828TAF9mitotic DNA replication checkpoint signalingGO:00104700.11986607TPRKBpositive regulation of cAMP-dependent protein kinase activityGO:0007220.113166507TRCM2negative regulation of phosphatidylinostol 3-kinase signalingGO:00146670.113166507TICAM2positive regulation of phosphatidylinostol 3-kinase signalingGO:00146670.113166507TICA	cell differentiation involved in embryonic placenta development	GO:0060706	0.102419661	STK4
purine ribonucleoside monophosphate biosynthetic process GO:0009168 0.102419661 ADA endocardium development GO:0003157 0.102419661 STK4 cytoplasmic sequestering of protein GO:0003157 0.102419661 TWHAB tRNA threonylcarbamoyladenosine modification GO:0002949 0.102419661 TPRKB TRAM-dependent toll-like receptor 4 signaling pathway GO:00046621 0.109898828 STK4 viral mRNA export from host cell nucleus GO:0046784 0.109898828 THCC3 negative regulation of bone resorption GO:0046779 0.109898828 SMN2 mesenchyme migration GO:0006533 0.109898828 SMN2 mesenchyme migration GO:0006824 0.109898828 SLC30A5 regulation of bone remodeling GO:0006825 0.109898828 SLC30A5 regulation of pastrulation GO:0006760 0.109898828 THF9 regulation of esponse to cytokine stimulus GO:00010470 0.109898828 RAD17 mitochondrial respiratory chain complex assembly GO:00010470 0.109898828 RAD17 negative regulation of check	cellular triglyceride homeostasis	GO:0035356	0.102419661	FITM2
endocardium development GO:0003157 0.102419661 STK4 cytoplasmic sequestering of protein GO:0051220 0.102419661 YWHAB tRNA threonylcarbamoyladenosine modification GO:00051220 0.102419661 TPRKB TRAM-dependent toll-like receptor 4 signaling pathway GO:0035660 0.102419661 TICAM2 negative regulation of organ growth GO:0046721 0.109898828 STK4 viral mRNA export from host cell nucleus GO:0046770 0.109898828 CARTPT DNA-templated transcription, termination GO:0006353 0.109898828 CARTPT DNA-templated transcription, termination GO:0006353 0.109898828 CARTPT mesenchyme migration GO:0006854 0.109898828 CARTPT mitochondrial respiratory chain complex assembly GO:00068824 0.109898828 CARTPT mitotic DNA replication of personse to cytokine stimulus GO:00010470 0.109898828 TAF9 regulation of chependent protein kinase activity GO:000070 0.109898828 RAD17 negative regulation of chependent protein kinase activity GO:000077651 0.113166507 <t< td=""><td>COP9 signalosome assembly</td><td>GO:0010387</td><td>0.102419661</td><td>COPS8</td></t<>	COP9 signalosome assembly	GO:0010387	0.102419661	COPS8
cytoplasmic sequestering of proteinGO:00512200.102419661YWHABtRNA threonylcarbamoyladenosine modificationGO:00029490.102419661TPRKBTRAM-dependent toll-like receptor 4 signaling pathwayGO:0036690.102419661TICAM2negative regulation of organ growthGO:00466210.109898828STK4viral mRNA export from host cell nucleusGO:00467840.109898828CARTPTDNA-templated transcription, terminationGO:000457790.109898828CARTPTDNA-templated transcription, terminationGO:00063530.109898828ACTG2cobalt ion transportGO:00068240.109898828ACTG2cobalt ion transportGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00468500.109898828CARTPTmitotic DNA regulation of bone remodelingGO:00068240.109898828TAF9regulation of tesponse to cytokine stimulusGO:00067600.109898828TAF9regulation of castrulationGO:000104700.109898828TAF9regulation of castrulationGO:00033140.109898828RAD17negative regulation of complex activityGO:00007220.113166507TPRKBpositive regulation of phosphatidylinositol 3-kinase signalingGO:00104670.113166507STK4detection of bacteriumGO:00104670.113166507STK4positive regulation of phosphatidylinositol 3-kinase signalingGO:00104670.113166507STK4detection of bacteriumGO:00104670.11316	purine ribonucleoside monophosphate biosynthetic process	GO:0009168	0.102419661	ADA
tRNA threonylcarbamoyladenosine modification GO:0002949 0.102419661 TPRKB TRAM-dependent toll-like receptor 4 signaling pathway GO:0035669 0.102419661 TICAM2 negative regulation of organ growth GO:0046621 0.109898828 STK4 viral mRNA export from host cell nucleus GO:0046779 0.109898828 THOC3 negative regulation of bone resorption GO:0045779 0.109898828 CARTPT DNA-templated transcription, termination GO:0006353 0.109898828 ACTG2 mesenchyme migration GO:0006824 0.109898828 ACTG2 cobalt ion transport GO:0006824 0.109898828 CARTPT mitochondrial respiratory chain complex assembly GO:0003108 0.109898828 CARTPT mitochondrial respiratory chain complex assembly GO:0010470 0.109898828 TAF9 regulation of gastrulation GO:0010470 0.109898828 RAD17 mitotic DNA replication checkpoint signaling GO:000722 0.113166507 PKIG positive regulation of cAMP-dependent protein kinase activity GO:0014067 0.113166507 STK4 <tr< td=""><td>endocardium development</td><td>GO:0003157</td><td>0.102419661</td><td>STK4</td></tr<>	endocardium development	GO:0003157	0.102419661	STK4
TRAM-dependent toll-like receptor 4 signaling pathwayGO:00356690.102419661TICAM2negative regulation of organ growthGO:00466210.109898828STK4viral mRNA export from host cell nucleusGO:00467840.109898828THOC3negative regulation of bone resorptionGO:00467790.109898828CARTPTDNA-templated transcription, terminationGO:00063530.109898828SMN2mesenchyme migrationGO:00068240.109898828SLC30A5cobalt ion transportGO:00468500.109898828SLC30A5mitochondrial respiratory chain complex assemblyGO:0031080.109898828SAMM50positive regulation of spanse to cytokine stimulusGO:00067600.109898828TAF9regulation of astrulationGO:00104700.109898828TAF9mitochondrial respiratory chain complex assemblyGO:00331080.109898828TAF9regulation of spanse to cytokine stimulusGO:00104700.109898828RAD17meditive regulation of cAMP-dependent protein kinase activityGO:0007220.113166507TPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507STAMBPpositive regulation of basteriumGO:00160450.113166507STAMBPpositive regulation of basteriumGO:00160450.113166507STAMBPpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507STAMBPpositive regulation of bacteriumGO:00160450.113166507STAMBPposi	cytoplasmic sequestering of protein	GO:0051220	0.102419661	YWHAB
negative regulation of organ growthGO:00466210.109898828STK4viral mRNA export from host cell nucleusGO:00467840.109898828THOC3negative regulation of bone resorptionGO:00457790.109898828CARTPTDNA-templated transcription, terminationGO:00063530.109898828SMN2mesenchyme migrationGO:00068240.109898828ACT62cobalt ion transportGO:00068240.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00031080.109898828SAM50positive regulation of gastrulationGO:00104700.109898828TAF9regulation of gastrulationGO:00104700.109898828HNF4Amitochondrial respiratory chain complex assemblyGO:00033140.109898828HAF9regulation of gastrulationGO:00104700.109898828HAF4mitotic DNA replication checkpoint signalingGO:00033140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGpositive regulation of chomokine (C-C motif) ligand 5 productionGO:00116510.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:10920430.113166507NAIPregulation of glucose transmembrane transportGO:00018270.113166507NAIPregulation of glucose transmembrane transportGO:000018270.113166507ATG2phosphatidyliserine metabolic processGO:000018270.113166507SERINC3 <tr< td=""><td>tRNA threonylcarbamoyladenosine modification</td><td>GO:0002949</td><td>0.102419661</td><td>TPRKB</td></tr<>	tRNA threonylcarbamoyladenosine modification	GO:0002949	0.102419661	TPRKB
viral mRNA export from host cell nucleusGC:00467840.109898828THOC3negative regulation of bone resorptionGC:00457790.109898828CARTPTDNA-templated transcription, terminationGC:00063530.109898828SMN2mesenchyme migrationGC:00063530.109898828ACTG2cobalt ion transportGC:00068240.109898828SLC30A5regulation of bone remodelingGC:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGC:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGC:00104700.109898828TAF9regulation of gastrulationGC:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGC:00033140.109898828HAD17negative regulation of cAMP-dependent protein kinase activityGC:20004800.113166507PKIGpositive regulation of chemokine (C-C motif) ligand 5 productionGC:00176510.113166507TICAM2positive regulation of phosphatidylinositol 3-kinase signalingGC:00160450.113166507STAMBPpositive regulation of glucose transmembrane transportGC:00160450.113166507NAIPregulation of glucose transmembrane transportGC:00164500.113166507NAIPregulation of glucose transmembrane transportGC:00148640.113166507ATG12phosphatidylserine metabolic processGC:00048840.113166507ATG12positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166	TRAM-dependent toll-like receptor 4 signaling pathway	GO:0035669	0.102419661	TICAM2
negative regulation of bone resorptionGO:00457790.109898828CARTPTDNA-templated transcription, terminationGO:00063530.109898828SMN2mesenchyme migrationGO:00063530.109898828ACTG2cobalt ion transportGO:00068240.109898828SLC30A5regulation of bone remodelingGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGO:00607600.109898828TAF9regulation of gastrulationGO:00104700.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:0007220.113166507PKIGpositive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507TICAM2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STK4detection of bacteriumGO:00160450.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507ATG12phosphatidylserine metabolic processGO:0016680.113166507ATG12phositive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507SERINC3	negative regulation of organ growth	GO:0046621	0.109898828	STK4
DNA-templated transcription, terminationGO:00063530.109898828SMN2mesenchyme migrationGO:00901310.109898828ACTG2cobalt ion transportGO:00068240.109898828SLC30A5regulation of bone remodelingGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGO:00104700.109898828TAF9regulation of gastrulationGO:00104700.109898828RAD17mitotic DNA replication checkpoint signalingGO:00104700.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:00007220.113166507PKIGpositive regulation of chemokine (C-C motif) ligand 5 productionGO:001716510.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of glucose transmembrane transportGO:00100720.113166507NAIPdetection of bacteriumGO:00108270.113166507NAIPmegulation of glucose transmembrane transportGO:00108270.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00314450.113166507TICAM2	viral mRNA export from host cell nucleus	GO:0046784	0.109898828	THOC3
mesenchyme migrationGO:00901310.109898828ACTG2cobalt ion transportGO:00068240.109898828SLC30A5regulation of bone remodelingGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:0031080.109898828CARTPTpositive regulation of response to cytokine stimulusGO:000607600.109898828TAF9regulation of gastrulationGO:00104700.109898828TAF9regulation of casponse to cytokine stimulusGO:00104700.109898828RAD17nitotic DNA replication checkpoint signalingGO:0033140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:00107220.113166507TICAM2positive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507STAMBPpositive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of bacteriumGO:00160450.113166507NAIPdetection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00148270.113166507ATG12phosphatidylserine metabolic processGO:0046880.113166507ATG12phosphatidylserine metabolic processGO:003066580.113166507TICAM2	negative regulation of bone resorption	GO:0045779	0.109898828	CARTPT
cobalt ion transportGO:00068240.109898828SLC30A5regulation of bone remodelingGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGO:00607600.109898828TAF9regulation of gastrulationGO:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGO:00333140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:00071220.113166507TICAM2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507TICAM2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of blosphatidylinositol 3-kinase signalingGO:00140670.113166507NAIPpositive regulation of plosphatidylinositol 3-kinase signalingGO:00140670.113166507NAIPpositive regulation of plosphatidylinositol 3-kinase signalingGO:00140670.113166507NAIPpositive regulation of glucose transmembrane transportGO:00104270.113166507NAIPregulation of glucose transmembrane transportGO:00148040.113166507ATG12phosphatidylserine metabolic processGO:00046580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2 <td>DNA-templated transcription, termination</td> <td>GO:0006353</td> <td>0.109898828</td> <td>SMN2</td>	DNA-templated transcription, termination	GO:0006353	0.109898828	SMN2
regulation of bone remodelingGO:00468500.109898828CARTPTmitochondrial respiratory chain complex assemblyGO:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGO:00607600.109898828TAF9regulation of gastrulationGO:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGO:00333140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:0007220.113166507TPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of phosphatidylinositol 3-kinase signalingGO:00160450.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00140670.113166507ATG12phosphatidylserine metabolic processGO:00448040.113166507ATG12positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	mesenchyme migration	GO:0090131	0.109898828	ACTG2
mitochondrial respiratory chain complex assemblyGO:00331080.109898828SAMM50positive regulation of response to cytokine stimulusGO:00607600.109898828TAF9regulation of gastrulationGO:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGO:0033140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:0007220.113166507TIPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of phosphatidylinositol 3-kinase signalingGO:00160450.113166507STK4detection of bacteriumGO:00108270.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	cobalt ion transport	GO:0006824	0.109898828	SLC30A5
positive regulation of response to cytokine stimulusGO:00607600.109898828TAF9regulation of gastrulationGO:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGO:00333140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:0007220.113166507TIPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:00160450.113166507STK4detection of bacteriumGO:00108270.113166507NAIPregulation of glucose transmembrane transportGO:00148240.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	regulation of bone remodeling	GO:0046850	0.109898828	CARTPT
regulation of gastrulationGO:00104700.109898828HNF4Amitotic DNA replication checkpoint signalingGO:00333140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:00007220.113166507TPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:00160450.113166507STK4detection of bacteriumGO:00108270.113166507NAIPregulation of glucose transmembrane transportGO:00148040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	mitochondrial respiratory chain complex assembly	GO:0033108	0.109898828	SAMM50
mitotic DNA replication checkpoint signalingGO:00333140.109898828RAD17negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:00007220.113166507TIPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00140670.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507ATG12phosphatidylserine metabolic processGO:00448040.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	positive regulation of response to cytokine stimulus	GO:0060760	0.109898828	TAF9
negative regulation of cAMP-dependent protein kinase activityGO:20004800.113166507PKIGtelomere maintenance via recombinationGO:00007220.113166507TPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00716510.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507ATG12autophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	regulation of gastrulation	GO:0010470	0.109898828	HNF4A
telomere maintenance via recombinationGO:00007220.113166507TPRKBpositive regulation of chemokine (C-C motif) ligand 5 productionGO:00716510.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	mitotic DNA replication checkpoint signaling	GO:0033314	0.109898828	RAD17
positive regulation of chemokine (C-C motif) ligand 5 productionGO:00716510.113166507TICAM2negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	negative regulation of cAMP-dependent protein kinase activity	GO:2000480	0.113166507	PKIG
negative regulation of phosphatidylinositol 3-kinase signalingGO:00140670.113166507STAMBPpositive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	telomere maintenance via recombination	GO:0000722	0.113166507	TPRKB
positive regulation of extrinsic apoptotic signaling pathway via death domain receptorsGO:19020430.113166507STK4detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	positive regulation of chemokine (C-C motif) ligand 5 production	GO:0071651	0.113166507	TICAM2
detection of bacteriumGO:00160450.113166507NAIPregulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	negative regulation of phosphatidylinositol 3-kinase signaling	GO:0014067	0.113166507	STAMBP
regulation of glucose transmembrane transportGO:00108270.113166507OCLNautophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	positive regulation of extrinsic apoptotic signaling pathway via death domain receptors	GO:1902043	0.113166507	STK4
autophagy of nucleusGO:00448040.113166507ATG12phosphatidylserine metabolic processGO:00066580.113166507SERINC3positive regulation of toll-like receptor 4 signaling pathwayGO:00341450.113166507TICAM2	detection of bacterium	GO:0016045	0.113166507	NAIP
phosphatidylserine metabolic process GO:0006658 0.113166507 SERINC3 positive regulation of toll-like receptor 4 signaling pathway GO:0034145 0.113166507 TICAM2	regulation of glucose transmembrane transport	GO:0010827	0.113166507	
positive regulation of toll-like receptor 4 signaling pathway GO:0034145 0.113166507 TICAM2	autophagy of nucleus	GO:0044804	0.113166507	ATG12
	phosphatidylserine metabolic process	GO:0006658	0.113166507	SERINC3
viral budding GO:0046755 0.113166507 VTA1	positive regulation of toll-like receptor 4 signaling pathway	GO:0034145	0.113166507	TICAM2
	viral budding	GO:0046755	0.113166507	VTA1

positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway	GO:1902237	0.113166507	SERINC3
central nervous system development	GO:0007417	0.114003852	STK4, NOTO
Golgi organization	GO:0007030	0.114003852	TICAM2, TMED7
adult feeding behavior	GO:0008343	0.118279992	CARTPT
lipid droplet formation	GO:0140042	0.118279992	FITM2
Golgi to vacuole transport	GO:0006896	0.118279992	AP3S1
negative regulation of protein dephosphorylation	GO:0035308	0.118279992	YWHAB
ubiquitin-dependent protein catabolic process via the C-end degron rule pathway	GO:0140627	0.118279992	FEM1C
positive regulation of establishment of protein localization to telomere	GO:1904851	0.118279992	CCT7
negative regulation of protein import into nucleus	GO:0042308	0.118279992	PKIG
negative regulation of G protein-coupled receptor signaling pathway	GO:0045744	0.118279992	YWHAB
transcription by RNA polymerase II	GO:0006366	0.12189842	CDK7, GTF2H2
hepatocyte apoptotic process	GO:0097284	0.124955995	STK4
positive regulation of blood pressure	GO:0045777	0.124955995	CARTPT
sulfation	GO:0051923	0.124955995	SULT4A1
response to zinc ion	GO:0010043	0.124955995	SLC30A5
negative regulation of appetite	GO:0032099	0.124955995	CARTPT
positive regulation of sequestering of triglyceride	GO:0010890	0.124955995	FITM2
neural tube formation	GO:0001841	0.124955995	STK4
hippo signaling	GO:0035329	0.132378379	STK4
mitotic intra-S DNA damage checkpoint signaling	GO:0031573	0.132378379	RAD17
hepatocyte differentiation	GO:0070365	0.132378379	HNF4A
sulfur compound metabolic process	GO:0006790	0.132378379	SULT4A1
box C/D snoRNP assembly	GO:0000492	0.132378379	TAF9
pyroptosis	GO:0070269	0.132378379	NAIP
negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage	GO:1902230	0.132378379	ACKR3
phosphorylation of RNA polymerase II C-terminal domain	GO:0070816	0.132378379	CDK7
RNA metabolic process	GO:0016070	0.132378379	DUSP11
2-oxoglutarate metabolic process	GO:0006103	0.132378379	MRPS36
type B pancreatic cell development	GO:0003323	0.132378379	HNF4A
protein deneddylation	GO:0000338	0.132378379	COPS8
cristae formation	GO:0042407	0.132378379	SAMM50
cell adhesion	GO:0007155	0.132378379	WISP2, PARVG, ADA, PARVB
tetrahydrofolate interconversion	GO:0035999	0.132378379	MTHFD2
negative regulation of DNA replication	GO:0008156	0.132378379	RAD17
· ·			

cellular biosynthetic process	GO:0044249	0.132378379	DGUOK
signal transduction involved in regulation of gene expression	GO:0023019	0.132378379	HNF4A
RNA polymerase II preinitiation complex assembly	GO:0051123	0.138750714	TAF9
protein targeting	GO:0006605	0.138750714	YWHAB
sex differentiation	GO:0007548	0.138750714	HNF4A
phospholipid homeostasis	GO:0055091	0.138750714	HNF4A
peptide catabolic process	GO:0043171	0.138750714	LVRN
nucleoside monophosphate phosphorylation	GO:0046940	0.138750714	AK6
establishment of endothelial barrier	GO:0061028	0.140787812	MARVELD2
multivesicular body sorting pathway	GO:0071985	0.140787812	VTA1
late endosome to vacuole transport via multivesicular body sorting pathway	GO:0032511	0.140787812	VTA1
protein phosphorylation	GO:0006468	0.140787812	CDK7, DGUOK, TGFBR2, STK TAF9
monoubiquitinated histone deubiquitination	GO:0035521	0.140787812	TAF9
kinetochore assembly	GO:0051382	0.140787812	CENPH
protein targeting to mitochondrion	GO:0006626	0.140787812	TOMM34
regulation of phosphorylation	GO:0042325	0.140787812	RAD17
transmembrane receptor protein serine/threonine kinase signaling pathway	GO:0007178	0.140787812	TGFBR2
endoplasmic reticulum to Golgi vesicle-mediated transport	GO:0006888	0.14822097	TICAM2, TMED7
lipid droplet organization	GO:0034389	0.14822097	FITM2
negative regulation of Ras protein signal transduction	GO:0046580	0.14822097	STAMBP
histone lysine methylation	GO:0034968	0.14822097	SMYD5
cellular glucose homeostasis	GO:0001678	0.1539222	CARTPT
negative regulation of cell population proliferation	GO:0008285	0.1539222	HNF4A, STK4, ACKR3
regulation of MAPK cascade	GO:0043408	0.1539222	STK4
response to interleukin-1	GO:0070555	0.1539222	TAF9
mitotic cell cycle phase transition	GO:0044772	0.1539222	CCNB1
zinc ion transmembrane transport	GO:0071577	0.15913637	SLC30A5
monoubiquitinated histone H2A deubiquitination	GO:0035522	0.15913637	TAF9
carboxylic acid metabolic process	GO:0019752	0.15913637	GADL1
anterograde synaptic vesicle transport	GO:0048490	0.15913637	AP3S1
positive regulation of glucose import	GO:0046326	0.15913637	OCLN
protein tetramerization	GO:0051262	0.16159131	STK4
regulation of G1/S transition of mitotic cell cycle	GO:2000045	0.16159131	CDK7
branching involved in blood vessel morphogenesis	GO:0001569	0.16159131	STK4
	00.0001000	0.10100101	01111

triglyceride homeostasis	GO:0070328	0.16159131	HNF4A
intracellular protein transport	GO:0006886	0.16159131	TICAM2, AP3S1, TMED7
DNA damage checkpoint signaling	GO:000077	0.16159131	RAD17
anterograde axonal transport	GO:0008089	0.168307726	AP3S1
positive regulation of catalytic activity	GO:0043085	0.168307726	YWHAB
positive regulation of transcription initiation from RNA polymerase II promoter	GO:0060261	0.168307726	TAF9
positive regulation of telomere maintenance via telomerase	GO:0032212	0.173514405	CCT7
mRNA transcription by RNA polymerase II	GO:0042789	0.173514405	TAF9
regulation of cell morphogenesis	GO:0022604	0.173514405	FITM2
spliceosomal snRNP assembly	GO:0000387	0.173514405	SMN2
T cell activation	GO:0042110	0.178393929	ADA
cellular zinc ion homeostasis	GO:0006882	0.178393929	SLC30A5
nucleobase-containing compound metabolic process	GO:0006139	0.178393929	DGUOK
transcription initiation from RNA polymerase II promoter	GO:0006367	0.178393929	CDK7
lipid storage	GO:0019915	0.181492269	FITM2
response to glucose	GO:0009749	0.181492269	HNF4A
zinc ion transport	GO:0006829	0.181492269	SLC30A5
protein K63-linked deubiquitination	GO:0070536	0.181492269	STAMBP
regulation of cytokine production	GO:0001817	0.181492269	TICAM2
defense response to virus	GO:0051607	0.181492269	TICAM2, SERINC3
binding of sperm to zona pellucida	GO:0007339	0.183416087	CCT7
immune system process	GO:0002376	0.183416087	TICAM2, SERINC3, ATG12
toxin transport	GO:1901998	0.183416087	CCT7
DNA-templated transcription, initiation	GO:0006352	0.183416087	TAF9
regulation of insulin secretion	GO:0050796	0.183416087	HNF4A
autophagy of mitochondrion	GO:0000422	0.183416087	ATG12
innate immune response	GO:0045087	0.186327478	TICAM2, SERINC3, ATG12
cellular response to hydrogen peroxide	GO:0070301	0.189006699	OSER1
signal transduction	GO:0007165	0.201912251	WISP2, TICAM2, STK4, LVR YWHAB, NMBR, ACKR3
regulation of cyclin-dependent protein serine/threonine kinase activity	GO:000079	0.203422852	CCNB1
keratinocyte differentiation	GO:0030216	0.205568001	STK4
histone H3 acetylation	GO:0043966	0.205568001	TAF9
mitotic cytokinesis	GO:0000281	0.205568001	STAMBP
mitotic cytokinesis chaperone-mediated protein folding	GO:0000281 GO:0061077	0.205568001	CCT7

mitotic spindle organization	GO:0007052	0.207548993	CENPH
one-carbon metabolic process	GO:0006730	0.207548993	MTHFD2
mRNA export from nucleus	GO:0006406	0.207548993	THOC3
mitotic metaphase plate congression	GO:0007080	0.207548993	CCNB1
nucleotide-excision repair	GO:0006289	0.207548993	GTF2H2
phospholipid biosynthetic process	GO:0008654	0.211693103	FITM2
positive regulation of protein kinase activity	GO:0045860	0.211693103	CARTPT
receptor internalization	GO:0031623	0.211693103	ACKR3
positive regulation of fat cell differentiation	GO:0045600	0.214494591	STK4
regulation of blood pressure	GO:0008217	0.214494591	LVRN
intracellular receptor signaling pathway	GO:0030522	0.214494591	HNF4A
tricarboxylic acid cycle	GO:0006099	0.214494591	MRPS36
xenobiotic metabolic process	GO:0006805	0.22063928	HNF4A
amino acid transport	GO:0006865	0.226677615	SFXN5
vasculogenesis	GO:0001570	0.230162972	ACKR3
negative regulation of cysteine-type endopeptidase activity involved in apoptotic process	GO:0043154	0.230162972	NAIP
phagocytosis	GO:0006909	0.230162972	TICAM2
anatomical structure development	GO:0048856	0.235946072	HNF4A
sphingolipid metabolic process	GO:0006665	0.241630004	SERINC3
regulation of growth	GO:0040008	0.244680968	TGFBR2
regulation of circadian rhythm	GO:0042752	0.244680968	HNF4A
glutathione metabolic process	GO:0006749	0.244680968	GDAP1L1
negative regulation of cell death	GO:0060548	0.248859007	WISP2
negative regulation of protein phosphorylation	GO:0001933	0.248859007	OCLN
negative regulation of protein kinase activity	GO:0006469	0.256856128	PKIG
cell morphogenesis	GO:0000902	0.256856128	STK4
positive regulation of interleukin-6 production	GO:0032755	0.256856128	TICAM2
cellular response to starvation	GO:0009267	0.256856128	CARTPT
positive regulation of protein binding	GO:0032092	0.258139435	STK4
apoptotic process	GO:0006915	0.258139435	NAIP, TGFBR2, STK4
biological_process	GO:0008150	0.258139435	KIAA1191
calcium-mediated signaling	GO:0019722	0.258139435	ACKR3
RNA splicing	GO:0008380	0.260585845	THOC3, SMN2
positive regulation of interferon-gamma production	GO:0032729	0.260585845	TICAM2
autophagosome assembly	GO:000045	0.260585845	ATG12
circadian regulation of gene expression	GO:0032922	0.26418065	CARTPT
- • • ·			

positive regulation of peptidyl-serine phosphorylation	GO:0033138	0.26418065	STK4
SMAD protein signal transduction	GO:0060395	0.268942491	HNF4A
Purine metabolism	bta00230	0.271755058	DGUOK, AK6, ADA
Nucleotide excision repair	bta03420	0.271755058	CDK7, GTF2H2
Cell cycle	bta04110	0.271755058	CDK7, CCNB1, YWHAB
cation transport	GO:0006812	0.272341235	SLC30A5
regulation of transcription by RNA polymerase II	GO:0006357	0.272341235	HNF4A, HIVEP2, GTF2H2, NOTO, EGR4, TAF9
cellular protein localization	GO:0034613	0.276931904	YWHAB
cholesterol homeostasis	GO:0042632	0.281447154	HNF4A
Endocytosis	bta04144	0.286539883	TGFBR2, STAMBP, VTA1, RAB11FIP5
chromosome segregation	GO:0007059	0.294552536	CENPH
chemokine-mediated signaling pathway	GO:0070098	0.294552536	ACKR3
blood coagulation	GO:0007596	0.294552536	HNF4A
mRNA transport	GO:0051028	0.298778143	THOC3
cell chemotaxis	GO:0060326	0.302934234	ACKR3
protein import into nucleus	GO:0006606	0.307021924	STK4
Hippo signaling pathway	bta04390	0.310979836	MOB1A, TGFBR2, YWHAB
Hepatitis B	bta05161	0.310979836	TGFBR2, TICAM2, YWHAB
inflammatory response	GO:0006954	0.314894641	NAIP, TICAM2
protein deubiquitination	GO:0016579	0.320315394	STAMBP
transcription, DNA-templated	GO:0006351	0.324150899	GTF2H2
cellular response to lipopolysaccharide	GO:0071222	0.331632379	TICAM2
negative regulation of catalytic activity	GO:0043086	0.331632379	YWHAB
sensory perception of sound	GO:0007605	0.335280344	MARVELD2
peptidyl-tyrosine dephosphorylation	GO:0035335	0.338624032	DUSP11
mRNA processing	GO:0006397	0.338624032	THOC3, SMN2
negative regulation of canonical Wnt signaling pathway	GO:0090090	0.340906891	STK4
protein autophosphorylation	GO:0046777	0.344367457	STK4
negative regulation of cell growth	GO:0030308	0.347770591	HNF4A
positive regulation of cytosolic calcium ion concentration	GO:0007204	0.351117185	ACKR3
cytoskeleton organization	GO:0007010	0.354408114	FITM2
glucose homeostasis	GO:0042593	0.367052916	HNF4A
intracellular signal transduction	GO:0035556	0.368330628	STK4, ASB18
neuropeptide signaling pathway	GO:0007218	0.368580789	CARTPT

positive regulation of gene expression	GO:0010628	0.375043969	OCLN, ACTG2
DNA repair	GO:0006281	0.385646765	RAD17, GTF2H2
defense response to bacterium	GO:0042742	0.39035617	NAIP
protein transport	GO:0015031	0.39035617	AP3S1, TMED7, VTA1
chemotaxis	GO:0006935	0.39035617	ACKR3
negative regulation of apoptotic process	GO:0043066	0.39035617	NAIP, TAF9
peptidyl-serine phosphorylation	GO:0018105	0.409989046	STK4
neuron differentiation	GO:0030182	0.412473728	NOTO
positive regulation of MAPK cascade	GO:0043410	0.425400838	CARTPT
positive regulation of ERK1 and ERK2 cascade	GO:0070374	0.425400838	ACKR3
chemical synaptic transmission	GO:0007268	0.427679031	CARTPT
protein folding	GO:0006457	0.429916536	CCT7
G protein-coupled receptor signaling pathway	GO:0007186	0.430725314	CARTPT, NMBR, ACKR3
proteasome-mediated ubiquitin-dependent protein catabolic process	GO:0043161	0.441965549	FEM1C
positive regulation of protein phosphorylation	GO:0001934	0.447788747	STK4
cellular response to DNA damage stimulus	GO:0006974	0.455380849	RAD17, GTF2H2
autophagy	GO:0006914	0.455380849	ATG12
protein dephosphorylation	GO:0006470	0.468071874	DUSP11
ion transmembrane transport	GO:0034220	0.481933724	SFXN5
angiogenesis	GO:0001525	0.481933724	ACKR3
cell cycle	GO:0007049	0.486522006	RAD17, CCNB1
metabolic process	GO:0008152	0.486522006	MTHFD2
negative regulation of gene expression	GO:0010629	0.486522006	OCLN
dephosphorylation	GO:0016311	0.497873988	DUSP11
nervous system development	GO:0007399	0.560406339	SMN2
positive regulation of apoptotic process	GO:0043065	0.572464717	STK4
protein ubiquitination	GO:0016567	0.579558935	ASB18, FEM1C
RNA degradation	bta03018	0.588372575	PABPC1L
NOD-like receptor signaling pathway	bta04621	0.588372575	NAIP, ATG12
Pancreatic cancer	bta05212	0.588372575	TGFBR2
Hepatitis C	bta05160	0.588372575	YWHAB, OCLN
One carbon pool by folate	bta00670	0.588372575	MTHFD2
PD-L1 expression and PD-1 checkpoint pathway in cancer	bta05235	0.588372575	TICAM2
Cytokine-cytokine receptor interaction	bta04060	0.588372575	TGFBR2, ACKR3
Cysteine and methionine metabolism	bta00270	0.588372575	CDO1
Cellular senescence	bta04218	0.588372575	TGFBR2, CCNB1

Autophagy - other	bta04136	0.588372575	ATG12
NF-kappa B signaling pathway	bta04064	0.588372575	TICAM2
Ribosome biogenesis in eukaryotes	bta03008	0.588372575	AK6
TGF-beta signaling pathway	bta04350	0.588372575	TGFBR2
Legionellosis	bta05134	0.588372575	NAIP
Bile secretion	bta04976	0.588372575	SLC4A5
Chagas disease	bta05142	0.588372575	TGFBR2
Primary immunodeficiency	bta05340	0.588372575	ADA
AGE-RAGE signaling pathway in diabetic complications	bta04933	0.588372575	TGFBR2
Nucleocytoplasmic transport	bta03013	0.588372575	THOC3
Toll-like receptor signaling pathway	bta04620	0.588372575	TICAM2
Oocyte meiosis	bta04114	0.588372575	CCNB1, YWHAB
RIG-I-like receptor signaling pathway	bta04622	0.588372575	ATG12
Viral protein interaction with cytokine and cytokine receptor	bta04061	0.588372575	ACKR3
Valine, leucine and isoleucine degradation	bta00280	0.588372575	MCCC2
Non-small cell lung cancer	bta05223	0.588372575	STK4
Biosynthesis of cofactors	bta01240	0.588372575	AK6, MTHFD2
Adherens junction	bta04520	0.588372575	TGFBR2
Pertussis	bta05133	0.588372575	TICAM2
Progesterone-mediated oocyte maturation	bta04914	0.588372575	CCNB1
Chronic myeloid leukemia	bta05220	0.588372575	TGFBR2
Pantothenate and CoA biosynthesis	bta00770	0.588372575	GADL1
Focal adhesion	bta04510	0.588372575	PARVG, PARVB
beta-Alanine metabolism	bta00410	0.588372575	GADL1
Tight junction	bta04530	0.588372575	MARVELD2, OCLN
mRNA surveillance pathway	bta03015	0.588372575	PABPC1L
Hippo signaling pathway - multiple species	bta04392	0.588372575	MOB1A
p53 signaling pathway	bta04115	0.588372575	CCNB1
Viral carcinogenesis	bta05203	0.588372575	GTF2H2, YWHAB
Maturity onset diabetes of the young	bta04950	0.588372575	HNF4A
Colorectal cancer	bta05210	0.588372575	TGFBR2
ubiquitin-dependent protein catabolic process	GO:0006511	0.597753546	FEM1C
Th17 cell differentiation	bta04659	0.599122635	TGFBR2
positive regulation of transcription by RNA polymerase II	GO:0045944	0.599922408	HNF4A, CDK7, TAF9
positive regulation of transcription by RNA polymerase II MAPK signaling pathway	GO:0045944 bta04010	0.599922408 0.603939375	HNF4A, CDK7, TAF9 TGFBR2, STK4

Osteoclast differentiation	bta04380	0.606198029	TGFBR2
Relaxin signaling pathway	bta04926	0.606529764	TGFBR2
Spliceosome	bta03040	0.606529764	THOC3
Vascular smooth muscle contraction	bta04270	0.606529764	ACTG2
AMPK signaling pathway	bta04152	0.606529764	HNF4A
Lysosome	bta04142	0.606529764	AP3S1
Necroptosis	bta04217	0.606529764	TICAM2
Cell adhesion molecules	bta04514	0.609262667	OCLN
Autophagy - animal	bta04140	0.611664944	ATG12
lipid metabolic process	GO:0006629	0.614212037	HNF4A, FITM2
Gastric cancer	bta05226	0.619649857	TGFBR2
transmembrane transport	GO:0055085	0.625000349	SLC30A5, SFXN5
cell differentiation	GO:0030154	0.625840841	HNF4A, TGFBR2
immune response	GO:0006955	0.625840841	ACKR3
ion transport	GO:0006811	0.635388401	SLC30A5, SFXN5
Hepatocellular carcinoma	bta05225	0.652623873	TGFBR2
Transcriptional misregulation in cancer	bta05202	0.652623873	TGFBR2
Metabolic pathways	bta01100	0.652623873	GADL1, DGUOK, AK6, ADA CDO1, MCCC2, MTHFD2
Axon guidance	bta04360	0.661399784	PLXNA4
cell division	GO:0051301	0.66302716	CCNB1
vesicle-mediated transport	GO:0016192	0.664724654	AP3S1
Human immunodeficiency virus 1 infection	bta05170	0.673097509	CCNB1
Lipid and atherosclerosis	bta05417	0.673097509	TICAM2
Diabetic cardiomyopathy	bta05415	0.677927285	TGFBR2
Human T-cell leukemia virus 1 infection	bta05166	0.695568428	TGFBR2
Ras signaling pathway	bta04014	0.709195777	STK4
Salmonella infection	bta05132	0.722636036	NAIP
Pathways in cancer	bta05200	0.736481479	TGFBR2, STK4
negative regulation of transcription, DNA-templated	GO:0045892	0.782939697	HNF4A
Neuroactive ligand-receptor interaction	bta04080	0.818449657	NMBR
PI3K-Akt signaling pathway	bta04151	0.818449657	YWHAB
positive regulation of transcription, DNA-templated	GO:0045893	0.857803934	HNF4A
proteolysis	GO:0006508	0.883869301	LVRN
negative regulation of transcription by RNA polymerase II	GO:0000122	0.89631138	PKIG
regulation of transcription, DNA-templated	GO:0006355	0.982180148	HNF4A

Description	Annotation_ID	Pvalue	Genes
DAVID			
Focal adhesion	bta04510	1.14E-04	BAD, COL6A2, COL6A1, VEGFB, COL6A3, PARVA, RAC1
Protein digestion and absorption	bta04974	0.003940223	COL18A1, COL6A2, COL6A1, COL6A3
PI3K-Akt signaling pathway	bta04151	0.009512771	BAD, COL6A2, COL6A1, VEGFB, COL6A3, RAC1
substrate adhesion-dependent cell spreading	GO:0034446	0.013816757	PARVA, RAC1, FERMT3
ECM-receptor interaction	bta04512	0.043584916	COL6A2, COL6A1, COL6A3
Ras signaling pathway	bta04014	0.060046135	PLA2G16, BAD, VEGFB, RAC1
apoptotic process	GO:0006915	0.076411654	AIMP2, RTN3, PRDX5, BAD
cilium assembly	GO:0042384	0.077521251	TRAF3IP1, RAB17, PCNT
angiogenesis	GO:0001525	0.137554651	COL18A1, VEGFB, RAMP1
Alzheimer's disease	bta05010	0.14860069	COX8A, PLCB3, BAD
intracellular signal transduction	GO:0035556	0.149671841	RPS6KA4, PLCB3, MARK2, ASB1
Pathways in cancer	bta05200	0.194785531	PLCB3, BAD, VEGFB, RAC1
Rap1 signaling pathway	bta04015	0.198024458	PLCB3, VEGFB, RAC1
Metabolic pathways	bta01100	0.52592914	COX8A, PLA2G16, PLCB3, SCLY, LSS, FTCD
regulation of transcription, DNA-templated	GO:0006355	0.794854335	HES6, TFIP11, LRRFIP1
GeneCodis			
Focal adhesion	bta04510	0.002045911	PARVA, RAC1, BAD, COL6A2, COL6A3, VEGFB, COL6A1
cytoskeleton-dependent intracellular transport	GO:0030705	0.061967637	CCDC88B, MYO10
Protein digestion and absorption	bta04974	0.07201279	COL18A1, COL6A2, COL6A3, COL6A1
peptidyl-tyrosine sulfation	GO:0006478	0.096219715	TPST2
sulfur oxidation	GO:0019417	0.096219715	MICAL2
positive regulation of transcription via serum response element binding	GO:0010735	0.096219715	MICAL2
regulation of cysteine-type endopeptidase activity involved in apoptotic process	GO:0043281	0.096219715	BAD
peptidyl-glutamate ADP-deribosylation	GO:0140291	0.096219715	MACROD1
positive regulation of aminoacyl-tRNA ligase activity	GO:1903632	0.096219715	AIMP2

Table S2. Results of functional enrichment analyzes performed in DAVID and GeneCodis for BF.

cellular response to nicotine	GO:0071316	0.096219715	BAD
positive regulation of intrinsic apoptotic signaling pathway in response to osmotic stress	GO:1902220	0.096219715	BAD
regulation of cell-cell adhesion mediated by integrin	GO:0033632	0.096219715	FERMT3
triterpenoid biosynthetic process	GO:0016104	0.096219715	LSS
positive regulation of glucokinase activity	GO:0033133	0.096219715	BAD
glucose catabolic process	GO:0006007	0.096219715	BAD
nucleosome organization	GO:0034728	0.096219715	МСМЗАР
purine nucleoside metabolic process	GO:0042278	0.096219715	MACROD1
rRNA (guanine-N7)-methylation	GO:0070476	0.096219715	TRMT112
cellular response to lipid	GO:0071396	0.096219715	BAD
peptidyl-glutamine methylation	GO:0018364	0.096219715	TRMT112
ADP metabolic process	GO:0046031	0.096219715	BAD
positive regulation of type B pancreatic cell development	GO:2000078	0.096219715	BAD
type II pneumocyte differentiation	GO:0060510	0.096219715	AIMP2
spliceosomal complex disassembly	GO:0000390	0.096219715	TFIP11
histone H3-S10 phosphorylation	GO:0043987	0.096219715	RPS6KA4
methotrexate transport	GO:0051958	0.096219715	SLC19A1
histone acetylation	GO:0016573	0.096219715	TRRAP, MCM3AP
positive regulation of mitochondrial membrane potential	GO:0010918	0.101831318	BAD
protein de-ADP-ribosylation	GO:0051725	0.101831318	MACROD1
regulation of bone remodeling	GO:0046850	0.101831318	GPR137
N-acylphosphatidylethanolamine metabolic process	GO:0070292	0.101831318	HRASLS5
folic acid transport	GO:0015884	0.101831318	SLC19A1
folate import across plasma membrane	GO:1904447	0.101831318	SLC19A1
positive regulation of protein phosphorylation	GO:0001934	0.101831318	SPATC1L, RAC1, VEGFB
negative regulation of bone resorption	GO:0045779	0.101831318	GPR137
negative regulation of myotube differentiation	GO:0010832	0.101831318	BHLHA15
apoptotic process	GO:0006915	0.101831318	AIMP2, BAD, WWOX, RTN3, PRDX5
regulation of neutrophil migration	GO:1902622	0.101831318	RAC1
glomerular visceral epithelial cell differentiation	GO:0072112	0.101831318	BASP1
positive regulation of histone phosphorylation	GO:0033129	0.101831318	RPS6KA4
negative regulation of transcription by RNA polymerase III	GO:0016480	0.101831318	PRDX5
pore complex assembly	GO:0046931	0.101831318	BAD
positive regulation of cAMP-dependent protein kinase activity	GO:2000481	0.101831318	SPATC1L
negative regulation of histone H2A K63-linked ubiquitination	GO:1901315	0.101831318	OTUB1

histone H3-S28 phosphorylation	GO:0043988	0.101831318	RPS6KA4
positive regulation of endoplasmic reticulum tubular network organization	GO:1903373	0.101831318	ATL3
type B pancreatic cell proliferation	GO:0044342	0.101831318	BAD
regulation of bone resorption	GO:0045124	0.101831318	GPR137
intracellular distribution of mitochondria	GO:0048312	0.101831318	BHLHA15
macromolecule metabolic process	GO:0043170	0.114751885	TFIP11
negative regulation of double-strand break repair	GO:2000780	0.114751885	OTUB1
integrin activation	GO:0033622	0.114751885	FERMT3
Golgi organization	GO:0007030	0.114751885	ATL3, BHLHA15
establishment or maintenance of epithelial cell apical/basal polarity	GO:0045197	0.114751885	MARK2
vascular endothelial growth factor receptor signaling pathway	GO:0048010	0.125298077	VEGFB
histone phosphorylation	GO:0016572	0.125298077	RPS6KA4
protein deubiquitination	GO:0016579	0.125298077	OTUB1, USP42
positive regulation of mast cell chemotaxis	GO:0060754	0.125298077	VEGFB
positive regulation of protein kinase A signaling	GO:0010739	0.125298077	SPATC1L
PI3K-Akt signaling pathway	bta04151	0.128542585	RAC1, BAD, COL6A2, COL6A3, VEGFB, COL6A
somatic hypermutation of immunoglobulin genes	GO:0016446	0.129855943	МСМЗАР
activation of cysteine-type endopeptidase activity	GO:0097202	0.129855943	BAD
regulation of ossification	GO:0030278	0.129855943	GPR137
N-terminal protein amino acid acetylation	GO:0006474	0.129855943	NAA40
Rac protein signal transduction	GO:0016601	0.129855943	RAC1
vitamin transport	GO:0051180	0.129855943	SLC19A1
male genitalia development	GO:0030539	0.129855943	ASB1
leukocyte cell-cell adhesion	GO:0007159	0.133429562	FERMT3
positive regulation of histone acetylation	GO:0035066	0.133429562	RPS6KA4
regulation of RNA metabolic process	GO:0051252	0.133429562	PCBP3
regulation of mitochondrial membrane permeability	GO:0046902	0.133429562	BAD
vascular endothelial growth factor signaling pathway	GO:0038084	0.133429562	VEGFB
positive regulation of rRNA processing	GO:2000234	0.133429562	TRMT112
protein neddylation	GO:0045116	0.133429562	UBE2F
establishment of cell polarity	GO:0030010	0.138054248	MARK2
actin filament depolymerization	GO:0030042	0.138054248	MICAL2
glucose homeostasis	GO:0042593	0.138054248	BAD, BHLHA15
mitochondrial calcium ion transmembrane transport	GO:0006851	0.138054248	BHLHA15
regulation of filopodium assembly	GO:0051489	0.138054248	MYO10

positive regulation of B cell differentiation	GO:0045579	0.138054248	BAD
positive regulation of TORC1 signaling	GO:1904263	0.140248163	GPR137
tRNA splicing, via endonucleolytic cleavage and ligation	GO:0006388	0.140248163	TRPT1
induction of positive chemotaxis	GO:0050930	0.140248163	VEGFB
engulfment of apoptotic cell	GO:0043652	0.140248163	RAC1
reticulophagy	GO:0061709	0.140248163	RETREG1
interleukin-1-mediated signaling pathway	GO:0070498	0.140248163	RPS6KA4
regulation of axonogenesis	GO:0050770	0.140248163	MARK2
release of cytochrome c from mitochondria	GO:0001836	0.145230735	BAD
regulation of protein kinase activity	GO:0045859	0.145230735	TRPT1
actin polymerization or depolymerization	GO:0008154	0.145230735	SPATC1L
coronary vasculature development	GO:0060976	0.145230735	VEGFB
positive regulation of T cell differentiation	GO:0045582	0.145230735	BAD
negative regulation of osteoclast differentiation	GO:0045671	0.148045016	GPR137
rRNA methylation	GO:0031167	0.148045016	TRMT112
cell projection assembly	GO:0030031	0.148045016	RAC1
positive regulation of proteolysis	GO:0045862	0.148045016	BAD
histone lysine methylation	GO:0034968	0.148045016	TRMT112
regulation of cell shape	GO:0008360	0.148045016	RAC1, MYO10
intrinsic apoptotic signaling pathway	GO:0097193	0.148991172	BAD
steroid hormone mediated signaling pathway	GO:0043401	0.148991172	ESRRA
ositive regulation of insulin secretion involved in cellular response to glucose stimulus	GO:0035774	0.148991172	BAD
positive regulation of release of cytochrome c from mitochondria	GO:0090200	0.148991172	BAD
poly(A)+ mRNA export from nucleus	GO:0016973	0.148991172	МСМЗАР
regulation of macromolecule metabolic process	GO:0060255	0.148991172	TRRAP
peptidyl-serine phosphorylation	GO:0018105	0.148991172	MARK2, RPS6KA4
platelet aggregation	GO:0070527	0.149761785	FERMT3
motor neuron axon guidance	GO:0008045	0.149761785	RAC1
negative regulation of signaling receptor activity	GO:2000272	0.149761785	DKK3
histone H2A acetylation	GO:0043968	0.149761785	NAA40
cortical cytoskeleton organization	GO:0030865	0.149761785	RAC1
extrinsic apoptotic signaling pathway via death domain receptors	GO:0008625	0.149761785	BAD
semaphorin-plexin signaling pathway	GO:0071526	0.149761785	RAC1
primary metabolic process	GO:0044238	0.151696623	TFIP11

biomineral tissue development	GO:0031214	0.151696623	TFIP11
positive regulation of insulin secretion	GO:0032024	0.151696623	BAD
mitochondrial electron transport, cytochrome c to oxygen	GO:0006123	0.151696623	COX8A
regulation of microtubule cytoskeleton organization	GO:0070507	0.151696623	MARK2
cellular response to reactive oxygen species	GO:0034614	0.157291193	PRDX5
extrinsic apoptotic signaling pathway in absence of ligand	GO:0097192	0.157291193	BAD
hydrogen peroxide catabolic process	GO:0042744	0.157291193	PRDX5
cardiac muscle contraction	GO:0060048	0.158627512	VEGFB
ATP metabolic process	GO:0046034	0.158627512	BAD
protein K48-linked deubiquitination	GO:0071108	0.158627512	OTUB1
sensory perception of pain	GO:0019233	0.158627512	RETREG1
regulation of G protein-coupled receptor signaling pathway	GO:0008277	0.158627512	RAMP1
substrate adhesion-dependent cell spreading	GO:0034446	0.158627512	FERMT3
autophagy	GO:0006914	0.159642667	RETREG1, GPR137
intracellular signal transduction	GO:0035556	0.159642667	ASB1, MARK2, RPS6KA4
negative regulation of protein-containing complex assembly	GO:0031333	0.162292917	TFIP11
cell redox homeostasis	GO:0045454	0.162292917	PRDX5
sprouting angiogenesis	GO:0002040	0.166957527	VEGFB
intrinsic apoptotic signaling pathway in response to DNA damage	GO:0008630	0.166957527	BAD
cell motility	GO:0048870	0.166957527	RAC1
ECM-receptor interaction	bta04512	0.167342876	COL6A2, COL6A3, COL6A1
endoplasmic reticulum organization	GO:0007029	0.170101249	ATL3
positive regulation of cysteine-type endopeptidase activity involved in apoptotic process	GO:0043280	0.170101249	BAD
heart development	GO:0007507	0.170101249	VEGFB, MICAL2
oxidative phosphorylation	GO:0006119	0.170101249	COX8A
cholesterol biosynthetic process	GO:0006695	0.171787288	LSS
cellular response to mechanical stimulus	GO:0071260	0.171787288	BAD
cell maturation	GO:0048469	0.171787288	BHLHA15
protein O-linked glycosylation	GO:0006493	0.171787288	VEGFB
extrinsic apoptotic signaling pathway	GO:0097191	0.171787288	BAD
nitrogen compound metabolic process	GO:0006807	0.174521668	TFIP11
heart looping	GO:0001947	0.174521668	MICAL2
lens development in camera-type eye	GO:0002088	0.174521668	CRYBB1
establishment or maintenance of cell polarity	GO:0007163	0.174521668	RAC1
histone H4 acetylation	GO:0043967	0.180733772	NAA40

histone H3 acetylation	GO:0043966	0.184297833	МСМЗАР
chaperone-mediated protein folding	GO:0061077	0.184297833	FKBP2
histone deacetylation	GO:0016575	0.184297833	RCOR2
mRNA export from nucleus	GO:0006406	0.188934639	МСМЗАР
positive regulation of neuron projection development	GO:0010976	0.188934639	MARK2
actin cytoskeleton reorganization	GO:0031532	0.193412994	PARVA
tRNA methylation	GO:0030488	0.193412994	TRMT112
intracellular receptor signaling pathway	GO:0030522	0.193960798	ESRRA
endoplasmic reticulum unfolded protein response	GO:0030968	0.193960798	BHLHA15
cellular response to glucose starvation	GO:0042149	0.193960798	BHLHA15
negative regulation of Wnt signaling pathway	GO:0030178	0.193960798	DKK3
positive chemotaxis	GO:0050918	0.193960798	VEGFB
apoptotic signaling pathway	GO:0097190	0.199363509	BAD
positive regulation of epithelial cell proliferation	GO:0050679	0.204663966	BAD
negative regulation of protein binding	GO:0032091	0.207273343	TFIP11
positive regulation of cell division	GO:0051781	0.207273343	VEGFB
negative regulation of cysteine-type endopeptidase activity involved in apoptotic process	GO:0043154	0.207273343	PRDX5
negative regulation of transcription, DNA-templated	GO:0045892	0.214147267	BASP1, SPINDOC, RCOR2
steroid biosynthetic process	GO:0006694	0.214671922	LSS
cellular response to hypoxia	GO:0071456	0.214671922	BAD
positive regulation of endothelial cell proliferation	GO:0001938	0.214671922	VEGFB
protein-containing complex assembly	GO:0065003	0.218191312	AIMP2
protein peptidyl-prolyl isomerization	GO:0000413	0.218191312	FKBP2
regulation of actin cytoskeleton organization	GO:0032956	0.228884172	RAC1
spermatogenesis	GO:0007283	0.23181653	SPATC1L, USP42
calcium-mediated signaling	GO:0019722	0.23792787	BHLHA15
regulation of autophagy	GO:0010506	0.239540011	GPR137
activation of cysteine-type endopeptidase activity involved in apoptotic process	GO:0006919	0.239540011	BAD
cell-matrix adhesion	GO:0007160	0.239540011	FERMT3
positive regulation of protein ubiquitination	GO:0031398	0.243823299	AIMP2
Human papillomavirus infection	bta05165	0.256767772	HES6, BAD, COL6A2, COL6A3, COL6A1
cell-cell signaling	GO:0007267	0.257658778	BHLHA15
cellular response to oxidative stress	GO:0034599	0.257658778	PRDX5
	00.000 1000	0.201000110	1118/10

regulation of cell migration	GO:0030334	0.270929888	RAC1
response to hypoxia	GO:0001666	0.279992486	VEGFB
ossification	GO:0001503	0.287258554	CLEC3A
small GTPase mediated signal transduction	GO:0007264	0.287258554	RAC1
integrin-mediated signaling pathway	GO:0007229	0.290791827	FERMT3
neuron migration	GO:0001764	0.292669622	RAC1
cellular oxidant detoxification	GO:0098869	0.292669622	PRDX5
response to oxidative stress	GO:0006979	0.296064567	PRDX5
intracellular protein transport	GO:0006886	0.297979067	RAMP1, MLPH
Ras signaling pathway	bta04014	0.313838722	RAC1, BAD, VEGFB, PLA2G16
phosphorylation	GO:0016310	0.319526381	EIF2AK1, TRRAP, RPS6KA4
negative regulation of canonical Wnt signaling pathway	GO:0090090	0.320171375	DKK3
microtubule cytoskeleton organization	GO:0000226	0.327839586	MARK2
cytoskeleton organization	GO:0007010	0.335330588	MICAL2
positive regulation of angiogenesis	GO:0045766	0.346117286	VEGFB
regulation of transcription, DNA-templated	GO:0006355	0.346117286	HES6, LRRFIP1, TRRAP, ESRRA, RPS6KA4
negative regulation of neuron apoptotic process	GO:0043524	0.346208239	RETREG1
cytokine-mediated signaling pathway	GO:0019221	0.346208239	BAD
cell population proliferation	GO:0008283	0.348800749	BAD
protein homooligomerization	GO:0051260	0.355635826	ATL3
protein phosphorylation	GO:0006468	0.361892967	EIF2AK1, MARK2, RPS6KA4
nucleic acid phosphodiester bond hydrolysis	GO:0090305	0.364674078	YBEY
actin filament organization	GO:0007015	0.383332794	RAC1
neuron differentiation	GO:0030182	0.3894293	BHLHA15
VEGF signaling pathway	bta04370	0.392542747	RAC1, BAD
Prion disease	bta05020	0.392542747	RAC1, BAD, COX8A, STIP1
rRNA processing	GO:0006364	0.395382334	YBEY
Renal cell carcinoma	bta05211	0.410860535	RAC1, BAD
Acute myeloid leukemia	bta05221	0.410860535	BAD, PER2
cell adhesion	GO:0007155	0.412735773	PARVA, FERMT3
visual perception	GO:0007601	0.423550193	CRYBB1
cellular response to DNA damage stimulus	GO:0006974	0.423550193	OTUB1, MACROD1
Pancreatic cancer	bta05212	0.446427686	RAC1, BAD
positive regulation of cell migration	GO:0030335	0.44669259	FERMT3
protein dephosphorylation	GO:0006470	0.448042357	ILKAP
Wnt signaling pathway	GO:0016055	0.452815188	WWOX

Neurotrophin signaling pathway	bta04722	0.475406878	RAC1, BAD
Hippo signaling pathway - multiple species	bta04392	0.475406878	TEAD1
Selenocompound metabolism	bta00450	0.475406878	SCLY
Colorectal cancer	bta05210	0.475406878	RAC1, BAD
Circadian rhythm	bta04710	0.475406878	PER2
Measles	bta05162	0.475406878	EIF2AK1, BAD
alpha-Linolenic acid metabolism	bta00592	0.475406878	PLA2G16
Histidine metabolism	bta00340	0.475406878	FTCD
Fc gamma R-mediated phagocytosis	bta04666	0.475406878	RAC1, MYO10
Linoleic acid metabolism	bta00591	0.475406878	PLA2G16
Antifolate resistance	bta01523	0.475406878	SLC19A1
Maturity onset diabetes of the young	bta04950	0.475406878	BHLHA15
Mismatch repair	bta03430	0.475406878	PMS2
AGE-RAGE signaling pathway in diabetic complications	bta04933	0.475406878	RAC1, VEGFB
Vitamin digestion and absorption	bta04977	0.475406878	SLC19A1
One carbon pool by folate	bta00670	0.475406878	FTCD
Steroid biosynthesis	bta00100	0.475406878	LSS
Chemical carcinogenesis - reactive oxygen species	bta05208	0.475406878	RAC1, BAD, COX8A
regulation of apoptotic process	GO:0042981	0.477510027	BAD
Hepatitis C	bta05160	0.489744275	EIF2AK1, BAD
MAPK signaling pathway	bta04010	0.489744275	RAC1, VEGFB, RPS6KA4
Non-alcoholic fatty liver disease	bta04932	0.516083131	RAC1, COX8A
positive regulation of apoptotic process	GO:0043065	0.560416042	BAD
Adherens junction	bta04520	0.567860897	RAC1
Endocrine resistance	bta01522	0.567860897	BAD
Non-small cell lung cancer	bta05223	0.567860897	BAD
Peroxisome	bta04146	0.567860897	PRDX5
Diabetic cardiomyopathy	bta05415	0.567860897	RAC1, COX8A
Amyotrophic lateral sclerosis	bta05014	0.567860897	RAC1, BAD, COX8A
Melanoma	bta05218	0.567860897	BAD
Human immunodeficiency virus 1 infection	bta05170	0.567860897	RAC1, BAD
ErbB signaling pathway	bta04012	0.567860897	BAD
Choline metabolism in cancer	bta05231	0.567860897	RAC1
Fc epsilon RI signaling pathway	bta04664	0.567860897	RAC1
Fc epsilon RI signaling pathway EGFR tyrosine kinase inhibitor resistance		0.567860897 0.567860897	RAC1 BAD

cAMP signaling pathway	bta04024	0.567860897	RAC1, BAD
Arachidonic acid metabolism	bta00590	0.567860897	PLA2G16
Pathways of neurodegeneration - multiple diseases	bta00000	0.567860897	RAC1, BAD, COX8A
Salmonella infection	bta05022	0.567860897	RAC1, CYTH3
Circadian entrainment	bta04713	0.567860897	
			PER2 PLA2G16
Regulation of lipolysis in adipocytes	bta04923	0.567860897	
Glycerophospholipid metabolism	bta00564	0.567860897	PLA2G16
Viral myocarditis	bta05416	0.567860897	RAC1
Natural killer cell mediated cytotoxicity	bta04650	0.567860897	RAC1
Chronic myeloid leukemia	bta05220	0.567860897	BAD
Fanconi anemia pathway	bta03460	0.567860897	PMS2
Platinum drug resistance	bta01524	0.567860897	BAD
Viral carcinogenesis	bta05203	0.567860897	RAC1, BAD
Pancreatic secretion	bta04972	0.567860897	RAC1
Rap1 signaling pathway	bta04015	0.567860897	RAC1, VEGFB
Chemokine signaling pathway	bta04062	0.567860897	RAC1, BAD
Cardiac muscle contraction	bta04260	0.567860897	COX8A
Lipid and atherosclerosis	bta05417	0.567860897	RAC1, BAD
B cell receptor signaling pathway	bta04662	0.567860897	RAC1
Endometrial cancer	bta05213	0.567860897	BAD
Alzheimer disease	bta05010	0.567860897	BAD, COX8A, RTN3
Herpes simplex virus 1 infection	bta05168	0.567860897	EIF2AK1, BAD
Ether lipid metabolism	bta00565	0.567860897	PLA2G16
Prostate cancer	bta05215	0.567860897	BAD
Toll-like receptor signaling pathway	bta04620	0.567860897	RAC1
RNA splicing	GO:0008380	0.577070045	TFIP11
ubiquitin-dependent protein catabolic process	GO:0006511	0.58501562	USP42
lipid metabolic process	GO:0006629	0.589646009	LSS, NAA40
Osteoclast differentiation	bta04380	0.599096211	RAC1
Toxoplasmosis	bta05145	0.599096211	BAD
TNF signaling pathway	bta04668	0.599096211	RPS6KA4
Sphingolipid signaling pathway	bta04071	0.599096211	RAC1
Pathways in cancer	bta05200	0.599096211	RAC1, BAD, VEGFB
Leukocyte transendothelial migration	bta04670	0.599096211	RAC1
Thyroid hormone signaling pathway	bta04919	0.599429783	BAD
	51001010	0.000 1201 00	Brib

regulation of gene expression	GO:0010468	0.602397582	PCBP3
cell differentiation	GO:0030154	0.602397582	AIMP2, USP42
Autophagy - animal	bta04140	0.605355826	BAD
Vascular smooth muscle contraction	bta04270	0.605355826	RAMP1
Oxidative phosphorylation	bta00190	0.605355826	COX8A
Yersinia infection	bta05135	0.605355826	RAC1
Insulin signaling pathway	bta04910	0.605355826	BAD
Relaxin signaling pathway	bta04926	0.605355826	VEGFB
Ubiquitin mediated proteolysis	bta04120	0.605355826	UBE2F
Phospholipase D signaling pathway	bta04072	0.605355826	СҮТНЗ
Phagosome	bta04145	0.605355826	RAC1
Fluid shear stress and atherosclerosis	bta05418	0.605355826	RAC1
Neutrophil extracellular trap formation	bta04613	0.605355826	RAC1
Apoptosis	bta04210	0.605355826	BAD
proteolysis	GO:0006508	0.607698127	YBEY, OTUB1
Wnt signaling pathway	bta04310	0.608612079	RAC1
Tuberculosis	bta05152	0.608612079	BAD
Hippo signaling pathway	bta04390	0.608612079	TEAD1
Protein processing in endoplasmic reticulum	bta04141	0.608612079	EIF2AK1
Hepatitis B	bta05161	0.608612079	BAD
Hepatocellular carcinoma	bta05225	0.608612079	BAD
Tight junction	bta04530	0.608612079	RAC1
cGMP-PKG signaling pathway	bta04022	0.608612079	BAD
Transcriptional misregulation in cancer	bta05202	0.61235416	PER2
Axon guidance	bta04360	0.61911165	RAC1
Kaposi sarcoma-associated herpesvirus infection	bta05167	0.61911165	RAC1
negative regulation of cell population proliferation	GO:0008285	0.622778883	AIMP2
Epstein-Barr virus infection	bta05169	0.635506945	RAC1
Chemical carcinogenesis - receptor activation	bta05207	0.635822018	BAD
Human cytomegalovirus infection	bta05163	0.652309167	RAC1
Proteoglycans in cancer	bta05205	0.652309167	RAC1
mRNA processing	GO:0006397	0.653038303	TFIP11
Regulation of actin cytoskeleton	bta04810	0.655390051	RAC1
Human T-cell leukemia virus 1 infection	bta05166	0.655390051	TRRAP
Thermogenesis	bta04714	0.676289262	COX8A
V			

Endocytosis	bta04144	0.680690908	СҮТНЗ
DNA repair	GO:0006281	0.699494006	TRRAP
negative regulation of apoptotic process	GO:0043066	0.703599908	PRDX5
Parkinson disease	bta05012	0.708473994	COX8A
translation	GO:0006412	0.72127071	AIMP2
regulation of catalytic activity	GO:0050790	0.727915429	CCZ1
regulation of transcription by RNA polymerase II	GO:0006357	0.74589163	BHLHA15, RCOR2, ESRRA
Huntington disease	bta05016	0.749268524	COX8A
positive regulation of transcription by RNA polymerase II	GO:0045944	0.783797953	BHLHA15, RPS6KA4
Neuroactive ligand-receptor interaction	bta04080	0.789820246	PRLH
Metabolic pathways	bta01100	0.793508718	FTCD, SCLY, LSS, COX8A, PLA2G16
protein ubiquitination	GO:0016567	0.834590056	ASB1
negative regulation of transcription by RNA polymerase II	GO:0000122	0.882956789	PCBP3
G protein-coupled receptor signaling pathway	GO:0007186	0.884475197	BHLHA15
signal transduction	GO:0007165	0.908758322	PRLH, MYO10

Table S3. Results of functional enrichment analyzes performed in DAVID and GeneCodis for HCW.

Description	Annotation_ID	Pvalue	Genes
DAVID			
Metabolic pathways	bta01100	0.841983307	HLCS, PIGP, CMPK2
GeneCodis			
diphosphoinositol polyphosphate catabolic process	GO:0071544	0.030789778	NUDT3
intestine smooth muscle contraction	GO:0014827	0.030789778	PTGER3
cornea development in camera-type eye	GO:0061303	0.030789778	KERA
negative regulation of gastric acid secretion	GO:0060455	0.030789778	PTGER3
dUDP biosynthetic process	GO:0006227	0.030789778	CMPK2
negative regulation of amacrine cell differentiation	GO:1902870	0.030789778	POU4F2
positive regulation of germinal center formation	GO:0002636	0.030789778	TNFSF13B
RNA decapping	GO:0110154	0.030789778	NUDT3
positive regulation of transforming growth factor beta1 production	GO:0032914	0.030789778	LUM
positive regulation of cell fate commitment	GO:0010455	0.030789778	SPDEF
regulation of retinal ganglion cell axon guidance	GO:0090259	0.030789778	POU4F2

dorsal root ganglion development	GO:1990791	0.036480587	POU4F2
negative regulation of cell fate commitment	GO:0010454	0.036480587	SPDEF
positive regulation of toll-like receptor 7 signaling pathway	GO:0034157	0.036480587	RSAD2
CD4-positive, alpha-beta T cell differentiation	GO:0043367	0.036480587	RSAD2
prostate gland growth	GO:0060736	0.036480587	PLAG1
lung goblet cell differentiation	GO:0060480	0.036480587	SPDEF
peptide cross-linking via chondroitin 4-sulfate glycosaminoglycan	GO:0019800	0.036480587	DCN
dTTP biosynthetic process	GO:0006235	0.036480587	CMPK2
organ growth	GO:0035265	0.036480587	PLAG1
negative regulation of collagen fibril organization	GO:1904027	0.036480587	DCN
positive regulation of dendrite development	GO:1900006	0.036480587	PACSIN1
positive regulation of T-helper 2 cell cytokine production	GO:2000553	0.036480587	RSAD2
positive regulation of glial cell proliferation	GO:0060252	0.036480587	PLAG1
positive regulation of immune response	GO:0050778	0.036480587	RSAD2
diadenosine hexaphosphate catabolic process	GO:1901909	0.036480587	NUDT3
dTDP biosynthetic process	GO:0006233	0.036480587	CMPK2
adenosine 5'-(hexahydrogen pentaphosphate) catabolic process	GO:1901911	0.036480587	NUDT3
B cell costimulation	GO:0031296	0.036480587	TNFSF13B
diphosphoinositol polyphosphate metabolic process	GO:0071543	0.036480587	NUDT3
negative regulation of vascular endothelial growth factor signaling pathway	GO:1900747	0.036480587	DCN
mRNA 5'-splice site recognition	GO:0000395	0.036480587	SNRPC
CD4-positive, alpha-beta T cell activation	GO:0035710	0.036480587	RSAD2
negative regulation of adipose tissue development	GO:1904178	0.036480587	POU4F2
positive regulation of transcription by RNA polymerase II	GO:0045944	0.036480587	DCN, SPDEF, POU4F2, LUM, PLAG1
positive regulation of toll-like receptor 9 signaling pathway	GO:0034165	0.036480587	RSAD2
diadenosine pentaphosphate catabolic process	GO:1901907	0.036480587	NUDT3
positive regulation of mitochondrial depolarization	GO:0051901	0.044346406	DCN
gland morphogenesis	GO:0022612	0.051787783	PLAG1
positive regulation of osteoclast differentiation	GO:0045672	0.05740156	POU4F2
B cell homeostasis	GO:0001782	0.05740156	TNFSF13B
retinal ganglion cell axon guidance	GO:0031290	0.058399709	POU4F2
protein depalmitoylation	GO:0002084	0.058399709	ABHD13
plasma membrane tubulation	GO:0097320	0.058399709	PACSIN1
intracellular estrogen receptor signaling pathway	GO:0030520	0.058399709	POU4F2
nucleoside triphosphate biosynthetic process	GO:0009142	0.058399709	CMPK2
intestinal epithelial cell development	GO:0060576	0.06288528	SPDEF

regulation of endocytosis positive regulation of axon extension positive regulation by host of viral transcription nucleoside monophosphate phosphorylation negative regulation of protein secretion RNA polymerase II preinitiation complex assembly T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0030100 GO:0045773 GO:0043923 GO:0046940 GO:0050709 GO:0051123 GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0046326 GO:0046675 GO:0090141 GO:0016239 GO:0000398	0.06288528 0.063203516 0.063203516 0.063203516 0.063203516 0.063203516 0.063203516 0.068153098 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645	PACSIN1 POU4F2 TAF11 CMPK2 RSAD2 TAF11 TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN DCN
positive regulation by host of viral transcription nucleoside monophosphate phosphorylation negative regulation of protein secretion RNA polymerase II preinitiation complex assembly T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0043923 GO:0046940 GO:0050709 GO:0051123 GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.063203516 0.063203516 0.063203516 0.063203516 0.068153098 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	TAF11 CMPK2 RSAD2 TAF11 TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN
nucleoside monophosphate phosphorylation negative regulation of protein secretion RNA polymerase II preinitiation complex assembly T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0046940 GO:0050709 GO:0051123 GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.063203516 0.063203516 0.063203516 0.063203516 0.068153098 0.071606039 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	CMPK2 RSAD2 TAF11 TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN
negative regulation of protein secretion RNA polymerase II preinitiation complex assembly T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0050709 GO:0051123 GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.063203516 0.063203516 0.068153098 0.071606039 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	RSAD2 TAF11 TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN
RNA polymerase II preinitiation complex assembly T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0051123 GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.063203516 0.068153098 0.071606039 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	TAF11 TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN
T cell costimulation cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0031295 GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.068153098 0.071606039 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	TNFSF13B TTC29 PACSIN1 POU4F2 POU4F2 DCN
cilium organization protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0044782 GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.071606039 0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	TTC29 PACSIN1 POU4F2 POU4F2 DCN
protein localization to membrane positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0072657 GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.071606039 0.072919645 0.072919645 0.072919645 0.072919645 0.072919645	PACSIN1 POU4F2 POU4F2 DCN
positive regulation of glucose import axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0046326 GO:0048675 GO:0090141 GO:0016239	0.072919645 0.072919645 0.072919645 0.072919645	POU4F2 POU4F2 DCN
axon extension positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0048675 GO:0090141 GO:0016239	0.072919645 0.072919645 0.072919645	POU4F2 DCN
positive regulation of mitochondrial fission positive regulation of macroautophagy	GO:0090141 GO:0016239	0.072919645 0.072919645	DCN
positive regulation of macroautophagy	GO:0016239	0.072919645	
			DCN
	GO:0000398		DON
mRNA splicing, via spliceosome		0.072919645	LSM6, SNRPC
negative regulation of endothelial cell migration	GO:0010596	0.072919645	DCN
synaptic vesicle endocytosis	GO:0048488	0.072919645	PACSIN1
nucleoside diphosphate phosphorylation	GO:0006165	0.072919645	CMPK2
positive regulation of transcription initiation from RNA polymerase II promoter	GO:0060261	0.080614528	TAF11
negative regulation of viral genome replication	GO:0045071	0.080614528	RSAD2
cilium movement	GO:0003341	0.080660111	TTC29
mRNA transcription by RNA polymerase II	GO:0042789	0.080660111	TAF11
cellular response to cytokine stimulus	GO:0071345	0.080660111	POU4F2
spliceosomal snRNP assembly	GO:0000387	0.080660111	SNRPC
transcription initiation from RNA polymerase II promoter	GO:0006367	0.084099409	TAF11
regulation of immune response	GO:0050776	0.087432104	TNFSF13B
retina development in camera-type eye	GO:0060041	0.089437432	POU4F2
positive regulation of B cell proliferation	GO:0030890	0.089437432	TNFSF13B
neuromuscular process controlling balance	GO:0050885	0.090140719	POU4F2
GPI anchor biosynthetic process	GO:0006506	0.090140719	PIGP
negative regulation of cell differentiation	GO:0045596	0.090140719	POU4F2
ubiquitin-dependent protein catabolic process	GO:0006511	0.091082646	TTC3, RNF144A
positive regulation of cell differentiation	GO:0045597	0.095992334	POU4F2
neuron projection morphogenesis	GO:0048812	0.097573972	PACSIN1
tumor necrosis factor-mediated signaling pathway	GO:0033209	0.097573972	TNFSF13B
B cell differentiation	GO:0030183	0.099069921	TNFSF13B
phospholipase C-activating G protein-coupled receptor signaling pathway	GO:0007200	0.099069921	PTGER3

positive regulation of T cell proliferation	GO:0042102	0.101682516	TNFSF13B
neuron development	GO:0048666	0.10422444	PACSIN1
protein K48-linked ubiquitination	GO:0070936	0.116348033	TTC3
collagen fibril organization	GO:0030199	0.116348033	LUM
positive regulation of autophagy	GO:0010508	0.117260032	DCN
multicellular organism growth	GO:0035264	0.117260032	PLAG1
positive regulation of phosphatidylinositol 3-kinase signaling	GO:0014068	0.119435953	DCN
response to virus	GO:0009615	0.124979299	RSAD2
cellular response to insulin stimulus	GO:0032869	0.126998992	POU4F2
regulation of transcription, DNA-templated	GO:0006355	0.130885107	SPDEF, POU4F2, HMGA1, PLAG1
axonogenesis	GO:0007409	0.130885107	POU4F2
positive regulation of proteasomal ubiquitin-dependent protein catabolic process	GO:0032436	0.132754795	RNF144A
negative regulation of angiogenesis	GO:0016525	0.134577631	DCN
MAPK cascade	GO:0000165	0.164490813	POU4F2
transcription, DNA-templated	GO:0006351	0.171958862	PLAG1
cellular response to lipopolysaccharide	GO:0071222	0.175660649	CMPK2
sensory perception of sound	GO:0007605	0.175660649	POU4F2
RNA processing	GO:0006396	0.175660649	ZRANB2
peptidyl-tyrosine phosphorylation	GO:0018108	0.182597323	LYN
positive regulation of cytosolic calcium ion concentration	GO:0007204	0.186505909	PTGER3
cytoskeleton organization	GO:0007010	0.187515566	PACSIN1
axon guidance	GO:0007411	0.191261776	POU4F2
adenylate cyclase-activating G protein-coupled receptor signaling pathway	GO:0007189	0.200336399	PTGER3
actin filament organization	GO:0007015	0.222327464	PACSIN1
neuron differentiation	GO:0030182	0.225451762	POU4F2
protein polyubiquitination	GO:0000209	0.236111255	RNF144A
protein ubiquitination	GO:0016567	0.238457242	TTC3, RNF144A
visual perception	GO:0007601	0.246652733	LUM
defense response to virus	GO:0051607	0.258898098	RSAD2
heart development	GO:0007507	0.268378744	POU4F2
negative regulation of gene expression	GO:0010629	0.275255906	PLAG1
protein phosphorylation	GO:0006468	0.282671977	TAF11, LYN
negative regulation of transcription by RNA polymerase II	GO:0000122	0.294459392	SPDEF, POU4F2
endocytosis	GO:0006897	0.30114504	PACSIN1
positive regulation of apoptotic process	GO:0043065	0.332124359	SPDEF
RNA splicing	GO:0008380	0.343469696	LSM6

immune response inflammatory response intracellular protein transport	GO:0006955 GO:0006954	0.379341101	TNFSF13B
intracellular protein transport	GO:0006954		
		0.38920512	PTGER3
	GO:0006886	0.402263788	DSCR3
mRNA processing	GO:0006397	0.406041012	LSM6
Legionellosis	bta05134	0.429274416	APAF1
Hepatitis C	bta05160	0.429274416	RSAD2, APAF1
Lipid and atherosclerosis	bta05417	0.429274416	LYN, APAF1
Biosynthesis of cofactors	bta01240	0.429274416	SDR16C5, CMPK2
TGF-beta signaling pathway	bta04350	0.429274416	DCN
Intestinal immune network for IgA production	bta04672	0.429274416	TNFSF13B
Apoptosis - multiple species	bta04215	0.429274416	APAF1
Biotin metabolism	bta00780	0.429274416	HLCS
GABAergic synapse	bta04727	0.429274416	KCNJ6
Ribosome	bta03010	0.429274416	RPS20, RPS10
Long-term depression	bta04730	0.429274416	LYN
Progesterone-mediated oocyte maturation	bta04914	0.429274416	MOS
Circadian entrainment	bta04713	0.429274416	KCNJ6
Fc gamma R-mediated phagocytosis	bta04666	0.429274416	LYN
Small cell lung cancer	bta05222	0.429274416	APAF1
p53 signaling pathway	bta04115	0.429274416	APAF1
GnRH secretion	bta04929	0.429274416	KCNJ6
Rheumatoid arthritis	bta05323	0.429274416	TNFSF13B
Basal transcription factors	bta03022	0.429274416	TAF11
NF-kappa B signaling pathway	bta04064	0.429274416	LYN, TNFSF13B
RNA degradation	bta03018	0.429274416	LSM6
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	bta00563	0.429274416	PIGP
Spliceosome	bta03040	0.429274416	LSM6, SNRPC
Influenza A	bta05164	0.429274416	RSAD2, APAF1
Epstein-Barr virus infection	bta05169	0.429274416	LYN, APAF1
Pyrimidine metabolism	bta00240	0.429274416	CMPK2
Regulation of lipolysis in adipocytes	bta04923	0.429274416	PTGER3
B cell receptor signaling pathway	bta04662	0.429274416	LYN
Retinol metabolism	bta00830	0.429274416	SDR16C5
Fc epsilon RI signaling pathway	bta04664	0.429274416	LYN
Coronavirus disease - COVID-19	bta05171	0.429274416	RPS20, RPS10
Morphine addiction	bta05032	0.429274416	KCNJ6

Proteoglycans in cancer	bta05205	0.429274416	DCN, LUM
Platinum drug resistance	bta01524	0.429274416	APAF1
immune system process	GO:0002376	0.433008067	RSAD2
innate immune response	GO:0045087	0.433008067	RSAD2
positive regulation of gene expression	GO:0010628	0.433008067	PLAG1
translation	GO:0006412	0.45941834	RPS20
Serotonergic synapse	bta04726	0.463845565	KCNJ6
Estrogen signaling pathway	bta04915	0.46701763	KCNJ6
Cholinergic synapse	bta04725	0.46701763	KCNJ6
Dopaminergic synapse	bta04728	0.46701763	KCNJ6
Platelet activation	bta04611	0.46701763	LYN
Oocyte meiosis	bta04114	0.46701763	MOS
Apoptosis	bta04210	0.46701763	APAF1
Measles	bta05162	0.46701763	APAF1
Cell adhesion molecules	bta04514	0.470669454	NEGR1
Oxytocin signaling pathway	bta04921	0.476946092	KCNJ6
Retrograde endocannabinoid signaling	bta04723	0.476946092	KCNJ6
Hepatitis B	bta05161	0.477025152	APAF1
Tuberculosis	bta05152	0.494446392	APAF1
Kaposi sarcoma-associated herpesvirus infection	bta05167	0.498931452	LYN
Chemokine signaling pathway	bta04062	0.498931452	LYN
Viral carcinogenesis	bta05203	0.498931452	LYN
Pathways in cancer	bta05200	0.515716363	PTGER3, APAF1
Human cytomegalovirus infection	bta05163	0.537665334	PTGER3
cAMP signaling pathway	bta04024	0.540419248	PTGER3
Regulation of actin cytoskeleton	bta04810	0.540419248	MOS
Calcium signaling pathway	bta04020	0.560932	PTGER3
regulation of transcription by RNA polymerase II	GO:0006357	0.564988524	SPDEF, POU4F2
Parkinson disease	bta05012	0.579615808	APAF1
Cytokine-cytokine receptor interaction	bta04060	0.579615808	TNFSF13B
Prion disease	bta05020	0.579615808	APAF1
Herpes simplex virus 1 infection	bta05168	0.58167393	APAF1
phosphorylation	GO:0016310	0.60068181	LYN
Huntington disease	bta05016	0.604209293	APAF1
Metabolic pathways	bta01100	0.605962621	SDR16C5, PIGP, CMPK2, HLCS
cell differentiation	GO:0030154	0.613300673	SPDEF

bta04080	0.626020604	
	0.636928604	PTGER3
bta05014	0.637091457	APAF1
GO:0007186	0.644913285	PTGER3
bta05010	0.657065871	APAF1
bta05022	0.724601354	APAF1
GO:0007165	0.857006549	PTGER3
	GO:0007186 bta05010 bta05022	GO:0007186 0.644913285 bta05010 0.657065871 bta05022 0.724601354

Table S4. Results of functional enrichment analyzes performed in DAVID and GeneCodis for SF.

Description	Annotation_ID	Pvalue	Genes
DAVID			
Taste transduction	bta04742	3.89E-12	TAS2R7, T2R12, BOTA-T2R10B, TAS2R42, LOC100140395, TAS2R10 TAS2R46, LOC782957, T2R10C
detection of chemical stimulus involved in sensory perception of bitter taste	GO:0001580	1.18E-06	T2R12, BOTA-T2R10B, TAS2R10, LOC782957, T2R10C
sensory perception of taste	GO:0050909	0.001522184	T2R65A, TAS2R42, TAS2R46
cell surface receptor signaling pathway	GO:0007166	0.021852938	ADGRF2, ADGRF1, ADGRF4, ADGRF5
transcription, DNA-templated	GO:0006351	0.420848987	MED22, MYOD1, PPARGC1A, ETV
cell differentiation	GO:0030154	0.059457963	SNAPC4, STYK1, USH1C, ETV6
regulation of transcription from RNA polymerase II promoter	GO:0006357	0.069879696	MED22, SNAPC4, ETV6, RUNX1
regulation of cell proliferation	GO:0042127	0.111204588	STYK1, DBH, TNFRSF21
oxidation-reduction process	GO:0055114	0.350875791	GLRX3, CYP2E1, DBH
Metabolic pathways	bta01100	0.490273587	INPP5E, SARDH, CYP2E1, DBH, PIK3C2A, AGPAT2, ABO
positive regulation of transcription from RNA polymerase II promoter	GO:0045944	0.66808279	LHX3, MYOD1, PPARGC1A
GeneCodis			
sensory perception of taste	GO:0050909	4.31E-10	TAS2R10, TAS2R42, T2R65A, TAS2R46, T2R10C, T2R12, BOTA T2R10B

detection of chemical stimulus involved in sensory perception of bitter taste	GO:0001580	1.49E-09	TAS2R10, T2R65A, TAS2R46, T2R10C, T2R12, BOTA-T2R10B
Taste transduction	bta04742	3.87E-09	TAS2R10, TAS2R7, TAS2R42, TAS2R8, T2R65A, TAS2R46, T2R10C, T2R12, BOTA-T2R10B
G protein-coupled receptor signaling pathway	GO:0007186	4.99E-05	TAS2R10, ADGRF1, TAS2R42, T2R65A, TAS2R46, ADGRF2, T2R10C, ADGRF5, T2R12, BOTA-T2R10B, ADGRF4
response to stimulus	GO:0050896	8.84E-05	TAS2R10, TAS2R42, T2R65A, TAS2R46, T2R10C, T2R12, BOTA- T2R10B
cell surface receptor signaling pathway	GO:0007166	0.010108139	ADGRF1, ADGRF2, ADGRF5, ADGRF4
skeletal muscle tissue regeneration	GO:0043403	0.023398156	MYMK, MYOD1
myoblast fusion	GO:0007520	0.023398156	MYMK, MYOD1
positive regulation of developmental process	GO:0051094	0.053985898	RUNX1
negative regulation of myoblast proliferation	GO:2000818	0.053985898	MYOD1
positive regulation of skeletal muscle hypertrophy	GO:1904206	0.053985898	ΜΥΜΚ
myoblast fate determination	GO:0007518	0.053985898	MYOD1
plasma membrane fusion	GO:0045026	0.053985898	ΜΥΜΚ
positive regulation of snRNA transcription by RNA polymerase II	GO:1905382	0.053985898	MYOD1
synaptonemal complex organization	GO:0070193	0.053985898	SYCE1
negative regulation of interleukin-5 production	GO:0032714	0.053985898	TNFRSF21
negative regulation of interleukin-13 production	GO:0032696	0.053985898	TNFRSF21
oligodendrocyte apoptotic process	GO:0097252	0.057460876	TNFRSF21
protein processing involved in protein targeting to mitochondrion	GO:0006627	0.057460876	PMPCA
ventral spinal cord interneuron specification	GO:0021521	0.057460876	LHX3
medial motor column neuron differentiation	GO:0021526	0.057460876	LHX3
brush border assembly	GO:1904970	0.057460876	USH1C
positive regulation of ATP biosynthetic process	GO:2001171	0.057460876	PPARGC1A
positive regulation of organelle organization	GO:0010638	0.057460876	SURF4
cellular response to oxygen levels	GO:0071453	0.057460876	MYOD1
positive regulation of phospholipid biosynthetic process	GO:0071073	0.057460876	ADGRF5
skeletal muscle fiber adaptation	GO:0043503	0.057460876	MYOD1
vitellogenesis	GO:0007296	0.057460876	ETV6

mesenchymal cell apoptotic process	GO:0097152	0.057460876	ETV6
protein localization to microvillus	GO:1904106	0.057460876	USH1C
octopamine biosynthetic process	GO:0006589	0.057460876	DBH
positive regulation of muscle cell differentiation	GO:0051149	0.05864026	MYOD1
dopamine catabolic process	GO:0042420	0.05864026	DBH
positive regulation of mitochondrion organization	GO:0010822	0.05864026	PPARGC1A
myotube differentiation involved in skeletal muscle regeneration	GO:0014908	0.05864026	MYOD1
positive regulation of skeletal muscle tissue regeneration	GO:0043415	0.05864026	MYOD1
regulation of lipid transport	GO:0032368	0.05864026	SURF4
regulation of oligodendrocyte differentiation	GO:0048713	0.05864026	TNFRSF21
negative regulation of protein localization to cilium	GO:1903565	0.05864026	INPP5E
myeloid leukocyte differentiation	GO:0002573	0.05864026	RUNX1
positive regulation of granulocyte differentiation	GO:0030854	0.05864026	RUNX1
epoxygenase P450 pathway	GO:0019373	0.05864026	CYP2E1
myotube cell development	GO:0014904	0.05864026	MYOD1
response to ATP	GO:0033198	0.05864026	KCNJ11
myoblast fusion involved in skeletal muscle regeneration	GO:0014905	0.05864026	МҮМК
signal transduction	GO:0007165	0.060817511	TAS2R10, TNFRSF21, TAS2R42, T2R65A, TAS2R46, T2R10C, T2R12, BOTA-T2R10B
positive regulation of protein localization to cilium	GO:1903566	0.063570842	ENTR1
B cell apoptotic process	GO:0001783	0.063570842	TNFRSF21
protein exit from endoplasmic reticulum	GO:0032527	0.063570842	SEC16A
spinal cord motor neuron cell fate specification	GO:0021520	0.063570842	LHX3
energy reserve metabolic process	GO:0006112	0.063570842	ADGRF5
negative regulation of interleukin-10 production	GO:0032693	0.063570842	TNFRSF21
negative regulation of chromatin binding	GO:0035562	0.063570842	MYOD1
catecholamine biosynthetic process	GO:0042423	0.063570842	DBH
norepinephrine biosynthetic process	GO:0042421	0.063570842	DBH
Golgi organization	GO:0007030	0.064517671	SEC16A, SURF4
response to muscle activity	GO:0014850	0.071363399	PPARGC1A
regulation of microvillus length	GO:0032532	0.071363399	USH1C
negative regulation of myelination	GO:0031642	0.071363399	TNFRSF21
negative regulation of B cell proliferation	GO:0030889	0.071363399	TNFRSF21
protein localization to endoplasmic reticulum exit site	GO:0070973	0.071363399	SEC16A
cellular response to tumor necrosis factor	GO:0071356	0.072930206	TNFRSF21, MYOD1

myotube differentiation	GO:0014902	0.07768367	MYOD1
negative regulation of macrophage activation	GO:0043031	0.07768367	ADGRF5
myoblast differentiation	GO:0045445	0.07768367	MYOD1
COPII vesicle coating	GO:0048208	0.07768367	SEC16A
positive regulation of binding	GO:0051099	0.07768367	MYOD1
negative regulation of appetite	GO:0032099	0.085268513	NUCB2
striated muscle cell differentiation	GO:0051146	0.085268513	MYOD1
negative regulation of cardiac muscle hypertrophy	GO:0010614	0.085268513	GLRX3
pharyngeal arch artery morphogenesis	GO:0061626	0.085268513	ADGRF5
spinal cord association neuron differentiation	GO:0021527	0.089563687	LHX3
synaptonemal complex assembly	GO:0007130	0.089563687	SYCE1
inositol phosphate dephosphorylation	GO:0046855	0.089563687	INPP5E
positive regulation of skeletal muscle fiber development	GO:0048743	0.089563687	MYOD1
glomerular filtration	GO:0003094	0.089563687	ADGRF5
positive regulation of CREB transcription factor activity	GO:0032793	0.089563687	ADGRF1
regulation of ion transmembrane transport	GO:0034765	0.094105538	KCNJ11, KCNC1
cellular response to glucocorticoid stimulus	GO:0071385	0.095192157	MYOD1
organic acid metabolic process	GO:0006082	0.095192157	CYP2E1
regulation of the force of heart contraction	GO:0002026	0.095192157	GLRX3
surfactant homeostasis	GO:0043129	0.095192157	ADGRF5
positive regulation of cilium assembly	GO:0045724	0.095192157	ENTR1
negative regulation of insulin secretion	GO:0046676	0.095192157	KCNJ11
cellular response to estradiol stimulus	GO:0071392	0.095192157	MYOD1
positive regulation of myoblast fusion	GO:1901741	0.095192157	MYOD1
lipoprotein transport	GO:0042953	0.095192157	SURF4
negative regulation of protein secretion	GO:0050709	0.095192157	SERGEF
pituitary gland development	GO:0021983	0.095192157	LHX3
hematopoietic stem cell proliferation	GO:0071425	0.095192157	ETV6
neuron differentiation	GO:0030182	0.102865124	RUNX1, LHX3
potassium ion transmembrane transport	GO:0071805	0.1076918	KCNJ11, KCNC1
maturation of LSU-rRNA	GO:0000470	0.1076918	RPL7A
ribosomal small subunit biogenesis	GO:0042274	0.1076918	SURF6
negative regulation of T cell proliferation	GO:0042130	0.1076918	TNFRSF21
positive regulation of transcription, DNA-templated	GO:0045893	0.112555715	RUNX1, LHX3, PPARGC1A, MYOD1
positive regulation of myoblast differentiation	GO:0045663	0.112816031	MYOD1
erythrocyte development	GO:0048821	0.112816031	ADGRF5

potassium ion transport	GO:0006813	0.114507342	KCNJ11, KCNC1
motor neuron axon guidance	GO:0008045	0.117597424	LHX3
synapse assembly	GO:0007416	0.117597424	ADGRF1
skeletal muscle fiber development	GO:0048741	0.120892367	MYOD1
protein import into mitochondrial matrix	GO:0030150	0.120892367	DNLZ
phosphatidylinositol dephosphorylation	GO:0046856	0.120892367	INPP5E
negative regulation of neuron death	GO:1901215	0.120892367	PPARGC1A
positive regulation of interleukin-2 production	GO:0032743	0.122773957	RUNX1
respiratory electron transport chain	GO:0022904	0.122773957	PPARGC1A
phosphatidylinositol metabolic process	GO:0046488	0.122773957	INPP5E
intracellular transport	GO:0046907	0.122773957	SEC16A
humoral immune response	GO:0006959	0.122773957	TNFRSF21
cell differentiation	GO:0030154	0.127058933	LHX3, ETV6, USH1C, MYOD1
sialylation	GO:0097503	0.127823626	ST8SIA4
ribosomal large subunit biogenesis	GO:0042273	0.13342941	SURF6
regulation of transcription, DNA-templated	GO:0006355	0.13342941	RUNX1, LHX3, ETV6, PPARGC1A, MYOD1, DNLZ
positive regulation of transcription by RNA polymerase II	GO:0045944	0.13342941	RUNX1, LHX3, ETV6, PPARGC1A, MYOD1
energy homeostasis	GO:0097009	0.134958308	PPARGC1A
skeletal muscle tissue development	GO:0007519	0.134958308	MYOD1
regulation of cell differentiation	GO:0045595	0.134958308	RUNX1
endoplasmic reticulum organization	GO:0007029	0.135949095	SEC16A
regulation of insulin secretion	GO:0050796	0.135949095	KCNJ11
dorsal/ventral pattern formation	GO:0009953	0.135949095	LHX3
placenta development	GO:0001890	0.135949095	LHX3
skeletal muscle cell differentiation	GO:0035914	0.135949095	MYOD1
potassium ion import across plasma membrane	GO:1990573	0.140145338	KCNJ11
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	GO:0000184	0.140145338	MAGOHB
carbohydrate transport	GO:0008643	0.144181218	SLC2A6
neuron apoptotic process	GO:0051402	0.144181218	TNFRSF21
regulation of cytokinesis	GO:0032465	0.146916578	ENTR1
histone H4 acetylation	GO:0043967	0.146916578	MYOD1
inner ear development	GO:0048839	0.146916578	LHX3
regulation of lipid metabolic process	GO:0019216	0.150643142	ADGRF5
histone H3 acetylation	GO:0043966	0.150643142	MYOD1

muscle organ development	GO:0007517	0.154232233	MYOD1
memory	GO:0007613	0.154232233	ADGRF1
phospholipid biosynthetic process	GO:0008654	0.157690066	AGPAT2
neurogenesis	GO:0022008	0.157690066	ETV6
myelination	GO:0042552	0.166632622	TNFRSF21
xenobiotic metabolic process	GO:0006805	0.166632622	CYP2E1
chondrocyte differentiation	GO:0002062	0.17097055	RUNX1
hemopoiesis	GO:0030097	0.17522227	RUNX1
anatomical structure development	GO:0048856	0.178117462	MYOD1
regulation of RNA splicing	GO:0043484	0.178117462	MYOD1
glucose metabolic process	GO:0006006	0.179652428	KCNJ11
fat cell differentiation	GO:0045444	0.179652428	ADGRF5
T cell receptor signaling pathway	GO:0050852	0.179652428	TNFRSF21
regulation of circadian rhythm	GO:0042752	0.182342958	PPARGC1A
lipid homeostasis	GO:0055088	0.182342958	SURF4
nervous system process	GO:0050877	0.184938801	KCNJ11
regulation of alternative mRNA splicing, via spliceosome	GO:0000381	0.184938801	MYOD1
response to xenobiotic stimulus	GO:0009410	0.18870185	KCNJ11
cellular response to starvation	GO:0009267	0.192393231	MYOD1
meiotic cell cycle	GO:0051321	0.196014459	SYCE1
circadian regulation of gene expression	GO:0032922	0.20438818	PPARGC1A
cellular response to oxidative stress	GO:0034599	0.217297339	PPARGC1A
mRNA transport	GO:0051028	0.239068531	MAGOHB
cell division	GO:0051301	0.241681719	SYCE1, ENTR1
regulation of transcription by RNA polymerase II	GO:0006357	0.243305414	RUNX1, LHX3, ETV6, MYOD1, MED22
ossification	GO:0001503	0.243305414	RUNX1
vesicle-mediated transport	GO:0016192	0.243305414	SEC16A, CACFD1
transcription, DNA-templated	GO:0006351	0.257859412	MYOD1
regulation of membrane potential	GO:0042391	0.259341523	KCNJ11
mitochondrion organization	GO:0007005	0.259341523	PPARGC1A
positive regulation of DNA-binding transcription factor activity	GO:0051091	0.259341523	PPARGC1A
protein transport	GO:0015031	0.259341523	SEC16A, ENTR1, SURF4
rhythmic process	GO:0048511	0.259341523	PPARGC1A
neuron projection development	GO:0031175	0.259341523	ADGRF1
sensory perception of sound	GO:0007605	0.259341523	USH1C
			-

ribosome biogenesis	GO:0042254	0.28187716	RPL7A
protein localization to plasma membrane	GO:0072659	0.288043354	SEC16A
glucose homeostasis	GO:0042593	0.290212425	ADGRF5
negative regulation of neuron apoptotic process	GO:0043524	0.290629692	PPARGC1A
adaptive immune response	GO:0002250	0.290629692	TNFRSF21
adenylate cyclase-activating G protein-coupled receptor signaling pathway	GO:0007189	0.296469557	ADGRF1
protein homooligomerization	GO:0051260	0.298474547	KCNC1
regulation of catalytic activity	GO:0050790	0.303329817	GPSM1, SERGEF
cell projection organization	GO:0030030	0.305996551	ENTR1
protein folding	GO:0006457	0.349760084	DNLZ
cell cycle	GO:0007049	0.368894237	SYCE1, ENTR1
autophagy	GO:0006914	0.37551901	SEC16A
protein stabilization	GO:0050821	0.386175333	DNLZ
fatty acid metabolic process	GO:0006631	0.393398302	CYP2E1
regulation of apoptotic process	GO:0042981	0.412495293	CARD9
protein glycosylation	GO:0006486	0.424947734	ST8SIA4
mRNA splicing, via spliceosome	GO:0000398	0.428392102	MAGOHB
endocytosis	GO:0006897	0.440184452	SURF4
lipid metabolic process	GO:0006629	0.478214029	CYP2E1, AGPAT2
carbohydrate metabolic process	GO:0005975	0.478214029	ABO
transmembrane transport	GO:0055085	0.488117094	SLC2A6, KCNC1
RNA splicing	GO:0008380	0.490640618	MAGOHB
ion transport	GO:0006811	0.49965567	KCNJ11, KCNC1
regulation of gene expression	GO:0010468	0.518693678	MYOD1
mRNA processing	GO:0006397	0.572211044	MAGOHB
negative regulation of apoptotic process	GO:0043066	0.624525543	LHX3
translation	GO:0006412	0.642073478	RPS13
Alcoholic liver disease	bta04936	0.697097309	CYP2E1, PPARGC1A
Arachidonic acid metabolism	bta00590	0.697097309	CYP2E1
Th1 and Th2 cell differentiation	bta04658	0.697097309	NOTCH1
Drug metabolism - other enzymes	bta00983	0.697097309	CYP2E1
Notch signaling pathway	bta04330	0.697097309	NOTCH1
Longevity regulating pathway	bta04211	0.697097309	PPARGC1A
Fc gamma R-mediated phagocytosis	bta04666	0.697097309	VAV2
T cell receptor signaling pathway	bta04660	0.697097309	VAV2
Cocaine addiction	bta05030	0.697097309	GPSM1

Chronic myeloid leukemia	bta05220	0.697097309	RUNX1
Type II diabetes mellitus	bta04930	0.697097309	KCNJ11, ABCC8
GnRH secretion	bta04929	0.697097309	KCNJ11
Bacterial invasion of epithelial cells	bta05100	0.697097309	CD2AP
Th17 cell differentiation	bta04659	0.697097309	RUNX1
Glycerolipid metabolism	bta00561	0.697097309	AGPAT2
Drug metabolism - cytochrome P450	bta00982	0.697097309	CYP2E1
Tight junction	bta04530	0.697097309	RUNX1, YBX3
B cell receptor signaling pathway	bta04662	0.697097309	VAV2
Protein digestion and absorption	bta04974	0.697097309	MEP1A
mRNA surveillance pathway	bta03015	0.697097309	MAGOHB
ABC transporters	bta02010	0.697097309	ABCC8
C-type lectin receptor signaling pathway	bta04625	0.697097309	CARD9
Ribosome	bta03010	0.697097309	RPL7A, RPS13
Adipocytokine signaling pathway	bta04920	0.697097309	PPARGC1A
Phosphatidylinositol signaling system	bta04070	0.697097309	INPP5E, PIK3C2A
Endocrine resistance	bta01522	0.697097309	NOTCH1
Glycerophospholipid metabolism	bta00564	0.697097309	AGPAT2
Fc epsilon RI signaling pathway	bta04664	0.697097309	VAV2
Leukocyte transendothelial migration	bta04670	0.697097309	VAV2
Glycine, serine and threonine metabolism	bta00260	0.697097309	SARDH
Transcriptional misregulation in cancer	bta05202	0.697097309	RUNX1, ETV6
Tyrosine metabolism	bta00350	0.697097309	DBH
MicroRNAs in cancer	bta05206	0.697097309	NOTCH1, MIR126
Metabolism of xenobiotics by cytochrome P450	bta00980	0.697097309	CYP2E1
Natural killer cell mediated cytotoxicity	bta04650	0.697097309	VAV2
Fat digestion and absorption	bta04975	0.697097309	AGPAT2
Glucagon signaling pathway	bta04922	0.697097309	PPARGC1A
Inositol phosphate metabolism	bta00562	0.697097309	INPP5E, PIK3C2A
Nucleocytoplasmic transport	bta03013	0.697097309	MAGOHB
Coronavirus disease - COVID-19	bta05171	0.697097309	RPL7A, RPS13
Acute myeloid leukemia	bta05221	0.697097309	RUNX1
Glycosphingolipid biosynthesis - lacto and neolacto series	bta00601	0.697097309	ABO
Steroid hormone biosynthesis	bta00140	0.697097309	CYP2E1
	bta04931	0.697097309	PPARGC1A
Linoleic acid metabolism	bta00591	0.697097309	CYP2E1
	51000001	0.001001000	011221

Insulin secretion	bta04911	0.697097309	KCNJ11, ABCC8
Chemical carcinogenesis - DNA adducts	bta05204	0.697097309	CYP2E1
apoptotic process	GO:0006915	0.698868571	TNFRSF21
Thyroid hormone signaling pathway	bta04919	0.70040114	NOTCH1
AMPK signaling pathway	bta04152	0.70040114	PPARGC1A
Yersinia infection	bta05135	0.71088575	VAV2
Spliceosome	bta03040	0.71088575	MAGOHB
Apelin signaling pathway	bta04371	0.71088575	PPARGC1A
Insulin signaling pathway	bta04910	0.71088575	PPARGC1A
Phospholipase D signaling pathway	bta04072	0.712795388	AGPAT2
Spinocerebellar ataxia	bta05017	0.712795388	MYOD1
NOD-like receptor signaling pathway	bta04621	0.712795388	CARD9
Breast cancer	bta05224	0.712795388	NOTCH1
Non-alcoholic fatty liver disease	bta04932	0.712795388	CYP2E1
Tuberculosis	bta05152	0.72456931	CARD9
Protein processing in endoplasmic reticulum	bta04141	0.72456931	SEL1L
Chemokine signaling pathway	bta04062	0.741058727	VAV2
Metabolic pathways	bta01100	0.741058727	DBH, INPP5E, ABO, CYP2E1, PIK3C2A, AGPAT2, SARDH
Focal adhesion	bta04510	0.74291576	VAV2
cAMP signaling pathway	bta04024	0.74291576	VAV2
Proteoglycans in cancer	bta05205	0.74291576	VAV2
Chemical carcinogenesis - reactive oxygen species	bta05208	0.74291576	CYP2E1
Regulation of actin cytoskeleton	bta04810	0.74291576	VAV2
Rap1 signaling pathway	bta04015	0.74291576	VAV2
Lipid and atherosclerosis	bta05417	0.74291576	VAV2
Thermogenesis	bta04714	0.752700297	PPARGC1A
Salmonella infection	bta05132	0.762804875	PIK3C2A
Cytokine-cytokine receptor interaction	bta04060	0.768358662	TNFRSF21
Prion disease	bta05020	0.768358662	NOTCH1
Pathways in cancer	bta05200	0.768358662	NOTCH1, RUNX1
Herpes simplex virus 1 infection	bta05168	0.769185481	CARD9
Huntington disease	bta05016	0.787902101	PPARGC1A
	11.05405	0.798839114	NOTCH1
Human papillomavirus infection	bta05165	0.790039114	Nerein
proteolysis	GO:0006508	0.807775542	PMPCA

Description	Annotation_ID	Pvalue	Genes
DAVID			
digestion	GO:0007586	0.003942035	PRSS1, PRSS2, LOC780933
Influenza A	bta05164	0.023102138	PRSS1, RSAD2, PRSS2, LOC780933
proteolysis	GO:0006508	0.025310057	PRSS1, PRSS58, PRSS2, LOC780933
Protein digestion and absorption	bta04974	0.035866771	PRSS1, PRSS2, LOC780933
Pancreatic secretion	bta04972	0.045708679	PRSS1, PRSS2, LOC780933
Neuroactive ligand-receptor interaction	bta04080	0.084599515	GRIA1, PRSS1, PRSS2, LOC780933
NF-kappa B signaling pathway	bta04064	0.041495948	LOC100300510, LOC509513, BCL2L1
Transcriptional misregulation in cancer	bta05202	0.123956503	LOC100300510, LOC509513, BCL2L1
Ras signaling pathway	bta04014	0.204712072	LOC100300510, LOC509513, BCL2L1
HTLV-I infection	bta05166	0.247233905	LOC100300510, LOC509513, BCL2L1
protein folding	GO:0006457	0.057178177	TXN, TXNDC8, PDRG1
Jak-STAT signaling pathway	bta04630	0.100808338	LIFR, OSMR, BCL2L1
Calcium signaling pathway	bta04020	0.145804691	MYLK2, LOC100300510, LOC509513
spermatogenesis	GO:0007283	0.147900668	ARID4A, TXNDC8, BCL2L1
Rap1 signaling pathway	bta04015	0.177379463	LOC100300510, LOC509513, ID1
positive regulation of cell proliferation	GO:0008284	0.238028083	LIFR, OSMR, BCL2L1
transcription, DNA-templated	GO:0006351	0.373307643	ASXL1, ID1, PLAGL2, TXN
negative regulation of transcription from RNA polymerase II promoter	GO:0000122	0.451505904	ASXL1, ID1, TXN
Metabolic pathways	bta01100	0.459052115	MGAM, COX4l2, LOC100296901, CMPK2, GALNT10, DGKH
GeneCodis			
glycerol ether metabolic process	GO:0006662	0.003875352	TXN, TXNDC8
negative regulation of high voltage-gated calcium channel activity	GO:1901842	0.053038887	REM1
phosphatidylserine exposure on apoptotic cell surface	GO:0070782	0.053038887	XKR7

Table S5. Results of functional enrichment analyzes performed in DAVID and GeneCodis for MARB.

striated muscle contraction	GO:0006941	0.053038887	MYLK2
positive regulation of immune response	GO:0050778	0.053038887	RSAD2
positive regulation of peptidyl-cysteine S-nitrosylation	GO:2000170	0.053038887	TXN
negative regulation of hydrogen peroxide-induced cell death	GO:1903206	0.053038887	TXN
CD4-positive, alpha-beta T cell activation	GO:0035710	0.053038887	RSAD2
histone H3-K9 trimethylation	GO:0036124	0.053038887	ARID4A
anterograde dendritic transport of neurotransmitter receptor complex	GO:0098971	0.053038887	KIF3B
dUDP biosynthetic process	GO:0006227	0.053038887	CMPK2
response to nitric oxide	GO:0071731	0.053038887	TXN
positive regulation of toll-like receptor 7 signaling pathway	GO:0034157	0.053038887	RSAD2
positive regulation of T-helper 2 cell cytokine production	GO:2000553	0.053038887	RSAD2
regulation of muscle filament sliding	GO:0032971	0.053038887	MYLK2
microtubule-based movement	GO:0007018	0.053038887	ACTR10, KIF3B
regulation of endopeptidase activity	GO:0052548	0.053038887	PSMA3
positive regulation of ion transmembrane transporter activity	GO:0032414	0.053038887	TRPC6
mitotic spindle assembly	GO:0090307	0.053038887	KIF3B, TPX2
dTDP biosynthetic process	GO:0006233	0.053038887	CMPK2
CD4-positive, alpha-beta T cell differentiation	GO:0043367	0.053038887	RSAD2
skeletal muscle satellite cell differentiation	GO:0014816	0.053038887	MYLK2
positive regulation of toll-like receptor 9 signaling pathway	GO:0034165	0.053038887	RSAD2
dTTP biosynthetic process	GO:0006235	0.053038887	CMPK2
oncostatin-M-mediated signaling pathway	GO:0038165	0.053038887	LIFR
establishment of Sertoli cell barrier	GO:0097368	0.053038887	ARID4A
retrograde axonal transport of mitochondrion	GO:0098958	0.053038887	ACTR10
negative regulation of protein export from nucleus	GO:0046826	0.053038887	TXN
fucose metabolic process	GO:0006004	0.053038887	POFUT1
protein O-linked fucosylation	GO:0036066	0.053038887	POFUT1
opsin transport	GO:0036372	0.053038887	KIF3B
leukemia inhibitory factor signaling pathway	GO:0048861	0.053038887	LIFR
regulation of gene expression by genomic imprinting	GO:0006349	0.054316376	ARID4A
apoptotic process involved in development	GO:1902742	0.054316376	XKR7
ciliary neurotrophic factor-mediated signaling pathway	GO:0070120	0.054316376	LIFR
manganese ion transport	GO:0006828	0.054316376	TRPC6
histone H4-K20 trimethylation	GO:0034773	0.054316376	ARID4A
vacuolar proton-transporting V-type ATPase complex assembly	GO:0070072	0.054316376	TM9SF4
positive regulation of protein localization to cell surface	GO:2000010	0.054316376	TM9SF4

cardiac muscle tissue morphogenesis	GO:0055008	0.06190619	MYLK2
regulation of mitotic spindle organization	GO:0060236	0.06190619	TPX2
positive regulation of protein exit from endoplasmic reticulum	GO:0070863	0.068760313	TM9SF4
histone H3-K4 trimethylation	GO:0080182	0.068760313	ARID4A
nucleoside triphosphate biosynthetic process	GO:0009142	0.068856357	CMPK2
positive regulation of calcium ion transport	GO:0051928	0.068856357	TRPC6
TOR signaling	GO:0031929	0.068856357	RICTOR
response to radiation	GO:0009314	0.068856357	TXN
protein polyglutamylation	GO:0018095	0.068856357	TTLL9
ionotropic glutamate receptor signaling pathway	GO:0035235	0.068856357	GRIA1
positive regulation of DNA binding	GO:0043388	0.07786477	TXN
nucleoside monophosphate phosphorylation	GO:0046940	0.07786477	CMPK2
engulfment of apoptotic cell	GO:0043652	0.07786477	XKR7
negative regulation of protein secretion	GO:0050709	0.07786477	RSAD2
neuromuscular synaptic transmission	GO:0007274	0.07786477	MYLK2
protein localization to membrane	GO:0072657	0.088252486	TM9SF4
regulation of Notch signaling pathway	GO:0008593	0.088252486	POFUT1
digestion	GO:0007586	0.088252486	PRSS2
erythrocyte development	GO:0048821	0.093816506	ARID4A
nucleoside diphosphate phosphorylation	GO:0006165	0.097517893	CMPK2
regulation of intracellular pH	GO:0051453	0.097517893	TM9SF4
mitochondrial electron transport, cytochrome c to oxygen	GO:0006123	0.102615478	COX4I2
extrinsic apoptotic signaling pathway in absence of ligand	GO:0097192	0.105821788	BCL2L1
negative regulation of viral genome replication	GO:0045071	0.105821788	RSAD2
collagen catabolic process	GO:0030574	0.110511918	PRSS2
regulation of cytosolic calcium ion concentration	GO:0051480	0.114218006	TRPC6
cell redox homeostasis	GO:0045454	0.114218006	TXN
negative regulation of intrinsic apoptotic signaling pathway	GO:2001243	0.114218006	BCL2L1
intrinsic apoptotic signaling pathway in response to DNA damage	GO:0008630	0.114218006	BCL2L1
response to cytokine	GO:0034097	0.114218006	LIFR
skeletal muscle cell differentiation	GO:0035914	0.116666749	MYLK2
oxidative phosphorylation	GO:0006119	0.116666749	COX4I2
protein O-linked glycosylation	GO:0006493	0.11896455	POFUT1
intraciliary transport	GO:0042073	0.11896455	KIF3B
proteasomal protein catabolic process	GO:0010498	0.12477501	PSMA3
activation of protein kinase activity	GO:0032147	0.12477501	TPX2

somitogenesis	GO:0001756	0.12477501	POFUT1
spermatogenesis	GO:0007283	0.126670817	ARID4A, TXNDC8
peptidyl-threonine phosphorylation	GO:0018107	0.126670817	MYLK2
ubiquitin-dependent protein catabolic process	GO:0006511	0.132787703	RNF144A, PSMA3
cellular protein modification process	GO:0006464	0.151105996	TTLL9
phagocytosis	GO:0006909	0.151105996	TM9SF4
T cell receptor signaling pathway	GO:0050852	0.158737347	FYB1
single fertilization	GO:0007338	0.16148346	TRPC6
proteolysis	GO:0006508	0.164801472	PRSS2, PRSS58, HM13
response to virus	GO:0009615	0.164801472	RSAD2
flagellated sperm motility	GO:0030317	0.164801472	TTLL9
negative regulation of DNA-binding transcription factor activity	GO:0043433	0.171701637	ID1
positive regulation of proteasomal ubiquitin-dependent protein catabolic process	GO:0032436	0.172511015	RNF144A
proteolysis involved in cellular protein catabolic process	GO:0051603	0.172511015	PSMA3
circadian regulation of gene expression	GO:0032922	0.172511015	ID1
positive regulation of peptidyl-serine phosphorylation	GO:0033138	0.172511015	TXN
response to hypoxia	GO:0001666	0.203199227	TM9SF4
integrin-mediated signaling pathway	GO:0007229	0.21289274	FYB1
cellular response to lipopolysaccharide	GO:0071222	0.229976876	CMPK2
peptidyl-tyrosine phosphorylation	GO:0018108	0.237659605	HCK
Notch signaling pathway	GO:0007219	0.237659605	POFUT1
protein autophosphorylation	GO:0046777	0.237659605	MYLK2
microtubule cytoskeleton organization	GO:0000226	0.238867711	TTLL9
positive regulation of cytosolic calcium ion concentration	GO:0007204	0.240040427	TRPC6
protein localization to plasma membrane	GO:0072659	0.248224094	FYB1
cytokine-mediated signaling pathway	GO:0019221	0.250221917	LIFR
calcium ion transmembrane transport	GO:0070588	0.250221917	TRPC6
negative regulation of transcription, DNA-templated	GO:0045892	0.252185057	ARID4A, ID1
calcium ion transport	GO:0006816	0.255432408	TRPC6
apoptotic process	GO:0006915	0.25773842	BCL2L1, TPX2
regulation of cell shape	GO:0008360	0.270010709	PALM2
protein polyubiquitination	GO:0000209	0.295657705	RNF144A
protein folding	GO:0006457	0.295973941	PDRG1
defense response to virus	GO:0051607	0.325936848	RSAD2
cilium assembly	GO:0060271	0.333911318	KIF3B

angiogenesis	GO:0001525	0.333911318	POFUT1
ion transmembrane transport	GO:0034220	0.333911318	GRIA1
phosphorylation	GO:0016310	0.34028947	HCK, MYLK2
regulation of apoptotic process	GO:0042981	0.341548751	BCL2L1
protein glycosylation	GO:0006486	0.351729793	POFUT1
Other types of O-glycan biosynthesis	bta00514	0.35376786	POFUT1, GALNT10
Amyotrophic lateral sclerosis	bta05014	0.35376786	BCL2L1, COX4I2, ACTR10, GRIA1 PSMA3
Parkinson disease	bta05012	0.35376786	BCL2L1, TXN, COX4I2, PSMA3
Pathways of neurodegeneration - multiple diseases	bta05022	0.35376786	BCL2L1, COX4l2, ACTR10, GRIA1 PSMA3
Axon guidance	bta04360	0.35376786	SEMA3A, EPHB6, TRPC6
Huntington disease	bta05016	0.35376786	COX4I2, ACTR10, GRIA1, PSMA
JAK-STAT signaling pathway	bta04630	0.35376786	LIFR, BCL2L1, OSMR
ion transport	GO:0006811	0.369673365	TRPC6, GRIA1
protein phosphorylation	GO:0006468	0.375945663	HCK, MYLK2
negative regulation of transcription by RNA polymerase II	GO:0000122	0.386790838	TXN, ID1
nervous system development	GO:0007399	0.386790838	POFUT1
immune response	GO:0006955	0.452921912	FYB1
vesicle-mediated transport	GO:0016192	0.488373743	KIF3B
cell division	GO:0051301	0.488373743	TPX2
positive regulation of cell population proliferation	GO:0008284	0.511848874	LIFR
immune system process	GO:0002376	0.511848874	RSAD2
positive regulation of gene expression	GO:0010628	0.511848874	MYLK2
innate immune response	GO:0045087	0.511848874	RSAD2
Starch and sucrose metabolism	bta00500	0.551262074	MGAM
Apoptosis	bta04210	0.551262074	BCL2L1
PI3K-Akt signaling pathway	bta04151	0.551262074	BCL2L1, OSMR
Small cell lung cancer	bta05222	0.551262074	BCL2L1
Oxidative phosphorylation	bta00190	0.551262074	COX4I2
Circadian entrainment	bta04713	0.551262074	GRIA1
Galactose metabolism	bta00052	0.551262074	MGAM
Fluid shear stress and atherosclerosis	bta05418	0.551262074	TXN
	blubblibb		
Influenza A	bta05164	0.551262074	PRSS2, RSAD2
Influenza A Proteasome		0.551262074 0.551262074	PRSS2, RSAD2 PSMA3

Non-alcoholic fatty liver disease	bta04932	0.551262074	COX4I2
Mucin type O-glycan biosynthesis	bta00512	0.551262074	GALNT10
Cytokine-cytokine receptor interaction	bta04060	0.551262074	LIFR, OSMR
Gastric acid secretion	bta04971	0.551262074	MYLK2
Measles	bta05162	0.551262074	BCL2L1
Dopaminergic synapse	bta04728	0.551262074	GRIA1
Endocrine and other factor-regulated calcium reabsorption	bta04961	0.551262074	TRPV5
Glycerolipid metabolism	bta00561	0.551262074	DGKH
Toxoplasmosis	bta05145	0.551262074	BCL2L1
Pancreatic cancer	bta05212	0.551262074	BCL2L1
Apelin signaling pathway	bta04371	0.551262074	MYLK2
Vascular smooth muscle contraction	bta04270	0.551262074	MYLK2
Protein digestion and absorption	bta04974	0.551262074	PRSS2
Pyrimidine metabolism	bta00240	0.551262074	CMPK2
Retrograde endocannabinoid signaling	bta04723	0.551262074	GRIA1
Phospholipase D signaling pathway	bta04072	0.551262074	DGKH
Mineral absorption	bta04978	0.551262074	TRPV6
Parathyroid hormone synthesis, secretion and action	bta04928	0.551262074	TRPV5
Autophagy - animal	bta04140	0.551262074	BCL2L1
Spinocerebellar ataxia	bta05017	0.551262074	GRIA1, PSMA3
cGMP-PKG signaling pathway	bta04022	0.551262074	TRPC6, MYLK2
Platelet activation	bta04611	0.551262074	MYLK2
Neuroactive ligand-receptor interaction	bta04080	0.551262074	PRSS2, GRIA1
NF-kappa B signaling pathway	bta04064	0.551262074	BCL2L1
Biosynthesis of cofactors	bta01240	0.551262074	CMPK2
Salmonella infection	bta05132	0.551262074	TXN, ACTR10
Choline metabolism in cancer	bta05231	0.551262074	DGKH
Long-term depression	bta04730	0.551262074	GRIA1
Nicotine addiction	bta05033	0.551262074	GRIA1
Carbohydrate digestion and absorption	bta04973	0.551262074	MGAM
Glycerophospholipid metabolism	bta00564	0.551262074	DGKH
Cardiac muscle contraction	bta04260	0.551262074	COX4I2
Long-term potentiation	bta04720	0.551262074	GRIA1
p53 signaling pathway	bta04115	0.551262074	BCL2L1
Apoptosis - multiple species	bta04215	0.551262074	BCL2L1
Glutamatergic synapse	bta04724	0.551262074	GRIA1
- · · ·			

Mitophagy - animal bta04170 0.551282074 BCL2L1 Phosphatidylinositol signaling system bta04070 0.551282074 DGKH Pancreatic secretion bta04072 0.551282074 DGKH TGF-beta signaling pathway bta04350 0.551282074 ID1 Prion disease bta05020 0.551282074 GCV4L PSMA3 Amphetamine addiction bta05031 0.551282074 GCV4L PSMA3 OLTornic myeloid leukemia bta04221 0.551282074 GCL2L1 NDO-like receptor signaling pathway bta0421 0.551282074 BCL2L1 Oxytocin signaling pathway bta0421 0.551282074 BCL2L1 Platinum drug resistance bta04970 0.551282074 BCL2L1 Yersinia infection bta04380 0.551282074 ID1 Mitopp signaling pathway bta04390 0.551282074 ID1 Mitopp signaling pathway bta04390 0.551282074 ID1 Mitopp athway bta04350 0.551282074 ID1 Alzheimer disease bta04350 0.551282074	EGFR tyrosine kinase inhibitor resistance	bta01521	0.551262074	BCL2L1
Phosphatidylinostol signaling system bta04070 0.551282074 DGKH Pancreatic secretion bta04350 0.551282074 ID1 TGF-beta signaling pathway bta04350 0.551282074 ID1 Prion disease bta05020 0.551282074 GRIA1 Chronic myeloid leukemia bta05220 0.551282074 GRIA1 NOD-like receptor signaling pathway bta0421 0.551282074 BCL2L1 Oxytoin signaling pathway bta04921 0.551282074 BCL2L1 Oxytoin signaling pathway bta04921 0.551282074 BCL2L1 Versinia infection bta04970 0.551282074 BCL2L1 Yersinia infection bta04970 0.551282074 BCL2L1 Yersinia infection bta05136 0.551282074 BCL2L1 Yersinia infection bta04390 0.551282074 ID1 Rap 1 signaling pathway bta040390 0.551282074 ID1 Kabeimer disease bta05010 0.551282074 ID7 Kapa 1 signaling pathway bta04550 0.551282074 ID7 <td>-</td> <td></td> <td></td> <td></td>	-			
Pancreatic secretion bta04972 0.551262074 PRSS2 TGF-beta signaling pathway bta04500 0.551262074 CDX42, PSMA3 Amphetamine addiction bta05020 0.551262074 CDX42, PSMA3 Amphetamine addiction bta05020 0.551262074 CRX42, PSMA3 NOD-like receptor signaling pathway bta04621 0.551262074 BCL2L1 NOD-like receptor signaling pathway bta04921 0.551262074 BCL2L1, TXN Oxytocin signaling pathway bta04921 0.551262074 BCL2L1, TXN Salivary secretion bta04921 0.551262074 BCL2L1 Yersinia infection bta04330 0.551262074 BCL2L1 Yersinia infection bta04330 0.551262074 BCL2L1 Hippo signaling pathway bta04390 0.551262074 ID1 Rept signaling pathway bta045150 0.551262074 ID1, FYB1 Signaling pathways regulating pluripotency of stem cells bta04560 0.551262074 COX42, PSMA3 Hepattits C bta045160 0.551262074 RCX42, PSMA3 Gladesio				
TGF-beta signaling pathway bta04350 0.551262074 ID1 Prion disease bta05020 0.551262074 COX42, PSMA3 Amphetamine addiction bta05031 0.551262074 GRIA1 NOD-like receptor signaling pathway bta04520 0.551262074 BCL2L1 NOD-like receptor signaling pathway bta04921 0.551262074 MVL/z Salivary secretion bta04920 0.551262074 MVL/z Salivary secretion bta04970 0.551262074 MVL/z Yersina infection bta05135 0.551262074 FVB1 Hippo signaling pathway bta04390 0.551262074 FVB1 Rapt signaling pathway bta04015 0.551262074 ID1, FVB1 Signaling pathway regulating pathway bta04050 0.551262074 ID7, FVB1 Signaling pathways regulation in cancer bta05160 0.551262074 ILFR, ID1 Alzheimer disease bta05100 0.551262074 HCK Hepatocellular carcinoma bta05220 0.569920807 BCL2L1 Cel adhesion GC 0.0071155				
Prior disease bta05020 0.551262074 COX4/2, PSMA3 Amphetamine addiction bta05031 0.551262074 GRIA1 Chronic myeloid leukemia bta05220 0.551262074 BCL2L1 NOD-like receptor signaling pathway bta04621 0.551262074 BCL2L1, TXN Oxytocin signaling pathway bta04921 0.551262074 MVLK2 Salivary secretion bta04921 0.551262074 MVLK2 Oxytocin signaling pathway bta04970 0.551262074 MVLK2 Platinum drug resistance bta04970 0.551262074 BCL2L1 Yersinia infection bta04309 0.551262074 BCL2L1 Mippo signaling pathway bta04350 0.551262074 ID1 Rapt signaling pathway bta04550 0.551262074 ID1 Signaling pathways regulating pluripotency of stem cells bta05160 0.551262074 ILFR, ID1 Alzheimer disease bta05160 0.551262074 RSAD2 Fc garma R-mediated phagocytosis bta04666 0.551262074 HCK4 Hepatoselluira cararionma <td< td=""><td></td><td></td><td></td><td></td></td<>				
Amphetamine addictionbta050310.551262074GRIA1Chronic myeloid leukemiabta052200.551262074BCL2L1NOD-like receptor signaling pathwaybta046210.551262074BCL2L1, TXNOxytocin signaling pathwaybta049210.551262074BCL2L1Quitor signaling pathwaybta049700.551262074MYLK2Salivary secretionbta049700.551262074BCL2L1Platinum drug resistancebta051350.551262074BCL2L1Yersinia infectionbta051350.551262074ID1Rap1 signaling pathwaybta043900.551262074ID1Rap1 signaling pathwaybta045500.551262074ID1, FYB1Signaling pathways regulating pluripotency of stem cellsbta051600.551262074LIFR, ID1Atzheimer diseasebta050100.551262074COX412, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046600.551262074HCKHepattis Cbta051600.551262074HCKGell adhesionGO0071550.569920807BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKFcoal adhesionbta051700.597590749MYLK2Minon immunodeficiency virus 1 infectionbta051700.597590749MYLK2Human immunodeficiency virus 1 infectionbta051610.597590749MYLK2Lipid and atheresoclerosisbta054150.597590749MYLK2Lipid and atheresocleros				
Chronic myeloid leukemia bta05220 0.551262074 BCL2L1 NOD-like receptor signaling pathway bta04621 0.551262074 BCL2L1, TXN Oxytocin signaling pathway bta044970 0.551262074 MYLK2 Salivary secretion bta04970 0.551262074 MRPV6 Platinum drug resistance bta041524 0.551262074 BCL2L1 Yersinia infection bta05135 0.551262074 ID1 Rap1 signaling pathway bta04015 0.551262074 ID1 Rap1 signaling pathway bta04550 0.551262074 ID1 Signaling pathway regulating pluripotency of stem cells bta04501 0.551262074 ILFR, ID1 Alzheimer disease bta04510 0.551262074 COX42, PSMA3 Hepatitis C bta04510 0.551262074 RSAD2 Fc gamma R-mediated phagocytosis bta04566 0.551262074 HCK Hepatois crainoma bta05225 0.569921669 TM9SF4 Transcriptional misregulation in cancer bta05202 0.577331416 BCL2L1 Kaposi sarcoma-associated herpesvirus				
NOD-like receptor signaling pathwaybta046210.551262074BCL2L1, TXNOxytocin signaling pathwaybta049210.551262074MYLK2Salivary secretionbta049700.551262074TRPV6Platinum drug resistancebta015240.551262074BCL2L1Yersinia infectionbta051350.551262074FYB1Hippo signaling pathwaybta040100.551262074ID1Rapt signaling pathwaybta040150.551262074ID1Rapt signaling pathwaybta040150.551262074ID1, FYB1Signaling pathways regulating pluripotency of stem cellsbta045000.551262074LIFR, ID1Alzheimer diseasebta051000.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074RCKHepatocellular carcinomabta052250.569920807BCL2L1Kaposi sarcom-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta0440100.597590749BCL2L1Kaposi sarcom-associated herpesvirus infectionbta045100.597590749BCL2L1Diabetic cardiomyopathybta0445100.597590749BCL2L1Diabetic cardiomyopathybta0445100.597590749BCL2L1Diabetic cardiomyopathybta04150.597590749BCL2L1Lipid and atherosclerosisbta045170.597590749BCL2L1CAMP signaling pathwaybta040420.603865033GRIA1				
Oxytocin signaling pathwaybta049210.551262074MYLK2Salivary secretionbta049700.551262074TRPV6Platinum drug resistancebta015240.551262074BCL2L1Yersinia infectionbta051350.551262074FVB1Hippo signaling pathwaybta043900.551262074ID1Rap1 signaling pathwaybta041500.551262074ID1Rap1 signaling pathwaybta045500.551262074ILIFR, ID1Alzheimer diseasebta045500.551262074COX412, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatoticiluar carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569920807BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta05150.597590749MYLK2Human immunodeficiency virus 1 infectionbta05150.597590749MYLK2Human immunodeficiency virus 1 infectionbta05150.597590749COX4I2Lipid and atherosclerosisbta054170.597590749BCL2L1Chemokine signaling pathwaybta046100.603650503GRIA1Human T-cell leukemia virus 1 infectionbta054170.597590749COX4I2Lipid and atherosclerosisbta054170.597590749COX4I2Lipid and atherosclerosisbta054100.603850503GRIA1Hum	•			
Salivary secretionbta049700.551262074TRPV6Platinum drug resistancebta015240.551262074BCL2L1Yersinia infectionbta051350.551262074BCL2L1Hippo signaling pathwaybta043900.551262074ID1Rap1 signaling pathwaybta040150.551262074ID1Rap1 signaling pathwaybta045500.551262074ILIF, ID1Alzheimer diseasebta045500.551262074COX4I2, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1Cell adhesionGO:00071550.557890814HCKTranscriptional misregulation in cancerbta051670.578990814HCKChemokine signaling pathwaybta045100.597590749BCL2L1Maposi sarcoma-associated herpesvirus infectionbta051700.597590749BCL2L1Lipid and atherosoclerosisbta051700.597590749BCL2L1Diabetic cardiomyopathybta051670.597590749BCL2L1Lipid and atherosoclerosisbta051610.03650503BCL2L1Chemical actin cytoskeletonbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta045100.603650503BCL2L1Regulation of actin cytoskeletonbta045100.603650503BCL2L1Regulation of actin cytoskeletonbta040240.603650503BCL2L1Regulation of actin cytoskeleto				,
Platinum drug resistance bta01524 0.551262074 BCL2L1 Yersinia infection bta05135 0.551262074 FVB1 Hippo signaling pathway bta04015 0.551262074 ID1 Rap1 signaling pathway bta04015 0.551262074 ID1, FVB1 Signaling pathway regulating pluripotency of stem cells bta04015 0.551262074 LIFR, ID1 Alzheimer disease bta05010 0.551262074 COX412, FSMA3 Hepatitis C bta055160 0.551262074 HCK Fc gamma R-mediated phagocytosis bta04666 0.551262074 HCK Hepatocellular carcinoma bta05525 0.569920807 BCL2L1 Cell adhesion GO:0007155 0.569920807 BCL2L1 Kaposi sarcoma-associated herpesvirus infection bta05170 0.578990814 HCK Chemokine signaling pathway bta04662 0.578990814 HCK Gene adhesion bta05170 0.597590749 MVLK2 Human immunodeficiency virus 1 infection bta05415 0.597590749 BCL2L1 Diabetic cardiomyopathy				
Yersiniabta051350.551262074FYB1Hippo signaling pathwaybta043900.551262074ID1Rap1 signaling pathwaybta040150.551262074ID1, FYB1Signaling pathways regulating pluripotency of stem cellsbta045500.551262074LIFR, ID1Alzheimer diseasebta051600.551262074CXX4/2, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGC):00071550.569920807BCL2L1Capasi ascroma-associated herpesvirus infectionbta051670.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749MYLK2Human immunodeficiency virus 1 infectionbta054150.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta054170.597590749BCL2L1CAMP signaling pathwaybta004170.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta0448100.603650503GCX4/2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503GCX4/2Olfactory transductionbta047140.603895701OCX4/2Olfactory transductionbt				
Hippo signaling pathwaybta043900.551262074ID1Rap1 signaling pathwaybta040150.551262074ID1, FVB1Signaling pathways regulating pluripotency of stem cellsbta045500.551262074LIFR, ID1Alzheimer diseasebta05010.551262074COX412, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL211cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL211Kaposi sarcoma-associated herpesvirus infectionbta045100.597590749MVLK2Human immunodeficiency virus 1 infectionbta051100.597590749BCL211Diabetic cardiomyopathybta045100.597590749BCL211Diabetic cardiomyopathybta045110.597590749BCL211Lipid and atherosclerosisbta054170.597590749BCL211CAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta054170.597590749BCL211Regulation of actin cytoskeletonbta045100.603650503GRIA1Human T-cell leukemia virus 1 infectionbta054100.603650503GCL21Regulation of actin cytoskeletonbta048100.603850503GCL21Chemical carcinogenesis - reactive oxygen speciesbta0547400.603850503COX4I2Olfactory transduct				
Rap1 signaling pathwaybta040150.551262074ID1, FYB1Signaling pathways regulating pluripotency of stem cellsbta045500.551262074LIFR, ID1Alzheimer diseasebta050100.551262074COX412, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta040620.578990814HCKFocal adhesionbta040620.578990814HCKChemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta051700.597590749MYLK2Human immunodeficiency virus 1 infectionbta05150.503590749BCL2L1Diabetic cardiomyopathybta040120.5037590749BCL2L1Lipid and atherosclerosisbta040120.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta051660.603650503GCV412Olfactory transductionbta040200.6038650503GCV412Olfactory transductionbta040140.603895701OCX412Olfactory transductionbta047400.603895701GCX412				
Signaling pathways regulating pluripotency of stem cellsbta045500.551262074LIFR, ID1Alzheimer diseasebta050100.551262074COX4/2, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:0071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.597590749MYLK2Human immunodeficiency virus 1 infectionbta051170.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1CAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503GCL2L1Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4/2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4/2	Hippo signaling pathway	bta04390	0.551262074	ID1
Alzheimer diseasebta050100.551262074COX4/2, PSMA3Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.577890814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503MYLK2Regulation of actin cytoskeletonbta051660.603650503GCL2L1Regulation of actin cytoskeletonbta054160.603650503GCX4/2Olfactory transductionbta047400.603895701OCX4/2Olfactory transductionbta047400.603895701GCX4/2Diabetic parking pathwaybta040140.603895701COX4/2	Rap1 signaling pathway	bta04015	0.551262074	ID1, FYB1
Hepatitis Cbta051600.551262074RSAD2Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKFocal adhesionbta040620.577890814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749MYLK2Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta054170.597590749BCL2L1CAMP signaling pathwaybta040240.603650503GRIA1Human immunodeficiency virus 1 infectionbta051660.603650503BCL2L1Chemical carcinomyopathybta051660.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603855013BCL2L1Chemical carcinogenesis - reactive oxygen speciesbta05280.603650503COX4I2Olfactory transductionbta047400.603895701OR&V1Ras signaling pathwaybta040140.603895701COX4I2Olfactory transductionbta047400.603895701COX4I2Olfactory transductionbta047400.603895701COX4I2 <td< td=""><td>Signaling pathways regulating pluripotency of stem cells</td><td>bta04550</td><td>0.551262074</td><td>LIFR, ID1</td></td<>	Signaling pathways regulating pluripotency of stem cells	bta04550	0.551262074	LIFR, ID1
Fc gamma R-mediated phagocytosisbta046660.551262074HCKHepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.57890814HCKChemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta051070.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta048100.603650503BCL2L1Regulation of actin cytoskeletonbta052080.603650503MYLK2Olfactory transductionbta052080.603650503COX412Olfactory transductionbta047400.603895701OR8V1Ras signaling pathwaybta04140.603895701BCL2L1	Alzheimer disease	bta05010	0.551262074	COX4I2, PSMA3
Hepatocellular carcinomabta052250.569920807BCL2L1cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.577890814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta045170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Chemical carcinogenesis - reactive oxygen speciesbta048100.603650503COX4I2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta047400.603895701COX4I2	Hepatitis C	bta05160	0.551262074	RSAD2
cell adhesionGO:00071550.569951669TM9SF4Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Olfactory transductionbta052080.603650503COX4I2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701COX4I2	Fc gamma R-mediated phagocytosis	bta04666	0.551262074	HCK
Transcriptional misregulation in cancerbta052020.577331416BCL2L1Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749BCL2L1Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1	Hepatocellular carcinoma	bta05225	0.569920807	BCL2L1
Kaposi sarcoma-associated herpesvirus infectionbta051670.578990814HCKChemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749COX4l2Lipid and atherosclerosisbta054170.597590749BCL2L1CAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	cell adhesion	GO:0007155	0.569951669	TM9SF4
Chemokine signaling pathwaybta040620.578990814HCKFocal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749COX4l2Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	Transcriptional misregulation in cancer	bta05202	0.577331416	BCL2L1
Focal adhesionbta045100.597590749MYLK2Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749COX4/2Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4/2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4/2	Kaposi sarcoma-associated herpesvirus infection	bta05167	0.578990814	HCK
Human immunodeficiency virus 1 infectionbta051700.597590749BCL2L1Diabetic cardiomyopathybta054150.597590749COX4/2Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GR/A1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4/2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4/2	Chemokine signaling pathway	bta04062	0.578990814	HCK
Diabetic cardiomyopathybta054150.597590749COX4/2Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4/2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4/2	Focal adhesion	bta04510	0.597590749	MYLK2
Lipid and atherosclerosisbta054170.597590749BCL2L1cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	Human immunodeficiency virus 1 infection	bta05170	0.597590749	BCL2L1
cAMP signaling pathwaybta040240.603650503GRIA1Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	Diabetic cardiomyopathy	bta05415	0.597590749	COX4I2
Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	Lipid and atherosclerosis	bta05417	0.597590749	BCL2L1
Human T-cell leukemia virus 1 infectionbta051660.603650503BCL2L1Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4l2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4l2	cAMP signaling pathway	bta04024	0.603650503	GRIA1
Regulation of actin cytoskeletonbta048100.603650503MYLK2Chemical carcinogenesis - reactive oxygen speciesbta052080.603650503COX4/2Olfactory transductionbta047400.603895701OR6V1Ras signaling pathwaybta040140.603895701BCL2L1Thermogenesisbta047140.603895701COX4/2		bta05166	0.603650503	BCL2L1
Chemical carcinogenesis - reactive oxygen species bta05208 0.603650503 COX4/2 Olfactory transduction bta04740 0.603895701 OR6V1 Ras signaling pathway bta04014 0.603895701 BCL2L1 Thermogenesis bta04714 0.603895701 COX4/2				
Olfactory transduction bta04740 0.603895701 OR6V1 Ras signaling pathway bta04014 0.603895701 BCL2L1 Thermogenesis bta04714 0.603895701 COX4/2				
Ras signaling pathway bta04014 0.603895701 BCL2L1 Thermogenesis bta04714 0.603895701 COX4/2				
Thermogenesis bta04714 0.603895701 COX4/2				
	Calcium signaling pathway	bta04020	0.60542382	MYLK2

cell cycle	GO:0007049	0.606224672	TPX2
Herpes simplex virus 1 infection	bta05168	0.649979281	BCL2L1
Metabolic pathways	bta01100	0.649979281	DGKH, GALNT10, COX4I2, CMPK2, MGAM
protein ubiquitination	GO:0016567	0.671565753	RNF144A
cell differentiation	GO:0030154	0.701022054	ID1
transmembrane transport	GO:0055085	0.701022054	TRPC6
protein transport	GO:0015031	0.702069592	TIMM9
positive regulation of transcription by RNA polymerase II	GO:0045944	0.825516611	ARID4A
Pathways in cancer	bta05200	0.858718711	BCL2L1
regulation of transcription, DNA-templated	GO:0006355	0.897895103	FOXS1
regulation of transcription by RNA polymerase II	GO:0006357	0.898716116	ARID4A

Table S6. Results of functional enrichment analyzes performed in DAVID and GeneCodis for IMF.

Description	Annotation_ID	Pvalue	Genes
DAVID			
Metabolic pathways	bta01100	0.691685662	GULO, B4GALT1, EPHX2, COX10
GeneCodis			
urea transmembrane transport	GO:0071918	0.006477835	AQP7, AQP3
glycerol transport	GO:0015793	0.006477835	AQP7, AQP3
renal water absorption	GO:0070295	0.007183028	AQP7, AQP3
water transport	GO:0006833	0.014992992	AQP7, AQP3
negative regulation of extrinsic apoptotic signaling pathway in absence of ligand	GO:2001240	0.033076573	EYA2, UNC5B
cellular response to oxygen-glucose deprivation	GO:0090650	0.034583741	AQP3
negative regulation of intracellular signal transduction	GO:1902532	0.034583741	DDIT4
diadenosine triphosphate catabolic process	GO:0015964	0.034583741	FHIT
signal complex assembly	GO:0007172	0.034583741	PTK2B
protein-containing complex disassembly	GO:0032984	0.034583741	DDIT4
protein galactosylation	GO:0042125	0.034583741	B4GALT1
development of secondary sexual characteristics	GO:0045136	0.034583741	B4GALT1
regulation of neurotrophin TRK receptor signaling pathway	GO:0051386	0.034583741	DOK5
heme O biosynthetic process	GO:0048034	0.034583741	COX10

esophagus smooth muscle contraction	GO:0014846	0.034583741	SULF2
regulation of multicellular organismal process	GO:0051239	0.034583741	PTK2B
vacuolar transport	GO:0007034	0.034583741	CHMP5, NDFIP2
heparan sulfate proteoglycan metabolic process	GO:0030201	0.034583741	SULF2
regulation of leukocyte chemotaxis	GO:0002688	0.034583741	PTK2B
negative regulation of establishment of protein localization to mitochondrion	GO:1903748	0.034583741	DNAJA1
tRNA export from nucleus	GO:0006409	0.043161925	NOL6
negative regulation of MHC class II biosynthetic process	GO:0045347	0.043161925	NFX1
negative regulation of nitrosative stress-induced intrinsic apoptotic signaling pathway	GO:1905259	0.043161925	DNAJA1
anterior/posterior axon guidance	GO:0033564	0.043161925	UNC5B
regulation of acrosome reaction	GO:0060046	0.043161925	B4GALT1
lactose biosynthetic process	GO:0005989	0.043161925	B4GALT1
negative regulation of protein transport	GO:0051224	0.043161925	NDFIP2
regulation of hepatocyte proliferation	GO:2000345	0.043161925	SULF2
negative regulation of transporter activity	GO:0032410	0.043161925	NDFIP2
heme A biosynthetic process	GO:0006784	0.043161925	COX10
histone dephosphorylation	GO:0016576	0.043161925	EYA2
striated muscle tissue development	GO:0014706	0.043161925	EYA2
epithelial cell differentiation involved in prostate gland development	GO:0060742	0.049250641	PSAP
regulation of protein transport	GO:0051223	0.049250641	DNAJA1
oligosaccharide biosynthetic process	GO:0009312	0.049250641	B4GALT1
nucleoside transport	GO:0015858	0.049250641	SLC29A3
L-ascorbic acid biosynthetic process	GO:0019853	0.049250641	GULO
cytochrome complex assembly	GO:0017004	0.049250641	COX10
positive regulation of apoptotic process	GO:0043065	0.049250641	DNAJA1, TRIM35, B4GALT1
glial cell-derived neurotrophic factor receptor signaling pathway	GO:0035860	0.049250641	SULF2
positive regulation of immune system process	GO:0002684	0.049250641	AQP3
urea transport	GO:0015840	0.049250641	AQP3
netrin-activated signaling pathway	GO:0038007	0.053994458	UNC5B
penetration of zona pellucida	GO:0007341	0.053994458	B4GALT1
protein sulfation	GO:0006477	0.053994458	HS3ST3B1
protein localization to mitochondrion	GO:0070585	0.053994458	DNAJA1
purine nucleotide metabolic process	GO:0006163	0.053994458	FHIT
positive regulation of epithelial cell proliferation involved in wound healing	GO:0060054	0.053994458	B4GALT1
respiratory chain complex IV assembly	GO:0008535	0.053994458	COX10
regulation of receptor recycling	GO:0001919	0.053994458	CHMP5

prostate along growth	GO:0060736	0.052004459	PSAP
prostate gland growth viral budding	GO:0060736 GO:0046755	0.053994458 0.05825016	PSAP CHMP5
glycoprotein biosynthetic process	GO:0009101	0.05825016	B4GALT1
epithelial cell development	GO:0002064	0.05825016	B4GALT1
angiogenesis involved in wound healing	GO:0060055	0.05825016	B4GALT1
liver regeneration	GO:0097421	0.05825016	SULF2
glomerular basement membrane development	GO:0032836	0.05825016	SULF2
neurotrophin TRK receptor signaling pathway	GO:0048011	0.05825016	DDIT4
acute inflammatory response	GO:0002526	0.05825016	B4GALT1
nucleoside transmembrane transport	GO:1901642	0.062388783	SLC29A3
cellular respiration	GO:0045333	0.062388783	COX10
innervation	GO:0060384	0.062388783	SULF2
negative regulation of JUN kinase activity	GO:0043508	0.062388783	DNAJA1
cellular response to muramyl dipeptide	GO:0071225	0.062388783	CHMP5
single strand break repair	GO:0000012	0.062388783	APTX
regulation of cellular component organization	GO:0051128	0.062388783	PTK2B
regulation of actin cytoskeleton reorganization	GO:2000249	0.064816548	PTK2B
vesicle budding from membrane	GO:0006900	0.064816548	CHMP5
mitochondrial outer membrane permeabilization	GO:0097345	0.064816548	EYA2
suppression of viral release by host	GO:0044790	0.064816548	TRIM35
response to nicotine	GO:0035094	0.064816548	CHRNA2
negative regulation of peptidyl-threonine phosphorylation	GO:0010801	0.064816548	DDIT4
negative regulation of glycolytic process	GO:0045820	0.064816548	DDIT4
galactose metabolic process	GO:0006012	0.064816548	B4GALT1
regulation of sodium ion transport	GO:0002028	0.068413258	NKAIN2
glycosylation	GO:0070085	0.068413258	B4GALT1
viral budding via host ESCRT complex	GO:0039702	0.068413258	CHMP5
viral budding from plasma membrane	GO:0046761	0.068413258	CHMP5
chondrocyte development	GO:0002063	0.068413258	SULF2
glomerular filtration	GO:0003094	0.068413258	SULF2
neuron differentiation	GO:0030182	0.070628567	DOK5, DDIT4
regulation of centrosome duplication	GO:0010824	0.071483423	CHMP5
mitochondrial fission	GO:0000266	0.071483423	COX10
androgen receptor signaling pathway	GO:0030521	0.071483423	DNAJA1
sulfur compound metabolic process	GO:0006790	0.071483423	CHST3
positive regulation of neuron death	GO:1901216	0.071483423	DDIT4

regulation of TOR signaling	GO:0032006	0.073333034	DDIT4
midbody abscission	GO:0061952	0.073333034	CHMP5
negative regulation of fibroblast growth factor receptor signaling pathway	GO:0040037	0.073333034	SULF2
nuclear membrane reassembly	GO:0031468	0.073333034	CHMP5
leukocyte migration	GO:0050900	0.073333034	B4GALT1
intrinsic apoptotic signaling pathway by p53 class mediator	GO:0072332	0.073333034	FHIT
cellular response to dexamethasone stimulus	GO:0071549	0.073333034	DDIT4
late endosome to vacuole transport via multivesicular body sorting pathway	GO:0032511	0.07643123	CHMP5
multivesicular body sorting pathway	GO:0071985	0.07643123	CHMP5
chondroitin sulfate biosynthetic process	GO:0030206	0.07643123	CHST3
negative regulation of mitotic cell cycle	GO:0045930	0.07643123	TRIM35
synaptic transmission, cholinergic	GO:0007271	0.07643123	CHRNA2
lysosomal transport	GO:0007041	0.079208211	PSAP
late endosome to lysosome transport	GO:1902774	0.079208211	CHMP5
nucleus organization	GO:0006997	0.079208211	CHMP5
aerobic respiration	GO:0009060	0.079208211	COX10
regulation of microtubule polymerization or depolymerization	GO:0031110	0.079208211	STMN4
plasma membrane repair	GO:0001778	0.084851292	CHMP5
regulation of biological quality	GO:0065008	0.087050758	PTK2B
positive regulation of Wnt signaling pathway	GO:0030177	0.087050758	SULF2
odontogenesis	GO:0042476	0.087050758	AQP3
N-acetylglucosamine metabolic process	GO:0006044	0.087050758	CHST3
negative regulation of peptidyl-serine phosphorylation	GO:0033137	0.087050758	DDIT4
negative regulation of proteasomal ubiquitin-dependent protein catabolic process	GO:0032435	0.089039008	FHIT
positive regulation of vascular endothelial growth factor production	GO:0010575	0.089039008	SULF2
regulation of mitotic spindle assembly	GO:1901673	0.089039008	CHMP5
response to retinoic acid	GO:0032526	0.089039008	AQP3
negative regulation of TOR signaling	GO:0032007	0.089039008	DDIT4
heme biosynthetic process	GO:0006783	0.091612573	COX10
extrinsic apoptotic signaling pathway in absence of ligand	GO:0097192	0.091612573	EYA2
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway	GO:0043162	0.091612573	CHMP5
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator	GO:0042771	0.091612573	DDIT4
response to heat	GO:0009408	0.094000402	DNAJA1

endosome to lysosome transport GC:0008333 0.094000402 CHMP5 embryonic skeletal system development GC:0008776 0.10303477 VSIR binding of spern to zona pellucida GC:000776 0.10303477 VSIR chaperone cofactor-dependent protein refolding GC:0007108 0.10657921 B4GALT1 chaperone cofactor-dependent protein refolding GC:0007103 0.110854516 CHMP5 adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GC:0007193 0.111560807 PSAP metal ion transport GC:0007323 0.111560807 CHMP5 autophagesome maturation GC:00072593 0.111560807 EVA2 reactive oxygen species metabolic process GC:00072593 0.111560807 DDI74 carbohydrate metabolic process GC:000575 0.114445103 CHRNA2 regulation of lipid metabolic process GC:0007080 0.116897354 PSAP regulation of cell adhesion GC:00007080 0.116897354 CHRNA2 regulation of cell adhesion GC:000007080 0.116897354 CHRNA2 metabolic process		00 00 45705	0 00 1000 100	DTIOD
embryonic skeletal system development GC:0048706 0.098567069 SULF2 regulation of immune response GC:0007339 0.10657921 B4GALT1 chaperone cofactor-dependent protein refolding GC:0007339 0.10657921 B4GALT1 chaperone cofactor-dependent protein refolding GC:00007193 0.110657921 B4G1 adenylate cyclase-inhibiting G protein -coupled receptor signaling pathway GC:00007193 0.111560807 PSAP metal ion transport GC:00045739 0.111560807 NDF/P2 autophagosome maturation GC:00045739 0.111560807 CHMP5 positive regulation of DNA repair GC:00045739 0.111560807 DD/T4 carbohydrate metabolic process GC:0005785 0.11445103 CHS73, B4GALT1 regulation of positsynaptic membrane potential GC:0000578 0.11445103 CHS73, B4GALT1 regulation of cell adhesion GC:0009781 0.116897354 CHRNA2 regulation of cell adhesion GC:00009611 0.116897354 CHRNA2 metotic metaphase plate congression GC:00006477 0.131691856 CH4GALT1	regulation of angiogenesis	GO:0045765	0.094000402	PTK2B
regulation of immune response GC:0060776 0.103043477 VSIR binding of sperm to zona pellucida GC:0005739 0.10657921 B4G1 chaperone ocfactor-dependent protein refolding GC:00051085 0.10657921 B4G1 lysosome organization GC:0007140 0.110564516 CHMP5 adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GC:00077640 0.111560807 PSAP metal ion transport GC:00053001 0.111560807 CHMP5 autophagosome maturation GC:0007532 0.111560807 CHMP5 positive regulation of DNA repair GC:0007593 0.111560807 DDIT4 carbohydrate metabolic process GC:0007595 0.111445103 CHST3, B4GALT1 regulation of postsynaptic membrane potential GC:000976 0.116897354 PSAP regulation of cell adhesion GC:0007807 0.116897354 SULF2 mitotic metaphase plate congression GC:0000780 0.131691856 B4GALT1 wound healing GC:00042060 0.131691856 B4GALT1 wound healing GC:0007970 0.131				
binding of sperm to zona pellucida GC:0007339 0.10657921 B4GALT1 chaperone cofactor-dependent protein refolding GC:0007040 0.10657921 BAG1 ussome organization GC:0007040 0.110854516 CHMP5 adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GC:0007040 0.111560807 PSAP metal ion transport GC:0007320 0.111560807 NDFIP2 autophagosome maturation GC:0007329 0.111560807 CHMP5 positive regulation of DNA repair GC:0007329 0.111560807 CHMP5 carbohydrate metabolic process GC:0005975 0.114445103 CHS73, Br4GALT1 regulation of lipid metabolic process GC:00078 0.116897354 PSAP regulation of postsynaptic membrane potential GC:000708 0.116897354 PTK2B response to wounding GC:0007078 0.116897354 PTK2B metaloin or postsynaptic potential GC:0006079 0.131691856 CHMP5 motiotic metaphase plate congression GC:0007080 0.12068245 CHMP5 excitatory postsynaptic potential <				
chaperone cofactor-dependent protein refolding GC:0051085 0.10657921 BAG1 lysosome organization GC:0007040 0.110584516 CHMP5 adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GO:0030001 0.111560807 PSAP metal ion transport GO:0030001 0.111560807 NDFIP2 autophagosome maturation GC:0037352 0.111560807 CHMP5 positive regulation of DNA repair GO:0045733 0.111560807 DDT4 carbohydrate metabolic process GO:0019216 0.116897354 PSAP regulation of lipid metabolic process GO:0005975 0.114445103 CHRNA2 regulation of cell adhesion GO:000078 0.116897354 PTK2B regulation of cell adhesion GO:000078 0.116897354 CHRNA2 mitotic metaphase plate congression GO:000079 0.131691856 CHRNA2 excitatory postsynaptic potential GO:000079 0.131691856 CHRNA2 metal inin k-linked glycosylation GO:0006079 0.131691856 CHRNA2 protein N-linked glycosylation GO:0006487				
lysosome organization GC:0007040 0.110854516 CHMP5 adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GC:0007133 0.111560807 NDFIP2 autophagosome maturation GC:0007133 0.111560807 NDFIP2 autophagosome maturation GC:0007352 0.111560807 CHMP5 positive regulation of DNA repair GC:0047393 0.111560807 DDIT4 carbohydrate metabolic process GC:0005975 0.114445103 CHST3, B4GALT1 regulation of lipid metabolic process GC:00019216 0.1168897354 PSAP regulation of cell adhesion GC:0003015 0.1168897354 PTK2B regulation of cell adhesion GC:00007080 0.120698245 CHMN2 mitotic metaphase plate congression GC:00007080 0.131691856 B4GALT1 wound healing GC:00006487 0.131691856 CHRNA2 protein N-linked glycosylation GC:0006079 0.131691856 B4GALT1 wound healing GC:0004066 0.143449757 AOP3 carlatory postsynaptic potential GC:00040865 0.1435449757 <td></td> <td></td> <td></td> <td></td>				
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway GO:0007193 0.111560807 PSAP metal ion transport GO:0007352 0.111560807 NDFIP2 autophagosome maturation GO:0097352 0.111560807 CHMP5 positive regulation of DNA repair GO:0045733 0.111560807 EYA2 reactive oxygen species metabolic process GO:005975 0.111460807 DDIT4 carbohydrate metabolic process GO:0005975 0.114445103 CHST3, B4GALT1 regulation of lipid metabolic process GO:0005975 0.114445103 CHST3, B4GALT1 regulation of postsynaptic membrane potential GO:000078 0.116897354 PSAP regulation of cell adhesion GO:0000780 0.116897354 CHRNA2 response to wounding GO:0000780 0.116897354 SULF2 mitotic metaphase plate congression GO:0000790 0.131691856 CHRNA2 protein N-linked glycosylation GO:0004260 0.131691856 B4GALT1 wound healing GO:00042660 0.131691856 B4GALT1 bone development GO:00060348 0.143096316 EYA2 anatomical structure deve	chaperone cofactor-dependent protein refolding			BAG1
metal ion transport GO:0030001 0.111560807 NDFIP2 autophagosome maturation GO:0097352 0.111560807 CHMP5 positive regulation of DNA repair GO:0045739 0.111560807 CHMP5 reactive oxygen species metabolic process GO:00725293 0.111560807 DJT4 carbohydrate metabolic process GO:0019216 0.116897354 PSAP regulation of cell adhesion GO:0030155 0.116897354 PTX2B response to wounding GO:000708 0.116897354 PTX2B metal ion treatable process GO:0000781 0.116897354 PTX2B response to wounding GO:0000780 0.120698245 CHMNA2 excitatory postsynaptic potential GO:0007080 0.120698245 CHMP5 excitatory postsynaptic potential GO:00060487 0.131691856 B4GALT1 wound healing GO:00048856 0.143096316 SULF2 ontein N-linked glycosylation GO:00048856 0.143096316 SULF2 oshingolipid metabolic process GO:0007486 0.143096316 SULF2 o			0.110854516	
autophagosome maturation GO:0097352 0.111560807 CHMP5 positive regulation of DNA repair GO:0045739 0.111560807 EYA2 reactive oxygen species metabolic process GO:0072593 0.111560807 DDI74 carbohydrate metabolic process GO:0007975 0.114445103 CHST3, B4GALT1 regulation of lipid metabolic process GO:00019216 0.116897354 PSAP regulation of postsynaptic membrane potential GO:0000780 0.116897354 CHRNA2 regulation of postsynaptic potential GO:0000601 0.116897354 SULF2 mitotic metaphase plate congression GO:0007080 0.120698245 CHRNA2 protein N-linked glycosylation GO:0006079 0.131691856 B4GALT1 wound healing GO:00042060 0.131691856 B4GALT1 bone development GO:0006686 0.143096316 SULF2 anatomical structure development GO:00071456 0.145449757 AQP3 cellular response to hypoxia GO:00071456 0.145449757 AQP3 cellular response to hypoxia GO:00051216 0.14772574 </td <td>adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway</td> <td>GO:0007193</td> <td>0.111560807</td> <td></td>	adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway	GO:0007193	0.111560807	
positive regulation of DNA repairGO:00457390.111560807EYA2reactive oxygen species metabolic processGO:00725930.111560807DDI74carbohydrate metabolic processGO:00059750.114445103CHST3, B4GAL71regulation of lipid metabolic processGO:000212160.116897354PSAPregulation of cell adhesionGO:00301550.116897354PTK2Bresponse to woundingGO:00096110.116897354CHRNA2mitotic metaphase plate congressionGO:00070800.120698245CHRNA2excitatory postsynaptic potentialGO:00007800.131691856B4GAL71wound healingGO:0004870.131691856B4GAL71wound healingGO:00420600.131691856B4GAL71bone developmentGO:0048860.143096316EYA2anatomical structure developmentGO:0048860.143096316EYA2cartilage developmentGO:00121610.145449757PSAPcellular response to hypoxiaGO:00121610.14772574SULF2positive regulation of signal transductionGO:0003810.14772574SULF2positive regulation of signal transductionGO:0003810.147741629CHRNA2negative regulation of signal transductionGO:0003810.147741629CHRNA2negative regulation of signal transductionGO:0003810.147741629CHRNA2negative regulation of signal transductionGO:0003810.1477941629CHRNA2negative regulation of cell deathGO:000303170.150070115DN	metal ion transport	GO:0030001	0.111560807	NDFIP2
reactive oxygen species metabolic process GO:0072593 0.111560807 DDI74 carbohydrate metabolic process GO:0005975 0.114445103 CHST3, B4GALT1 regulation of lipid metabolic process GO:0019216 0.116897354 PSAP regulation of cell adhesion GO:0030155 0.116897354 CHRNA2 regulation of cell adhesion GO:0030155 0.116897354 CHRNA2 mitotic metaphase plate congression GO:000780 0.120698245 CHMP5 excitatory postsynaptic potential GO:0006487 0.131691856 B4GALT1 wound healing GO:0006487 0.131691856 B4GALT1 wound healing GO:0006487 0.143096316 EVA2 anatomical structure development GO:00071456 0.143096316 EVA2 sphingolipid metabolic process GO:00071456 0.14349757 AQP3 callular response to hypoxia GO:0014068 0.143096316 EVA2 sphingolipid metabolic process GO:00071456 0.145449757 AQP3 callular response to hypoxia GO:00071456 0.145449757 AQP3	autophagosome maturation	GO:0097352	0.111560807	CHMP5
carbohydrate metabolic processGO:00059750.114445103CHST3, B4GALT1regulation of lipid metabolic processGO:00192160.116897354PSAPregulation of postsynaptic membrane potentialGO:00600780.116897354CHRNA2regulation of cell adhesionGO:00301550.116897354PTK2Bresponse to woundingGO:00096110.116897354SULF2mitotic metaphase plate congressionGO:00070800.120698245CHMP5excitatory postsynaptic potentialGO:0040064870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:00482650.143096316SULF2anatomical structure developmentGO:00714560.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AOP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574SULF2negative regulation of cell deathGO:00003310.147941629DHT4regulation of cell deathGO:00003310.147941629CHRNA2metative regulation of cell deathGO:00033170.150070115APTXprotein autoubiquitinationGO:00051860.147941629CHMP5flagellated sperm mutiliyGO:00033170.150070115APTXprotein autoubiquitinationGO:00518650.15011824NFX1negative regulation of	positive regulation of DNA repair	GO:0045739	0.111560807	EYA2
regulation of lipid metabolic processGO:00192160.116897354PSAPregulation of postsynaptic membrane potentialGO:00600780.116897354CHRNA2regulation of cell adhesionGO:00301550.116897354PTK2Bresponse to woundingGO:00096110.116897354SULF2mitotic metaphase plate congressionGO:00070800.120698245CHMP5excitatory postsynaptic potentialGO:00064870.131691856B4GALT1wound healingGO:00064870.131691856B4GALT1bone developmentGO:00408060.143096316SULF2anatomical structure developmentGO:00064860.143096316EYA2cellular response to hypoxiaGO:000714560.145449757PSAPcellular response to hypoxiaGO:0001714560.14772574SULF2positive regulation of signal transductionGO:000508770.14772574UNC5Bnegative regulation of signal transductionGO:00003810.147941629CHRNA2negative regulation of cell deathGO:00003810.147941629CHMP5filagellated sperm motilityGO:00031370.150070115DNAJA1double-strand break repairGO:00063020.147941629CHMP5filagellated sperm motilityGO:00063020.147941629CHMP5filagellated of protein ubiquitinationGO:000630370.150070115DNAJA1negative regulation of protein ubiquitinationGO:00063020.150070115APTXprotein ubiquitinationGO:00063020.150115822DNAJA1 <td>reactive oxygen species metabolic process</td> <td>GO:0072593</td> <td>0.111560807</td> <td>DDIT4</td>	reactive oxygen species metabolic process	GO:0072593	0.111560807	DDIT4
regulation of postsynaptic membrane potentialGO:00600780.116897354CHRNA2regulation of cell adhesionGO:00301550.116897354PTK2Bresponse to woundingGO:00096110.116897354SULF2mitotic metaphase plate congressionGO:00070800.120698245CHMP5excitatory postsynaptic potentialGO:00007090.131691856CHRNA2protein N-linked glycosylationGO:00064870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:000603480.143096316SULF2anatomical structure developmentGO:0006650.145449757PSAPcellular response to hypoxiaGO:00140680.14772574SULF2positive regulation of signal transductionGO:0003880.147941629CHRNA2nerous system processGO:000508770.147941629CHRNA2negative regulation of signal transductionGO:0003810.147941629SMU1negative regulation of cell deathGO:00003810.147941629CHMP5flagellated sperm motilityGO:000303170.150070115DNAJA1double-strand break repairGO:00051260.15118824NFX1negative regulation of protein ubiquitinationGO:00053850.16070115APTXnegative regulation of cell deathGO:00053820.150070115DNAJA1double-strand break repairGO:000533770.150115822DNAJA1hegative regulation of protein ubiquitinationGO:005133970.156115822DNAJA1 <td>carbohydrate metabolic process</td> <td>GO:0005975</td> <td>0.114445103</td> <td>CHST3, B4GALT1</td>	carbohydrate metabolic process	GO:0005975	0.114445103	CHST3, B4GALT1
regulation of cell adhesionGO:00301550.116897354PTK2Bresponse to woundingGO:00096110.116897354SULF2mitotic metaphase plate congressionGO:0007800.120688245CHMP5excitatory postsynaptic potentialGO:00060790.131691856B4GALT1wound healingGO:00064870.131691856B4GALT1bone developmentGO:0064870.131691856B4GALT1bone developmentGO:00648560.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:0001714560.145449757PSAPcellular response to hypoxiaGO:00512160.14772574SULF2positive regulation of signal transductionGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:0009880.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:000303170.150070115DNAJA1double-strand break repairGO:00030370.150070115APTXprotein autoubiquitinationGO:00518650.143718224NFX1negative regulation of protein ubiquitinationGO:000313970.156115822DNAJA1	regulation of lipid metabolic process	GO:0019216	0.116897354	PSAP
Gesponse to woundingGO:00096110.116897354SULF2mitotic metaphase plate congressionGO:00070800.120698245CHMP5excitatory postsynaptic potentialGO:00600790.131691856B4GALT1protein N-linked glycosylationGO:004870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:0048560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:0003810.147941629CHRNA2negative regulation of signal transductionGO:0003810.147941629SMU1negative regulation of cell deathGO:00063170.147941629CHMP5flagellated sperm motilityGO:00063170.147941629CHMP5flagellated sperm motilityGO:00033170.150070115DNAJA1double-strand break repairGO:0006320.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	regulation of postsynaptic membrane potential	GO:0060078	0.116897354	CHRNA2
mitotic metaphase plate congressionGO:00070800.120698245CHMP5excitatory postsynaptic potentialGO:00600790.131691856CHRNA2protein N-linked glycosylationGO:00064870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:00408480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2callular response to hypoxiaGO:000714560.145449757PSAPcallular response to hypoxiaGO:00114680.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00099880.147941629CHRNA2negative regulation of signal transductionGO:00003310.147941629SMU1negative regulation of cell deathGO:000303170.15070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	regulation of cell adhesion	GO:0030155	0.116897354	PTK2B
excitatory postsynaptic potentialGO:00600790.131691856CHRNA2protein N-linked glycosylationGO:00064870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:0012160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00003810.147941629SMU1negative regulation of cell deathGO:000303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	response to wounding	GO:0009611	0.116897354	SULF2
protein N-linked glycosylationGO:00064870.131691856B4GALT1wound healingGO:00420600.131691856B4GALT1bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:000508770.147941629CHRNA2negative regulation of signal transductionGO:0009880.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629CHMP5flagellated sperm motilityGO:000605480.147941629CHMP5double-strand break repairGO:00063020.150070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	mitotic metaphase plate congression	GO:0007080	0.120698245	CHMP5
wound healingGO:00420600.131691856B4GALT1bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:0003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	excitatory postsynaptic potential	GO:0060079	0.131691856	CHRNA2
bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00003810.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:000303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	protein N-linked glycosylation	GO:0006487	0.131691856	B4GALT1
bone developmentGO:00603480.143096316SULF2anatomical structure developmentGO:00488560.143096316EYA2sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00003810.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	wound healing	GO:0042060	0.131691856	B4GALT1
sphingolipid metabolic processGO:00066650.145449757PSAPcellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:000303170.150070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	· · · · · · · · · · · · · · · · · · ·	GO:0060348	0.143096316	SULF2
cellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	anatomical structure development	GO:0048856	0.143096316	EYA2
cellular response to hypoxiaGO:00714560.145449757AQP3cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:000303170.150070115DNAJA1double-strand break repairGO:000518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	sphingolipid metabolic process	GO:0006665	0.145449757	PSAP
cartilage developmentGO:00512160.14772574SULF2positive regulation of phosphatidylinositol 3-kinase signalingGO:00140680.14772574UNC5Bnervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	cellular response to hypoxia	GO:0071456	0.145449757	AQP3
NoteControlControlCHRNA2Nervous system processGO:00508770.147941629CHRNA2Negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	cartilage development	GO:0051216	0.14772574	SULF2
nervous system processGO:00508770.147941629CHRNA2negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	positive regulation of phosphatidylinositol 3-kinase signaling	GO:0014068	0.14772574	UNC5B
negative regulation of signal transductionGO:00099680.147941629DDIT4regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	nervous system process	GO:0050877	0.147941629	CHRNA2
regulation of alternative mRNA splicing, via spliceosomeGO:00003810.147941629SMU1negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1	negative regulation of signal transduction	GO:0009968	0.147941629	DDIT4
negative regulation of cell deathGO:00605480.147941629CHMP5flagellated sperm motilityGO:00303170.150070115DNAJA1double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1		GO:0000381	0.147941629	SMU1
flagellated sperm motility GO:0030317 0.150070115 DNAJA1 double-strand break repair GO:0006302 0.150070115 APTX protein autoubiquitination GO:0051865 0.153118924 NFX1 negative regulation of protein ubiquitination GO:0031397 0.156115822 DNAJA1		GO:0060548	0.147941629	CHMP5
double-strand break repairGO:00063020.150070115APTXprotein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1		GO:0030317	0.150070115	DNAJA1
protein autoubiquitinationGO:00518650.153118924NFX1negative regulation of protein ubiquitinationGO:00313970.156115822DNAJA1				APTX
negative regulation of protein ubiquitination GO:0031397 0.156115822 DNAJA1				
	positive regulation of protein ubiquitination	GO:0031398	0.162996192	NDFIP2

Glycosaminoglycan biosynthesis - heparan sulfate / heparin	bta00534	0.17735066	HS3ST3A1, HS3ST3B1
negative regulation of peptidase activity	GO:0010466	0.1813207	SPINK4
regulation of cell migration	GO:0030334	0.183984874	PTK2B
response to hypoxia	GO:0001666	0.190367601	DDIT4
DNA repair	GO:0006281	0.193741161	EYA2, APTX
negative regulation of cell migration	GO:0030336	0.199084394	ZMYND8
neuron migration	GO:0001764	0.200267229	DDIT4
transmembrane receptor protein tyrosine kinase signaling pathway	GO:0007169	0.200267229	DOK5
mitochondrion organization	GO:0007005	0.209788566	COX10
cellular response to lipopolysaccharide	GO:0071222	0.212053841	CHMP5
regulation of membrane potential	GO:0042391	0.212997627	CHRNA2
kidney development	GO:0001822	0.212997627	SULF2
positive regulation of canonical Wnt signaling pathway	GO:0090263	0.213908228	SULF2
peptidyl-tyrosine dephosphorylation	GO:0035335	0.213908228	EYA2
peptidyl-tyrosine phosphorylation	GO:0018108	0.219439921	PTK2B
axon guidance	GO:0007411	0.234846984	UNC5B
negative regulation of neuron apoptotic process	GO:0043524	0.238658336	UNC5B
cellular response to DNA damage stimulus	GO:0006974	0.238658336	EYA2, APTX
extracellular matrix organization	GO:0030198	0.243734701	B4GALT1
apoptotic process	GO:0006915	0.253594127	FHIT, DDIT4
nucleic acid phosphodiester bond hydrolysis	GO:0090305	0.253594127	APTX
brain development	GO:0007420	0.261476069	DDIT4
regulation of cell population proliferation	GO:0042127	0.276715644	PTK2B
rRNA processing	GO:0006364	0.276715644	NOL6
chemical synaptic transmission	GO:0007268	0.280958912	CHRNA2
negative regulation of endopeptidase activity	GO:0010951	0.280958912	SPINK4
positive regulation of MAPK cascade	GO:0043410	0.280958912	DOK5
protein folding	GO:0006457	0.282323991	DNAJA1
autophagy	GO:0006914	0.306344196	CHMP5
defense response to virus	GO:0051607	0.310238654	DDIT4
protein dephosphorylation	GO:0006470	0.312376912	EYA2
protein stabilization	GO:0050821	0.312376912	BAG1
protein ubiquitination	GO:0016567	0.318089398	ANAPC16, TRIM35
ion transmembrane transport	GO:0034220	0.322418992	CHRNA2
negative regulation of gene expression	GO:0010629	0.325974351	NDFIP2
protein glycosylation	GO:0006486	0.343783319	B4GALT1

lipid metabolic process	GO:0006629	0.343783319	PSAP, B4GALT1
mRNA splicing, via spliceosome	GO:0000398	0.34627423	SMU1
transmembrane transport	GO:0055085	0.350866756	AQP7, AQP3
chromatin organization	GO:0006325	0.369434746	EYA2
response to stimulus	GO:0050896	0.386302434	PTK2B
spermatogenesis	GO:0007283	0.402530086	DNAJA1
RNA splicing	GO:0008380	0.402726969	SMU1
regulation of transcription, DNA-templated	GO:0006355	0.407917717	ZMYND8, ASCC1, NFX1
ubiquitin-dependent protein catabolic process	GO:0006511	0.407917717	NDFIP2
negative regulation of cell population proliferation	GO:0008285	0.44941638	B4GALT1
signal transduction	GO:0007165	0.453087797	PTK2B, UNC5B, CHRNA2
mRNA processing	GO:0006397	0.472031536	SMU1
cell division	GO:0051301	0.472031536	ANAPC16
positive regulation of cell population proliferation	GO:0008284	0.506397405	PTK2B
innate immune response	GO:0045087	0.507461366	TRIM35
negative regulation of apoptotic process	GO:0043066	0.51710263	DNAJA1
cell adhesion	GO:0007155	0.563239168	B4GALT1
Natural killer cell mediated cytotoxicity	bta04650	0.579344128	PTK2B
Small cell lung cancer	bta05222	0.579344128	FHIT
Mannose type O-glycan biosynthesis	bta00515	0.579344128	B4GALT1
GnRH signaling pathway	bta04912	0.579344128	PTK2B
Estrogen signaling pathway	bta04915	0.579344128	NCOA3
Cell adhesion molecules	bta04514	0.579344128	VSIR
Sphingolipid metabolism	bta00600	0.579344128	PSAP
Glycosaminoglycan biosynthesis - keratan sulfate	bta00533	0.579344128	B4GALT1
Leukocyte transendothelial migration	bta04670	0.579344128	PTK2B
Alcoholism	bta05034	0.579344128	SLC29A3
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate	bta00532	0.579344128	CHST3
Other types of O-glycan biosynthesis	bta00514	0.579344128	B4GALT1
Hepatitis B	bta05161	0.579344128	PTK2B
N-Glycan biosynthesis	bta00510	0.579344128	B4GALT1
Autophagy - animal	bta04140	0.579344128	DDIT4
Regulation of lipolysis in adipocytes	bta04923	0.579344128	AQP7
Yersinia infection	bta05135	0.579344128	PTK2B
Purine metabolism	bta00230	0.579344128	FHIT
Oocyte meiosis	bta04114	0.579344128	ANAPC16

Non-small cell lung cancer Endocrine resistance Thyroid hormone signaling pathway	bta05223 bta01522	0.579344128	FHIT
	hta01522		
Thuroid hormono signaling pathway	DIAUTSZZ	0.579344128	NCOA3
Thyroid normone signaling pathway	bta04919	0.579344128	NCOA3
Necroptosis	bta04217	0.579344128	CHMP5
Lysosome	bta04142	0.579344128	PSAP
Arachidonic acid metabolism	bta00590	0.579344128	EPHX2
Glycosphingolipid biosynthesis - lacto and neolacto series	bta00601	0.579344128	B4GALT1
mTOR signaling pathway	bta04150	0.579344128	DDIT4
Protein processing in endoplasmic reticulum	bta04141	0.579344128	DNAJA1, BAG1
Breast cancer	bta05224	0.579344128	NCOA3
Porphyrin metabolism	bta00860	0.579344128	COX10
Various types of N-glycan biosynthesis	bta00513	0.579344128	B4GALT1
Biosynthesis of cofactors	bta01240	0.579344128	COX10, GULO
Cell cycle	bta04110	0.579344128	ANAPC16
Galactose metabolism	bta00052	0.579344128	B4GALT1
Progesterone-mediated oocyte maturation	bta04914	0.579344128	ANAPC16
Oxidative phosphorylation	bta00190	0.579344128	COX10
Vasopressin-regulated water reabsorption	bta04962	0.579344128	AQP3
Ascorbate and aldarate metabolism	bta00053	0.579344128	GULO
Ubiquitin mediated proteolysis	bta04120	0.579344128	ANAPC16, UBE2R2
Ribosome biogenesis in eukaryotes	bta03008	0.579344128	NOL6
PPAR signaling pathway	bta03320	0.579344128	AQP7
Phospholipase D signaling pathway	bta04072	0.579344128	PTK2B
Peroxisome	bta04146	0.579344128	EPHX2
negative regulation of transcription, DNA-templated	GO:0045892	0.581578422	ZMYND8
	GO:0007049	0.597420653	ANAPC16
Chemokine signaling pathway	bta04062	0.617272855	PTK2B
Axon guidance	bta04360	0.617272855	UNC5B
Chemical carcinogenesis - receptor activation	bta05207	0.622245427	EPHX2
Human immunodeficiency virus 1 infection	bta05170	0.622245427	PTK2B
Human T-cell leukemia virus 1 infection	bta05166	0.627287233	ANAPC16
MicroRNAs in cancer	bta05206	0.627287233	DDIT4
Human cytomegalovirus infection	bta05163	0.627287233	PTK2B
Chemical carcinogenesis - reactive oxygen species	bta05208	0.627287233	EPHX2
Endocytosis	bta04144	0.630242739	CHMP5
Endobytoolo			

Thermogenesis	bta04714	0.630242739	COX10
Metabolic pathways	bta01100	0.649276528	B4GALT1, FHIT, COX10, EPHX2, GULO
cell differentiation	GO:0030154	0.701447177	EYA2
ion transport	GO:0006811	0.706385049	CHRNA2
protein phosphorylation	GO:0006468	0.710077291	PTK2B
Human papillomavirus infection	bta05165	0.717645749	NFX1
negative regulation of transcription by RNA polymerase II	GO:0000122	0.719299637	NFX1
PI3K-Akt signaling pathway	bta04151	0.726677737	DDIT4
Neuroactive ligand-receptor interaction	bta04080	0.726677737	CHRNA2
Pathways in cancer	bta05200	0.847695378	NCOA3