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As in quantum field theory, for some singular two-body potentials, the momentum-space perturbative
treatment of the three-dimensional quantum N-body problem is shown to exhibit ultraviolet divergences.
Renormalization of these models leads to a scale and finite observables. For a Dirac delta potential we
carry on this renormalization for two- and three-body systems. A new divergence, and hence a new
scale, emerges for each added particle. For N ~ 3 there are no divergences in one and two dimensions.
The physical implications of these results are discussed.
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The ultraviolet divergences in perturbative quantum
field theory can be eliminated by renormalization to
define physical observables, such as charge or mass [1,2].
Ultraviolet divergences also appear in the perturbative
treatment of the nonrelativistic quantum mechanical two-
body problem interacting via two-body potentials with
certain singular behavior at short distances [3—7] in two
and three space dimensions. Renormalization of these
potential models leads to a scale and finite physical
observables. In one space dimension these divergences
are absent.

In this Letter we show that ultraviolet divergences
also appear in the perturbative treatment of the non-
relativistic quantum mechanical N-body (N ) 2) prob-
lem in three space dimensions interacting via two-body
potentials with certain singular behavior at short dis-
tances. Renormalization of these models again leads to
new scales as the number of particles are increased. To
the best of our knowledge this is the first investigation
of renormalization of the quantum N body (N ) 2) pro-b-

lem. In one and two space dimensions there are no such
divergences.

Recently, there have been discussions on perturbative
renormalization in configuration [5,6] and momentum [3,7]
spaces for the quantum two-body problem with a Dirac
delta, contact, or zero-range potential. Here we work
in momentum space with this pair potential, so that the

treatment remains under control for W ) 2. This potential
is simple, local, and separable at the same time, and
has been used in atomic, particle [7,8], nuclear [9], and
surface physics [5,6] in both configuration and momentum
spaces. This potential has also frequently been used in one
space dimension [10]. Though the present renormalization
scheme can be carried out in the case of other potentials
singular at short distances, the Dirac delta potential has the
advantage of permiting a complete analytical treatment for
the two-body system.

In three space dimensions the perturbative treatment
of the three-body problem exhibits new ultraviolet diver-
gences. This problem can be renormalized by the intro-
duction of a new scale, which is the binding energy of the
three-body ground state. For N ) 2 and space dimen-
sion 23 = 3, a new divergence, and hence a new scale,
appears for each added particle. However, once the two-
body problem is renormalized, no new divergence appears
for N ) 2 and X7 ( 3 and there is no need for renormali-
zation.

We first discuss the two-body problem for the 5-wave
delta potential. The partial-wave Lippmann-Schwinger
equation for the scattering amplitude r(p, q, k2) in 23 space
dimensions at two-body c.m. energy k is given by

&( J '. J .k') = 1'( J '. J ) + d e &(J ', e)
X g(q;k )t(q, p, k ),
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with the free Green function

g(q;k') = (k' —q' + i0) (2)

in units 6 = m = 1, where m is the mass of each of the
particles. The integral in Eq. (1) and in the following
is over the full phase space. Throughout this Letter the
energy is supposed to contain a small positive imaginary
part i 0, as in Eq. (2), which is suppressed in the following.
For the delta potential V( p', p) = A, and

be eliminated in the two-body renormalized t matrix, in fa-
vor of a physical observable, e.g. , the binding energy of the
two-body ground state. This procedure is carried out ana-
lytically in the present model. In more complex situations,
such as in the three-body problem, one has to rely on nu-
merical means. The condition for a bound state at energy
—n is given by AR = I~(—n ), so that one can define
the following renormalized t matrix after eliminating the
unknown parameters in terms of the binding energy:

rx(p, p, k ) = [4(—~ ) —4(k )]
t(p', p, k') = [A

' —t(k )]

t(k') = d qg(q;k ).

(3)

(4)

d~p(k' + n')
(p2 + a~)(k~ —p~)

[2' (ik + o.)] ', D = 3. (9)

r(p', p, k') = A + A' t(k') + A' [t(k')]2 +

and that At(k2) is the trace of the kernel of the integral
equation (1) and possesses ultraviolet divergence for 23 )
l. The kernel of Eq. (1) is noncompact and it does
not have a scattering solution. The perturbative series
(5) is divergent order by order for 27 ) 1 and some
regularization is needed to give meaning to Eq. (1). This
could be achieved via the following regularized free Green
function:

gR(q;k') = (k' —q') ' + (A', + q')

(k' —q2)(Ap + q2)
(6)

The imaginary part of the Green function is unaffected
by this procedure which guarantees unitarity. With this
regularized Green function one has for the regularized t
matrix

«(p'. p. k') = [A~' —t~(k')] ',

where

4(k') = d q gR(q; k') (8)

is a convergent integral. In order that Eq. (3) yields a finite
nonzero t matrix, A ' should diverge, so that the finite
nonzero renormalized coupling A~ is given by

A = A-' —[t(k') —t„(k')].
Note that the term involving A2 has been introduced in
the regularized Green function to eliminate the ultraviolet
divergence.

However, now there is a new parameter A2 in the theory,
in addition to the coupling Aq. Both these parameters can

It is noted that the following binomial expansion of Eq. (3)
is the Born series in this case The binding energy n is the energy scale of the two-

body system. Once o.2 is given the complete solution of
the problem is known.

The final renormalized result (9) should be independent
of the detailed renormalization scheme. One couM have
used the following regularized Green function in place of
the one given by Eq. (6):

gp(q;k') = (k' —q') 'O(A2 —q), (10)

with Aq ) k, where O(x) = 0 for x ( 0 and =1 for x )
0. With this regularized Green function the regularized t
matrix is again given by Eqs. (7) and (8) but now with
gz(q;k ) given by Eq. (10). The remarkable result is
that, even with this regularization procedure, the constants
A& and A2 could be eliminated in favor of the two-body
binding energy and one recovers the renormalized t matrix
given by Eq. (9).

Next let us consider the three-body problem with the
above two-body delta potential. One encounters new
divergences in this case. The perturbative series for the
full three-to-three amplitude T(E) is given by

T(E):—g V(;) + P V(;)Gp(E) P V(i)
i=1 i=1 j=l

3 3 3

+ g V(;)G()(E) g V(i)Gp(E) g V(i) + .

The potential V(;) = A (i = 1, 2, 3) in this series is for the
"pair i" of particles j and l (i 4 j 4 l 4 i), Gp(E) =
(E —Hp) ' is the three-body free Green function at-three-
body c.m. energy E with Ho the free Hamiltonian. This
series develops new ultraviolet divergences in all terms
starting from the fourth order term for 23 = 3. For
D ( 3 all terms in this series are finite. A typical fourth

!

order term in series (11) is given by

A4d~q d~q'
(12)
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where p and p' are the momenta of the initial and
final spectator particles, respectively. For X7 = 1 or 2,
the integral (12) is convergent at the upper limit. For
X7 = 3 this integral diverges logarithmically at the upper
limit. . As we increase the order of terms in series (11)
we shall have one more loop integral and one Green
function. For 23 = 1, for each added loop integral, we
have one extra power of momentum in the numerator
and for the Green function two extra powers of momenta
in the denominator, consequently, this will make the
higher order terms of the multiple scattering series more
convergent. For D = 2, for each added loop integral, we
shall have two extra powers of momenta in the numerator
and for the Green function two extra powers of momenta
in the denominator and this will not alter the convergence
rate of the higher order terms at the upper limit. However,
for X) = 3, for each added loop integral we shall have
three extra powers of momenta in the numerator and
for the additional Green function two extra powers of
momenta in the denominator and this will make the higher
order terms more and more divergent at the upper limit.

The ultraviolet divergences for D = 3 can again be
removed by using the following regularized three-body
Green function G~(E):

G~(E) —= Go(E) + Go(E) =
& ~ (13)

z+ A',

(E —0,) (A,' + 0,)

where Go(E) = (Aq + Hp) ' and Az is a new arbitrary
constant. With this Green function there will be the
needed extra powers of momenta in the denominator of
Eq. (12) to ensure convergence.

Now remains the nontrivial task of summing up the
perturbative series (11) and constructing the renormalized
solution to the three-body problem. For this we rely
on the Faddeev prescription. In this case the three-body
connected kernel Faddeev equations are written in terms
of the renormalized two-body t matrix and the free Green
function as [11,12]

T; (E) = t~(;) + r~(;)Go(E) g T&(E), (14)
Jgl

possesses logarithmic ultraviolet divergence which cannot
be removed by iteration. For each iteration one introduces
three extra powers of momenta in the numerator and
three powers of momenta in the denominator for large
momenta. So TrK" diverges for all n, and K is not
compact. Thus for D = 3 the Faddeev equations (14)
do not have a unique solution. For D = 1 and 2 there is
no ultraviolet divergence and the kernel K is compact.

In the three-body problem the renormalization of the
two-body t matrix is not enough to yield Faddeev equations
with compact kernel. In order to achieve compactness
we use the regularized Green function (13) to produce the
regularized Faddeev equations

~R( )(E) = &~(;) + &~(;')GR(E) g ~~(,)(E) . (15)

For three identical bosons in three dimensions the sym-
metrized and regularized kernel is given by

where t~(;j is the renormalized two-body t matrix for the
pair i in the three-body space. Here T;(E) contains that
part of the three-to-three amplitude which begins with the
two-body t matrix t~(;) and T(E) =—P; T;(E). In order
that this equation has a unique solution it should have a
compact kernel [11—14]. Then the Fredholm alternative
is valid and Eq. (14) can be solved numerically [13,14].
The formal Fredholm solution is constructed in terms of
traces of different powers of the kernel [14] and, if these
traces diverge, K is noncompact and Eq. (14) does not
have a unique solution. For three identical bosons, each
of unit mass, the symmetrized kernel of this equation for
'L) = 3 is [11,12]

&(~, e) —f(j ) (E —~' —e' —i e) 'f(e),

where f (p) = ['a + (3p /4 —E) ~ ] ~~. The quantity
f~(p) is essentially the two-body r matrix of Eq. (9) in

the three-body space with the spectator particle carrying a
momentum p. The trace of this kernel, given by

TrK — d 'q(E —3-q ) 'f (q),

f(J )(E + Abf(v)
(A~ + ~' + e' + i e)(E —n' —V' —i e)

In order that Eq. (15) has a unique solution the kernel KR
has to be compact. Weinberg has demonstrated that such a
kernel is compact if (but not only if) it is an L~ or Hilbert-
Schmidt kernel, i.e. , Tr(KKt) ( ~ [13]. Compared to
the kernel K(p, q), IC~(p, q) has two extra powers of
momenta in the denominator in the ultraviolet limit, and
this makes Tr(ICKt) finite which is a sufficient condition
for compactness for the class of kernels of two- and three-
body scattering equations as discussed by Weinberg.

The regularized Faddeev equation (15) corresponds to
a fully convergent dynamical theory with the regularized

Green function. The renormalized three-body t matrices
can be obtained from its solution by eliminating, as in
the two-body problem, the parameter Aq in terms of a
three-body observable, e.g. , the binding energy of the
three-body ground state. However, unlike in the two-
body case, this can only be achieved numerically. The
same result could have been obtained by using a different
regularization procedure, such as by introducing a cutoff
in the Green function as in the two-body problem. After
elimination of the arbitrary parameter in the regularized
Green function in favor of the three-body ground-state
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binding energy, the result for the renormalized three-
body t matrix should be independent of the regularization
scheme as in the two-body problem.

Now it is not difficult to show that in three space di-
mensions ultraviolet divergences continue appearing in
the N-body prob1em as the number of particles increases
beyond three. Regularization of the Green function re-
moves these ultraviolet divergences. However, to con-
struct the renormalized scattering amplitude one has to
use the N-body (N ~ 3) connected kernel approach [11],
and this is beyond the scope of the present study. Renor-
malization of this problem leads to a new scale to be fixed
by a N-body observable, for example, the binding energy.
Introduction of each new particle will lead to new diver-
gences in three space dimensions needing for a new scale
to emerge.

In the one-dimensional N-body problem with pair delta
potentials there are no ultraviolet divergences and the
integrals of the perturbative series are convergent. Hence
the binding energy of the N-body system should be de-
terrnined by the binding energy of the two-body system
independent of the details of the potential. For the delta
potential, supporting a two-body bound state of binding e,
the three-body binding energy is 4e [10].

For 23 = 2 there are ultraviolet divergences in the
perturbative series for N = 2 with pair delta potentials.
However, for the N-body (N ) 2) problem there are no
ultraviolet divergences. Hence no new scale emerges in
the few-body problem for D = 2 and the binding energy
of the N body (N )-2) ground state is determined by the
binding energy of the two-body ground state. But as the
integrals in this case are weakly convergent compared
to the one-dimensional case, in calculations employing
pair short-range potentials, the sensitivity to the potential
will be stronger than in one dimension and the N-body
ground-state binding energy will show some dependence
on potential models [15].

For 23 = 3 we encounter ultraviolet divergences for any
N for pair delta potentials. After a renormalization of the
two-body problem, the three-body Faddeev equation (14)
does not have a compact kernel and further regulariza-
tion of the three-body Green function is needed to achive
compactness via Eq. (15). Then for each added particle
new ultraviolet divergences appear, which calls for renor-
malization. A new energy scale appears at each stage.
This makes the three-body ground-state binding energy in-
dependent of the two-body ground-state binding energy,
the four-body ground-state binding energy independent of
two- and three-body ground-state binding energies, and so
on. This has interesting consequences.

The three-body ground-state binding energy is the new
scale of the three-body problem. This was observed
by Thomas [9] in the study of the three-body problem
employing a delta potential in three space dimensions
using the framework of the time-independent Schrodinger
equation. He found that the three-body ground-state

binding energy for a delta potential does not depend on
the two-body binding and can become infinite even when
the two-body ground-state binding energy is a small finite
quantity. This so-called Thomas effect is absent in one
and two dimensions, where the three-body ground-state
binding energy is determined by the two-body ground-
state binding energy [10,15].

However, once the three-body ground-state binding
energy or the only new scale of the three-body problem
is given, other three-body observables will be uniquely
determined and correlated with the three-body binding
energy. Many such correlations have been observed in
realistic calculations of the three-nucleon system [11,16].
Various nucleon-nucleon short-range potential models
with the same two-nucleon binding have the same two-
body scale but usually lead to different three-body scales
and hence to different three-nucleon binding energies.

In summary, we have exhibited the existence of ultra-
violet divergences in the quantum N-body problem, inter-
acting via two-body potentials with certain singularity at
short distances, in three space dimensions. Renormaliza-
tion of these potential models leads to one new scale for
each added particle. We explicitly renormalize the two-
and three-body problems with pair delta potentials. Such
divergences are absent in one and two space dimensions in
the N-body (N ~ 2) problem. In three space dimensions
N —1 new scales emerge as a result of renormalization of
the N-body problem. These N —1 new scales are N —1

physical observables, for example, the i-body binding en-
ergies (i = 2, ..., N), and once these energies are given
other N-body observables will be determined uniquely.
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