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Interaction of Hawking radiation with static sources outside a Schwarzschild black hole
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We show that the response rate(pfa static source interacting with Hawking radiation of a massless scalar
field in Schwarzschild spacetintfwith the Unruh vacuumand that of(ii) a uniformly accelerated source with
the same proper acceleration in Minkowski spacetimi¢h the Minkowski vacuumare equal. We show that
this equality will not hold if the Unruh vacuum is replaced by the Hartle-Hawking vacuum. It is verified that
the source responds to the Hawking radiation near the horizon as if it were at rest in a thermal bath in
Minkowski spacetime with the same temperature. It is also verified that the response rate in the Hartle-
Hawking vacuum approaches that in Minkowski spacetime with the same temperature far away from the black
hole. Finally, we compare our results with others in the literatit868556-282(198)02922-1

PACS numbegs): 04.70.Dy, 04.62+v

[. INTRODUCTION show that its total response rat@ith the initial quantum
state being the Minkowski vacuynis given by Eq.(1.D.
Recently we analyzed the emission and absorption oNext, in Sec. IV, we consider a static source immersed in a
“zero-energy particles” by a static source interacting with thermal bath in Minkowski spacetime and calculate its re-
Hawking radiation outside a Schwarzschild black Hdlg It ~ sponse rate for later use. In Sec. V, we consider a toy model
was found that the total response rate of a point-like statidor a static source outside a static black hole characterized by

scalar source in the Unruh vacuum is given by a simplified gravitational effective potential and calculate its
response rate assuming that the initial quantum state is the

g’a Unruh vacuum. In Sec. VI, the response rate is calculated

Rtot:4_7_r2’ (1.1 with the true Schwarzschild effective potential. The results

found are compared with those obtained in Sec. Ill. In par-

whereq is the coupling constant between the source and thécular, it is shown that the total response rate here is also
massless scalar field, amds the proper acceleration of the given by Eq.(1.1). This equivalence is our main res{di. In
source. The remarkable fact about this result is that(Ed) Sec. VII, we calculate the response rate replacing the Unruh
also corresponds to the total response rate of a uniformiyacuum by the Hartle-Hawking one and show that Elq1)
accelerated source for a massless scalar field in Minkowsf0€s not hold. In Sec. VIIl, we discuss the case where the
spacetime provided that the initial quantum state is thesource approaches the horizon and the case where it is far
Minkowski vacuum[In fact, according to inertial observers, @vay from the black hole using the method described in
Eq. (1.1) is associated with the emission rate of finite-energyRefs.[3,4] and show that the results agree with the suitable
Minkowski particles while according to coaccelerated ob-limit of the one obtained in Sec. VI, i.e., EQL.D). In Sec.
servers it is associated with the emission and absorption dX, We discuss our results. We will use natural unfits-c
zero-energy Rindler particldg].] Thus, an equality between =G=kg=1 throughout this paper.

the behavior of static sources in Schwarzschild spacetime

(with the Unruh vacuumand uniformly accelerated sources Il. GENERAL FORMALISM

in Minkowski spacetiméwith the Minkowski vacuun con-

ing thei Y d ab . found It is well known that field theory quantized in globally
cerning their emission and absorption rates, was found. Hefg e rholic spacetime possessing a global timelike Killing
we analyze in detail some related points that were not di

di f i . hecks of Sfield admits a unique vacuum state and a corresponding
cussed in Refl1], provide some consistency checks of our niqe “particle interpretation” (under certain technical

results and demonstrate their compatibility with related r€onditions [5,6]. This is so because the use of the time pa-

sults in the literature. The paper is organized as follows. INameter corresponding to the Killing field allows us to dis-

Sec. I, we review the general formalism for computing thet- guish, in a natural way, between positive and negative
response rate of classical sources for a massless scalar fig, aquenéy modes. This is,the case in globally hyperbolic
in static spacetime. In Sec. Ill, we analyze the case of a statig; ;- spacetime described by the metric

point-like source in the Rindler wedge—i.e. a uniformly ac-

celerated point-like source in Minkowski spacetime—and dsZZf(x)dtz—hij(x)dxidxj (2.1
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(under certain technical conditionsVe consider emission

of particles in these spacetimes by classical static scalar iJ dZn*(Uig VUgren =V, Uig - Uyrgyr)
sourcesl)(x) coupled to a massless scalar field. The response e

of a classical source in the vacuum is entirely due to spon- =8(w—w')8(s—5 )b\, (2.6)

taneous emission. If the source is static, then this vanishes
(unless there are severe infrared divergenceswever, if

the static source is in a thermal bath, the absorption and if d2 n“(U,eV Uyren =V Upe - Uyreryr)
induced emission also contribute to the response rate. Now, %t
the static source interacts only with zero-energy modes and -0 2.7

Planck’s distribution formula diverges at zero energy. It will
turn out that this makes the rates of absorption and induce\g,r1ere n* is the future-pointing unit normal to the volume

emission nonzero. Thus, the static source responds with &ement of a Cauchy surfad . The in-fieldd™ satisfying
finite probability to thermal baths for the cases we consideEhe free field equatioiﬂd)‘“:O.can now be expanded as

in this paper.
In order to avoid the appearance of intermediate indefinite ' _
results due to the divergence mentioned above, we will in- <D'”(x)=; f dod"qu,q(X)age +H.cl,

troduce oscillation as a regulator. Thus, we consider at this
point a source of the form

whereay, anda™l, are annihilation and creation operators,
jwo(t,x)z \/EJ(x)coszuot (2.2 respectively, which satisfy the usual commutation relations
and take the limiwy— 0 at the end. The factof2 has been [af, 2", J=8(w—w')8(s—5 )6 . (2.8
introduced to keep the time avera(je,izwo(t,x)|2>t equal to
|3(x)|2. This makes wo(1,X) equivalent toJ(x) in the limit Let the initial quantum state be the in-vacuum st@te

wo—0 because the response rate at the lowest order is prélefined byaiclgs)\|-0>:0 for all », sandX. The rate of spon-
portional to the square ofthe Fourier transform ofthe  taneous emission per totakoper time Tyf(X,), whereT

source. We will be interested in the point source where =27 48(0) is the totalcoordinatetime [7], with fixed s and\
to lowest order is
30 =08(x—xo)/\h (2.3
, . . . N Rsf wo;SN)d"s=T f(xo) 2
with g being the coupling constanty being the position of X

Lh;/:ource andh(x)=det[h;;(x)]. With this definition, we Xf dw<ws>\U 4 TR ], @ ‘0> s
(2.9

L d> J(x)=q (2.9

t

By performing the integration with respect &g we obtain

for any Cauchy surfac®; with constant.

Let us consider the coupling of our classical source R ‘s \)d"s= “o Fwe:s ) 2d's (2.1
jw,(t,X) to @ massless real scalar field which is described st @0iSA) \/f(x0)| (@oisMId%, (210

by the action
where

s=f d&ﬁ(;wqwﬂqijoq) .
ﬁ(wo;s,x)zf d*x VEO)h(X) IOU 4 e (X).
Let
If the source is immersed in a thermal bath of inverse

Uya (X)= \/Eum(x)exp(—iwt) (2.5 temperaturgﬁ, the rates of absorption arhnlduceder_nission
T are both given byRg(wq;s\)/[exp(Bwp)—1]. Adding the

. . . absorption rate and the spontaneous and induced emission
with frequency »>0, and their complex conjugates rates we find that theesponserate for modes with fixed

U, (X)* be solutions tdJu=0, wheres=(sy, ....S;) and  gnd is given by
AN=(\q, ...\ are sets of continuous and discrete quan-
tum numbers, respectively, for the complete set of modes.
. . (O] ~
We have assumed to be continuous because this is the case R(wg;S\)= [I(wg;s.)\)|2coth Bw/2).
in the spacetimes we study, and adopted it as one of the VE(Xg)

mode labels. The factofw/7 has been inserted for later
convenience. We orthonormalize these solutions with respedh the case of interest here, i.e., for static sources, we take the
to the Klein-Gordon inner product: limit wy— 0 as explained above, obtaining
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2871 _ whereC,, is a normalization constant. In order to determine
R(O;s\)= [3(0;5,0M)]2. (2.1)  it, we substitute normal mode8.2) in the Klein-Gordon
Vi(xo) inner product(2.6), obtaining

This is the general expression for the response rate of a static +oo T

point source in a thermal bath interacting with a massless (o+ w')f déin () Yark (§)= o=’
scalar field. The total rate is obtained from E@.11) by o 3.5
integrating with respect te and summing ovek. Note that ‘
although the particle content of a field theory depends inyext we use the wave equati@8.3) to turn the integral in
general on the Killing field with respect to which the vacuumggq. (3.5) into a surface term:

is defined, the total response rate does not.

1 { dyfy, . ¥k T
lll. STATIC SOURCE IN THE RINDLER WEDGE
£

w—wltww’kl dg _l//kad—g 256(0)_&)’)

We first review the computation of the response rate of a 3.6
static source in the Rindler wed§8] (see Refs[2,9]). This Using Eq.(3.4) in Eq. (3.6) and noting that
source corresponds to a uniformly accelerated source in
Minkowski spacetime. The Rindler wedge is the portion of sifwT w')r
Minkowski spacetime limited by>|t|, where ¢,x,y,z) are im ————=7d(0+w’), (3.7
the usual Minkowski coordinates. These are related to the rote  @O+0
Rindler coordinates#,x,y,&) by we obtain the normalization constafup to a phase

t=a le¥sintar, z=a le®‘coshar. :
B [sinh Tw/a)
In these coordinates, the line element of the Rindler wedge is Co= Taw 3.8
written as
From Egs.(3.4) and (3.8 we obtain the normalized zero-
ds?=e?3(dr?—d&?) —dx2—dy?. energy modes

We consider a point-like source fixed in space with a time- o, (§)=a~ Kol (k. /a)e*]. (3.9

dependent magnitudsee Eqs(2.2) and(2.3)]

In fact, one can directly normalizg,, referring only to
wy= V2 qcosmoT 8(£) 8(x) 3(y) (3.0 g

solutions of Eq.(3.3) with w=0. This method will be very

- : ) useful in the Schwarzschild black-hole case, where the ana-
and take the limiw,—0 at the end. Note tha{, describes |446 of Eq.(3.4) cannot be explicitly obtained. One consid-

a source with constant proper acceleraton ers the form of the solution of Ed3.3) with arbitrary fre-

We will describe the free massless scalar field theory usquency for large and negative valueséfThis has a simple
ing Rindler coordinates. For this purpose we look forfgorm

positive-frequency solutions tkaXkyZO with respect to

—_— , 1
the Killing field g/ 97 Yok (£)~— ;Sir{w§+ a(w)] (£<0]&>1),

(3.10

where the normalization constant has been fixed to make Eq.
Here they, must satisfy (3.10 compatible with Eq(3.6). In particular,

ok, (§)~—¢€+const (§<0/¢[>1).  (3.1D)

® eikXXJrikyy*iw‘r
uwkxky(T,X,yf) = \/; l//wki(g)T. (3.2

— .2
dé&? Yok, (6= @Yo (6) 33 By solving Eq.(3.3) with w=0 and fitting the solution ob-
tained to Eq.(3.1)) for large and negative values &f we
andk, = \ki+k2. We assume a Minkowski vacuum which recover Eq(3.9).
corresponds to a thermal state of Rindler parti¢is3—17. In order to calculate the response rar8&(k,,k,) with
This is the Fulling-Davies-UnrukFDU) thermal bath char- fixed transverse momentur,(,k,), we use the general ex-
acterized by a temperatu@ 1=a/27. The termk?e? in  pression(2.1), identifying Ugg (X) with gy (£)e™x "/
Eq. (3.3 acts as an effective potential that is unbounded for(27) [see Eqs(2.5), (3.2 and(3.9)]. Thus, we find
the modes with nonvanishing transverse momentum. The so-
lutions zpwki(g) that tend to zero a§— +x are

2
{— d—+kfe2a'f

2
RR(kX ,ky)dkxd ky=4q—3[K0(kL /a)]zd k.d ky .
Vot (6= C Kiural (K, [2)€%], 3.4 i (312
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The total response rate is obtained by integrating(Bd.2  whereY,,(8,¢) are spherical harmoni¢49] with |=0 and

over the whole range of transverse momenta as —I=m=<+1. [The form (4.3) will also be adopted in the
following sections] Here i ,(r) is the solution of the ordi-
5 q’a nary differential equation
tot~ , - (.13
am ? 1(1+1)
L. . . . __2+ 2 ¢w|(r):w2¢w|(r)' (44)
It is interesting to recall at this point that by a standard dr r

Cartesian-coordinate calculati¢see, e.g., Ref$7,13)), Eq.

(3.13 can be shown to be identical to the emission rate off he solutions of Eq(4.4) which are finite ar =0 are
usual Minkowski particles. This result is interpreted as fol- .

lows [2,9]: The emission of a usual finite-energy particle o (r)=Cyirj(wr), (4.9
from a uniformly accelerated source in Minkowski vacuum . . .
as described by inertial observers corresponds to either thgvhgre 'ghej|(x) are the spherical Bessel funct[ons. The nor-
emissionor the absorptionof a zero-energy Rindler particle _mallzatlon_ constant§w| are found by substituting E¢4.3)

to or from the FDU thermal bath as described by uniformly " the Klein-Gordon inner produd®.6) as

accelerated observerJhis is in agreement with Unruh and o -

Wald's inertial interpretation of '.[he excitation Qf an accelgr— (w-l-w')f drg (N* i (N=—8w—w')

ated detectof14], and with the discussion of this problem in 0 w

terms of classical radiatiofl5]. Although these zero-energy

particles are conceptually well defined, they are not observand using Eq(4.4) to turn this integral into a surface term:
able by accelerated observgp3. This is compatible with the

fact that observers coaccelerated with the source associate no CiiCorl e . ,

emission of classical radiation with [it6,17]. o [o'r%ji(@n)]i+a(e’r)
We would like to call attention to the fact that we are

implicitly assuming that the classical source is adiabatically +or?j (o nNji (o] i

switched on and off asymptotically. Thus, we are not con-
cerned with the controversy as to whether or not there is
radiation from uniformly accelerated sources which are eter-
nally turned on.(See Ref[18] and references therein for a
comprehensive analysis of this issue and Reffor a brief ~ where use has been made of the idenfége (10.1.23 of
discussion of its relation to our problem. Ref. [19]]

=g§(w—w’), 4.6

d I
IV. STATIC SOURCE IN MINKOWSKI SPACETIME Jrh@nN=—ji(er) = wji1a(er).
r r

Before analyzing static sources in the spacetime with . ;
black hole, it is useful for later purposes to work out theinngggégoerzlu:;ZEg%liﬁo?a;; S[Ifgﬁs) of Eq.(4.6) we
§ 1. 2. .

response of a static source in Minkowski spacetime usin

spherical coordinates and assuming a background thermal =

bath. The line element of Minkowski spacetime in spherical j1(x)= \ﬁjlﬂ,z(x)mxlsin(x—lrr/Z) (x>1)
coordinates is 2X

(4.7)

and Eq.(3.7). Hence, from Eq(4.6) we obtainC,,=1 (up to
a phasg and the normalized zero-energy mode is

ds®=dt?—dr?—r?(d#?+sinfod¢?). 4.1

In spherical coordinates we write our oscillating source in

the form Yol(1)=r}1(0)=r 5o (4.9
_ qcoswg n spherical coordinates, a general expression for the re-
2 t In spherical coordi ! ion for th
Jug(¥)= Jh S(r=ro)8(6— o) (¢ o), sponse rate with fixed angular momentum can be obtained by
(4.2) using Eq.(4.3 in Eq. (2.11):
where Jh=rsine. R0 im0 (49
Let us write the positive-frequency solutions of the mass- Im Br2 ORTO7E 1 Himt 70» 570 1 - '
less Klein-Gordon equation with respect to the Killing field
alat as Here s is given by Eq(4.8) andf(xy) =1. Thus, we obtain
w lr//wl(r) i _ q2
Ugim= \/; — Yim(6,4)e”", (4.3 Rin=20°8""Yin( 0. 40)|*0i0=7, 360, (4.10
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where we have uselY 6, ¢)|?=(4m) L. Since this ex- d? , )
pression vanishes for evetyexcept forl =0, thetotal re- 52 TAM Ve r(0]|du=A4MT0 Yy, . (5.4

sponse rate is

There are two independent solutions to E§.4). One
m_ 9 (4.17  solution corresponds to the mode purely incoming from the
ot 278" ' past horizorH™ and the other to the mode purely incoming

from the past null infinity7~. These modes are orthogonal
One can readily verify that the same response (4tel)  to each other with respect to the Klein-Gordon inner product
is obtained by repeating the calculation in Cartesian coordi¢2.6).

nates[7,13]. [In this case the normalized positive-frequency  We will focus in this and the next sections on the Unruh

modes are the standard onasi(x)=e *»"/\{16m°w.]  vacuum[11l] where there is a thermal flux of temperature

This should clearly be the case since the vacuum is defined '=1/8wM coming out fromH~. This is basically the

through the same timelike Killing field/dt. Hawking radiation[20] which leads to evaporation of black
We note that one obtains E¢8.13 by substitutingg~*  holes formed by gravitational collapse.

=a/2m in Eq. (4.11). This shows that a uniformly acceler- At this point we will replace the Schwarzschild effective

ated source for a massless scalar field in Minkowski spacdrotentialVeqr(x)] by a simpler potential

time responds to the FDU thermal bath as if it were at rest in

Minkowski spacetime with a background thermal bath pro- I(1+1)

vided that both thermal baths have the same temperature, as Vsim(X)= W(X_ ), (5.9

is well known (see, e.g., Refl13]). We will return to this

point in Secs. VI and VII.

2

where® (x) is the step function. Fdr# 0, this potential pos-
sesses the main features of the true pote@®&): Vg, van-
V. STATIC SOURCE OUTSIDE A TOY BLACK HOLE ishes at the horizon and goes to zero like?Tbr larger.

. . . . . For purely incoming waves from th horizd#h,
In this section we will treat a static source in the space, o vzritzu ely incoming waves from the past horiza, ,
time of a black hole with an artificial gravitational effective

potential simple enough to enable. us to find.the normal A, (2MXL R e 2Mox) (x<1),

modes in terms of well-known functions. This will allow us ot (X)=1 - 141 "

to normalize them for every frequenayand thus we will be 2 AL T M oxXh P (2M X)) (x>1),
able to take the limitw—0 explicitly. We will consider a (5.6

potential that reproduces the main features of the effective ) o )
potential for the Schwarzschild black hole, and compare th heréa A, is the normalization constant, arj® | and
results with those obtained in the next section where we treat ol ~are the reflection and transmission coefficients, re-
the Schwarzschild case using the method outlined in Sec. lIEPectively. Note thafsee(8.451.3 and 8.451)4f Ref. [21]

This will provide a useful check for the latter method. and(10.1. of Ref.[19]]
The Schwarzschild line element is (1) . )
hi = (x)=](x) +in;(x) (5.7
ds?=f(r)dt>—f(r) " 1dr?—r2(d 6>+ sirf6d ¢?),

5.1
50 = \/ng(?uz(X) (5.9

wheref(r)=1-2M/r. The scalar sourcﬁuO(x) is given by

Eq. (4.2) with Vh=f"Y%2sing. The positive-frequency so- _ |+1eix .
lutionsuy,,, of the massless scalar field equation can be writ- == 1+ 0(x )] (|x[>1).
ten as in Eq(4.3 where they,(r) here satisfy the differ- (5.9

ential equation
Using the continuity of the modes and their derivatives at

d d = 1 i ici N
{_f(r)a( f(r)a +Veﬁ(f)}¢w|(f)=w2¢/w|(f), 1 we find the scattering coefficients:
(5_2) e2iMw ,
Tw|=W[(1—i/2Mw)hfl)(ZMw)—ihl(“ (2Mw)] 1
. i ®
with (5.10
Ver(r)=(1=2M/0)[2M/r3+1(1+D)/r?]. (5.3 4pq
The effective potentiaV4(r) vanishes at the horizon and : (1) (1)
goes to zero like 17 for larger. It is useful to introduce the R —g#M [A+i/2Mw)h " (2Mw) +ih, ,(ZMw)],
dimensionless Wheeler tortoise coordinatey+In(y—1) [(1-i/2Mw)hY(2Mw)—ih{Y (2Mw)]
wherey=r/2M. Then Eq.(5.2) can be rewritten as (5.11

104021-5
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where primes indicate derivatives with respect to the arguwherel #0. Note here that foky>1 we have
ment. From these equations, we obtain the usual probability " 2| 2
Yl

conservation Rl (Xo) =~ (q%4mM)1 ~2xy

(5.19

2 2__
[Tl “+ R wl*=1 (5.12  y|. STATIC SOURCE OUTSIDE THE SCHWARZSCHILD

where we have used
hl(l)(x)hl(l)/(x)* _ hl(l)(x)* hl(l)r(x) _ 2i/X2,
derived from[see(10.1.22—(10.1.3) of Ref.[19]]

i )N (x) = j; ()N (x) = — 12,

The normalization constam§,, is obtained, as usual, by

substituting Eq.(4.3) in Eq. (2.6) and using Eq(5.4) with
Vsim(X) in place of Vg r(x)] to turn the integral into a sur-
face term

ww’l(x)dxwwl(x) wwl(x)dxlpw’l(x)
27M
=——dfw—w'), (5.13
w

where ¢, (X) is given by Eq.(5.6). Using the larggx| be-
havior of ¢, (x) obtained by substituting Eq5.9) in Eq.
(5.6), we obtain(up to a phasg from Eq.(5.13,
A, =2w) L (5.14
Substituting the scattering coefficien&10—(5.11) and the
normalization constan.14) in Eq. (5.6), we obtain

2M(171+1-x) (x<1),
Po(X) =1 Hp a1y (x>1), (5.19
where we have used
i =cxX'+0O(X'*?),
n(x)=—dx ""l—ex "+ Ox'*3)  (5.16
with ¢;=1/(21+1)!!, d,=(21-1)!!, ande = (2l -3)!!/2.

Note here thai)g (x) = —2Mx+ const forx<0.

In order to calculate the response rate, we use(E®)
with B~1=1/8xM. If the source is atxo<1 (ro/2M
<1.567) we obtain

ZM f(ro)l/Z

Rim Xo)— Tﬂ L-y(ro)f(ro)—

In[y(ro)f(ro)1}?

X|Yim( 600, d0)|%  Xo=1, (5.17

wherey(r)=r/2M, while if the source is akg>1 (ro/2M
>1.567) we obtain

2M f 1/2
Rin(X0) = eroﬁT{Y(ro )+ Ly (ro)f(ro)]}
X|Yim( 00, #0)|? Xo>1, (5.18

BLACK HOLE WITH THE UNRUH VACUUM

The fact that must be considered first in solving the full
Schwarzschild case is that very little is known about the
solutions of the wave equatigb.4) of nonzero frequencw
with potential(5.3). (See Ref[22] for some known proper-
ties of these solutionsThus we use the method outlined in
Sec. lll[see the paragraph below E&.9)] in order to nor-
malize the zero-energy modes which are the only relevant
ones here[see Eg.(4.9]. We will consider the Unruh
vacuum as in the previous section. Thus, we need to consider
only the modes incoming frorhl ~. Close to and far away
from the horizon we can write

A (&M + R e 2MeX) (x<0, [X[>1),

V0= o AT aMoxhiP(2Mox) (x>1).

(6.9

Zero-frequency modes coming frobh™ are totally reflected
back by the potential toward the horizfsee Eq(5.15 with
x>1]. This implies that folM o<1 the behavior off,,(x)
close to the horizon determines the inner product in Eg.
(2.6). Taking this fact into account and disregarding the
black-hole potential close to the horizon, we find the normal-
ized solution of Eq(5.4) in this region:

Yo (X)=~—w sif2Mox+a(w)] (x<O0, |x|>1)

(6.2
up to a phase. In the limib—0, we find

bo(X)~—2Mx+const (x<O0, |[x|>1). (6.3

This agrees with the behavior @i, (x) for large and nega-
tive x found in the previous section by normalizing the
modes of nonzera and then taking the limib— 0 [see Eq.
(5.19].

We note that foro«=0 Eq. (5.4 can be reduced to the
Legendre equation. The general solutio3$

Po(Y)=CryQi(2y—1)+CoyPi(2y—1),

wherey=r/2M, andP,(z) andQ,(z) are the Legendre func-
tions of the first and second kinds with the branch cut
(—oe,1] for Q,(2). By recalling that foro—0 the solution

we seek must be totally reflected back to the horizon, and
that P,(z)~Z' and Q,(z)~z '~ for large z, we conclude
that we must leC,=0. We find the normalization constant
C, by comparing Eq.(6.4) close to the horizon with Eq.
(6.3. For this purpose, note thpgee(8.834.2 and(8.831.3

of Ref.[21]]

(6.9

P +1
Qo=

-Wi_1(2)

where

104021-6
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' The latter expression can be obtained by squaring the for-
W_1(2)= 2 kP, _1(2)P,_(2). mula =, P, (1)Q,(2) = (z—t) !, and integrating from—1
k=1 to 1 with respect td. In this way we obtain

Thus from Eq.(6.4), we have s u_ 92a(ry)
tot 4772

, (6.7)

1 x « 1
Ya(0)~Ca|5—5— 2 —| (x<0, [x/>1). ez _
=1m where a(ro) =Mf(rp)~“9ry is the proper acceleration of

(6.9  the static source. Note that E§.7) is identical to Eq(3.13
: . . _ as a function of proper acceleration. This is our main result:
_I?Kucsomparlng Eq(6.5) with Eq. (6.3 we obtainC,=4M. The emission and absorption of zero-energy particles by a
static source outside a Schwarzschild black hole with the
Po(X)=4MyQ,(2y—1). (6.6 initial quantum state being the Unruh vacuum is exactly the
same as if the source were static in the Rindler wedge with

The response rate to quanta of given angular momenturihe initial quantum state being the Minkowski vacuinpte

is readily obtained by substituting E(.6) in Eq. (4.9): that close to the horizon E@6.7) can be written as a func-
tion of the proper temperaturdsee Ref.[23]), B!

2 =f"Y38xM, as

- q
Rim = f (10" Qu(20)?l Yim( 80, 00) |, 2

v 9
RtSOtU%ﬂ (x<0, |x|>1), (6.8

wherezg=r,/M — 1. Note that forxy>1 we have
Rim (X0) = (q%/4mM)[(11)%/(21 + 1)1 T?(x0) ~* ?|Yjn|?.  which is the same as E4.11.

Comparison of this equation and E.19 shows that the VII. STATIC SOURCE OUTSIDE A SCHWARZSCHILD
rate obtained with the toy black hole does model the exact BLACK HOLE WITH THE HARTLE-HAWKING
response rate for moderdtprovided that the source is set at VACUUM

largex,. In order to obtain the total response r&g ¥, we

. In this section we will calculate the response rate of the
sum overl andm. For this purpose we use

static source when the initial state is taken to be the Hartle-
[ ol 41 Hawking vacuum[24]. (This will show that the Unruh

> Yim(0,0)2=—— vacuum state is essential for the above mentioned equality.
m=-| 4m In this state thermal fluxes come in frafh~ as well as from

H™. The contribution of the flux fromH™ to the response
rate has already been calculated in the previous section.
Thus, we consider here the modes incoming ftgm. Close
. to and far away from the horizon these modes can be written
zc—1 as

and

.20 (21+1)[Q|(2)]?=

A, T, e 2Mex  (x<0, |x|>1),

Aul2(=D)F MoxhD(2Mox)* + 2 1R MaxhV(2Mox)] (x> 1), (7D

'7[/w|(x)%

where the normalization constant can be determined by thgzation constan€, we first note that for large Eq. (7.2) can
prgge?grle used in Sec. V with the same resal,  pe written as[see(8.820, (8.837.2 and (8.339.2 in Ref.
= w .

Recall that Eq(6.4) gives the general expression for the [211]
zero-frequency solutioyq (x) of Eq. (5.4). Because zero-
frequency modes must be totally reflected by the black-hole Yo (X)~CoxF(—=1,1+1;1;1-%) (x>1)
potential toward7 ", we conclude that in this cagg;=0.
[Note thatP,(1)=1 while Q,(z)~ —logyz—1 for z=~1 and o1+ 1)1
that P,(z) andQ,(z) behave likez andz™'"1, respectively, ~C !XIH (x>1). (7.3

for z=1.] Thus 2 ()2

x(y)]=CoyP(2y—1), 7.2
valx(¥)]=CayPi(2y=1) (73 Now we find from Eq.(7.1) the following expression for
wherex(y)=y+In(y—1). In order to determine the normal- 1<x<1/Mw [see Eqs(5.7) and(5.16)]:

104021-7
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22|+l|!M|+lw|
%.(x)~wx'+l (1<x<1Mw),

(7.9

where we have sk, ~(—1)'"! for o<1 so thaty,,(X)
behaves like< ** in the specified range of By comparing
Egs.(7.3) and(7.4), we obtain

22|+l(|!)3M|+lw|

2 2+ 1)1

w—0

=2Mé§jg. (7.9
Thus the only non-vanishing zero-energy mafig(x) has
vanishing angular momentum.

Using Eq. (4.9 with Egs. (7.2 and (7.5, we write the

PHYSICAL REVIEW D58 104021

VIIl. CONSISTENCY WITH THE LITERATURE

Before showing that our results are in agreement with
those of Refs[3,4] by Candelas and Sciama, Candelas and
Deutsch(CSD), we recall(i) that our response rate is them
of absorption and emission rates of zero-energy modes, and
(i) that the absorption and emission rates of zero-energy
modes are equal. Thus our result would be twice the absorp-
tion rate obtained by CSD in the zero-energy lithive used
the same sourcéHowever, this is not the case. The classical
source equivalent to the detector in R€ff8,4] is propor-
tional to expi{wgt). This is replaced in our case by
V2 cosfugt) =explwot)/\2+exp(—ingt)/2. Since the sec-
ond term on the RHS does not contribute to the absorption
rate in the computation, our source is effectively/2/of the
one in Refs[3,4] as far as absorption is concerned. Eventu-
ally, when we square the amplitude to obtain the probability,

total contribution to the response rate due to the modes inve end up with arabsorptionrate which is 1/2 of the one

coming fromJ "~ in terms of the proper acceleration as

q2

= —_—, 7.6
J 16m2r3a(r,) (7.8

obtained by CSD in they— 0 limit. Hence, our results will
be compatible with CSD if our total respon&bsorption+
emission rate is equal to the absorption rate of R¢&4] in
the wy—0 limit.

To show that this is indeed the case it is convenient to
interpret our resultgwith g2=1) in terms of the two-point

Therefore the total response rate of our scalar source in the,tion as follows. Let us consider a static world line and

Hartle-Hawking vacuum is given by the sum of Eq8.6)
and(6.7):

2
re-n_ 98

tot
472

q2

16m%r3a’

(7.7

Clearly Eq.(7.7) differs from Eq.(3.13 by the second term
on the RHS. Thus, the equality found for the Unruh vacuum

does not hold for the Hartle-Hawking vacuum.

let x, be the spacetime point which corresponds to proper
time = measured along the world line of the scalar source.
Then the rate(per proper timg we have computed in
Schwarzschild spacetime with the field in tharuh vacuum
initial state,|0)y, is

Rt = f d7 u(0 $(x) ¢(%0) O}y

Notice that near the horizon, the first term dominateswhere ;(0|#(x)#(y)|0)y is the two-point function of the
Hence, the response rate is approximately the same as in theassless scalar field. The behavior of this quantity near
Unruh vacuum and can physically be attributed to the acceland far away from the horizon can be found using the results

eration of the source. For large the second term in Eq.

in CSD as follows.

(7.7) dominates and can be written as a function of the The quantity considered by CSD is

proper temperature as

2
RS-HH q

tot 27TB (X>1)!

(7.9

(olr)= [ dtexp—iut) (0 6(x(1)HX(O)IO).

wheret is thecoordinatetime along a static world line. Since

which agrees with Eq4.11). This is consistent with the fact d7=(1—2M/r)¥dt, our response rat&S;Y and 1(o|r)

that far away from the black hole the Hartle-Hawking

tot

should be related by

vacuum is identical with a thermal bath in Minkowski space-
time. Note that if the equality were to hold for the Hartle-
Hawking vacuum, the response rate would have to vanish in
the limit x—<. Thus, for largex the equality breaks down in
the Hartle-Hawking vacuum because the source responds
a thermal bath of “real particles” as was found in Sec. IV. It
is interesting to note that the second term in &q7) would (1=2M/1) ()
be absent if we considered the massless limit of a massive

scalar field. Thus, the equality would be recovergkhere

are no modes incoming frogi~ that satisfyw<<m, wherem

is the mass of the scalar field. This is why the contribution

RE Y=(1—2M/r)Y21(0|r).

%ow, according to CSD, for~2M one has

(0]

T 2m(1— 2MIn 2 exp(2malx) 1]

from these modes vanishes if we take the limit-0 before
the limit m—0.)

where k=1/4M. Taking the limit w—0 for r~2M, one
finds

104021-8
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(1—-2M/r)Y21(0|r)~

167°M (1—2M/r)?

1M
~— —(1-2M/r)" 12
472 12

This is in agreement with our formul®.7) with g®=1.
The calculation for large values ofis a little more in-
volved. The formula given by CSD for this case is

1 352+ DB(o)* o

H(w|r)~ r_2 8rw[exp 27w/ k)—1] B Z

0(—w).

[The factor (+2M/r)Y? is irrelevant now} Taking the
—0 limit, one has

+ o

1
—> (21+1
64772Mr2§0 ( )

[Bi(w)[?
(.L)2 ,

I1(0|r)~ im

|
w—0

8.1

PHYSICAL REVIEW D 58 104021

boi(r)=4MyQ,(2y—1)
L(1+1)(1/2)
y2'+1r(|+3/2)

1 I+2 1+1 21+3 _2
X(Zy—l)'“F 5y Ty 2y
2M(11)?

’N\“WX (X>1), (84)

wherey=r/2M. Thus, comparing Eq98.3) and (8.4 we
have

Bi(w)|

22|+2(|!)3M|+1w||
o | -

@nr@+nt |

—0 —0

=4M §)g. (8.9

Finally, substituting Eq(8.5 in Eq. (8.1, we recover the
larger limit of our formula (6.7) with g>=1. Thus, our re-
sults are in agreement with CSD for=2M and for larger.

IX. DISCUSSIONS

We have shown that there is an equality between the re-
sponse of a static source in Schwarzschild spaceimitd

where the|B,(w)|* are the transmission coefficients for the the Unruh vacuum and that of a uniformly accelerated

modes incoming fromH™. In our notation where the
positive-frequency modes are given by E4.3), the B|(w)
are defined by

Cwl[eZiMwX_FAl(w)e*ZiMwX] (erM),

2i'1C, B /(w)MwxhY(2M wx) (r=>2M),
(8.2

lv[/wl(r)~

where C,;=(2w) ! [see Eq.(5.14]. Note that for k<x
<1/Mw we have, from Eq(8.2),

Yo (N)=~B(0)i' *MX[j,(2MwXx)+in(2Mwx)] (x>1)
Bi(w) i'" 2 0™ |
~— POEEITY X (1<x<1Mw).
(8.3

In order to determind3,(w) for small w, we recall that
the normalized zero-frequency solution of E§.4) can be
written as[see Eq.(6.6)]

source in Minkowski spacetimgwith the Minkowski
vacuun) provided that the proper acceleration is the same.
This result was quite unexpected since all classical formula-
tions of the equivalence principle are valid only locally while
quantum states are defined globally. What could have been
naturally expected is an equivalence in the response of the
type mentioned above only close to and far away from the
horizon (see, e.g., Refs[25,26) rather than everywhere.
(After the completion of this work, a similar calculation was
performed for the electromagnetic field but equality was
obtained in this casf27]. Thus, the equality seems to hold
only for the massless scalar fiel#Ve have also verified that
close and far away from the horizon the source responds to
Hawking radiation as if it were at rest in a thermal bath in
Minkowski spacetime characterized by the same proper tem-
perature in the Unruh and Hartle-Hawking vacua, respec-
tively. Clearly, Hawking radiation was crucial in obtaining
non-vanishing rates: had we chosen the Boulware vacuum
[28], we would have obtained vanishing response rates. It
was also shown that the equality derived for the Unruh
vacuum does not hold for the Hartle-Hawking vacuum.

The procedure used in Schwarzschild spacetime to nor-
malize the massless Klein-Gordon scalar field in the zero-
frequency limit was checked by comparing it with the one
performed for a toy black hole where the normal modes can
be written explicitly for every frequency. Finally, our results
were compared with the literature and shown to be in agree-
ment with it.
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