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Abstract In this article we deal with non-smooth dynamical systems expressed by a piece-
wise first order implicit differential equations of the form

ẋ = 1, (ẏ)2 =
{
g1(x, y) if ϕ(x, y) ≥ 0
g2(x, y) if ϕ(x, y) ≤ 0

,

where g1, g2, ϕ : U → R are smooth functions andU ⊆ R
2 is an open set. Themain concern

is to study sliding modes of such systems around some typical singularities. The novelty of
our approach is that some singular perturbation problems of the form

ẋ = f (x, y, ε), (ε ẏ)2 = g(x, y, ε)

arise when the Sotomayor–Teixeira regularization is applied with (x, y) ∈ U , ε ≥ 0, and
f, g smooth in all variables.

Keywords Non-smooth dynamical system · Implicit differential equation · Singular
perturbation · Sliding vector fields

1 Introduction

1.1 Motivation and Historical Facts

Since our early paper [13] considerable efforts have been made to develop general-purpose
tools for the study of qualitative geometric analysis of non-smooth systems. Some of theo-
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retical tools one may employ include: singularity theory, regularization process, blowing-up
method and singular perturbation theory.

In recent years we have detected a significant development of the research related to
piecewise smooth dynamical systems. These systems sound interesting for two reasons: first
they behave in ways outside of smooth systems, and second they are found in many important
application areas, for example, physics and control theory, among others. The book [9] and
the papers [2–4,12] give an excellent introduction to the subject.

A consistent comparison between smooth, continuous non–smooth and discontinuous
non–smooth systems could be a leading theme of research not only by the beauty of mathe-
matical results, but also because of the huge applicability of the results in practical problems.
We are interested in the particular subject: non-smooth dynamical systems expressed by a
piecewise first order implicit differential equations. As far as we know, these systems have
not been considered in the literature, so far.

Let F be a C2 map defined around q0 = (x0, y0, ẏ0) ∈ R
3. It is well known that an

implicity equation

F(x, y, ẏ) = 0,

can be solved as ẏ = f (x, y) provided that Dẏ F(q0) �= 0. In this article solutions of the
equations are investigated without such condition. More precisely we consider equations
satisfying Dẏ F(q0) = 0 but assuming that Dẏẏ F(q0) �= 0. In this sense, local coordinates
can be considered such that

F(x, y, ẏ) = (ẏ)2 − g(x, y).

Many authors have contributed to implicit equations of first order and related problems,
e.g. [1,5,7,8]. We also refer [18] as an inspiring reading on the subject.

1.2 Goal

We consider piecewise implicit equations having the form

(ẏ)2 =
{
g1(x, y) if ϕ(x, y) ≥ 0
g2(x, y) if ϕ(x, y) ≤ 0,

(1)

where gi : U → R, i = 1, 2, and ϕ : U → R are smooth functions, and U ⊆ R
2 is an open

set (see Figs. 1, 2). Our concern is to study the dynamics of such systems around the curve
ϕ(x, y) = 0.

An illustrative example follows.

Example 1 Suppose that a particle with mass m = 1 is moving in a line under the action of
two forces. One force possesses a smooth (i.e. of class C∞) potential u that depends on the

Fig. 1 Integral curves on the
surface defined by (1)
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Fig. 2 Projections of the integral
curves onto the (x ,y)-plane

position x of the point on the line. The other is the force of friction, which is proportional to
the velocity with proportionality factor k ≥ 0. That also depends on the position of the point
on the line. By Newton second law the equations of the motion is

ẍ = −u̇(x) − k(x)ẋ; (2)

where x is the position, ẋ is the velocity and ẍ is the acceleration of the particle. As usual,
taking ẋ = y and ẍ = ẏ we get the planar system

ẋ = y, ẏ = ẍ = −u̇(x) − k(x)y. (3)

If k = 0 the system is conservative, and the total energy

E = y2

2
+ u(x)

is a first integral. It means that the orbits of the system are contained in the level curves of E .
For k > 0 the trajectories in the plane x, E coincide with the family of the integral curves

of an implicit differential equation. In fact, differentiating the total energy we get

Ė = −2k(x)(E − u(x)).

Since y2 = 2(E − u(x)),
( dE
dx

)2 = Ė2

ẋ2
= Ė2

y2
, the trajectories in the plane x, E satisfies

(
dE

dx

)2

= 2k(x)2(E − u(x)) = g(x, E).

A piecewise implicit equation is obtained considering the above example but with disconti-
nuity in the friction force. More precisely, from a point xσ the force of friction has another
factor k1 > 0, with k1 �= k. Thus our equation becomes

(
dE

dx

)2

=
{
2k(x)2(E − u(x)) x < xσ

2k1(x)2(E − u(x)) x > xσ

If we assume that the variable x represents the time then the Eq. (1) corresponds to the
system

ẋ = 1, (ẏ)2 = g(x, y) =
{
g1(x, y) ϕ(x, y) ≥ 0
g2(x, y) ϕ(x, y) ≤ 0

. (4)

Our primary interest consists to exhibit conditions for the existence of sliding motion on
the discontinuity curve ϕ(x, y) = 0.

123



1522 J Dyn Diff Equat (2017) 29:1519–1537

1.3 Results

In what follows we discuss roughly, the main results proved in this article. The precise
statements are presented in the Sects. 3 and 5. Take a system like (4) with discontinuity
curve given byΣ = {ϕ(x, y) = 0} . The curveΣ divides the domainU into two sub-regions
Σ+ = {ϕ(x, y) > 0} and Σ− = {ϕ(x, y) < 0}. Associated to the system (4) four possible

pairs of vector fields selected from
∂

∂x
± √

gi
∂

∂y
, i = 1, 2, defined in the regions Σ+ and

Σ−.

(A) If
∂ϕ

∂x
= 0 ( resp.

∂ϕ

∂y
= 0) we give a complete classification of points on Σ as sewing,

sliding or escaping for each possible choice of vector fields. See Theorem 1 (resp.
Theorem 2 ).

(B) We classify generically the points in the region Σ when the vector fields in both sides
of Σ are those ones presented in Table 1, Sect. 2.2. See Theorems 3 and 4.

(C) An explicit expression for the sliding system that occurs in the region Σ is given for

the case
∂ϕ

∂y
�= 0. See Theorem 5.

(D) Under certain conditions on the transition function, the regularization of discontinuous
implicit differential systems provides an implicit singular perturbation. In general this
transition can be done explicitly. See Theorem 6.

The paper is organized as follows. In Sects. 2.1, 2.2 we introduce basic notions of implicit
differential equations. For more details we refer [1,5,8]. In Sects. 2.3, 2.4 we present dis-
continuous vector fields and regularization process following the references [6,9,13,16,17].
In Sects. 3 and 4 we present and prove our results and in Sect. 5 we introduce the concept of
regularization of discontinuous implicit differential systems.

2 Preliminaries

In this sectionwe give some definitions about implicit differential equation and discontinuous
vector fields.

2.1 Implicit Differential Equations

Ageneral implicit differential equation can be obtained in the followingway. Let F : R3 → R

be a Cr–function with r ≥ 1. We assume that 0 is a regular value of F. Thus the set M ⊆ R
3

given by
M = {(x, y, p) ∈ R

3; F(x, y, p) = 0} (5)

is a Cr - manifold. Moreover, the variable p is the derivative p = dy
dx .

Our interest is when the derivative Fp(q) = 0 at some q ∈ M . In fact, for Fp(q) �= 0, the
implicit function theorem implies that there exist f (x, y) and an open neighborhood V such
that for any (x, y, p) ∈ V we have

F(x, y, p) = 0 ⇐⇒ p = f (x, y).

Consider a direction field on the surface M defined as follows. At a point q0 =
(x0, y0, p0) ∈ M , consider the plane

CPq0 = {θ = (x, y, p) ∈ R
3 : dy = p0dx}.
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Fig. 3 Direction field at q ∈ M

More precisely θ ∈ CPq0 if its projection onto the (x, y)-plane forms an angle with the
x-axis whose tangent is equal to p0. The plane CPq0 is called the contact-plane. Assume
that CPq0 intersects the tangent plane Tq0M in a line. Moreover assume for simplicity that
the CPq ∩ TqM is a line at all q nearby q0. Thus we have a direction field on a neighborhood
of q0 ∈ M (Fig. 3).

The integral curves of F(x, y, p) = 0 are the integral curves of this direction field. To
solve this equation it is necessary to find these curves.

A direction field, as described above, can be obtained taking the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
. (6)

The direction of the p-axis in the space R3 is called vertical direction and the projection

π : M → R
2, π(x, y, p) = (x, y) (7)

is the vertical projection.
A point q ∈ M is said to be regular if it is not a critical point of π . In other words, a point

of M is regular if the tangent plane at this point is not vertical. The other points of the surface
M are said singular (the points such that F(q) = Fp(q) = 0 ). The set of singular points, C,
is called criminant of M and its image, D, via the application π , is called the discriminant.
Note that if q ∈ C then F(q) = Fp(q) = 0. If Fpp(q) �= 0 then q is a fold point of F , and if
Fpp(q) = 0 and Fppp(q) �= 0 q it is a cusp point of F .

Example 2 Consider the differential equation p2 = x . In this case the surfaceM is a parabolic
cylinder (see 5). The discriminant curve is the y-axis. In order to find the integral curves, we
write down the conditions for dx , dy and dp at the point q=(x ,y,p) of the surface M :⎧⎨

⎩
p2 = x, the condition q ∈ M
2pdp = dx, the condition of tangence to M
dy = pdx, the condition of the contact plane
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Fig. 4 Integral curves on M

Fig. 5 Projections of the integral
curves onto the (x ,y)-plane

Consequently, in coordinates (p,y), the integral curves are determined from the equation
dy = 2p2dp.

Hence, the integral curves on M are given by the relations y + C = 2
3 p

3, x = p2 (see
Fig. 4 ). Their projections onto the (x ,y)-plane are semicubical parabolas (see Fig. 5).

2.2 Implicit Ordinary Differential Equations with Degree 2

Now we consider
F(x, y, p) = p2 − g(x, y) = 0 (8)

where g(x, y) is a C1 real function satisfying g(0, 0) = 0.
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Table 1 Generic singularities of
first order implicit differential
systems

Folded regular point (FR) Folded saddle (FS){
ẋ = ±1
ẏ2 = x

{
ẋ = ±1
ẏ2 = y − kx2

, k < 0

Folded node(FN) Folded focus (FF){
ẋ = ±1
ẏ2 = y − kx2

, 0 < k < 1/16

{
ẋ = ±1
ẏ2 = y − kx2

, k > 1/16

Whitney umbrella point (FW) Clairaut fold (FC){
ẋ = ±1
ẏ2 = x(x − y)2

{
ẋ = ±1
ẏ2 = y

Clairaut Whitney umbrella (CW){
ẋ = 1
ẏ2 = x2y

Since Fpp(q) = 2 for all q ∈ C we derive that q is a fold point of F . More

ξ(q) = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
= −Fx

∂

∂p

provided q ∈ C.
The points q ∈ C ⊂ M are classified as follows:

(a) q is a folded regular point if Fx (q) �= 0.
(b) q is a folded singular if Fx (q) = 0.

Since ξ(q) = −Fx
∂

∂p
on C all folded singular on C are singular points of ξ .

We say that q is a folded saddle point (resp. folded node, folded focus points) if q is a saddle
singularity (resp. node, focus singularities) of Π ◦ ξ where Π(x, y, p) = (x, p). It is easy
to see that if q ∈ C with Fy(q) �= 0 then:

– Fxx (q) > 0 ⇒ q is folded saddle ;
– Fxx (q) < 0 and Fxx (q) > − 1

8 (Fy(q))2 ⇒ q is folded node and
– Fxx (q) < 0 and Fxx (q) < − 1

8 (Fy(q))2 ⇒ q is folded focus.

We say that q ∈ C is a Clairaut fold if Fy(q) �= 0 and Fxx (q) = 0.
The case where a folded singular point q ∈ C satisfies Fy(q) = 0 is too degenerate. In [8]

the authors present a complete list of generic singularities of first order implicit systems on
the plane up to smooth orbital equivalence. See Table (1). Two germs of system surfaces are
called orbitally equivalent if there exists a germ of diffeomorphism which maps any phase
curve of one system to a phase curve of another system.

2.3 Discontinuous Vector Fields

Consider an open subset U ⊂ R
2 and let ϕ : U → R be a C∞ function having 0 ∈ R as a

regular value for any q ∈ Σ = ϕ−1(0). We denote Λ the set of vector fields X = (X1, X2)

such that

X (q) =
{
X1(q), if q ∈ Σ+ = {ϕ(q) ≥ 0}
X2(q), if q ∈ Σ− = {ϕ(q) ≤ 0} (9)

where X1, X2 : U → R
2 are smooth vector fields defined onU . The topology considered in

Λ is the usual product topology. For details see [6,9,14].
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Fig. 6 Sliding vector field

q

∇ϕ(q) X1(q)

X2(q)

Xs(q)

Σ

We say that q ∈ Σ is regular if both X1 and X2, crossΣ at q otherwise q is said singular.
Following the terminology established in [11], the regular points in Σ are classified as:

– Sliding region (both point to Σ):

Σsl = {X1ϕ < 0, X2ϕ > 0};
– Escaping region (both leave Σ):

Σes = {X1ϕ > 0, X2ϕ < 0};
– Sewing region (one point to Σ and the other leaves Σ):

Σsw = {(X1ϕ)(X2ϕ) > 0}.
On Σs = Σsl ∪ Σes the flow slides and follows a well defined smooth vector field Xs

called sliding vector field. We define Xs(p) as the tangent vector defined onΣ and contained
in the cone generated by X1 and X2 (Fig. 6).

We say that a point q ∈ Σ is fold point of X ∈ Λ if Xϕ = 0 and X2ϕ �= 0. We say
that q ∈ Σ is a singular point of X if q is a fold point of X1 or q is fold point of X2 or
(X1ϕ)(X2ϕ) < 0 and det[X1, X2] = 0.

An important tool in the study of non-smooth dynamical system is the ψ–regularization
process. A C

∞ function ψ : R → R is a transition function if ψ(t) = −1 for t ≤ −1,
ψ(t) = 1 for t ≥ 1 and ψ ′(t) > 0 if t ∈ (−1, 1). The ψ–regularization of X = (X1, X2) ∈
Λ, is the one–parameter family Xε given by

Xε =
(
1

2
+ ψε(ϕ)

2

)
X1 +

(
1

2
− ψε(ϕ)

2

)
X2 (10)

withψε(t) = ψ( t
ε
), for ε > 0. Note that Xε is equal to X1 in all points ofΣ+ whose distance

to Σ is bigger than ε and Xε is equal to X2 in all points of Σ− whose distance to Σ is bigger
than ε. For details see [13,16,17]. A description of some qualitative and geometric aspects
of non-smooth dynamical systems theory around typical singularities can be found in [15].

2.4 Implicit Differential Systems with Discontinuity and the Set Ω

Let V ∈ R
2 be an open neighborhood of (0, 0). Consider gi , i = 1, 2, be real functions of

class C1 in V with gi (0, 0) = 0 and the implicit differential system:

Si (x, y, ẋ, ẏ) = (ẋ − 1, ẏ2 − gi (x, y)) = (0, 0), i = 1, 2;
with (x, y) in Ui ⊆ V given by Ui = {(x, y) ∈ R

2 : gi (x, y) > 0}.
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Fig. 7 The surfaces (ẏ)2 − x = 0 and (ẏ)2 − y = 0

Let M1 and M2 be the surfaces defined by (ẏ)2 − g1(x, y) = 0, (ẏ)2 − g2(x, y) = 0
respectively in the (x, y, ẏ)-space. Consider T = M1 ∩M2 andU = U1 ∩U2 �= ∅. If T �= ∅
we denote by S = (S1, S2) ∈ Ω the system defined by{

S1(x, y, ẋ, ẏ) = (0, 0), if ϕ(x, y) = g1(x, y) − g2(x, y) ≥ 0
S2(x, y, ẋ, ẏ) = (0, 0), if ϕ(x, y) = g1(x, y) − g2(x, y) ≤ 0

. (11)

Note that S1 and S2 define four non-smooth vector fields (V1α, V2β) ∈ Λ,α, β = {+,−}
given by

Vi,+(x, y) = ∂

∂x
+ √

gi (x, y)
∂

∂y
, (x, y) ∈ Ui ,

and

Vi,−(x, y) = ∂

∂x
− √

gi (x, y)
∂

∂y
, (x, y) ∈ Ui .

Example 3 Consider the implicit differential equations

S1(x, y, ẋ, ẏ) = (ẋ − 1, ẏ2 − x) = (0, 0)

with (x, y) ∈ R
2 satisfying that x ≥ 0; and

S2(x, y, ẋ, ẏ) = (ẋ − 1, ẏ2 − y) = (0, 0)

with (x, y) ∈ R
2 satisfying that y ≥ 0.

Now we take the discontinuous system

S(x, y, ẋ, ẏ) =
{
S1(x, y, ẋ, ẏ) = {0, 0}, if ϕ(x, y) ≥ 0
S2(x, y, ẋ, ẏ) = {0, 0}, if ϕ(x, y) ≤ 0

where ϕ(x, y) = x − y and Σ = ϕ−1(0) (see Fig. 7).
Since a discontinuous implicit differential system (DIDS) define four non-smooth vector

fields we have that q ∈ Σ can be a sewing point for a choice α, β and a sliding point point
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Table 2 Sewing, sliding and
escaping regions for the
(S1, S2) ∈ Ω with ∂ϕ

∂x (x, y) = 0

Λ Σsw Σsl ∪ Σes

(V1+, V2+) Σ ∅
(V1+, V2−) ∅ Σ

(V1−, V2+) ∅ Σ

(V1−, V2−) Σ ∅

for another. We found the sliding and sewing regions on Σ evaluating the sign of the Lie
derivative

[Vi,+.ϕ] = ∂ϕ

∂x
+ ∂ϕ

∂y

√
gi and [Vi,−.ϕ] = ∂ϕ

∂x
− ∂ϕ

∂y

√
gi .

3 Statement of the Main Results

In this section we state our main results. As before we denote S = (S1, S2) ∈ Ω a pair like
(11).

Theorem 1 If S = (S1, S2) ∈ Ω satisfies that ∂ϕ
∂x (x, y) = 0, for any (x, y) ∈ U, then the

regular points in Σ are classified as shown in Table 2.

If S = (S1, S2) ∈ Ω with S1 �= S2 and S1, S2 ∈ {FF, FN , FS, FC}, (see Table 1) then
(S1, S2) satisfies the hypotheses of Theorem 1.

Theorem 2 If S = (S1, S2) ∈ Ω satisfies that ∂ϕ
∂y (x, y) = 0, for any (x, y) ∈ U, then

Σ = Σsw for all (V1i , V2 j ) ∈ Λ with i, j ∈ {+,−}.
Next theorem analyses pairs of implicit systems FR, FS, FN and FF of described in Table

1. We denote Mi = {
p2 − gi (x, y) = 0

}
, i = 1, 2 and π : R

3 → R
2 is the projection

π(x, y, p) = (x, y).

Theorem 3 Consider (S1, S2) = (FR, t) ∈ Ω , where t ∈ I = {FS, FN , FF}. Assuming
Σ = π(M1 ∩ M2) we have that Σ = Σ1 ∪ Σ2 ∪ Σ3 for k < 1

8 where

Σ1 =
{

(x, x + kx2) : x <
1 − √

1 − 8k − 4k

8k2

}
;

Σ2 =
{

(x, x + kx2) : 1 − √
1 − 8k − 4k

8k2
< x <

1 + √
1 − 8k − 4k

8k2

}
;

Σ3 =
{

(x, x + kx2) : x >
1 + √

1 − 8k − 4k

8k2

}
.

Moreover the regular points in Σ for the cases t = FS, FN , FF are classified as shown in
Tables 3, 4 and 5 respectively.

Theorem 3 is proved in Sect. 4.

Theorem 4 Consider (S1, S2) = (FR, t) ∈ Ω and denote hFC (x) = x and hCW (x) = 1/x .
If Σ = π(M1 ∩ M2) then Σ = Σ1 ∪ Σ2 with
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Table 3 Sewing, sliding and
escaping regions for the
(FR, FS) system

Λ Σsw Σsl Σes

(V1+, V2+) Σ ∅ ∅
(V1+, V2−) Σ1 ∪ Σ3 Σ2 ∅
(V1−, V2+) Σ1 ∪ Σ3 ∅ Σ2

(V1−, V2−) Σ ∅ ∅

Table 4 Sewing, sliding and
escaping regions for the
(FR, FN ) system

Λ Σsw Σsl Σes

(V1+, V2+) Σ ∅ ∅
(V1+, V2−) Σ1 Σ2 ∪ Σ3 ∅
(V1−, V2+) Σ1 ∅ Σ2 ∪ Σ3

(V1−, V2−) Σ ∅ ∅

Table 5 Sewing, sliding and escaping regions for the (FR, FF) system

Λ k Σsw Σsl Σes

(V1+, V2+) 1
16 < k < 1

8 Σ ∅ ∅
(V1+, V2−) Σ1 Σ2 ∪ Σ3 ∅
(V1−, V2+) Σ1 ∅ Σ2 ∪ Σ3

(V1−, V2−) Σ ∅ ∅
(V1i , V2 j ), i, j ∈ {+,−} k > 1

8 Σ ∅ ∅

(a)

Σ1 = {(x, ht (x)) ∈ Σ : x < 1},
Σ2 = {(x, ht (x)) ∈ Σ : x > 1},

for the case t ∈ I = {FC,CW } and
(b)

Σ1 = {(x, x + 1) ∈ Σ : x < 1} ∪ {(x, x − 1) ∈ Σ : x < 1},
Σ2 = {(x, x + 1) ∈ Σ : x > 1} ∪ {(x, x − 1) ∈ Σ : x > 1},

for the case t = FW. Moreover the regular points in Σ for the cases t = FC, FW,CW
are classified as shown in Table 6.

Theorem 4 is proved in Sect. 4.

Proposition 1 Consider t ∈ {A, B} where A = (S1, S2), B = (S2, S1) ∈ Ω and Σ t
sl , Σ

t
es

andΣ t
sw sewing, sliding and escaping regions for the t−system. ThenΣ A

sl = Σ B
es ,Σ

A
es = Σ B

sl
and Σ A

sw = Σ B
sw for all vector fields (V1i , V2 j ) ∈ Λ with i, j ∈ {+,−}.

Theorem 5 Consider S = (S1, S2) ∈ Ω . If ∂ϕ
∂y (x, y) �= 0, for any (x, y) ∈ Σs = Σsl ∪Σes

then the sliding vector fields is

(V1+, V2−)s = (V1−, V2+)s = ∂

∂x
−

(
∂ϕ
∂x (x, y)
∂ϕ
∂y (x, y)

)
∂

∂y
.
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Table 6 Sewing, sliding and
escaping regions for the (FR, t)
systems, where
t ∈ I = {FC, FW,CW }

Λ Σsw Σsl Σes

(V1+, V2+) Σ ∅ ∅
(V1+, V2−) Σ1 Σ2 ∅
(V1−, V2+) Σ1 ∅ Σ2

(V1−, V2−) Σ ∅ ∅

4 Proofs of the Main Results

Proof of Theorem 1 Consider the discontinuous system (S1, S2) ∈ Ω , if ∂ϕ
∂x (x, y) = 0. The

sign of the Lie derivative determines the regions on Σ . We have [V�,+.ϕ] = ∂ϕ
∂y

√
g� and

[V�,−.ϕ] = − ∂ϕ
∂y

√
g�. If (i, j) = (+,+) or (i, j) = (−,−) then [V1,i .ϕ][V2, j .ϕ] > 0 for

all (x, y) ∈ Σ and we conclude that Σsw = Σ,Σsl = ∅ and Σes = ∅. From the other hand,
if (i, j) = (+,−) or (i, j) = (−,+) then [V1,i .ϕ][V2, j .ϕ] < 0 for all (x, y) ∈ Σ and thus
Σsw = ∅,Σsl ∪ Σes = Σ. ��
Example 4 S = (S1, S2) ∈ Ω with g1(x, y) = x and g2(x, y) = −x + 3 satisfies the
hypothesis of Theorem 2.

Proof of Theorem 3 Consider the discontinuous system S = (S1, S2):

S =
{

(ẋ − 1, ẏ2 − x) = (0, 0), if ϕ(x, y) ≥ 0
(ẋ − 1, ẏ2 − y + kx2) = (0, 0), if ϕ(x, y) ≤ 0

where ϕ(x, y) = x− y+kx2. The switching curve is given byΣ = ϕ−1(0)∩U = {(x, y) ∈
R
2 ; y = x + kx2}. As before, four vector fields are determined:

V1+(x, y) = ∂

∂x
+ √

x
∂

∂y
,

V1−(x, y) = ∂

∂x
− √

x
∂

∂y
,

V2+(x, y) = ∂

∂x
+

√
y − kx2

∂

∂y
,

V2−(x, y) = ∂

∂x
−

√
y − kx2

∂

∂y
.

The sign of the Lie derivative Vi .ϕ,with i ∈ {1, 2} and (x, y) ∈ Σ determines the regions
onΣ . Note that if (x, y) ∈ Σ then (x, y) = (x, x+kx2).Wehave (V1,+).ϕ = 2kx+1−√

x ,
(V1,−).ϕ = 2kx + 1+ √

x , (V2,+).ϕ = 2kx + 1− √
x and (V2,−).ϕ = 2kx + 1+ √

x . Note
if k < 0 we have

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 ∪ Σ3 and
[V1,i .ϕ][V2, j .ϕ] < 0 and [V1,i .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw =
Σ1 ∪ Σ3,Σsl = Σ2 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 ∪ Σ3 and
[V1,i .ϕ][V2, j .ϕ] < 0 and [V2, j .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw =
Σ1 ∪ Σ3,Σsl = ∅ and Σes = Σ2.
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Fig. 8 V1,± = ∂

∂x
± √

x
∂

∂y
and

V2,± = ∂

∂x
±

√
y − kx2

∂

∂y
,

with k < 0

V1+ V1+

V2+ V2−

V1− V1−

V2+ V2−

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

Therefore, we conclude the veracity of the data presented in Table 3. See Fig. 8.
If 0 < k < 1

8 we have

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ Σ2 ∪ Σ3. Therefore Σsw = Σ1,Σsl = Σ2 ∪ Σ3 and
Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ Σ2 ∪ Σ3. Therefore Σsw = Σ1,Σsl = ∅ and
Σes = Σ2 ∪ Σ3.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

Therefore, we conclude the veracity of the data presented in Tables 4 and 5 until the fourth
line (see Fig. 9).

If k > 1
8 we have if i, j ∈ {+,−} then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore

Σsw = Σ,Σsl = ∅ and Σes = ∅. So we conclude the veracity of the data presented in
Table 5 (see Fig. 10).

Proof of Theorem 4 Consider the discontinuous system (F1, t). If t = FC we have

(S1, S2) =
{

(ẋ − 1, ẏ2 − x) = (0, 0), if ϕ(x, y) ≥ 0
(ẋ − 1, ẏ2 − y) = (0, 0), if ϕ(x, y) ≤ 0

where ϕ(x, y) = x − y. The switching curve is given by Σ = ϕ−1(0) ∩ U = {(x, y) ∈
R
2 ; y = x}. As before, we have four vector fields determined by the implicit differential

equations:

V1+(x, y) = ∂

∂x
+ √

x
∂

∂y
,

V1−(x, y) = ∂

∂x
− √

x
∂

∂y
,
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Fig. 9 V1,± = ∂

∂x
± √

x
∂

∂y
and

V2,± = ∂

∂x
±

√
y − kx2

∂

∂y
,

with 0 < k < 1/8

V1+ V1+

V2+ V2−

V1− V1−

V2+ V2−

Fig. 10 V1,± = ∂

∂x
± √

x
∂

∂y

and V2,± = ∂

∂x
±

√
y − kx2

∂

∂y
,

with k ≥ 1/8

V1+ V1+

V2+ V2−

V1− V1−

V2+ V2−

V2+(x, y) = ∂

∂x
+ √

y
∂

∂y
,

V2−(x, y) = ∂

∂x
− √

y
∂

∂y
.

The signs of the Lie derivative Vi .ϕ, i ∈ {1, 2} and (x, y) ∈ Σ determine the sliding and
sewing the regions on Σ . Note that if (x, ht (x)) ∈ Σ then (x, ht (x)) = (x, x). We have
(V1,+).ϕ = (V2,+).ϕ = 1 − √

x and (V1,−).ϕ = (V2,−).ϕ = 1 + √
x .

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = Σ2 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = ∅ and Σes = Σ2.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

Therefore, the veracity of the data presented in Table 6 is proved for case t = FC.
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If t = CW Consider the discontinuous system S = (S1, S2):

S =
{

(ẋ − 1, ẏ2 − x) = (0, 0), if ϕ(x, y) ≥ 0
(ẋ − 1, ẏ2 − yx2) = (0, 0), if ϕ(x, y) ≤ 0

where ϕ(x, y) = x − yx2. The switching curve is given by Σ = ϕ−1(0) ∩ U = {(x, y) ∈
R
2 ; y = 1/x}. As before, we have four vector fields determined by the implicit differential

equations:

V1+(x, y) = ∂

∂x
+ √

x
∂

∂y
,

V1−(x, y) = ∂

∂x
− √

x
∂

∂y
,

V2+(x, y) = ∂

∂x
+

√
yx2

∂

∂y
,

V2−(x, y) = ∂

∂x
−

√
yx2

∂

∂y
.

The sign of the Lie derivative Vi .ϕ,with i ∈ {1, 2} and (x, y) ∈ Σ determines the regions
onΣ . Note that if (x, ht (x)) ∈ Σ then (x, ht (x)) = (x, 1

x ).We have (V1,+).ϕ = (V2,+).ϕ =
−x5/2 − 1 and (V1,−).ϕ = (V2,−).ϕ = x5/2 − 1.

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = Σ2 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = ∅ and Σes = Σ2.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

Therefore, we conclude the veracity of the data presented in Table 6 for case t = CW.

If t = FW Consider the discontinuous system S = (S1, S2) :

S =
{

(ẋ − 1, ẏ2 − x) = (0, 0), if ϕ(x, y) ≥ 0
(ẋ − 1, ẏ2 − x(x − y)2) = (0, 0), if ϕ(x, y) ≤ 0

where ϕ(x, y) = x − x(x − y)2. The switching curve is given by Σ = ϕ−1(0) ∩ U =
{(x, y) ∈ R

2 ; y = x + 1, y = x − 1}.
As before, we have four vector fields determined by the implicit differential equations:

V1+(x, y) = ∂

∂x
+ √

x
∂

∂y
,

V1−(x, y) = ∂

∂x
− √

x
∂

∂y
,

V2+(x, y) = ∂

∂x
+

√
x(x − y)2

∂

∂y
,

V2−(x, y) = ∂

∂x
−

√
x(x − y)2

∂

∂y
.

The signs of the Lie derivative Vi .ϕ,with i ∈ {1, 2} and (x, y) ∈ Σ determines the sliding
and sewing regions on Σ = r1 ∪ r2 ∪ r3 ∪ r4. where r1 = {(x, x + 1) ∈ Σ : x < 1}, r2 =
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{(x, x+1) ∈ Σ : x > 1}, r3 = {(x, x−1) ∈ Σ : x < 1} and r4 = {(x, x−1) ∈ Σ : x > 1}.
Note that if (x, y) ∈ r1 ∪ r2 then (x, y) = (x, x + 1). We have (V1,+).ϕ = (V2,+).ϕ =
−2x

(√
x − 1

)
and (V1,−).ϕ = (V2,−).ϕ = 2

(
x3/2 + x

)
.

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r1 ∪ r2. Therefore Σsw =
r1 ∪ r2,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ r2 Therefore Σsw = r1,Σsl = r2 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ r2. Therefore Σsw = r1,Σsl = ∅ and Σes = r2.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r1 ∪ r2. Therefore Σsw =
r1 ∪ r2,Σsl = ∅ and Σes = ∅.

Analogously if (x, y) ∈ r3 ∪ r4 then (x, y) = (x, x − 1). We have (V1,+).ϕ = (V2,+).ϕ =
2x

(√
x − 1

)
and (V1,−).ϕ = (V2,−).ϕ = −2

(
x3/2 + x

)
.

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r3 ∪ r4. Therefore Σsw =
r3 ∪ r4,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r3 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ r4. Therefore Σsw = r3,Σsl = r4 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r3 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ r4. Therefore Σsw = r3,Σsl = ∅ and Σes = r4.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ r3 ∪ r4. Therefore Σsw =
r3 ∪ r4,Σsl = ∅ and Σes = ∅.

Denoting Σ1 = r1 ∪ r3, Σ2 = r2 ∪ r4 and Σ = Σ1 ∪ Σ2 we conclude the following.

(a) If i = +, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

(b) If i = +, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V1,i .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = Σ2 and Σes = ∅.

(c) If i = −, j = + then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ1 and [V1,i .ϕ][V2, j .ϕ] < 0
and [V2, j .ϕ] < 0 for all (x, y) ∈ Σ2. Therefore Σsw = Σ1,Σsl = ∅ and Σes = Σ2.

(d) If i = −, j = − then [V1,i .ϕ][V2, j .ϕ] > 0 for all (x, y) ∈ Σ. Therefore Σsw =
Σ,Σsl = ∅ and Σes = ∅.

Thus the veracity of the data presented in Table 6 is proved for case t = FW . ��
Proof of Theorem 5 Let (S1, S2) be a discontinuous system with ∂ϕ

∂y (x, y) �= 0, for any
(x, y) ∈ Σs = Σsl ∪ Σes . Consider the vectors in the cone generated by V1,i and V2, j with
i �= j , i, j ∈ {+,−} defined as follows

(1, i
√
g1 + λ( j

√
g2 − i

√
g1)). (12)

If 〈(
1, i

√
g1 + λ

(
j
√
g2 − i

√
g1

))
.

(
∂ϕ

∂x
,
∂ϕ

∂y

)〉
= 0

then

∂ϕ

∂x
+ i

√
g1

∂ϕ

∂y
+ λ( j

√
g2 − i

√
g1)

∂ϕ

∂y
= 0
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and so

λ = − ∂ϕ
∂x − i

√
g1

∂ϕ
∂y

( j
√
g2 − i

√
g1)

∂ϕ
∂y

.

Replacing in (12), we have the sliding vector fields

(V1+, V2−)s = (V1−, V2+)s =
(
1,−∂ϕ

∂x
(x, y)

/∂ϕ

∂y
(x, y)

)

��

5 Discontinuous Implicit Differential Systems and Singular Perturbation

In this section we proceed theψ–regularization of discontinuous implicit differential systems
and get an implicit singular perturbation problem (we refer [10] for an introduction to the
general theory of singular perturbation).

Let U ⊂ R
2 be an open subset and ε ≥ 0. An implicit singular perturbation problem in

U (ISP-problem) is a differential system which can be written like

ẋ = f (x, y, ε), (ε ẏ)2 = h(x, y, ε) (13)

or equivalently, after the time rescaling τ = t/ε

dx

dτ
= ε f (x, y, ε),

(
dy

dτ

)2

= h(x, y, ε) (14)

with (x, y) ∈ U and f, h are smooth in all variables.
Note that twodifferent timescales canbederived: the slow timescale t and the fast timescale

τ = t/ε. Systems (13),(14) are called slow and fast systems, respectively. Taking ε = 0 in
(13) and in (14) we obtain two systems with dynamics essentially different: the reduced
problem

ẋ = f (x, y, 0), 0 = h(x, y, 0) (15)

and the layer problem
dx

dτ
= 0,

(
dy

dτ

)2

= h(x, y, 0). (16)

Consider V = {(x, y) : h(x, y, 0) = 0}. We call V the slow manifold of the implicit
singular perturbation problem. Observe that (15) defines a dynamical system on V . On the
other hand, V is a manifold of singular points for (16). Combining results on the dynamics
of these two limiting problems, with ε = 0, one obtains information on the dynamics of (13)
for small values of ε.

Now we introduce a tool in the study of non-smooth implicit differential systems.
Essentially we adapt the regularization process of non-smooth vector fields, introduced by
Sotomayor and Teixeira, for our case. As before, a C∞ function ψ : R → R is a transition
function if ψ(t) = −1 for t ≤ −1, ψ(t) = 1 for t ≥ 1 and ψ ′(t) > 0 if t ∈ (−1, 1). The
ψ–regularization of F = (S1, S2) ∈ Ω,U ⊂ R

m , where

Si (x, y, ẋ, ẏ) = (ẋ − 1, ẏ2 − gi (x, y)) = (0, 0), i = 1, 2;
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is the one–parameter family Sε ∈ Cn given by

Sε(q, q̇) =
(
ẋ − 1, ẏ2 −

(
g1 + g2

2
+ ψε(ϕ(q))

g1 − g2
2

))
(17)

with ψε(t) = ψ( t
ε
), for ε > 0.

Next theorem says that theψ–regularization of discontinuous implicit differential systems
provides an ISP. In general this transition can be done explicitly.

Theorem 6 Consider S = (S1, S2) ∈ Ω , Sε its ψ–regularization and q ∈ Σ. Suppose that
ψ is a polynomial of degree 2� in a small interval 0 ∈ I ⊂ (−1, 1). Then the trajectories of
Sε in Uε = {q ∈ U ;ϕ(q)/ε ∈ I } are solutions of a ISP-problem.

Proof Let S ∈ Ω with Si (x, y, ẋ, ẏ) = (ẋ − 1, ẏ2 − gi (x, y)) = (0, 0), i = 1, 2. Suppose
that a1t+ ...+a2�t2� is the polynomial expression ofψ on I ⊂ Rwith 0 ∈ I . The trajectories
of Sε on Uε are the solutions the of implicit differential system

ẋ = 1; ẏ2 =
(
g1 + g2

2
+ ψε(ϕ)

g1 − g2
2

)
.

The time rescaling τ = t/ε� gives

x ′ = ε�;
(y′)2 = ε2�

(
g1 + g2

2

)
+ ε2�

(
a1ϕ

ε
+ ... + a2�ϕ2�

ε2�

) (
g1 − g2

2

)
.

��
Remark 1 For each surface p2 = gi (x, y), i = 1, 2 we have defined a vector field ξi ,
according (6). Besides, for the surface p2 − ( g1+g2

2 + ψε(ϕ(q))
g1−g2

2

) = 0 we can also
consider the vector field ξε. It is easy to see that

Π−1R(Π(ξ1),Π(ξ2)) = ξε

where Π(x, y, p) = (x, p), and R(X) is the ψ–regularization of X = (X1, X2) ∈ Λ

defined in (10).
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