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Interaction of Hawking radiation with static sources outside a Schwarzschild black hole
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We show that the response rate of~i! a static source interacting with Hawking radiation of a massless scalar
field in Schwarzschild spacetime~with the Unruh vacuum! and that of~ii ! a uniformly accelerated source with
the same proper acceleration in Minkowski spacetime~with the Minkowski vacuum! are equal. We show that
this equality will not hold if the Unruh vacuum is replaced by the Hartle-Hawking vacuum. It is verified that
the source responds to the Hawking radiation near the horizon as if it were at rest in a thermal bath in
Minkowski spacetime with the same temperature. It is also verified that the response rate in the Hartle-
Hawking vacuum approaches that in Minkowski spacetime with the same temperature far away from the black
hole. Finally, we compare our results with others in the literature.@S0556-2821~98!02922-1#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

Recently we analyzed the emission and absorption
‘‘zero-energy particles’’ by a static source interacting w
Hawking radiation outside a Schwarzschild black hole@1#. It
was found that the total response rate of a point-like st
scalar source in the Unruh vacuum is given by

Rtot5
q2a

4p2
, ~1.1!

whereq is the coupling constant between the source and
massless scalar field, anda is the proper acceleration of th
source. The remarkable fact about this result is that Eq.~1.1!
also corresponds to the total response rate of a unifor
accelerated source for a massless scalar field in Minkow
spacetime provided that the initial quantum state is
Minkowski vacuum.@In fact, according to inertial observer
Eq. ~1.1! is associated with the emission rate of finite-ene
Minkowski particles while according to coaccelerated o
servers it is associated with the emission and absorptio
zero-energy Rindler particles@2#.# Thus, an equality betwee
the behavior of static sources in Schwarzschild spacet
~with the Unruh vacuum! and uniformly accelerated source
in Minkowski spacetime~with the Minkowski vacuum!, con-
cerning their emission and absorption rates, was found. H
we analyze in detail some related points that were not
cussed in Ref.@1#, provide some consistency checks of o
results and demonstrate their compatibility with related
sults in the literature. The paper is organized as follows
Sec. II, we review the general formalism for computing t
response rate of classical sources for a massless scalar
in static spacetime. In Sec. III, we analyze the case of a s
point-like source in the Rindler wedge—i.e. a uniformly a
celerated point-like source in Minkowski spacetime—a
0556-2821/98/58~10!/104021~10!/$15.00 58 1040
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show that its total response rate~with the initial quantum
state being the Minkowski vacuum! is given by Eq.~1.1!.
Next, in Sec. IV, we consider a static source immersed i
thermal bath in Minkowski spacetime and calculate its
sponse rate for later use. In Sec. V, we consider a toy mo
for a static source outside a static black hole characterize
a simplified gravitational effective potential and calculate
response rate assuming that the initial quantum state is
Unruh vacuum. In Sec. VI, the response rate is calcula
with the true Schwarzschild effective potential. The resu
found are compared with those obtained in Sec. III. In p
ticular, it is shown that the total response rate here is a
given by Eq.~1.1!. This equivalence is our main result@1#. In
Sec. VII, we calculate the response rate replacing the Un
vacuum by the Hartle-Hawking one and show that Eq.~1.1!
does not hold. In Sec. VIII, we discuss the case where
source approaches the horizon and the case where it i
away from the black hole using the method described
Refs.@3,4# and show that the results agree with the suita
limit of the one obtained in Sec. VI, i.e., Eq.~1.1!. In Sec.
IX, we discuss our results. We will use natural units\5c
5G5kB51 throughout this paper.

II. GENERAL FORMALISM

It is well known that field theory quantized in globall
hyperbolic spacetime possessing a global timelike Killi
field admits a unique vacuum state and a correspond
unique ‘‘particle interpretation’’ ~under certain technica
conditions! @5,6#. This is so because the use of the time p
rameter corresponding to the Killing field allows us to d
tinguish, in a natural way, between positive and negat
frequency modes. This is the case in globally hyperbo
static spacetime described by the metric

ds25 f ~x!dt22hi j ~x!dxidxj ~2.1!
©1998 The American Physical Society21-1
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~under certain technical conditions!. We consider emission
of particles in these spacetimes by classical static sc
sourcesJ(x) coupled to a massless scalar field. The respo
of a classical source in the vacuum is entirely due to sp
taneous emission. If the source is static, then this vanis
~unless there are severe infrared divergences!. However, if
the static source is in a thermal bath, the absorption
induced emission also contribute to the response rate. N
the static source interacts only with zero-energy modes
Planck’s distribution formula diverges at zero energy. It w
turn out that this makes the rates of absorption and indu
emission nonzero. Thus, the static source responds wi
finite probability to thermal baths for the cases we consi
in this paper.

In order to avoid the appearance of intermediate indefi
results due to the divergence mentioned above, we will
troduce oscillation as a regulator. Thus, we consider at
point a source of the form

j v0
~ t,x!5A2J~x!cosv0t ~2.2!

and take the limitv0→0 at the end. The factorA2 has been
introduced to keep the time average^u j v0

(t,x)u2& t equal to

uJ(x)u2. This makesj v0
(t,x) equivalent toJ(x) in the limit

v0→0 because the response rate at the lowest order is
portional to the square of~the Fourier transform of! the
source. We will be interested in the point source where

J~x!5qd~x2x0!/Ah ~2.3!

with q being the coupling constant,x0 being the position of
the source andh(x)[det@hi j (x)#. With this definition, we
have

E
S t

dS J~x!5q ~2.4!

for any Cauchy surfaceS t with constantt.
Let us consider the coupling of our classical sou

j v0
(t,x) to a massless real scalar fieldF, which is described

by the action

S5E d4xAf h S 1

2
¹mF¹mF1 j v0

F D .

Let

uvsl~x!5Av

p
Uvsl~x!exp~2 ivt ! ~2.5!

with frequency v.0, and their complex conjugate
uvsl(x)* be solutions tohu50, wheres5(s1 , . . . ,sn) and
l5(l1 , . . . ,lm) are sets of continuous and discrete qua
tum numbers, respectively, for the complete set of mod
We have assumedv to be continuous because this is the ca
in the spacetimes we study, and adopted it as one of
mode labels. The factorAv/p has been inserted for late
convenience. We orthonormalize these solutions with res
to the Klein-Gordon inner product:
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S t

dSnm~uvsl* ¹muv8s8l82¹muvsl* •uv8s8l8!

5d~v2v8!d~s2s8!dll8 , ~2.6!

i E
S t

dS nm~uvsl¹muv8s8l82¹muvsl•uv8s8l8!

50, ~2.7!

wherenm is the future-pointing unit normal to the volum
element of a Cauchy surfaceS t . The in-fieldF in satisfying
the free field equationhF in50 can now be expanded as

F in~x!5(
l
E dvdns@uvsl~x!avsl

in 1H.c.#,

whereavsl
in andavsl

in† are annihilation and creation operator
respectively, which satisfy the usual commutation relatio

@avsl
in ,av8s8l8

in†
#5d~v2v8!d~s2s8!dll8 . ~2.8!

Let the initial quantum state be the in-vacuum stateu0&
defined byavsl

in u0&50 for all v, s andl. The rate of spon-
taneous emission per totalproper time TAf (x0), whereT
[2pd(0) is the totalcoordinatetime @7#, with fixeds andl
to lowest order is

Rsp~v0 ;s,l!dns5T21f ~x0!21/2

3E dvU K vslU E d4xAf h jv0
F U0L U2

dns.

~2.9!

By performing the integration with respect tov, we obtain

Rsp~v0 ;s,l!dns5
v0

Af ~x0!
uJ̃~v0 ;s,l!u2dns, ~2.10!

where

J̃~v0 ;s,l!5E d3x Af ~x!h~x! J~x!Uv0sl~x!.

If the source is immersed in a thermal bath of inver
temperatureb, the rates of absorption andinducedemission
are both given byRsp(v0 ;s,l)/@exp(bv0)21#. Adding the
absorption rate and the spontaneous and induced emis
rates, we find that theresponserate for modes with fixeds
andl is given by

R~v0 ;s,l!5
v0

Af ~x0!
uJ̃~v0 ;s,l!u2coth~bv0/2!.

In the case of interest here, i.e., for static sources, we take
limit v0→0 as explained above, obtaining
1-2
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R~0;s,l!5
2b21

Af ~x0!
uJ̃~0;s,l!u2. ~2.11!

This is the general expression for the response rate of a s
point source in a thermal bath interacting with a massl
scalar field. The total rate is obtained from Eq.~2.11! by
integrating with respect tos and summing overl. Note that
although the particle content of a field theory depends
general on the Killing field with respect to which the vacuu
is defined, the total response rate does not.

III. STATIC SOURCE IN THE RINDLER WEDGE

We first review the computation of the response rate o
static source in the Rindler wedge@8# ~see Refs.@2,9#!. This
source corresponds to a uniformly accelerated source
Minkowski spacetime. The Rindler wedge is the portion
Minkowski spacetime limited byz.utu, where (t,x,y,z) are
the usual Minkowski coordinates. These are related to
Rindler coordinates (t,x,y,j) by

t5a21eajsinhat, z5a21eajcoshat.

In these coordinates, the line element of the Rindler wedg
written as

ds25e2aj~dt22dj2!2dx22dy2.

We consider a point-like source fixed in space with a tim
dependent magnitude@see Eqs.~2.2! and ~2.3!#

j v0
5A2 qcosv0t d~j!d~x!d~y! ~3.1!

and take the limitv0→0 at the end. Note thatj v0
describes

a source with constant proper accelerationa.
We will describe the free massless scalar field theory

ing Rindler coordinates. For this purpose we look f
positive-frequency solutions tohuvkxky

50 with respect to

the Killing field ]/]t:

uvkxky
~t,x,y,j!5Av

p
cvk'

~j!
eikxx1 ikyy2 ivt

2p
. ~3.2!

Here thecvk'
must satisfy

F2
d2

dj2
1k'

2 e2ajGcvk'
~j!5v2cvk'

~j! ~3.3!

andk'[Akx
21ky

2. We assume a Minkowski vacuum whic
corresponds to a thermal state of Rindler particles@10–12#.
This is the Fulling-Davies-Unruh~FDU! thermal bath char-
acterized by a temperatureb215a/2p. The termk'

2 e2aj in
Eq. ~3.3! acts as an effective potential that is unbounded
the modes with nonvanishing transverse momentum. The
lutions cvk'

(j) that tend to zero asj→1` are

cvk'
~j!5CvKiv/a@~k' /a!eaj#, ~3.4!
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whereCv is a normalization constant. In order to determi
it, we substitute normal modes~3.2! in the Klein-Gordon
inner product~2.6!, obtaining

~v1v8!E
2`

1`

djcvk'
* ~j!cv8k'

~j!5
p

v
d~v2v8!.

~3.5!

Next we use the wave equation~3.3! to turn the integral in
Eq. ~3.5! into a surface term:

1

v2v8
Fcv8k'

dcvk'
*

dj
2cvk'

*
dcv8k'

dj
G

j→2`

5
p

v
d~v2v8!.

~3.6!

Using Eq.~3.4! in Eq. ~3.6! and noting that

lim
r→1`

sin~v7v8!r

v7v8
5pd~v7v8!, ~3.7!

we obtain the normalization constant~up to a phase!

Cv5Asinh~pv/a!

pav
. ~3.8!

From Eqs.~3.4! and ~3.8! we obtain the normalized zero
energy modes

c0k'
~j!5a21K0@~k' /a!eaj#. ~3.9!

In fact, one can directly normalizec0k'
referring only to

solutions of Eq.~3.3! with v50. This method will be very
useful in the Schwarzschild black-hole case, where the a
logue of Eq.~3.4! cannot be explicitly obtained. One consid
ers the form of the solution of Eq.~3.3! with arbitrary fre-
quency for large and negative values ofj. This has a simple
form

cvk'
~j!'2

1

v
sin@vj1a~v!# ~j,0,uju@1!,

~3.10!

where the normalization constant has been fixed to make
~3.10! compatible with Eq.~3.6!. In particular,

c0k'
~j!'2j1const ~j,0,uju@1!. ~3.11!

By solving Eq.~3.3! with v50 and fitting the solution ob-
tained to Eq.~3.11! for large and negative values ofj, we
recover Eq.~3.9!.

In order to calculate the response rateRR(kx ,ky) with
fixed transverse momentum (kx ,ky), we use the general ex
pression~2.11!, identifying U0sl(x) with c0k'

(j)eikxx1 ikyy/

(2p) @see Eqs.~2.5!, ~3.2! and ~3.9!#. Thus, we find

RR~kx ,ky!dkxdky5
q2

4p3a
@K0~k' /a!#2dkxdky .

~3.12!
1-3
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The total response rate is obtained by integrating Eq.~3.12!
over the whole range of transverse momenta as

Rtot
R 5

q2a

4p2
. ~3.13!

It is interesting to recall at this point that by a standa
Cartesian-coordinate calculation~see, e.g., Refs.@7,13#!, Eq.
~3.13! can be shown to be identical to the emission rate
usual Minkowski particles. This result is interpreted as f
lows @2,9#: The emission of a usual finite-energy partic
from a uniformly accelerated source in Minkowski vacuu
as described by inertial observers corresponds to either
emissionor the absorptionof a zero-energy Rindler particle
to or from the FDU thermal bath as described by uniform
accelerated observers. This is in agreement with Unruh an
Wald’s inertial interpretation of the excitation of an accele
ated detector@14#, and with the discussion of this problem
terms of classical radiation@15#. Although these zero-energ
particles are conceptually well defined, they are not obse
able by accelerated observers@2#. This is compatible with the
fact that observers coaccelerated with the source associa
emission of classical radiation with it@16,17#.

We would like to call attention to the fact that we a
implicitly assuming that the classical source is adiabatica
switched on and off asymptotically. Thus, we are not co
cerned with the controversy as to whether or not there
radiation from uniformly accelerated sources which are e
nally turned on.~See Ref.@18# and references therein for
comprehensive analysis of this issue and Ref.@1# for a brief
discussion of its relation to our problem.!

IV. STATIC SOURCE IN MINKOWSKI SPACETIME

Before analyzing static sources in the spacetime wit
black hole, it is useful for later purposes to work out t
response of a static source in Minkowski spacetime us
spherical coordinates and assuming a background the
bath. The line element of Minkowski spacetime in spheri
coordinates is

ds25dt22dr22r 2~du21sin2udf2!. ~4.1!

In spherical coordinates we write our oscillating source
the form

j v0
~x!5

A2qcosv0t

Ah
d~r 2r 0!d~u2u0!d~f2f0!,

~4.2!

whereAh5r 2sinu.
Let us write the positive-frequency solutions of the ma

less Klein-Gordon equation with respect to the Killing fie
]/]t as

uv lm5Av

p

cv l~r !

r
Ylm~u,f!e2 ivt, ~4.3!
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whereYlm(u,f) are spherical harmonics@19# with l>0 and
2 l<m<1 l . @The form ~4.3! will also be adopted in the
following sections.# Herecv l(r ) is the solution of the ordi-
nary differential equation

S 2
d2

dr2
1

l ~ l 11!

r 2 D cv l~r !5v2cv l~r !. ~4.4!

The solutions of Eq.~4.4! which are finite atr 50 are

cv l~r !5Cv l r j l~vr !, ~4.5!

where thej l(x) are the spherical Bessel functions. The no
malization constantsCv l are found by substituting Eq.~4.3!
in the Klein-Gordon inner product~2.6! as

~v1v8!E
0

1`

drcv l~r !* cv8 l~r !5
p

v
d~v2v8!

and using Eq.~4.4! to turn this integral into a surface term

Cv l* Cv8 l

v2v8
@2v8r 2 j l~vr ! j l 11~v8r !

1vr 2 j l~v8r ! j l 11~vr !# r→1`

5
p

v
d~v2v8!, ~4.6!

where use has been made of the identity@see~10.1.22! of
Ref. @19##

d

dr
j l~vr !5

l

r
j l~vr !2v j l 11~vr !.

In order to evaluate the left-hand side~LHS! of Eq. ~4.6! we
use@see~10.1.1! and ~9.2.1! of Ref. @19##

j l~x!5Ap

2x
Jl 11/2~x!'x21sin~x2 lp/2! ~x@1!

~4.7!

and Eq.~3.7!. Hence, from Eq.~4.6! we obtainCv l51 ~up to
a phase!, and the normalized zero-energy mode is

c0l~r !5r j l~0!5rd l0 . ~4.8!

In spherical coordinates, a general expression for the
sponse rate with fixed angular momentum can be obtaine
using Eq.~4.3! in Eq. ~2.11!:

Rlm5
2q2Af ~x0!

br 0
2

uc0l~r 0!u2uYlm~u0 ,f0!u2. ~4.9!

Herec0l is given by Eq.~4.8! and f (x0)51. Thus, we obtain

Rlm
M 52q2b21uYlm~u0 ,f0!u2d l05

q2

2pb
d l0 , ~4.10!
1-4
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where we have useduY00(u,f)u25(4p)21. Since this ex-
pression vanishes for everyl except for l 50, the total re-
sponse rate is

Rtot
M 5

q2

2pb
. ~4.11!

One can readily verify that the same response rate~4.11!
is obtained by repeating the calculation in Cartesian coo
nates@7,13#. @In this case the normalized positive-frequen
modes are the standard ones:uk(x)5e2 ikmxm

/A16p3v.#
This should clearly be the case since the vacuum is defi
through the same timelike Killing field]/]t.

We note that one obtains Eq.~3.13! by substitutingb21

5a/2p in Eq. ~4.11!. This shows that a uniformly accele
ated source for a massless scalar field in Minkowski spa
time responds to the FDU thermal bath as if it were at res
Minkowski spacetime with a background thermal bath p
vided that both thermal baths have the same temperatur
is well known ~see, e.g., Ref.@13#!. We will return to this
point in Secs. VI and VII.

V. STATIC SOURCE OUTSIDE A TOY BLACK HOLE

In this section we will treat a static source in the spa
time of a black hole with an artificial gravitational effectiv
potential simple enough to enable us to find the norm
modes in terms of well-known functions. This will allow u
to normalize them for every frequencyv and thus we will be
able to take the limitv→0 explicitly. We will consider a
potential that reproduces the main features of the effec
potential for the Schwarzschild black hole, and compare
results with those obtained in the next section where we t
the Schwarzschild case using the method outlined in Sec
This will provide a useful check for the latter method.

The Schwarzschild line element is

ds25 f ~r !dt22 f ~r !21dr22r 2~du21sin2udf2!,
~5.1!

wheref (r )5122M /r . The scalar sourcej v0
(x) is given by

Eq. ~4.2! with Ah5 f 21/2r 2sinu. The positive-frequency so
lutionsuv lm of the massless scalar field equation can be w
ten as in Eq.~4.3! where thecv l(r ) here satisfy the differ-
ential equation

F2 f ~r !
d

drS f ~r !
d

dr D1Veff~r !Gcv l~r !5v2cv l~r !,

~5.2!

with

Veff~r !5~122M /r !@2M /r 31 l ~ l 11!/r 2#. ~5.3!

The effective potentialVeff(r ) vanishes at the horizon an
goes to zero like 1/r 2 for larger. It is useful to introduce the
dimensionless Wheeler tortoise coordinatex[y1 ln(y21)
wherey[r /2M . Then Eq.~5.2! can be rewritten as
10402
i-

ed

e-
n
-
as

-

l

e
e
at
II.

t-

F2
d2

dx2 14M2Veff@r ~x!#Gcv l54M2v2cv l . ~5.4!

There are two independent solutions to Eq.~5.4!. One
solution corresponds to the mode purely incoming from
past horizonH2 and the other to the mode purely incomin
from the past null infinityJ2. These modes are orthogon
to each other with respect to the Klein-Gordon inner prod
~2.6!.

We will focus in this and the next sections on the Unr
vacuum @11# where there is a thermal flux of temperatu
b2151/8pM coming out fromH2. This is basically the
Hawking radiation@20# which leads to evaporation of blac
holes formed by gravitational collapse.

At this point we will replace the Schwarzschild effectiv
potentialVeff@r (x)# by a simpler potential

Vsim~x!5
l ~ l 11!

4M2x2
Q~x21!, ~5.5!

whereQ(x) is the step function. ForlÞ0, this potential pos-
sesses the main features of the true potential~5.3!: Vsim van-
ishes at the horizon and goes to zero like 1/r 2 for large r.

For purely incoming waves from the past horizon,H2,
we write

cv l~x!5H Av l~e2iM vx1Rv le
22iM vx! ~x<1!,

2i l 11Av lTv lMvxhl
~1!~2Mvx! ~x.1!,

~5.6!

where Av l is the normalization constant, anduR v l u2 and
uT v l u2 are the reflection and transmission coefficients,
spectively. Note that@see~8.451.3 and 8.451.4! of Ref. @21#
and ~10.1.1! of Ref. @19##

hl
~1!~x!5 j l~x!1 inl~x! ~5.7!

5Ap

2x
Hl 11/2

~1! ~x! ~5.8!

5~2 i ! l 11
eix

x
@11O~x21!# ~ uxu@1!.

~5.9!

Using the continuity of the modes and their derivatives ax
51 we find the scattering coefficients:

Tv l5
e2iM v

i l 11Mv
@~12 i /2Mv!hl

~1!~2Mv!2 ihl
~1!8~2Mv!#21

~5.10!

and

Rv l5e4iM v
@~11 i /2Mv!hl

~1!~2Mv!1 ihl
~1!8~2Mv!#

@~12 i /2Mv!hl
~1!~2Mv!2 ihl

~1!8~2Mv!#
,

~5.11!
1-5
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where primes indicate derivatives with respect to the ar
ment. From these equations, we obtain the usual probab
conservation

uT v l u21uR v l u251, ~5.12!

where we have used

hl
~1!~x!hl

~1!8~x!* 2hl
~1!~x!* hl

~1!8~x!522i /x2,

derived from@see~10.1.21!–~10.1.31! of Ref. @19##

j l8~x!nl~x!2 j l~x!nl8~x!521/x2.

The normalization constantAv l is obtained, as usual, b
substituting Eq.~4.3! in Eq. ~2.6! and using Eq.~5.4! with
Vsim(x) in place ofVeff@r (x)# to turn the integral into a sur
face term

1

v2v8
Fcv8 l~x!

d

dx
cv l* ~x!2cv l* ~x!

d

dx
cv8 l~x!G

x→2`

x→1`

52
2pM

v
d~v2v8!, ~5.13!

wherecv l(x) is given by Eq.~5.6!. Using the largeuxu be-
havior of cv l(x) obtained by substituting Eq.~5.9! in Eq.
~5.6!, we obtain~up to a phase!, from Eq. ~5.13!,

Av l5~2v!21. ~5.14!

Substituting the scattering coefficients~5.10!–~5.11! and the
normalization constant~5.14! in Eq. ~5.6!, we obtain

c0l~x!5H 2M ~ l 21112x! ~x<1!,

2Ml 21x2 l ~x.1!,
~5.15!

where we have used

j l~x!5clx
l1O~xl 12!,

nl~x!52dlx
2 l 212elx

2 l 111O~x2 l 13! ~5.16!

with cl51/(2l 11)!!, dl5(2l 21)!!, and el5(2l 23)!!/2.
Note here thatc0l(x)522Mx1const forx,0.

In order to calculate the response rate, we use Eq.~4.9!
with b2151/8pM . If the source is atx0<1 (r 0/2M
<1.567) we obtain

Rlm
T ~x0!5

q2M

p

f ~r 0!1/2

r 0
2 $ l 212y~r 0! f ~r 0!2 ln@y~r 0! f ~r 0!#%2

3uYlm~u0 ,f0!u2, x0<1, ~5.17!

wherey(r )5r /2M , while if the source is atx0.1 (r 0/2M
.1.567) we obtain

Rlm
T ~x0!5

q2M

p

f ~r 0!1/2

r 0
2 l 2 $y~r 0!1 ln@y~r 0! f ~r 0!#%22l

3uYlm~u0 ,f0!u2, x0.1, ~5.18!
10402
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wherelÞ0. Note here that forx0@1 we have

Rlm
T ~x0!'~q2/4pM !l 22x0

22l 22uYlmu2. ~5.19!

VI. STATIC SOURCE OUTSIDE THE SCHWARZSCHILD
BLACK HOLE WITH THE UNRUH VACUUM

The fact that must be considered first in solving the f
Schwarzschild case is that very little is known about t
solutions of the wave equation~5.4! of nonzero frequencyv
with potential~5.3!. ~See Ref.@22# for some known proper-
ties of these solutions.! Thus we use the method outlined
Sec. III @see the paragraph below Eq.~3.9!# in order to nor-
malize the zero-energy modes which are the only relev
ones here@see Eq. ~4.9!#. We will consider the Unruh
vacuum as in the previous section. Thus, we need to cons
only the modes incoming fromH2. Close to and far away
from the horizon we can write

cv l~x!'H Av l~e2iM vx1R v le
22iM vx! ~x,0, uxu@1!,

2i l 11Av lTv lMvxhl
~1!~2Mvx! ~x@1!.

~6.1!

Zero-frequency modes coming fromH2 are totally reflected
back by the potential toward the horizon@see Eq.~5.15! with
x@1#. This implies that forMv!1 the behavior ofcv l(x)
close to the horizon determines the inner product in E
~2.6!. Taking this fact into account and disregarding t
black-hole potential close to the horizon, we find the norm
ized solution of Eq.~5.4! in this region:

cv l~x!'2v21sin@2Mvx1a~v!# ~x,0, uxu@1!
~6.2!

up to a phase. In the limitv→0, we find

c0l~x!'22Mx1const ~x,0, uxu@1!. ~6.3!

This agrees with the behavior ofc0l(x) for large and nega-
tive x found in the previous section by normalizing th
modes of nonzerov and then taking the limitv→0 @see Eq.
~5.15!#.

We note that forv50 Eq. ~5.4! can be reduced to the
Legendre equation. The general solution is@3#

c0l~y!5C1yQl~2y21!1C2yPl~2y21!, ~6.4!

wherey5r /2M , andPl(z) andQl(z) are the Legendre func
tions of the first and second kinds with the branch c
(2`,1# for Ql(z). By recalling that forv→0 the solution
we seek must be totally reflected back to the horizon, a
that Pl(z);zl and Ql(z);z2 l 21 for large z, we conclude
that we must letC250. We find the normalization constan
C1 by comparing Eq.~6.4! close to the horizon with Eq
~6.3!. For this purpose, note that@see~8.834.2! and~8.831.3!
of Ref. @21##

Ql~z!5
Pl~z!

2
ln

z11

z21
2Wl 21~z!

where
1-6
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Wl 21~z!5 (
k51

l

k21Pk21~z!Pl 2k~z!.

Thus from Eq.~6.4!, we have

c0l~x!'C1S 1

2
2

x

2
2 (

m51

l
1

mD ~x,0, uxu@1!.

~6.5!

By comparing Eq.~6.5! with Eq. ~6.3! we obtainC154M .
Thus

c0l~x!54MyQl~2y21!. ~6.6!

The response rate to quanta of given angular momen
is readily obtained by substituting Eq.~6.6! in Eq. ~4.9!:

Rlm
S2U5

q2

pM
f ~r 0!1/2uQl~z0!u2uYlm~u0 ,w0!u2,

wherez0[r 0 /M21. Note that forx0@1 we have

Rlm
S2U~x0!'~q2/4pM !@~ l ! !2/~2l 11!! #2~x0!22l 22uYlmu2.

Comparison of this equation and Eq.~5.19! shows that the
rate obtained with the toy black hole does model the ex
response rate for moderatel provided that the source is set
largex0 . In order to obtain the total response rateRtot

S2U , we
sum overl andm. For this purpose we use

(
m52 l

l

uYlm~u,w!u25
2l 11

4p

and

(
l 50

`

~2l 11!@Ql~z!#25
1

z221
.

th

e

o

l-
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The latter expression can be obtained by squaring the
mula ( l 50

1` Pl(t)Ql(z)5(z2t)21, and integrating from21
to 1 with respect tot. In this way we obtain

Rtot
S2U5

q2a~r 0!

4p2
, ~6.7!

where a(r 0)5M f (r 0)21/2/r 0
2 is the proper acceleration o

the static source. Note that Eq.~6.7! is identical to Eq.~3.13!
as a function of proper acceleration. This is our main res
The emission and absorption of zero-energy particles b
static source outside a Schwarzschild black hole with
initial quantum state being the Unruh vacuum is exactly
same as if the source were static in the Rindler wedge w
the initial quantum state being the Minkowski vacuum.Note
that close to the horizon Eq.~6.7! can be written as a func
tion of the proper temperature~see Ref. @23#!, b21

5 f 21/2/8pM , as

Rtot
S2U'

q2

2pb
~x,0, uxu@1!, ~6.8!

which is the same as Eq.~4.11!.

VII. STATIC SOURCE OUTSIDE A SCHWARZSCHILD
BLACK HOLE WITH THE HARTLE-HAWKING

VACUUM

In this section we will calculate the response rate of
static source when the initial state is taken to be the Har
Hawking vacuum@24#. ~This will show that the Unruh
vacuum state is essential for the above mentioned equa!
In this state thermal fluxes come in fromJ2 as well as from
H2. The contribution of the flux fromH2 to the response
rate has already been calculated in the previous sec
Thus, we consider here the modes incoming fromJ2. Close
to and far away from the horizon these modes can be wri
as
cv l~x!'H Av lT v le
22iM vx ~x,0, uxu@1!,

Av l@2~2 i ! l 11Mvxhl
~1!~2Mvx!* 12i l 11Rv lMvxhl

~1!~2Mvx!# ~x@1!,
~7.1!
where the normalization constant can be determined by
procedure used in Sec. V with the same resultAv l
5(2v)21.

Recall that Eq.~6.4! gives the general expression for th
zero-frequency solutionc0l(x) of Eq. ~5.4!. Because zero-
frequency modes must be totally reflected by the black-h
potential towardJ1, we conclude that in this caseC150.
@Note thatPl(1)51 while Ql(z)'2 logAz21 for z'1 and
that Pl(z) andQl(z) behave likezl andz2 l 21, respectively,
for z@1.# Thus

c0l@x~y!#5C2yPl~2y21!, ~7.2!

wherex(y)5y1 ln(y21). In order to determine the norma
e

le

ization constantC2 we first note that for largex Eq. ~7.2! can
be written as@see ~8.820!, ~8.837.2! and ~8.339.2! in Ref.
@21##

c0l~x!'C2xF~2 l ,l 11;1;12x! ~x@1!

'C2

~2l 11!!

~ l ! !2
xl 11 ~x@1!. ~7.3!

Now we find from Eq.~7.1! the following expression for
1!x!1/Mv @see Eqs.~5.7! and ~5.16!#:
1-7



i

t

um

es
n
ce
.
th

t
g
e
e-
h

s
It

si

io

ith
nd

and
rgy
orp-

al

y

tion

tu-
ity,

to

nd
per
ce.

r
ults

HIGUCHI, MATSAS, AND SUDARSKY PHYSICAL REVIEW D58 104021
cv l~x!'
22l 11l ! Ml 11v l

~2l 11!!
xl 11 ~1!x!1/Mv!,

~7.4!

where we have setRv l'(21)l 11 for v!1 so thatcv l(x)
behaves likexl 11 in the specified range ofx. By comparing
Eqs.~7.3! and ~7.4!, we obtain

C25
22l 11~ l ! !3Ml 11v l

@~2l 11!! #2 U
v→0

52Md l0 . ~7.5!

Thus the only non-vanishing zero-energy modec0l(x) has
vanishing angular momentum.

Using Eq. ~4.9! with Eqs. ~7.2! and ~7.5!, we write the
total contribution to the response rate due to the modes
coming fromJ2 in terms of the proper acceleration as

RJ 25
q2

16p2r 0
2a~r 0!

. ~7.6!

Therefore the total response rate of our scalar source in
Hartle-Hawking vacuum is given by the sum of Eqs.~7.6!
and ~6.7!:

Rtot
S2HH5

q2a

4p2
1

q2

16p2r 0
2a

. ~7.7!

Clearly Eq.~7.7! differs from Eq.~3.13! by the second term
on the RHS. Thus, the equality found for the Unruh vacu
does not hold for the Hartle-Hawking vacuum.

Notice that near the horizon, the first term dominat
Hence, the response rate is approximately the same as i
Unruh vacuum and can physically be attributed to the ac
eration of the source. For largex, the second term in Eq
~7.7! dominates and can be written as a function of
proper temperature as

Rtot
S2HH'

q2

2pb
~x@1!, ~7.8!

which agrees with Eq.~4.11!. This is consistent with the fac
that far away from the black hole the Hartle-Hawkin
vacuum is identical with a thermal bath in Minkowski spac
time. Note that if the equality were to hold for the Hartl
Hawking vacuum, the response rate would have to vanis
the limit x→`. Thus, for largex the equality breaks down in
the Hartle-Hawking vacuum because the source respond
a thermal bath of ‘‘real particles’’ as was found in Sec. IV.
is interesting to note that the second term in Eq.~7.7! would
be absent if we considered the massless limit of a mas
scalar field. Thus, the equality would be recovered.~There
are no modes incoming fromJ2 that satisfyv,m, wherem
is the mass of the scalar field. This is why the contribut
from these modes vanishes if we take the limitv→0 before
the limit m→0.)
10402
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VIII. CONSISTENCY WITH THE LITERATURE

Before showing that our results are in agreement w
those of Refs.@3,4# by Candelas and Sciama, Candelas a
Deutsch~CSD!, we recall~i! that our response rate is thesum
of absorption and emission rates of zero-energy modes,
~ii ! that the absorption and emission rates of zero-ene
modes are equal. Thus our result would be twice the abs
tion rate obtained by CSD in the zero-energy limitif we used
the same source. However, this is not the case. The classic
source equivalent to the detector in Refs.@3,4# is propor-
tional to exp(iv0t). This is replaced in our case b
A2cos(v0t)5exp(iv0t)/A21exp(2iv0t)/A2. Since the sec-
ond term on the RHS does not contribute to the absorp
rate in the computation, our source is effectively 1/A2 of the
one in Refs.@3,4# as far as absorption is concerned. Even
ally, when we square the amplitude to obtain the probabil
we end up with anabsorptionrate which is 1/2 of the one
obtained by CSD in thev0→0 limit. Hence, our results will
be compatible with CSD if our total response~absorption1
emission! rate is equal to the absorption rate of Refs.@3,4# in
the v0→0 limit.

To show that this is indeed the case it is convenient
interpret our results~with q251) in terms of the two-point
function as follows. Let us consider a static world line a
let xt be the spacetime point which corresponds to pro
time t measured along the world line of the scalar sour
Then the rate~per proper time! we have computed in
Schwarzschild spacetime with the field in theUnruh vacuum
initial state,u0&U , is

Rtot
S2U5E dt U^0uf~xt!f~x0!u0&U ,

where U^0uf(x)f(y)u0&U is the two-point function of the
massless scalar fieldf. The behavior of this quantity nea
and far away from the horizon can be found using the res
in CSD as follows.

The quantity considered by CSD is

P~vur !5E
2`

1`

dt exp~2 ivt ! U^0uf„x~ t !…f„x~0!…u0&U ,

wheret is thecoordinatetime along a static world line. Since
dt5(122M /r )1/2dt, our response rateRtot

S2U and P(0ur )
should be related by

Rtot
S2U5~122M /r !1/2P~0ur !.

Now, according to CSD, forr'2M one has

~122M /r !1/2P~vur !

'
v

2p~122M /r !1/2@exp~2pv/k!21#
,

where k51/4M . Taking the limit v→0 for r'2M , one
finds
1-8
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~122M /r !1/2P~0ur !'
1

16p2M ~122M /r !1/2

'
1

4p2

M

r 2
~122M /r !21/2.

This is in agreement with our formula~6.7! with q251.
The calculation for large values ofr is a little more in-

volved. The formula given by CSD for this case is

P~vur !'
1

r 2

S l 50
1` ~2l 11!uBl~v!u2

8pv@exp~2pv/k!21#
2

v

2p
u~2v!.

@The factor (122M /r )1/2 is irrelevant now.# Taking thev
→0 limit, one has

P~0ur !'
1

64p2Mr 2(l 50

1`

~2l 11! lim
v→0

uBl~v!u2

v2
, ~8.1!

where theuBl(v)u2 are the transmission coefficients for th
modes incoming fromH2. In our notation where the
positive-frequency modes are given by Eq.~4.3!, the Bl(v)
are defined by

cv l~r !'H Cv l@e2iM vx1Al~v!e22iM vx# ~r'2M !,

2i l 11Cv lBl~v!Mvxhl
~1!~2Mvx! ~r @2M !,

~8.2!

where Cv l5(2v)21 @see Eq.~5.14!#. Note that for 1!x
!1/Mv we have, from Eq.~8.2!,

cv l~r !'Bl~v!i l 11Mx@ j l~2Mvx!1 inl~2Mvx!# ~x@1!

'
Bl~v!

v

i l 11~2l !! v2 l

22l 11l ! Ml
x2 l ~1!x!1/Mv!.

~8.3!

In order to determineBl(v) for small v, we recall that
the normalized zero-frequency solution of Eq.~5.4! can be
written as@see Eq.~6.6!#
10402
c0l~r !54MyQl~2y21!

54My
G~ l 11!G~1/2!

2l 11G~ l 13/2!

3
1

~2y21! l 11
FS l 12

2
,
l 11

2
;
2l 13

2
;~2y21!22D

'
2M ~ l ! !2

~2l 11!!
x2 l ~x@1!, ~8.4!

where y5r /2M . Thus, comparing Eqs.~8.3! and ~8.4! we
have

Bl~v!

v U
v→0

5
22l 12~ l ! !3Ml 11v l

~2l !! ~2l 11!! U
v→0

54Md l0 . ~8.5!

Finally, substituting Eq.~8.5! in Eq. ~8.1!, we recover the
large r limit of our formula ~6.7! with q251. Thus, our re-
sults are in agreement with CSD forr'2M and for larger.

IX. DISCUSSIONS

We have shown that there is an equality between the
sponse of a static source in Schwarzschild spacetime~with
the Unruh vacuum! and that of a uniformly accelerate
source in Minkowski spacetime~with the Minkowski
vacuum! provided that the proper acceleration is the sam
This result was quite unexpected since all classical formu
tions of the equivalence principle are valid only locally whi
quantum states are defined globally. What could have b
naturally expected is an equivalence in the response of
type mentioned above only close to and far away from
horizon ~see, e.g., Refs.@25,26#! rather than everywhere
~After the completion of this work, a similar calculation wa
performed for the electromagnetic field butno equality was
obtained in this case@27#. Thus, the equality seems to ho
only for the massless scalar field.! We have also verified tha
close and far away from the horizon the source respond
Hawking radiation as if it were at rest in a thermal bath
Minkowski spacetime characterized by the same proper t
perature in the Unruh and Hartle-Hawking vacua, resp
tively. Clearly, Hawking radiation was crucial in obtainin
non-vanishing rates: had we chosen the Boulware vacu
@28#, we would have obtained vanishing response rates
was also shown that the equality derived for the Unr
vacuum does not hold for the Hartle-Hawking vacuum.

The procedure used in Schwarzschild spacetime to n
malize the massless Klein-Gordon scalar field in the ze
frequency limit was checked by comparing it with the o
performed for a toy black hole where the normal modes
be written explicitly for every frequency. Finally, our resul
were compared with the literature and shown to be in agr
ment with it.
1-9
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