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RESUMO GERAL 

 

O Cerrado ocupa 25% do território brasileiro, sendo considerado o segundo 

maior bioma do país, atrás apenas da floresta Amazônica. Nas últimas décadas 

o Cerrado experimentou um rápido declínio em sua vegetação nativa, sendo 

substituído principalmente por agricultura e pastagem. Hoje, menos de 8% do 

Cerrado encontra-se legalmente protegido no Brasil. Considerando o contexto 

do estado de São Paulo (SP), esta situação é ainda pior e menos de 1% da 

cobertura original do Cerrado encontra-se protegida. Neste cenário, os poucos 

remanescentes de vegetação nativa que restaram no estado de SP estão 

abrigados no interior de Unidades de Conservação (UC). Por sua vez, essas UCs 

possuem áreas que variam desde 200 hectares (ha) até 9000 ha, sendo 

consideradas relativamente pequenas quando comparadas à UCs de Cerrado 

em outros estados do Brasil. Considerando a raridade de áreas protegidas no 

Cerrado paulista, a conservação efetiva dessas UCs é fundamental para garantir 

a provisão de serviços ecossistêmicos e a preservação da biodiversidade. 

Contudo, as atividades desenvolvidas na zonas de amortecimento (ZA), isto é, 

no entorno imediato dessas UCs, impactam negativamente sobre a 

conservação, contribuindo para disseminação de espécies invasoras e na 

ignição de queimas acidentais e criminosas. Buscando contribuir no 

entendimento dessa dinâmica, nós desenvolvemos um algoritmo, geramos e 

validamos um produto de áreas queimadas adaptado para o contexto do Cerrado 

paulista entre 1985 e 2018 (acurácia= 79%, erro de omissão= 16%, erro de 

comissão= 9%). Através de uma análise combinada entre os padrões de área 

queimada e as mudanças no uso e cobertura do solo nas últimas três décadas, 

nós identificamos que o padrão de queimadas no Cerrado paulista pode ser 

explicado pelo tipo de uso do solo. De um modo geral, o regime de fogo nesta 

região pode ser caracterizado como antrópico, ocorrendo principalmente em 

áreas de pastagem e cultivos de cana-de-açúcar. As UCs com cobertura 

predominantemente florestal não queimaram ou pouco queimaram ao longo da 

série temporal analisada. Por outro lado, picos de área queimada foram 

identificados a cada 8-9 anos para as UCs campestres enquanto ciclos de 

queima a cada 2-3 anos foram identificados nas UCs com densa invasão por 

gramíneas africanas. Novas estratégias de manejo que deem autonomia e 



segurança jurídica para os gestores prescreverem queimas controladas 

precisam ser implementadas no Cerrado paulista, especialmente nas UCs 

campestres. Por outro lado, as UCs densamente invadidas por gramíneas 

africanas coincidem com áreas de conflito fundiário e/ou forte pressão urbana. 

Nesse contexto, é preciso buscar alternativas de restauração para essas áreas 

e fomentar a inclusão das comunidades locais em um modelo de gestão 

participativa como forma de mitigar os efeitos das pressões antrópicas e 

aumentar a efetividade de conservação dessas áreas.   

 

 

Palavras-chave: Ecologia do fogo; Ecologia Vegetal; Unidades de 

Conservação; Machine Learning; Sensoriamento Remoto; Landsat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

Cerrado cover 25% of the Brazilian territory, being considered the second-largest 

biome in the country, only behind the Amazon rainforest. In recent decades, the 

Cerrado has experienced a rapid decline in its native vegetation, being replaced 

mainly by agriculture and pasture. Recently, less than 8% of the Cerrado is legally 

protected in Brazil. Considering the context of the state of São Paulo (SP), this 

situation is even worse and less than 1% of the original Cerrado area is protected. 

In this scenario, the fewer remnants of native vegetation that currently occurs in 

the state of SP are sheltered inside Protected Areas (PA). Area of these PAs 

ranges from 200 hectares (ha) to 9000 ha, being considered relatively small when 

compared to Cerrado PAs in other Brazilian regions. Considering the rarity and 

context of PAs in the São Paulo's Cerrado, the effective conservation of these 

PAs is essential to guarantee the provision of ecosystem services and the 

biodiversity conservation. However, the activities carried out in the buffer zones 

(BZ), that is, in the immediate surroundings of these PAs, negatively impact 

conservation, contributing to the spread of alien species and the ignition of 

accidental and arson fires. To contribute to the understanding of this dynamic, we 

developed an algorithm, generated and validated a product of burned areas 

adapted to the context of the São Paulo's Cerrado between 1985 and 2018 

(accuracy = 79%, omission error = 16%, commission error = 9%). Through a 

combined analysis of burnt area patterns and changes in land use and land cover 

over the last three decades, we identified that the burned area pattern in the São 

Paulo's Cerrado can be explained by the type of land use. In general, the fire 

regime in this region can be considered as anthropogenic, occurring mainly in 

pasture areas and sugarcane crops. PAs with predominantly forest cover did not 

burn or burned few times over the analyzed time series. On the other hand, peaks 

of burned area were identified every 8-9 years within grassland PAs, while 

burning cycles every 2-3 years were identified in PAs with dense invasion by 

African grasses. New management strategies that provide autonomy and legal 

security to PA managers to execute prescribed fires needs to be implemented in 

São Paulo's Cerrado, mainly in grassland PAs. On the other hand, PAs densely 

invaded by African grasses coincide with areas of land conflict and/or strong 

urban pressure. In this context, it's necessary to seek restoration alternatives for 



these degraded PAs as well encourage the inclusion of local communities in a 

participative management model as a way to mitigate the effects of human 

pressures and increase the effectiveness of the São Paulo's Cerrado 

conservation. 

 

Key-words: Fire Ecology; Plant Ecology; Protected Areas; Machine Learning; 

Remote Sensing; Landsat. 
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INTRODUÇÃO GERAL 

 

O Cerrado é um conjunto de ecossistemas cuja classificação formal suscita 

divergências ainda nos dias atuais, sendo apresentado como um único bioma (IBGE, 

2019), um conjunto de diversos biomas (Batalha, 2011) ou um domínio fitogeográfico 

(Leopoldo Magno Coutinho, 2006). O Cerrado ocupa uma área de aproximadamente 

2 milhões de km² (25% do território brasileiro), estendendo-se do norte do estado do 

Paraná até o litoral do Maranhão, pelo qual possui interfaces de transição com a 

Amazônia, Caatinga, Mata Atlântica e Pantanal (Durigan & Ratter, 2016; IBGE, 

2019). Caracterizado pelo mosaico de fitofisionomias que variam desde formações 

campestres (campo limpo), formações savânicas (campo sujo, campo cerrado, 

cerrado típico) até as formações florestais (cerradão e mata de galeria), é 

considerado a savana mais biodiversa do planeta em termos de espécies de plantas 

(Oliveira & Marquis, 2002; Overbeck et al., 2015).  

Os primeiros trabalhos sobre a distribuição de ecossistemas no Cerrado 

buscavam explicar a variação de tipos vegetacionais através da gênese 

geomorfológica  (Eiten, 1972) e dos componentes edáficos como a fertilidade do solo 

(Goodland & Pollard, 1973). Posteriormente, trabalhos na área de ecologia do fogo 

demonstraram que as fisionomias do Cerrado e sua composição florística possuem 

estreita relação com a frequência e intensidade de distúrbios, sobretudo das queimas 

(L. M. Coutinho, 1982, 1990; Mistry, 1998). Desde então, trabalhos-chave têm 

apresentado evidências cada vez mais robustas a respeito da função ecológica e 

evolutiva do fogo nos ecossistemas de Cerrado (Bond et al., 2004; Pivello, 2011; 

Simon et al., 2009; Simon & Pennington, 2012).  

Caracterizado pela alternância entre estações secas e chuvosas bem 

definidas nos últimos 2 milhões de anos, as espécies de plantas do Cerrado 

evoluíram adaptadas a ocorrência de queimas naturais ocasionadas por raios 

durante as tempestades de transição entre estações, especialmente no final da seca 

(William J. Bond & Keeley, 2005; Ramos-Neto & Pivello, 2000). Contudo, a 

domesticação do fogo pelo ser humano e seu emprego histórico com as mais 

diversas finalidades representaram para as savanas antropizadas uma nova fonte de 

ignição que não a natural, pelo qual o ser humano assumiu o papel de principal 

causador e supressor de queimas nestes ecossistemas (Goldammer & G., 1993). 

Atualmente o Cerrado encontra-se criticamente fragmentado e densamente povoado, 
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sendo que apenas 7% de sua área total encontra-se legalmente protegida (Soares-

Filho et al., 2014). Este mosaico formado entre remanescentes naturais e os mais 

variados tipos de uso do solo agrava-se em locais como o estado de São Paulo onde 

apenas 0,84% do Cerrado está protegido e inserido em um contexto de forte pressão 

agrícola, pastoril e urbana (Alencar et al., 2020; Kronka et al., 2005), alterando o 

regime de fogo destas áreas (Archibald, 2016; Conciani et al., 2021).  

Atualmente a reconstrução do histórico de queimas constitui base 

fundamental na decodificação de processos ecológicos, subsidiando a tomada de 

decisões e a elaboração de políticas públicas que levem em conta a história natural 

em nível ecossistêmico. Neste sentido, o sensoriamento remoto e a ciência da 

computação têm contribuído sobremaneira na consolidação de metodologias e na 

geração de produtos de áreas queimadas cada vez mais adequados aos diferentes 

contextos e aplicações (Bastarrika et al., 2014; Hawbaker et al., 2017; Ramo & 

Chuvieco, 2017).  

Considerando o contexto do estado de São Paulo, os últimos remanescentes 

de vegetação nativa do Cerrado encontram-se protegidos em esparsas Unidades de 

Conservação (UC) sobre gestão do Instituto Florestal e da Fundação Florestal, 

ambos vinculados à Secretaria de Infraestrutura e Meio Ambiente do Estado de São 

Paulo. Compartilhando a mesma política de exclusão do fogo e brigadas de incêndio, 

essas UCs experimentam diferentes níveis de pressão antrópica, sendo o fogo 

relatado como uma das principais ameaças à sua conservação (Durigan et al., 2007), 

especialmente nas UCs de formações campestres.  

Nesse sentido, através de uma abordagem inovadora, nós buscamos 

combinar os mais recentes avanços em classificação de imagens utilizando 

aprendizagem de máquina e o vasto acervo de imagens em média resolução 

espacial (30 metros) e temporal (16 dias) da série Landsat para criar um algoritmo, 

gerar e validar um produto de áreas queimadas para todo o Cerrado paulista entre 

1985 e 2018 (capítulo 1). Esta abordagem permitiu-nos considerar as condições 

regionais de alta variação no uso e cobertura do solo, resolvendo alguns problemas 

detectados em outros produtos de áreas queimadas (como por exemplo os erros de 

comissão em áreas agrícolas e infraestrutura urbana e erros de omissão em áreas 

pequenas). No segundo capítulo, nós combinamos o nosso produto de áreas 

queimadas com os mapas anuais de uso e cobertura do solo (MapBiomas) e 

buscamos entender, como subsídio à conservação, os padrões temporais e 
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espaciais da ocorrência de fogo no Cerrado paulista, nas Unidades Conservação e 

em suas Zonas de Amortecimento.  

OBJETIVO GERAL 

1. Determinar o regime de queimas no Cerrado do estado de São Paulo e 

analisar sua relação com o histórico e mudanças no uso e cobertura do solo. 

OBJETIVOS ESPECÍFICOS 

1. Desenvolver um algoritmo para mapeamento de áreas queimadas. 

2. Gerar e validar um produto de áreas queimadas para o Cerrado paulista. 

3. Analisar os padrões espaciais e temporais do regime de fogo do Cerrado 

paulista, Unidades de Conservação e Zonas de Amortecimento.  
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ABSTRACT 

This study aims to develop a regional burned area (BA) algorithm for Landsat surface 

reflectance (SR) images by testing different machine learning (ML) algorithms. Three 

ML algorithms (RF, XGB, MARS) were fed and tuned by using more than 1 million of 

spectral signatures of BA and anthropic land-uses from a balanced dataset. As 

predictors, we used both SR bands and spectral indexes. Different combinations of 

hyperparameters were tested, being the optimal values selected by using the largest 

accuracy. RF overcome XGB and MARS, presenting a balanced accuracy of 98%. 

Validation was made by using the RF model to predict 59 scenes. RF model alone 

was not sufficient to generate a BA product with suitable quality (kappa= 0.53), thus, 

post-processing was implemented. Higher accuracy (kappa= 0.79) was obtained by 

combining infrastructure and terrain masks with a spatial contiguity filter. Balancing of 

errors prioritized a higher omission (OE= 0.16) than commission (0.09), guarantying 

that this product can be applied to perform regional analysis without overestimating 

the BA. Finally, this study launches the first Cerrado’s collaborative burned area 

mapping platform, a simple and intuitive way to share the result with the community 

and take feedbacks to improve the product quality in the future. 

Key- words: burned area; random forest; Landsat; landscape; land-cover; land-use. 
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1. Introduction 

The Cerrado vegetation covers an area of c.a 2 million km², about 25% of 

Brazilian territory (DURIGAN; RATTER, 2016). The Cerrado, the largest South 

American savanna, evolved under natural fire regimes (SIMON et al., 2009). 

However, contemporary fire regimes are highly affected by  the established 

settlements, managing landscape for agriculture and livestock, thus changing the 

natural fire regimes according with to the local cultural and economic practices (DIAS, 

2006). These changes in natural fire regimes can completely alter the ecosystem’s 

structure, composition and functionality. Increasing fire frequency is often related to 

the conversion of savannas into pastures for cattle grazing and opening of new 

croplands such as soybean or sugar cane (DALDEGAN et al., 2014), while 

decreasing fire frequency is specially observed in areas with woody encroachment 

(ROSAN et al., 2019).  

Currently, 93% of the entire Cerrado is under an anthropic matrix (SOARES-

FILHO et al., 2014) covered mainly by agriculture, livestock and forestry (ALENCAR 

et al., 2020). In the state of São Paulo, anthropic land-use is observed in more than 

95% of the Cerrado’s original cover (KRONKA et al., 2005). The presence of highly 

populated cities (Σ= 44 million inhabitants (IBGE, 2014) and dense infra-structure (eg. 

roads, railways, power transmission lines and telecommunication towers) are added 

to the Cerrado of São Paulo’s landscape, increasing its complexity. For this reason, 

fire has been considered as a destructive force and legally banned (State Law 10 

547/ 2001) to decrease fire use and mitigate its impacts on human populations. 

Despite the Cerrado being a fire prone ecosystem, private companies and 

government agencies maintain fire brigades to extinguish any fire occurrence, not 

mattering its cause or location (DURIGAN; RATTER, 2016).  

When monitoring fire regime changes it is important to track where, when and 

how much vegetation is being affected by fire, ensuring that spatial features of the fire 

regime can be assessed on fire policy reviews and included on future studies of 

modeling, species distribution, botany, etc. Current Remote Sensing products derived 

from MODIS have been showing good results in evaluating natural and anthropic 

processes affecting land surface, allowing the global detection of active fires (Active 

Fire Data | MCD14DL, 1 x 1 km) and burn scars (LP DAAC - MCD64A1, 500 x 500m) 

since the 2000’s. However, these products are not suitable to analyze regional and 
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local patterns due to their low spatial resolution, especially in highly fragmented 

landscapes such as the state of São Paulo. The program “INPE Queimadas” 

produced burned area products based on Landsat images (AQM30, 30 x 30 m) for 

the entirety of Cerrado, but these products have not advanced beyond the beta 

phase and are limited to the 2011-2018 period, leaving a gap for the reconstruction of 

larger and more reliable fire regime historical series.  

Traditional methods for time-series burned area classification by using 

moderate resolution sensors (like Landsat) are mainly based on reflectance ratios 

between fire sensitive bands (NIR, SWIR1, SWIR2) and spectral index variations 

(NBR, CSI, NDVI) (BASTARRIKA et al., 2014; HAWBAKER et al., 2017; KOUTSIAS; 

KARTERIS, 2000). These approaches present satisfactory results on homogeneous 

landscapes, but accuracy errors are not balanced to consider open and 

heterogeneous landscapes like the Cerrado. When considering highly managed 

landscapes exposed to constant land-use and land-cover changes (LULCC) the 

accuracy is highly compromised, making these products not suitable to assess 

ecosystem fire regime features.   

Recent advancements on machine learning algorithms and open source 

libraries present a new opportunity to explore potential applications on automated 

and semi-automated burned area mapping (PEREIRA et al., 2017; RAMO; 

CHUVIECO, 2017). Thus, we tested potential applications of different machine 

learning algorithms (eXtreme Gradient Boosting, Multivariate Adaptive Regression 

Spline, Random Forest) to reconstruct the contemporary fire regime of São Paulo’s 

Cerrado by using Landsat time-series data (TM, ETM+, OLI). We trained and tuned 

classification models by using spectral signatures of burned areas and LULCC’s from 

six Cerrado’s protected areas and their respective buffer zones (7 km). By using the 

largest accuracy value to select the optimal model, we applied it into a dense Landsat 

time-series and generated a standardized burned area product from 1985 to 2018 for 

the highly anthropized Cerrado. We performed the validation of this product by 

considering an independent multi-temporal burned area dataset and an adaptative 

post-processing routine.  

Before beginning, we theorized: i) tuning the hyperparameters will affect the 

accuracy performance; ii) random forest and extreme gradient boosting will 

outperform multivariate adaptive regression spline; iii) mask of some LULCCs will be 
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need to reach an acceptable product quality; iv) the final will be of sufficient quality to 

carry out environmental analysis on regional scale.    

2. Methods 

2.1. Study area 

We focused on generating an accurate burned area product for highly 

anthropized Cerrado considering the São Paulo state land cover context. For this, we 

selected 9 WRS Landsat paths/rows covering an area of 228 776 km² (Figure 1). 

Parts of other states were included when sharing the same scene as our target sites. 

Thus, the total covered area by this study can be divided into 69% covering São 

Paulo state, 15% southern Minas Gerais state, 14% northern Paraná state and 2% 

Atlantic Ocean, the last covering small islands on São Paulo’s coast. 

 

Figure 1. Study area covered by Landsat Burned Area product for the Cerrado of São Paulo 

state  

The population for the study area was estimated around 38,3 million 

inhabitants in the 2010 census, distributed along 487 municipalities, representing 

almost 87% of São Paulo’s state population and 20% of Brazil’s population (IBGE, 

2014).  São Paulo presents the highest GDP (Gross Domestic Product) from Brazil, 
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where the countryside is responsible by primary production (mainly sugar-cane, 

soybean, coffee and forestry) while the main cities rely heavily on services and heavy 

industries, concentrating a high population compared to neighboring cities (IBGE, 

2014).  

Remnants of primary native vegetation in São Paulo state are characterized by 

15.7% total state area of Atlantic Rainforest and ~1% of Cerrado (ATLÂNTICA, 

2017). These native remnants of both vegetation types are highly fragmented and 

these patches are located mainly in protected areas (KRONKA et al., 2005). The 

Cerrado remnants are mainly dominated by forest-like formations (locally known as 

“cerradão”), and only very few areas of open physiognomies (locally known as 

“campo limpo”, “campo sujo”), which are extremely rare and restricted to small 

patches into the anthropized matrix of the countryside (VICENTE; SOUZA FILHO; 

PEREZ FILHO, 2005).  

2.2. Algorithm workflow  

We developed an automatic algorithm to detect burned areas in the highly 

anthropized Cerrado. First, we trained different classification models based on 

machine learning algorithms and assessed prediction performance of each one by 

using the balanced accuracy and kappa index. Second, the best fitted model was 

applied to classify a dense Landsat time-series. Finally, we balanced commission and 

omission errors in the burned area to ensure that the final product can be used to 

perform regional scale analysis. All the processing steps briefly described in this 

section were represented in the Figure 2 and will be detailed in the following sections.  
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Figure 2. Algorithm graphical abstract. Blue boxes show a set of one-step processes. Red 

labels show step titles. Gray boxes represent each individual process. Black bold labels inner 

gray boxes show start/end processes from a step. Black solid arrow points primary flux of 

processes, while gray arrow indicates secondary processes that occur in the background and 

feed primary processes. Gray labels offer a short description in specific boxes. Black bold 

labels outside gray boxes points selected parameters/setup. Blue labels points file extensions 

expected as input and exported as output. 

All processing steps were parallelized to take advantage of multicore CPUs 

and made using R (RCT, 2020). Specific key-steps were accomplished by using 

community packages “caret”, “raster” and “rgdal” (BIVAND et al., 2015; HIJMANS; 

VAN ETTEN, 2012; KUHN; JOHNSON, 2013) and jscript implementations into 

Google Earth Engine. Source codes are available and can be accessed in GitHub 

(https://github.com/musx/FireGIS_SP). The computation infrastructure used was core 

i7 5820K 3.3 GHz CPU, 64GB RAM and a GTX 1060 6GB GPU. 

2.3. Building the spectral library 

We previously selected training sites that contain representative sample areas 

of native vegetation remnants and anthropic land uses. These sites correspond to six 

protected areas being three of full preservation (Assis, Santa Bárbara and Itirapina 

https://github.com/musx/FireGIS_SP


22 
 

Ecological Stations) and three of sustainable use (Assis, Santa Bárbara and Itirapina 

State Forests).  We also considered buffer zones of 7 kilometers around each one of 

these protected areas. A highly accurate and manual burn scar mapping dataset was 

already available for these areas from 1984 to 2016 (Conciani et al in press). This 

previous mapping was performed based on visual detection and manual delineation 

of every burn scar detected into 805 Landsat surface reflectance Level-2 scenes from 

Earth Resources Observation and Science- Center Science Processing Architecture 

(EROS-ESPA, https://espa.cr.usgs.gov/) for the WRS path/rows 220/75, 221/76, 

222/76.  

In order to create a diverse spectral library, we mapped samples over time of 

land uses with similar spectral signature when compared to burn scars (Table 1). 

Furthermore, spectral signature of generic land covers (e.g. “green cover”, “bare soil”) 

was also mapped in order to train a landscape classifier with ability to recognize burn 

scars on highly anthropized areas. 

Table 1. Mapped classes to train classification models. A byte value was assigned for each 

class in order to identify these elements in further proceedings. 

Byte Class Description 

1 Burned area Recently burned area, with ash presence 

2 Bare soil Soil without any type of vegetation cover 

3 Green cover Any type of green cover, forests, agriculture, pastures 

4 Gray concrete Impermeable structures, cities 

5 Harvest Recent harvest with the presence of decomposing organic matter atop the soil 

6 Asphalt Highways and paved streets 

7 Shadow Cloud and relief shadows 

8 Water Natural/ artificial water courses and water masses 

We performed the spectral signature extraction from surface reflectance bands 

(Table 2) that matches between the mapped vectors by class and the Landsat 

images for each date. The data extracted in the process was compiled and exported 

as a database, being used to build our spectral library. A graphical summary of the 

spectral library is presented in the Figure 3 considering the mean reflectance value 

for each one of the classes. 

 

 

https://espa.cr.usgs.gov/
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Table 2. Surface reflectance spectral bands used to extract spectral signatures. TM = 

Thematic Mapper (Landsat 5); ETM+ = Enhanced Thematic Mapper Plus (Landsat 7); OLI = 

Operational Land Imager (Landsat 8). 

Spectral band Landsat TM and ETM+ Landsat OLI 

Band number Bandwidth (µm) Band number Bandwidth (µm) 

Blue 1 0.45 - 0.52 2 0.45 - 0.51 

Green 2 0.52 - 0.60 3 0.52 - 0.60 

Red 3 0.63 - 0.69 4 0.63 - 0.69 

NIR 4 0.77 - 0.90 5 0.77 - 0.90 

SWIR1 5 1.55 - 1.75 6 1.55 - 1.75 

SWIR2 7 2.09 - 2.35 7 2.09 - 2.35 

 

Figure 3. Mean reflectance (y-axis) over the wavelengths (x-axis) from each class present in 

our spectral library. Line colors represent different classes (described on legend). 

Background colors represent Landsat bands ordered by wavelength (Blue, Green, Red, NIR, 

SWIR1 and SWIR2).   

Finally, we used these surface reflectance database as input for the generation 

of several spectral indices (Table 3). We selected some of the most commonly used 

indexes in the literature to assess features from the burn scars, vegetation, soil and 

water, and included them in our spectral library.  

Table 3. Spectral indexes generated to enhance our spectral library. The λ symbol 

represents the reflectance value of the spectral band. 

Spectral Index                Reference Formula 

Burned Area Index (BAIM) (MARTÍN; CHUVIECO, 2006) 
1

(0.05 − λ NIR)2 + (0.2 − λ SWIR1)²
 

Char Soil Index (CSI) (SMITH et al., 2005)  
λ NIR

λ SWIR1
 

Green Normalized Difference 

Vegetation Index (GNDVI) 

(GITELSON; MERZLYAK; 

LICHTENTHALER, 1996) 

λ NIR − λ Green

λ NIR + λ Green
 



24 
 

Infrared Index (IRI) (Hardisky et al.,1983) √
λ NIR2 + λ SWIR2

λ SWIR1
 

Mid-Infrared Bispectral Index 

(MIRBI) 
(TRIGG; FLASSE, 2001) 10 × λ SWIR1 − 9.8 × λ NIR + 2 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 
(QI et al., 1994) 

λ NIR + 0.5 − (0.5

×  √(2 × λ NIR + 1)2 − 8 × λ NIR − (2 × λ Red) 

Normalized Burn Ratio (NBR) (KEY; BENSON, 2006) 
λ NIR − λ SWIR1

λ NIR +  λ SWIR 1
 

Normalized Difference 

Vegetation Index (NDVI) 

(ROUSE; HAAS; DEERING, 

1974) 

λ NIR −  λ Red

λ NIR +  λ Red
 

Normalized Difference Water 

Index (NDWI) 
(GAO, 1996) 

λ Green −  λ NIR

λ Green +  λ NIR
 

Salinity Index 2 (S2) 
(DOUAOUI; NICOLAS; 

WALTER, 2006) 

λ Blue −  λ Red

λ Blue +  λ Red
 

Specific Leaf Area Vegetation 

Index (SLAVI) 
(Lymburner et al., 2000) 

λ NIR

λ Red +  λ SWIR2
 

A Spearman’s correlation map was computed (Figure 4) to inspect the 

relationships between the surface reflectance bands and the generated spectral 

indexes.    
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Figure 4. Correlation map between the surface reflectance bands and the spectral indexes in 

our spectral library.  Right bar color vary between strong negative correlations (red) to strong 

positive correlations (green). Black number inside each square shows de Spearman’s 

correlation (positive or negative). 

2.4. Pre-processing 

We computed a count of spectral signatures for each class in our spectral 

library and plotted them into a histogram (Figure 5A). We detected unbalanced 

observations per class on our database. As a remedy to prevent learning bias, we 

artificially balanced the frequencies by using the burned area as reference and 

performing a random down-sampling for classes with higher frequency than the 

reference (ignoring cases from the majority) and an up-sampling for classes with less 

frequency than the reference (replicating cases from the minority) (Figure 5B). Thus, 

we generated a balanced dataset containing 1,153,040 spectral signatures, being 

144,130 (12.5%) of each class. This balancing strategy is described in the literature 

as an alternative to prevent the learning overwhelm by the majority classes (GUO et 

al., 2008; PROVOST, 2000). Furthermore, more accurate performances were 

reported to classifiers trained with balanced datasets when comparing them to 

classifiers trained with the original data (BATISTA; PRATI; MONARD, 2004; 
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JEATRAKUL; WONG; FUNG, 2010; VAN HULSE; KHOSHGOFTAAR; 

NAPOLITANO, 2007) 

 

Figure 5. Histogram of frequencies by class. A. Original dataset. Red line indicates burned 

area frequency used as reference to balance other classes. Green arrows points if an up-

sampling (up arrow) or down-sampling (down arrow) were performed to balance each class. 

B. Balanced dataset after up-sampling and down-sampling. 

Following the most common proportions reported in the literature (KUHN; 

JOHNSON, 2013), we divided the balanced dataset into training dataset by creating a 

stratified partition with 70% of the data and an test dataset by using the 30% of the 

remaining data. We centered and scaled the numeric data to take standard deviation 

one and mean of zero for all the predictors.  

2.5. Model training and testing 

Using the training dataset as input, we implemented machine learning 

algorithms considering the scope of non-parametric regressions (Multivariate 

Adaptive Regression Spline - MARS), decision trees (Random Forest – RF) and 

boosted trees (eXtreme Gradient Boosting – XGB). Each one of these algorithms 

have specific parameters that affects the model’s accuracy and which cannot be 

estimated by using the dataset (Table 4). Since there is no analytical formula 

available to calculate an appropriate value, these parameters are referred as tuning 

parameters or hyperparameters. Since these hyperparameters control the model 

complexity, poor choices for the inputted values can result in low accuracy or over-

fitting (KUHN; JOHNSON, 2013). In this way, following the adaptative search method 

described in Olsson & Nelson, 1975, we defined a set of candidate values for each 

hyperparameter (Table 4). Finally, to avoid the over-fitting, we used the k-fold cross-

validation resampling technique (k= 5, repeats =3) for training and estimating the 

performance of the models by considering all the possible combinations between the 

candidate values.   
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Table 4. Hyperparameters description for each algorithm. Numbers following the names of 

the algorithms refer to the version of the R package that has been implemented. The range 

column represent the minimum and maximum allowed values for each hyperparameter. The 

candidate values column represents the set of values that we used as input to train and 

evaluate different models accuracy.  

Algorithm Hyperparameter Description Range Candidate values 

earth 5.1.2 degree Product degree 1 – Inf 1 – 3 

 nprune Number of terms 1 – Inf 1 – 20 

RandomForest 
4.6-14 

ntree Number of trees to grow 1 – Inf 1 – 750 

 mtry Number of variables randomly 

sampled as candidates at each split 

1 – n(β) 2 – 8 

xgboost 
0.90.0.2 

nrounds Number of boosting iterations 1 – Inf 50 –150 

 max_depth Max tree depth 0 – Inf 1 – 3 

 eta Shrinkage 0 – 1 0.3 – 0.4 

 gamma Minimum loss reduction 0 – Inf D0 

 subsample Subsample percentage 0 – 1 0.5 – 1 

 colsample_bytree Subsample ratio of columns 0 – 1 0.6 – 0.8 

 min_child_weigth Minimum sum of instance weight 0 – Inf D1 

Inf = Infinite; n(β) = number of predictors; D0, 1 = default hyperparameter value (0 and 1 respectively) 

We computed and used the largest values of overall accuracy (ACC – eq. 1) 

and the Cohen’s Kappa index (Kappa – eq. 2) obtained in the training by the k-fold 

cross validation to select the best values for the hyperparameters as well as the 

optimal model trained by each algorithm. Then, we used these three finalist models 

(one by algorithm) to predict the test dataset and assessed the performance of each 

one by computing a confusion matrix comparing the predicted classes vs. reference 

classes. Once again, we used the largest accuracy value obtained by the test dataset 

classification to select the final model used in this article.    

ACC =
∑ TP + ∑ TN

n
 

eq.1 
TP= true positive; TN= true negative; n= total population 

Kappa

=
 [

 (∑ TP + ∑ TN) − ((∑ TP + ∑ FN) × (∑ TP + ∑ FP) + (∑ FP + ∑ TN) × (∑ FN + ∑ TN))
n ⁄ ]

 [
 n − ((∑ TP + ∑ FN) × (∑ TP + ∑ FP) + (∑ FP + ∑ TN) × (∑ FN + ∑ TN))

n ⁄ ]
 

eq.2 
FN= false negative; FP = false positive  

2.6. Burned area extraction into a dense time-series 
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Considering the study site extension, we retrieved the metadata for all the 

available Landsat scenes from Earth Explorer (https://earthexplorer.usgs.gov/). 

Assessing scene availability according cloud cover percentage (Supplementary Fig 

S1), we found that a maximum of 75% cloud cover is the more suitable threshold for 

this study. Thus, we discarded all the scenes with more than 75% of cloud cover, 

preventing unnecessary processing caused by scenes with high cloud cover 

(NoData). Considering the metadata of processing level, we discarded scenes 

classified into L1GT (without precision correction) and L1GS (without terrain 

correction), using all remaining scenes available in the L1TP level (precision, terrain, 

geometric and radiometric corrections). We used this filtered list to build a request 

containing 4180 Level-2 scenes (surface reflectance) from 1985 to 2018 and 

downloaded them from Earth Resources Observation and Science- Center Science 

Processing Architecture (EROS-ESPA, https://espa.cr.usgs.gov/). Using the images, 

we calculated the same spectral indexes used to build our spectral library (Table 3) 

and stacked them as different bands into each one of the downloaded scenes. 

For each scene, we used the final model to run per-pixel burned area and 

LULCC classification, being a value from 1 to 8 associated to each pixel as a result. 

These values from 1 to 8 correspond to the byte code of the predicted class (Table 

1). Finally, using these classified scenes as input, we performed the binarization of 

the burned area class (1= burned area, 0= unburned – all other classes from 2 to 8). 

These binarized burned area data were written in new raster files containing the 

same metadata as the original scenes. 

2.7. Burned area validation 

Validation is the term used to refer to the process of assessing the accuracy 

of a product by comparing with an independent reference data (ROY; BOSCHETTI, 

2009). In the context of this article, we used the selection of representative places in 

space and a random design in time to assess the transferability of the classifier to 

regions outside the training data scope. In this way, we established four plots of 270 

km² each (15 x 18 km) in different path/rows considering land-cover and land-use 

variations in São Paulo state (Figure 6, Table 5) and generated an independent 

validation dataset by performing the manual vectorization of burned areas over 59 

cloud-free scenes across four random years (Supplementary Table S2). 

https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
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Figure 6. MapBiomas land cover for the validation plots in the year of 2018. A. Franco da 

Rocha – path 219/ row 76; B. Itirapina – 220/75; C. Rancharia – path 222/76 and; D. Tanabi 

– path 221/74. 

Table 5. Landscape description and considered years for validation in each site. 

Validation plot Years Description 

Franco da Rocha 

1995 

2003 

2017 

2018 

Densely populated suburban area inserted in São Paulo 

capital city urban zone (> 1 million inhabitants). This area 

presents highly rugged relief mainly covered by “Serra do Mar” 

Atlantic rainforest. However, few pasture areas are observed 

on the landscape and open Cerrado “campo sujo” fragments 

occur in the Juquery state park. 

 

Itirapina 

1985 

1988 

2015 

2018 

This area represents the biggest open Cerrado “campo limpo” 

and “campo sujo” remnants of São Paulo state, located at the 

Itirapina Ecological Station (~2200 ha). Outside the protected 

area, the landscape is dominated by cattle grazing, forestry 

and sugar-cane plantations. Some wetlands divide space with 

a rich drainage system, small urban zones (< 20 000 

inhabitants), highways and railways. 
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Rancharia 

1985 

2001 

2017 

2018 

This area corresponds to a transition between Cerrado and 

Atlantic rainforest. The validation plot includes a rural zone 

dominated by semi-perennial croplands of bean, soybean and 

corn. Small fragments of Atlantic rainforest remnants are 

maintained by farmers as a legal requirement by the National 

Forest Code (National Law 12 651 / 2012).   

 

Tanabi 

1995 

2006 

2016 

2018 

Regional hub in sugar and ethanol industrial production. 

Landscape is dominated by sugar-cane croplands with small 

rivers and some riparian forests. As well as the Rancharia 

area, here there are small fragments of “cerradão” and Atlantic 

rainforest maintained under legal requirement while the 

Cerrado area has been converted into pastures. Tanabi’s 

urban zone (< 25 000 inhabitants) was included in the 

validation plot.  

We used the date metadata (yyyy-mm-dd) to match and overlap the manually 

mapped vectors and the binarized rasters of burned area generated by our algorithm. 

Then, a confusion matrix was computed to compare each one of the spatial and 

temporal matches; in other words, we estimated and stored in a database the kappa 

index (eq. 2), omission error (OE – eq. 3) and commission error (CE – eq. 4) for each 

one of the comparisons between references vs. predictions. We used this database 

to calculate the mean value of these metrics for each one of the validation plots (eq. 

5) and assumed the result as a representative value of the spatio-temporal product 

quality. Furthermore, the quality assessment of the product provided by the validation 

was used to delineate the post-processing routine in order to improve the product 

accuracy. 

𝑂𝐸 =
∑ 𝐹𝑁

𝑛(𝑅)  
 

eq.3 
FN= false negative; n= total population; R= reference 

𝐶𝐸 =
∑ 𝐹𝑃

𝑛(𝑃) 
 

eq.4 
FP= false positive; P= predicted  

𝑥̅ =
∑ 𝑥𝑖 (𝐾𝑎𝑝𝑝𝑎; 𝑂𝐸; 𝐶𝐸)

𝑛
𝑖=1

𝑛(P ~  𝑉𝑃)
 

Pr= predicted; ~ in each; VP= validation plot 

eq.5 
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2.8. Post-processing 

As a standard procedure, we used the date metadata to match and mask (into 

NoData) any pixels detected as radiometric saturation, cloud, cloud shadow and 

water in the binarized burned area product by using the Landsat Quality Assessment 

Band (QA). For precaution, we applied restrictive thresholds in the QA parameters, 

being masked all the pixels (and also their adjacencies) that presented any of the 

previous described anomalies, independently of the confidence level. 

Considering that our gray concrete spectral signatures is mainly composed by 

urban-zones and sparse buildings, since our aim is to generate a product to assess 

the ecosystem fire patterns, we decided to mask all the urban-zones.  In this way, the 

MapBiomas Brasil project (collection 4.1) offers an accurate yearly classification of 

land-cover for the Cerrado by performing Landsat scenes classification (ALENCAR et 

al., 2020). Thus, we used the "urban-infrastructure" class from the MapBiomas 

products to mask our binarized burned areas. Besides that, we also used the 

"mining", "beach" and "rocky-outcrop" MapBiomas classes (employing our empirical 

knowledge that these classes don't burn) to mask our data. 

Due the earth's movements (e.g. rotation, translation) the sun-earth inclination 

angle change across the seasons, and so the extent of the mountain shadows 

projected over the land surface accompany this variation (GILES, 2001). Previous 

studies focused in scene classifications have reported that the spectral mixture 

caused by the projection of mountain shadows over the surface of highly sloped 

areas can induce several misclassifications (CHEN et al., 2018; GIGLIO et al., 2015; 

PAUL, 1997). In this way, we obtained the AWD3D30 v1.1 ALOS Digital Surface 

Model (Jaxa, 2020) from the Google Earth Engine library and derived the terrain 

slope for São Paulo state. We binarized slope rasters (1= slope greater than x, 0= 

slope  less than x) by considering different  slope thresholds (x= 10°, 20°, 30° and 

40°) and tested how the terrain masking can improve or degrade the product quality 

of the burned area product in the context of this study.   

Finally, to improve the consistency and the product quality, we assume that 

isolated pixels classified as burned area (without neighbor pixels classified as burned 

area) have a great chance to be misclassifications. To test this premise we 

implemented a "minimum spatial contiguity" filter based in the count of pixels 

classified as burned area that share their borders. Thus, we tested the effects in the 
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product accuracy by masking burned area pixel aggregations less than 5 pixels (0.45 

ha), 11 pixels (0.98 ha) and 16 pixels (1.44 ha) and compared them to the product 

without spatial contiguity filter (considering alone pixels as valid burned areas). 

2.9. Final product compilation 

After applying the post-processing steps and finding the best parameters for 

the masks and filters by balancing the omission and commission errors, we retrieved 

the gregorian date (yyyy-mm-dd) for each year. Final product was serialized by year 

~ path/row and resulted in a library of 309 raster files in .tif format. The file names 

were built to store the burned area product metadata as text strings, being: i) the 

WRS-2 path [path] and WRS-2 row [row] as spatial descriptors inside the same 

separator [path+row]; ii) the gregorian year as temporal descriptor [yyyy] and; iii) the 

abbreviation of a short product description and the version number [jdba1], equivalent 

to "julian day of burned area detection, version 1". This metadata were compiled so 

that the final file names presented the format "pathrow_yyyy_jdba1.tif" (e.g. 

22075_1985_jdba1.tif, 21976_2018_jdba1.tif, etc.). 

3. Results and Discussion  

3.1. Hyperparameters tuning and model selection 

3.1.1. Multivariate Adaptive Regression Spline – MARS  

We detected a positive effect of the hyperparameter maximum number of 

terms (nprune) in the models accuracy. Lower accuracies were observed by using 

low nprune values (ACC ranging from 0.324 to 0.402 when nprune = 2), 

independently of the product degree (degree). As new MARS models have been 

trained by increasing the number of terms, we observed strong gains in the accuracy 

until the nprune value = 15 (ACC ranging from 0.813 to 0.845) (Figure 7). This result 

points that despite the number of terms having largely contributed to the accuracy 

gain, this gain has a tendency to saturate since a threshold, being all the addition of 

complexity since this point responsible for a overwhelm of the model. This saturation 

pattern was statistically and empirically demonstrated by Kuhn & Johnson, 2013 and 

also reported as result from other studies that have tuned MARS models to make 

forecasts (FERLITO; ADINOLFI; GRADITI, 2017; LI et al., 2019). 
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Figure 7. Multivariate Adaptive Regression Spline (MARS) hyperparameters tuning. Colored 

lines represent models considering different product degrees. The number of terms 

hyperparameter (nprune) was represented in the x-axis while the y-axis points the models 

accuracy. 

On the other hand, although in small proportion in relation to the total number 

of terms, the product degree has affected the models accuracy. While the addition of 

terms has induced accuracy gains, the addition of product degrees has negatively 

affected the models by degrading the accuracy. In other words, independently of the 

number of terms in the model, greater values of accuracy were observed when only 

first order interactions between variables are allowed (degree = 1), while less 

accuracy was found when increasing the product degree. The combined effects of 

both hyperparameters can be easily observed in Figure 8, since the results showed a 

graphical ordered pattern. Finally, the largest accuracy value (ACC= 0.845, Kappa = 

0.823) was used to select the optimal MARS model (nprune = 20 and degree = 1).  

3.1.2. Random Forest – RF  

We started by training an exploratory RF model using an approximation of the 

default value for the number of variables randomly sampled as candidates at each 

tree split (mtry = √𝑛. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 = √6 𝑆𝑅 𝑏𝑎𝑛𝑑𝑠 + 11 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 = 4.12, rounded to 

4). On one hand if a low number of trees are related to poor final classifiers, on the 

other a large number of trees are generally related to a model overwhelm and to 

unnecessary computation (OSHIRO; PEREZ; BARANAUSKAS, 2012). Since no 
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default value is available to the ntree hyperparameter, we rely on literature and set 

our initial candidate value as 750, an approximation of the optimal ntree value 

reported by Ramo & Chuvieco, 2017 to perform MODIS burned area classification.  

Interestingly, a high value of accuracy (ACC= 0.976, Kappa= 0.971) was 

obtained from this exploratory model. Even when the model considered only a unique 

tree, a relatively high value of accuracy was obtained (ACC= 0.952). However, 

increasing in the accuracy of all the classes was observed in the window by 

ensembling from 5 to 100 trees (Figure 8). From this point on, an average accuracy of 

0.975 was reached and a tendency of stabilization was detected for all the classes, 

except for the harvest class, where a small increase of accuracy (< 0.02) occurred 

until the 750th tree.  

Since we reached a global threshold of accuracy gain (and also individual for 

all the classes), we assume that the input of more trees in the training is 

computationally unnecessary, since no more significative accuracy gains shall be 

observed. Thus, despite the optimal value for the number of trees can be any value 

since the accuracy stabilization threshold (around the 100th tree), considering the 

computational context of having already trained a stabilized model, we used this 

classifier and assumed 750 trees as our optimal ntree value in the context of this 

study.   

 

Figure 8. Random Forest (RF) number of trees tuning. Colored lines represent the accuracy 

error for each one of the classes. Pink link named “Average accuracy” represent the model 

overall accuracy by considering all the classes. The hyperparameter ntree was represented 

in the x-axis (log10 adjusted) while the y-axis points the accuracy value.  
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From this point on, we started to evaluate how the set of different values for 

the mtry hyperparameter affects the accuracy. For this, we tested values that 

corresponds to the half (2) and twice (8) of the default value (4). Considering the half 

value of the default, we found that the accuracy presented an insignificant drop (< 

0.001), such as none accuracy gain was observed by twice the default value (ACC 

was held constant in 0.976). Absence of influence of the number of variables 

randomly sampled as candidates at each tree split goes on the opposite direction to 

that reported by studies that have classified optical and radar remote sensing data by 

using the random forest algorithm (PAL, 2005; RAMO; CHUVIECO, 2017). 

Furthermore, other studies have related that the accuracy in the random forest was 

more sensitive to the mtry tuning than to the number of trees (BELGIU; DRĂGU, 

2016; GHOSH; JOSHI, 2014; TOPOUZELIS; PSYLLOS, 2012). However, Catal & 

Diri, 2009 have reported that the behavior of the accuracy in RF can be dependent 

from the dataset size and feature selection methods (based on predictors 

relationships). Thus, our results point that the structural particularities from our 

dataset can be induced by the prioritization of the ntree in relation to mtry.  

3.1.3. eXtreme Gradient Boosting – XGB  

We report that the subsample ratio of columns (colsample_bytree), shrinkage 

(eta) and subsample (subsample) did not showed determinant effects on the 

accuracy values, having only small variations (< 0.01) being observed by ranging the 

set of values proposed in the search grid (see Table 4). As reported by Joharestani et 

al., 2019, the number of allowed boosting iterations (nrounds) and the maximum tree 

depth (max_depth) appears to be the more sensitive to XGB hyperparameters. This 

way, we detected a positive relationship with the accuracy by increasing the values 

into each one of these parameters (Figure 9).  
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Figure 9. EXtreme Gradient Boosting (XGB) hyperparameters tuning. Colored lines 

represent models considering different maximum tree depth ("max_depth”). The labels inside 

colored upper boxes on each plot refers to the values provided to the subsample ratio of 

columns (colsample_bytree), shrinkage (eta) and subsample percentage (subsample). The x-

axis represents the number of boosting iterations (nrounds) while the y-axis points the 

models accuracy. 

Previous studies that have assessed the performance of classification 

algorithms by comparing XGB vs. RF models pointed that an optimal parameterized 

XGB tends to outperform RF models (Georganos et al., 2018; Naghibi et al., 2020; 

Joharestani et al., 2019). However, tuning the hyperparameters into the XGB 

algorithm is more difficult than MARS and RF algorithms for the simple reason that 

the first has 3.5 times more parameters to be set. Since the number of possible 

combinations between candidate values is a function of the number of candidate 

values in each parameter (NCV) raised to the total number of hyperparameters to be 

set (7) (𝑁𝐶𝑉7), the delineation of a detailed search grid can demand the training of 

thousands of models. For example: a search design that considers the input of 5 

candidate values for each one of the parameters needs to train 78,125 models, 
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making the search for the optimal hyperparameters a heuristic process that depends 

of computational resources availability for a long period of time.  

Given that, we report that despite the optimal XGB model having reached 

less accuracy than the optimal RF model (- 0.063) (Table 6), this result is biased by 

our decision to end the XGB parameterization before the stabilization of the accuracy 

gain. Since a small range of eta and colsample_bytree values were tested and no 

saturations in the accuracy were detected by increasing the nrounds and the 

max_depth until the tested limits, a new set of values could have been supplied as 

new candidate values by following the conceptions of the Nelder-Mead method 

(OLSSON; NELSON, 1975). However, since this heuristic search process would 

consume much more processing time and we had already reached an accuracy that 

we considered satisfactory in the context of this study by using the RF algorithm, we 

decided to end the tuning of hyperparameters and make a better use of the research 

time by processing and validating a high quality final product. 

Table 6. Optimal hyperparameters and accuracy measurements for each algorithm. Size 

(GB) refers to the size (expressed in gigabytes) of trained models when exported as .RData 

files. Gray shadow points the best model obtained from the k-fold cross validation.  

Algorithm Hyperparameters Accuracy Kappa Size (GB) 

RF mtry = 4; ntree= 750 0.976 0.971 0.536 

XGB nrounds= 150; max_depth= 3; 

eta = 0.4; gamma =0; colsample_bytree= 

0.8; min_child_weigth= 1; subsample= 0.75 

 

0.913 0.900 0.310 

MARS nprune= 20; degree= 1 0.845 0.823 19.198 

3.1.4. Final model selection  

Given the previous steps, we performed the classification of our test dataset 

(30% of the spectral library) by using the optimal model of each algorithm.  Only small 

variations were observed when comparing the accuracy results from the training k-

fold cross validation (see Table 6) and test dataset (Table 7). Thus, we confirmed our 

hypothesis number ii (RF and XGB > MARS) and used the largest value of accuracy 

(ACC= 0.982) to select the RF as the final model to be applied in the classification. 

Table 7.  Accuracy measurements of the test dataset classification for each algorithm. 95% 

C.I refers to the accuracy 95% confidence interval. Grey shadow points the selected final 

model by considering the largest values of accuracy and Kappa.   

Algorithm Accuracy 95% C.I Kappa 

RF 0.982 0.981 – 0.983 0.979 

XGB 0.913 0.912 – 0.914 0.900 
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MARS 0.856 0.855 – 0.857 0.835 

3.2. Predictors importance 

Inspecting the spectral library ordination by performing a principal component 

analysis (PCA – Figure 10), we detected that the loadings of surface reflectance 

bands have largely influenced the scores from bare soil, and in a lesser extent, from 

the gray concrete. As expected, spectral indexes sensible to vegetation features 

(NDVI, GNDVI, SLAVI, MSAVI) largely influenced the ordination of green cover, such 

as the burned area indexes (BAIM, CSI, NBR) were largely responsible for the 

burned area class scores. Highly divergent classes (green cover, shadow, water) 

were easily separated by the PCA, however, we detected that spectral traits were 

shared by some of the other classes (burned area, harvest, asphalt, gray concrete, 

bare soil). 

 

Figure 10. Principal Component Analysis (PCA) of our spectral library. Black labels represent 

variable names. Length of black arrows represents the loadings of each variable.   

When comparing the predictors importance inside each one of the optimal 

models obtained from the cross validation, we detected deep differences in which and 

how each model has used the predictors (Figure 11). First, the MARS model used 

only 9 of the 17 predictors, prioritizing the use of all the surface reflectance bands 

(76.6% of total importance) and using only 2 of the 11 spectral indexes (NDVI and 

CSI). On the other hand, XGB and RF have used all the predictors, but emphasizing 

the importance of spectral indexes (XGB= 63.1%, RF= 64.8% of total importance). 
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Furthermore, we detected a more homogeneous tendency of predictors importance 

distribution by using the RF (standard deviation ± 2.29 %) when compared to XGB (± 

5.23 %) and MARS (± 7.76 %). This result highlights the ability of the RF algorithm in 

considering the combined effects from predictors with high collinearity by dividing the 

importance between them (GENUER; POGGI; TULEAU-MALOT, 2010), contrary to 

the non-parametric variable selection performed by the MARS (DOKSUM; TANG; 

TSUI, 2008) and the feature selection performed by the XGB (CHEN; GUESTRIN, 

2016). 

 

Figure 11. Predictors’ importance radar plot. Black labels around the plot represent each one 

of the predictors used in the models training. Starting from the center (0%) and going to the 

outer edge (> 15%), the red labels inside the plot shows the relative importance for each 

predictor. Colored lines/polygons represent the implemented algorithms: Random Forest 

(dark green), eXtreme Gradient Boosting (magenta) and Multivariate Adaptive Regression 

Spline (brown).   

Inspecting the confusion matrix of the test dataset by using the optimal 

models, we found a poor performance of MARS and XGB to make correct predictions 

of classes with high spectral mixture (asphalt, gray concrete and harvest), being 

these classes frequently misclassified among themselves or in burned area (Figure 

12). Despite the spectral reflectance bands being often used to perform LULCC and 

burned area classification by other studies, better results were reported by adding 

spectral indexes (BASTARRIKA; CHUVIECO; MARTÍN, 2011; HAYES; MILLER; 

MURPHY, 2014). Many studies have reported that the NDVI and CSI enhances the 

classification of vegetation and burned area, respectively  (Jia et al., 2014; Shao et 

al., 2016; Smith et al., 2007; Stroppiana et al., 2012). However, the non-consideration 

of the other spectral indexes and the emphasis in the surface reflectance bands 
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probably have induced the several observed classification errors for the MARS 

algorithm.  

 

Figure 12. Distribution of total errors by predicting the test dataset. Black labels upper each 

plot represents the employed algorithm. The y-axis indicates the reference classes while the 

x-axis points the relative frequency of error per class. The error bar of each reference class is 

colored to represent the frequencies of wrong predicted classes 

Although the XGB has attributed 63.1% of the variables importance to 

spectral indexes, these value is biased by the high importance lead by MIRBI (18.6%) 

and GNDVI (15.8%) while the average importance of all the other spectral indexes 

was around 3.2%. By comparing MARS and XGB, this behavior represents an 

importance reduction of the surface reflectance bands and an explicit replacement 

from CSI to MIRBI and from NDVI to GNDVI. Thus, XGB have reduced the 

classification errors from all the classes, but remained maintaining the same 

tendencies and biases that MARS. 

On the other hand, the balanced use of surface reflectance bands and 

spectral indexes predictors in the RF practically zeroed the asphalt and gray concrete 

errors. Furthermore, misclassifications were largely reduced in bare soil (error= 6%), 

harvest (error= 5%) and burned area (error= 4%). Thus, our result suggests that the 

distribution of importance among highly collinear predictors have improved the 

machine learning capabilities in the RF, making possible that this algorithm reached a 

higher accuracy (98%).   

3.3. Burned area validation   

We applied the final RF model (Table 6) to perform the landscape 

classification of the selected validation scenes (Supplementary Table S2). We 
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performed the burned area class binarization (1= burned, 2= unburned, all the 

classes from 2 to 8, see Table 1) and masked these results by applying the BQA 

band.  

Considering the average performance of the RF model to predict burned 

areas into all the validation plots, first insights about the quality of this raw product 

showed an average kappa index of 0.53, being the average commission error (CE= 

0.50) and average omission error (OE= 0.12). Despite the mean omission error being 

low in all the validation plots (OE - Franco da Rocha= 0.15, Itirapina= 0.12, Tanabi= 

0.14, Rancharia = 0.05), high values of commission errors were observed in all the 

validation plots (CE – Franco da Rocha= 0.76, Itirapina= 0.50, Tanabi= 0.44, 

Rancharia= 0.30). We assumed that a mean omission error of 0.12 (lower= 0.05, 

upper= 0.15) is acceptable in the regional scope of this study and so we centered our 

efforts in delineating a post-processing protocol to promote the CE reduction. 

Inspecting our results, we found that pixels that correspond to buildings and roads 

were not always properly classified by our algorithm, being frequently mapped as 

burned area (Figure 13A). Thus, we confirmed our hypothesis iii and used this 

impressions as a starting point to delineate the post-processing. 

First, we decided to mask the infrastructures, cities and roads due this high 

commission error rate. In this way, a highly accurate urban zones classification (IRS – 

5 m/pixel) is available into DATAGEO (São Paulo state geospatial data repository - 

http://datageo.ambiente.sp.gov.br/). However, these official data refers only to a static 

snapshot from the time (2005). Since urban infrastructure is constantly changing, we 

need to include urban-zones data that considers these changes. For this, the 

MapBiomas Brasil project offers a multi-temporal collection of land cover and land 

use changes (LULCC) for the entire Cerrado in Landsat resolution (ALENCAR et al., 

2020). We used the urban-infrastructure MapBiomas class to mask our burned area 

product (Figure 13B). Besides that, considering that “rocky outcrop”, “mining” and 

“beach” are available into MapBiomas product (and we know that these classes don’t 

burn), we also masked these classes in our product since much of these is frequently 

related to commission errors in burned area classifications (KOUTSIAS; KARTERIS, 

2000; MITRI; GITAS, 2004; OECHSLE; CLARK, 2008). 

http://datageo.ambiente.sp.gov.br/
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Figure 13. Franco da Rocha, 2018-08-30. A) Raw burned area product (only BQA applied).  

Black polygons represent our reference burned area dataset. Red colored pixels represent 

pixels classified as burned area by the RF model. B) Burned area product masked using 

MapBiomas (pink). We used a high resolution scene from ESRI Imagery as background in 

both figures.  

After applying the MapBiomas mask, we observed CE decrease in all the 

validation plots. Franco da Rocha as shown the biggest drop in CE (-0.22), while 

Itirapina (-0.03), Tanabi (-0.01) and Rancharia (-0.01) presented quasi-neutral CE 

reduction, probably due to absence of dense urban-zones in these validation plots. 

Considering OE increase as a collateral effect of product masking, we detected small 

increases from 0.01 to 0.02 in all the validation plots. Since CE drop and OE gain 

were balanced for all the validation plots, the higher CE drop in Franco da Rocha has 

been driven an average Kappa gain from 0.53 to 0.58. 

Applying different derived slopes from ALOS AW3D30 product has not 

reduced CE more than 0.01 in none of the validation plots. On other hand, we 

detected that OE is sensitive to the restriction level from slope mask, namely, the 

more restrictive was the slope mask, bigger was the OE increase (Figure 14), 

especially in Franco da Rocha. Observing that the CE and OE was balanced (± 0.01) 

until intermediate degree slopes, we decided to maintain the slope mask (30º) as a 

post-processing step. We assume that despite the neutral influence in our validation 

plots, the slope mask can be useful to improve the product quality in other rough relief 

areas that were not considered in this validation scope but occur in the study area.  
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Figure 14. Cumulative performance of tested masks into each validation plot. The x-axis 

shows the cumulative effect of the different masks (e.g. “Slope 30º” refers to the result 

obtained by combining “BQA + MapBiomas + Slope 40 º + Slope 30 º”). Colored lines 

represent the CE (red), OE (black) and Kappa index (green). Dark blue rectangle points the 

selected combination of masks. Average performance (E) was computed by considering the 

mean from the results into the four validation plots. 

 When comparing the average results from combined masks (Landsat BQA + 

MapBiomas + Slope 30) with our first product (only BQA mask), we reported a CE 

decrease from 0.50 to 0.43 (-0.07) and a Kappa increase from 0.53 to 0.58 (+ 0.04). 

We observed stable CE and OE variations across masking for all the validation plots, 

except on Franco da Rocha, where a high CE reduction was observed from 0.76 to 

0.54 (-0.22). However, higher CE than Kappa continued to be observed in Franco da 

Rocha (Kappa= 0.47, CE= 0.54) and Itirapina (Kappa= 0.46, CE= 0.47).  

We observed that the remaining errors were distributed in a wide range of 

contexts. Even applying a restrictive filter to the Landsat BQA mask, we report that 

some small water masses, sparse clouds and their shadows were not masked. Many 

of these unmasked pixels corresponded to the spectral mixture between water-

vegetation, water-soil, shadow-vegetation and shadow-soil, being frequently 
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classified as false-positive burned areas. The MapBiomas mask showed a good 

performance to mask false-positive burned areas in dense urban zones. However, 

the false-positive burned areas that corresponded to sparse buildings, rural 

communities and small settlements were not properly masked by MapBiomas. 

Besides that, São Paulo state has a dense transport infrastructure (railroads and 

highways) being these also not masked by MapBiomas and related to false-positive 

burned areas.  

Although the error tendencies varied between a wide ranges of contexts, we 

identified a pattern that joined all these contexts: the absence of spatial contiguity. In 

other words, while burned areas that have been classified correctly showed high 

spatial contiguity (higher pixels aggregation), the false-positive burned areas 

presented low spatial contiguity, occurring much of the times restricted to alone pixels 

or aggregations less than ten pixels. Thus, we decided to use the spatial contiguity as 

a parameter and performed a test of filters considering different numbers of minimum 

pixels in an aggregation to promote the false-positive burned areas masking. 

Strong CE drops were detected with the lowest spatial contiguity filter (5 

pixels or ~0.5 ha) (Figure 15). Considering the average performance (Figure 15E) we 

report a reduction in the CE from 0.43 (all previous combined masks) to 0.17 (0.5 ha 

filter). Contrary to the previously tested masks that have contributed to minimize CE 

only in specific validation plots, the spatial contiguity filter has decreased CE in all the 

validation plots (Figure 15A, B, C, and D), pushing up the average performance 

Kappa from 0.57 to 0.76.  When we apply more restrictive parameters to spatial 

contiguity filter by increasing the minimum number of connected pixels (11 pixels = ~1 

ha, 17 pixels = ~1.5 ha), we observed CE reduction in all the validation plots. 

However, a tendency of CE stabilization was detected since the spatial contiguity of ~ 

1ha (11 pixels). On the other hand, the OE presented tendency to increase in all the 

validation plots when more restrictive spatial contiguity parameters were provided 

(Figure 15).  
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Figure 15. Performance of tested masks into each validation plots. The x-axis shows the 

cumulative effect of the different masks (e.g. “1 ha” refers to the result obtained by combining 

“BQA + MapBiomas + Slope 30 º + mask all burns less than 0.5 ha + mask all burns less 

than 1 ha”). Colored lines represent the CE (red), OE (black) and Kappa index (green). Dark 

blue rectangle point the selected combination of masks. Average performance (E) was 

computed by summarizing the mean from the results into the four validation plots. 

Inspired in the MODIS burned area products strategy of error balancing 

(GIGLIO et al., 2015), we assume kappa > OE > CE as our error balancing strategy. 

In one hand we guarantee the maximum spatial correspondence by selecting the 

mask parameters with the highest kappa values. On the other hand, by prioritizing a 

higher OE than CE we guarantee that our burned area product is ever omitting more 

than committing, minimizing the risk of poor inferences in regional environmental 

analysis. Thus, we selected the spatial contiguity filter of ~1 ha (11 pixels of spatial 

contiguity using rook’s adjacency criterion – kappa = 0.79, CE= 0.09, OE= 0.16) as 

threshold and all fire scares below this value were excluded. 

We detected that many of the previously mentioned error tendencies were 

corrected by the spatial contiguity filter. First, many of the sparse buildings wrongly 

classified as burned area by our algorithm were being masked (Figure 16A, B) as well 
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as the spectral mixtures between water-soil and water-vegetation interfaces (Figure 

16C, D).   

 

Figure 16. Franco da Rocha, 2018-08-30. Black polygons represent our reference burned 

area dataset. Red colored pixels represent pixels classified as burned area by our algorithm. 

Pink colored pixels represent the false-positive burned areas masked by MapBiomas. Yellow 

colored pixels represent the false-positive burned areas masked by minimum contiguity filter. 

Left boxes (A and C) show representative plots before the run of the minimum contiguity 

filter. Right boxes (B and D) shows the results of minimum contiguity mask by using the 

selected value (~ 1ha).  We used a high resolution scene from ESRI Imagery as background 

in both figures.  

Second, the native Cerrado grasslands (“campo limpo” and “campo sujo”) 

shows intensive phonological variations: a greenness peek into the mid wet-season 

and a high dehydration in the late dry season, making the spectral response of these 

areas in the late dry season a mixture of dry organic matter and a quartzarenic soil 

with high reflectance brightness. These pixels were frequently classified as false-

positive burned areas (Figure 17A). However, these errors were successfully masked 

by the minimum spatial contiguity filter (Figure 17B). Like the sparse buildings, other 
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small anthropic infrastructures (like roads, highways and railways) were also wrongly 

classified as burned areas (Figure 17C). Since these anthropic infrastructures are 

small-sized when compared to Landsat scale, all the false-positive errors caused by 

this pattern were easily removed by applying the minimum spatial contiguity filter 

(Figure 17D). Finally, we assume that the accuracy (kappa = 0.79) and errors (CE= 

0.09, OE= 0.16) of our burned area product is balanced to make possible future 

regional scale environmental analysis, validating our hypothesis iv. 

 

Figure 17. Itirapina, 2015-08-29. Red colored pixels represent pixels classified as burned 

area by our algorithm. Pink colored pixels represent the false-positive burned areas masked 

by MapBiomas mask. Yellow colored pixels represent the false-positive burned areas 

masked by minimum contiguity filter. Left boxes (A and C) show representative plots before 

the run of the minimum contiguity filter. Right boxes (B and D) show the results of minimum 

contiguity mask by using the selected value (~ 1ha).  We used a high resolution scene from 

ESRI Imagery as background in both figures.  
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3.4. Final product and data access 

We developed an R-Shiny web-application (Figure 18) to provide free access 

and navigation into our results by municipality or protected area in an interactive map 

(https://bit.ly/FireGIS_SP) Interactive exploratory graphics were included and are 

recalculated every time that the end-user change spatial or temporal filters. We also 

implemented interactive buffer zone filters around protected areas to allow the users 

to inspect and assess possible human pressures near each protected area. Tools to 

enable the end-users to report the errors and implement their own improvements in 

the product are also planned and under development. Thus, by using our product as 

starting point, we pretend to launch the first collaborative Cerrado's burned area 

mapping platform. 

 

Figure 18. Graphical user-interface (UI) to access, visualize and analyze the final product.  

3.5. Known issues and future development 

Despite our efforts to provide a highly accurate product in regional scale, we 

detected some issues and biases that can affect analyses in local scale. Inspecting 

the final product outside our validation scope, we found that some large 

infrastructures (e.g. steel and petroleum industries) were not masked by the post-

processing steps, being wrongly classified as burned area (Figure 19A, B). Several 

commission errors were also observed into managed floodplains for agriculture (e.g. 

rice, vegetables) (Figure 19C, D) and native floodplains locally known as “campo 

úmido” or “várzea” (Figure 19E, F). Thus, we report that local applications of this 

https://bit.ly/FireGIS_SP
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product by end-users need to be inspected and, if necessary, supervised by 

performing the necessary improvements.  

 

Figure 19. Known issues of the final product. All the figures refer to municipalities from São 

Paulo state and for burned area classifications from the year of 2018. A/B. Cubatão – 

“Siderúrgica Usiminas”; C/D. Mogi das Cruzes – Vegetable garden complex; E/F. São Carlos 

– Native floodplain “campo úmido de várzea”. We used a high resolution scene from ESRI 

Imagery as background in both figures.  

Another important aspect to be mentioned refers to the Landsat temporal 

resolution and their scenes availability. Post-fire vegetation responses over tropical 

savannas, like Cerrado, are quick and occur only a few months after the disturbance 
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(BOWMAN et al., 2009; COUTINHO, 1990). We point that despite the revisit of 

Landsat imagery occurs every 16 days, the availability of cloud-free scenes for the 

study area was rare (Supplementary Fig S1). So even if we have used scenes with 

until 75% of cloud-cover, it is possible that some burn scars have not been imaged 

before the vegetation recovery due the constant cloud-cover in repeated Landsat 

scenes, thus being invisible to Landsat sensors when employed alone (Alves et al., 

2018; Veraverbeke et al., 2011). Furthermore, our training data of burned area 

considers a wide range of burn scars with different contents of ash presence. That is, 

if the ash spectral signal disappear from the terrain surface as a result from the rain 

and wind, this pixel probably would be misclassified as bare soil (Pereira, 2003; Trigg 

& Flasse, 2001). Thus, we report that applications of our product to analyze open 

Cerrado patches (“campo úmido”, “campo limpo”, “campo sujo”) in local contexts 

need to be conducted with caution, if possible by using field data and empirical 

knowledge from the locals.  

In this way, future versions of this algorithm will be developed by combining 

harmonized Landsat and Sentinel-2 imagery with the community contributions inside 

the Cerrado's collaborative burned area mapping platform. Thus, by summing efforts, 

we believe that the challenge of mapping burned areas in the highly anthropized 

cerrado can be overcome. 

4. Conclusion  

This study presented a reproducible methodology to generate a burned area 

algorithm by tuning and comparing different machine learning algorithms. In general, 

machine learning algorithms performed well to classify the LULCC and burned area in 

highly anthropized landscapes. RF was proved to be a better classifier than XGB and 

MARS, being used to classify and extract the burned area from a dense Landsat 

time-series. An adaptative post-processing have been implemented to balance 

omission (OE) and commission errors (CE) by using the strategy OE > CE, so that 

the final product showed to have quality to be employed in regional analysis (Kappa= 

0.79).   

This study generated the first burned area open dataset for the highly 

anthropized Cerrado. We recognize that this is only the first step, since some issues 

were reported in the known issues section and some improvements are necessary. 

However, we consider that this product represents many solid advancements in the 
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fire mapping for the highly anthropized Cerrado’s since no burned area data are 

available in regional scale for this context. Besides that, this study launched the first 

Cerrado’s collaborative burned area mapping platform, providing free and instant 

access to our data and glimpsing that the challenge of mapping burned areas in 

complex contexts needs to be shared and overcome collectively.     
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Supplementary 

Suplemmentary Fig S1. Landsat scenes availability using different cloud cover thresholds. 
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Supplementary Table S2. List of scenes used in the product validation  

Validation plot Scene list 

Franco da Rocha LT05_L1TP_219076_19951002_20170106_01_T1 

LT05_L1TP_219076_20030922_20161204_01_T1 

LT05_L1TP_219076_20031024_20161203_01_T1 

LC08_L1TP_219076_20170624_20170713_01_T1 

LC08_L1TP_219076_20170726_20170810_01_T1 

LC08_L1TP_219076_20170827_20170914_01_T1 

LC08_L1TP_219076_20170912_20170928_01_T1 

LC08_L1TP_219076_20180424_20180502_01_T1 

LC08_L1TP_219076_20180510_20180517_01_T1 

LC08_L1TP_219076_20180830_20180911_01_T1 

Itirapina LT05_L1TP_220075_19850319_20170219_01_T1 

LT05_L1TP_220075_19850420_20170219_01_T1 

LT05_L1TP_220075_19850506_20170219_01_T1 

LT05_L1TP_220075_19850709_20170219_01_T1 

LT05_L1TP_220075_19850810_20170219_01_T1 

LT05_L1TP_220075_19850911_20170218_01_T1 

LT05_L1TP_220075_19880224_20170209_01_T1 

LT05_L1TP_220075_19880327_20170209_01_T1 

LT05_L1TP_220075_19880701_20170208_01_T1 

LT05_L1TP_220075_19880717_20170208_01_T1 

LT05_L1TP_220075_19880802_20170207_01_T1 

LT05_L1TP_220075_19880919_20170206_01_T1 

LT05_L1TP_220075_19881106_20170205_01_T1 

LT05_L1TP_220075_19881208_20170205_01_T1 

LC08_L1TP_220075_20150117_20180528_01_T1 

LC08_L1TP_220075_20150202_20170413_01_T1 

LC08_L1TP_220075_20150423_20170409_01_T1 

LC08_L1TP_220075_20150509_20170409_01_T1 

LC08_L1TP_220075_20150525_20170408_01_T1 

LC08_L1TP_220075_20150610_20170408_01_T1 

LC08_L1TP_220075_20150728_20170406_01_T1 

LC08_L1TP_220075_20150813_20170406_01_T1 

LC08_L1TP_220075_20150829_20170405_01_T1 

LC08_L1TP_220075_20151016_20170403_01_T1 

LC08_L1TP_220075_20180314_20180320_01_T1 

LC08_L1TP_220075_20180517_20180604_01_T1 

LC08_L1TP_220075_20180618_20180703_01_T1 

Tanabi  LT05_L1TP_221074_20060726_20161120_01_T1 
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LT05_L1TP_221074_20060811_20161119_01_T1 

LT05_L1TP_221074_20060912_20161118_01_T1 

LC08_L1TP_221074_20160416_20170326_01_T1 

LC08_L1TP_221074_20160502_20170325_01_T1 

LC08_L1TP_221074_20160721_20170323_01_T1 

LC08_L1TP_221074_20160923_20170321_01_T1 

LC08_L1TP_221074_20161009_20170320_01_T1 

LC08_L1TP_221074_20180422_20180502_01_T1 

LC08_L1TP_221074_20180508_20180517_01_T1 

LC08_L1TP_221074_20180625_20180704_01_T1 

LC08_L1TP_221074_20180727_20180731_01_T1 

LC08_L1TP_221074_20180913_20180928_01_T1 

Rancharia LT05_L1TP_222076_19850128_20170219_01_T1 

LT05_L1TP_222076_19850605_20170219_01_T2 

LT05_L1TP_222076_19850824_20170218_01_T1 

LT05_L1TP_222076_19850909_20170218_01_T1 

LT05_L1TP_222076_19851112_20170218_01_T1 

LT05_L1TP_222076_20010905_20161211_01_T1 

LT05_L1TP_222076_20011007_20161210_01_T1 

LT05_L1TP_222076_20011226_20161210_01_T1 

LC08_L1TP_222076_20170512_20170525_01_T1 

LC08_L1TP_222076_20170715_20170727_01_T1 

LC08_L1TP_222076_20170901_20170915_01_T1 

LC08_L1TP_222076_20180515_20180604_01_T1 

LC08_L1TP_222076_20180531_20180614_01_T1 

LC08_L1TP_222076_20180718_20180731_01_T1 
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ABSTRACT 

Cerrado is the most diverse savanna in the world and the second largest biome in 

Brazil’s, behind only of the Amazon. Because its close evolutionary relationship with 

the fire, Cerrado vegetation has different adaptations for this disturbance, and is 

considered as a fire prone ecosystem. In this study, we analyzed regionally calibrated 

remote sensing datasets of burned area (BA) and land cover and land use changes 

(LCLUC) to propose a novel approach to track fire regime patterns. Our study 

focused on the highly anthropized Cerrado in Sao Paulo State. To measure impacts 

on conservation, we assessed fire regimes within all the protected areas (PAs) 

covered by Cerrado vegetation in São Paulo’s state and compared to the fire regimes 

observed in a 10 km buffer zone. We found that most of burned areas in the last three 

decades occurs on sugar-cane croplands and pastures. BA patterns have followed 

tendencies of LCLUC, with a decrease in total burned area in the last decades due to 

the replacement of pastures by croplands. PAs with forest formations have rarely 

burned between 1985 and 2018, while all the PAs dominated by grasslands or with 

African grasses invasion had higher fire frequencies and larger burned areas. 

Contradictorily, all the PAs with the highest fire occurrence were categorized into the 

most restrictive protection level. We conclude that the fire exclusion policy is not 

suitable to manage PAs on grasslands and savannas formation, since these areas 

are burning periodically due to the high fuel build-up and accidental or arson fires. 

This research highlight the need of new management strategies that allow prescribed 

fires and include local communities as actors in the conservation process.  

Key- words: fire regime; burned area; protected area; land cover change 
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Introduction 

Cerrado vegetation cover an area of c.a 2 million of km², about a quarter of the 

brazilian territory (Durigan & Ratter, 2016). Composed by a wide-range of vegetation 

types, Cerrado physiognomies includes open grasslands (locally known as “campo 

limpo”), savannas (“campo sujo”, “campo cerrado” and “cerrado sensu stricto”) and 

forest-like formations (“cerradão”) (Coutinho, 1990; Ribeiro & Walter, 2017), and can 

be considered the most diverse savanna in the world (Murphy et al., 2016). 

Cerrado have historically evolved under a natural fire regime since the last 4 

Myr, being this considered one of the most important drivers of its ecosystem 

dynamics (Coutinho, 1990; Simon et al., 2009). Natural fire occurs in the season 

transitions (later dry season and early rainy season) occasioned mainly by lightnings 

(Dias, 2006). Natural fire dynamic can be explained by climatic conditions, where the 

amount of accumulated rainfall over 18-24 months is responsible to drive fuel build-

up, while fire season rainfall is responsible for the regulation of the ignition and fire 

spread probabilities (Alvarado et al., 2020; Bradstock, 2010). In highly anthropogenic 

landscapes like São Paulo’s Cerrado, climate influence can be overcome by human 

influence, and fire regimes can be often driven by socio-cultural factors, land use and 

land cover (Archibald, 2016; Conciani et al., 2021). In addition, archeological 

evidences highlight that fire has been used as a tool by indigenous peoples in the 

Cerrado for c.a 3 kyr ago, mainly to manage small areas for agriculture and hunting 

(Dias, 2006; Guidon, 1992; Mistry et al., 2005).  

Considering the high demographic Brazilian growth during the last decades, 

until 2017 at least 45% of the Cerrado area have been suppressed and replaced by 

agriculture (i.e. soybean, sugar-cane) and livestock farming (Alencar et al., 2020), 

modifying the natural fire regime and threating the conservation of this ecosystem 

(Durigan et al., 2007). Thus, although fire is a natural disturbance of the Cerrado, 

most of fires setting up in São Paulo state are arson/accidental and occurs near 

towns or lands with economic use. For this reason, fire has been historically 

considered by the media, population and lawmakers as a threat, being completely 

banned since 2001 by the state law 10547, independently of the origin and the 

affected land cover.   

About the conservation status, only 7% of the remnant Cerrado are under legal 

protection in Brazil (Soares-Filho et al., 2014). Considering only São Paulo state, the 
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Cerrado remaining vegetation is restricted to small fragments that covers less than 

6% of pre-colonization area, of which only 12% are legally protected (~250 km²) (Fiori 

& Fioravanti, 2001; Kronka et al., 2005). All these remaining patches are inserted into 

a complex anthropic matrix (Alencar et al., 2020). Besides, the presence of highly 

populated cities (c.a 44 million inhabitants) and a robust infrastructure network (e.g 

highways, railways, factories and power plants) (IBGE, 2014) complete the São Paulo 

state’s landscape mosaic, modeling the socio-environmental dynamic and creating  a 

complex scenario.  

The available standardized Landsat imagery and remote sensing tools allow 

us now to monitor more than three decades of land use changes and reconstruct the 

ecological dynamic shaping landscapes, such as fire occurrence (Alencar et al., 

2020; Alvarado et al., 2017; Lentile et al., 2006). A previous study developed in three 

protected areas of São Paulo’s Cerrado showed that fire exclusion policy was an 

inefficient strategy to manage these areas, increasing its vulnerability and making 

them dependent of their surrounding areas fire regimes, trapping them into a fire 

paradox (Arévalo & Naranjo-Cigala, 2018; Conciani et al., 2021). These changes in 

natural fire regimes directly affect the effectiveness of conservation, especially when 

considering that the last Cerrado remnants are small patches that needs to be 

managed to ensure its adequate protection.   

In this way, this study combines more than three decades (from 1985 to 2018) 

of moderate spatial resolution (pixel= 30 meters) burned area data (Conciani et al. in 

prep) and land cover changes (MapBiomas collection 5) to assess the contemporary 

fire regime within and around 19 protected areas in São Paulo state located on 

Cerrado ecosystem. This innovative analysis considers the context of the highly 

anthropized Cerrado providing a “big picture” to understand the past, the current and 

delineate future perspectives to ensure the conservation of this threatened 

ecosystem. We aim to answer the following questions: i) how is the fire pattern on the 

different land cover across the last three decades? ii) how is the fire frequency within 

the protected areas when compared with its surrounding areas? iii) Is there any 

difference in the spatio-temporal variation of burned area between the protected 

areas and its surrounding areas? 
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Methods 

Study area 

We considered the Cerrado delineation provided by the Brazilian Institute of 

Geography and Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE). 

However, once the Cerrado vegetation occurs bordering with Atlantic rainforest biome 

in an ecotonal zone, we revised every management plan (or equivalent) of each 

protected areas (PA) registered in São Paulo state to verify the vegetation cover on 

each PA.  Thus, we apply a first filter of the potential study areas by eliminating the 

PAs presents on the IBGE Cerrado's delineation but covered by Atlantic rainforest 

vegetation. We also included the PAs with Cerrado vegetation located in Sao Paulo 

state but outside the delineation of the IBGE Cerrado’s biome. 

In total, this study included nineteen protected areas in the highly anthropized 

Cerrado in São Paulo state, which correspond to all the Cerrado remaining patches 

protected by the Brazilian National Conservation System (Sistema Nacional de 

Unidades de Conservação – SNUC) under full preservation status (Ecological Station, 

State Park or Biological Reserve) and sustainable use (State Forest, Private 

Reserve). To assess anthropogenic effects on PA fire regimes, we also considered a 

buffer zone of 10 kilometers around each PA (Figure 1). Thus, our study covered in 

total 28 573 hectares of PA and 957 251 hectares of buffer zones (Table 1), where 25 

764 hectares of the PA were classified under full preservation category (90%) and 2 

809 hectares under sustainable use (10%). 
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Figure 1. Study site considering all the protected areas (PA) of the Brazilian National 
Conservation System (Sistema Nacional de Unidades de Conservação – SNUC). Dark green 
polygons show the PA. Red polygons represents the estimated buffer of 10 kilometers 
around each PA. Numbers upper each PA/Buffer indicate the ID of each PA (see table 1). 
Background colors in São Paulo state represents the distribution of biomes (light green= 
Atlantic rainforest; orange= Cerrado) estimated by the Brazilian Institute of Geography and 
Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE) and used as reference in this 
study.  

Table 1. Characteristics of the selected protected areas (PA). ID is the identification number 
of each PA. SNUC Category is the conservation category following the categories of the 
Brazilian National Conservation System (ES= Ecological Station; SF= State Forest, SP= 
State Park, BR= Biological Reserve and PR= Private Reserve). Conservation status: FP= 
Full Preservation and SU= Sustainable Use. Creation year (yr.) indicates the year that each 
PA was officially instituted.  

ID SNUC 
Category¹ 

Conservation 
status² 

Protected 
Area  

Creation 
year 

Area 
(ha)  

Predominantly vegetation 

1 ES FP Assis 1984 1768 Cerradão 

2 ES FP Bauru 1987 310 Atlantic rainforest and 
savanna 

3 ES FP Itapeva 1985 100 Atlantic rainforest and 
cerradão 
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4 ES FP Itirapina 1984 2209 Open grasslands and 
savanna 

5 ES FP Jataí 1982 9011 Savanna and cerradão 

6 ES FP Marília 2010 579 Atlantic rainforest and 
cerradão 

7 ES FP Santa 
Bárbara 

1984 2807 Open grasslands and 
savanna 

8 ES FP Santa Maria 1985 1313 Open grasslands and 
savanna 

9 SF SU Águas de 
Santa 

Bárbara 

1964 1600 Savanna and forestry 

10 SF SU Bebedouro 1927 103 Cerradão and forestry 

11 SP FP Fontes do 
Ipiranga 

1969 552 Atlantic rainforest and 
cerradão 

12 SP FP Furnas do 
Bom Jesus 

1989 2065 Atlantic rainforest and 
savanna 

13 SP FP Juquery 1993 1998 Open grasslands and 
savanna 

14 SP FP Porto 
Ferreira 

1987 611 Atlantic rainforest and 
cerradão 

15 SP FP Vassununga  1970 2079 Atlantic rainforest and 
cerradão 

16 BR FP Mogi-Guaçú 1942 383 Atlantic rainforest and 
cerradão 

17 PR SU Entre Rios 2010 304 Atlantic rainforest and 
savanna 

18 PR SU Olavo Egydio 
Setúbal 

2008 617 Atlantic rainforest and 
cerradão 

19 PR SU Toca do 
Paca 

2008 185 Atlantic rainforest and 
savanna 
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Management context 

The 19 protected areas were classified into two groups according with its 

SNUC conservation status: 14 were classed under full preservation (FP – 74%) and 5 

under sustainable use (SU – 26%). The first group included the Ecological Station 

(ES), State Park (SP) and Biological Reserve (BR) SNUC categories, while the 

second group included State Forest (SF) and Private Reserve (PR) categories. It’s 

important to notice that most of full preservation PA were created between 1970 – 

1980’s, when national political initiatives prioritized the protection of the last (and 

relatively small) fragments of the remaining Cerrado vegetation. Considering the high 

land cover and land use changes (LCLUC) around these PA and following the 

“untouchable nature” myth (Diegues, 2001), most of these PAs were categorized into 

high restrictive conservation categories (such as Ecological Station and Biological 

Reserve), in which only scientific research and guided environmental education are 

allowed.  

Sustainable use areas are divided into two categories: 1) State Forests are 

old areas created by the government to foster forestry research in the region. Across 

time, woody exotic species (like Eucaliptus spp. and Pinus spp.) have been gradually 

removed and Cerrado vegetation has recovered on these areas. 2) Private Reserve 

are recently created PA, managed by private landowners (in contrast to the previous 

ones managed by the government).  All the PAs share the same fire exclusion policy 

since the creation, independently of its conservation status (Full preservation or 

sustainable use) or its management (public or private). 

Landscape structure 

The remaining native vegetation inside the PA includes a gradient of Cerrado 

physiognomies, ranging from open grasslands (“campo limpo”) to forest-like 

formations (“cerradão”) (Figure 2). Besides, around 60% of the PA selected in this 

study are located in the border of the ecotonal zone between Cerrado and seasonal 

tropical forest (locally know as Atlantic rainforest) and around 10% have a mix of 

native and woody exotic species. 
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Figure 2. Vegetation types in the study sites: A) “campo úmido” – wet grassland; B) “campo 
limpo” – open grassland; C) “campo sujo” – shrubland; D) “cerrado sensu stricto” - Savanna; 
E) “cerradão” – forest-like formation. Top images correspond to aerial image from DJI 
Phantom 4 (50 meters altitude, 90-degree camera angle), bottom images correspond to field 
photography of the same places where the drone images where taken.   

In our study, five PA under the full preservation category represent the largest 

Cerrado patches in São Paulo state (Jataí Ecological Station (JES), Santa Bárbara 

Ecological Station (SBES), Itirapina Ecological Station (IES), Vassununga State Park 

(VSP) and Juquery State Park (JSP)). Together, these areas represent more than 

64% of the total area of evaluated PA, where 36% of the remaining area is distributed 

among the other 14 PA.  

Despite the large variation on PA size, these largest fragments can be 

considered small when compared to the anthropogenic matrix around. Currently the 

buffer zones around PA is characterized by urban zones, infrastructure (roads, 

highways, railways, power lines), croplands (sugar-cane, soybean, corn), pasture, 

reforestation (e.g. Pinus and Eucaliptus forestry), industrial zones and small 

unprotected native Cerrado remnants (Alencar et al., 2020). Fire was deliberated 

used as a tool in sugar-cane, pasture and deforestation in the São Paulo state up to 

the year 2000. However, legal constraints have been imposed by lawmakers, thus fire 

was banned and the political strategies were delineated to gradually reduce ignitions 

and total burned area (state law 11 241/ 2002).  

Data collection 

Protected areas and buffer zones  

We obtained the georeferenced delineation of São Paulo's protected areas 

on vector format directly from the institutions responsible for its managing (e.g. 
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“Instituto Florestal” and “Fundação Florestal”), all under administration of the state 

government of São Paulo. Official buffer zone data were not available for all the PAs. 

Nevertheless, the National Environment Council (Conselho Nacional do Meio 

Ambiente – CONAMA) establishes an automatic radius of 3 km as legal buffer zone 

(Resolução CONAMA 428/ 2010). But to consider the landscape context, we used 

the recommendations of the national law 99 274/ 2002 that standardize a linear ring 

of 10 kilometers around each PA as buffer zone. 

Burned area  

 We used the yearly burned area product from Conciani et al. (In prep., 

https://bit.ly/FireGIS_SP). This product was generated by using machine learning and 

offers a raster dataset of burned areas with 30 meters of spatial resolution and 16 

days of temporal resolution from 1985 to 2018, based on Landsat 5, 7 and 8 images. 

Due to the highly complexity to map burn scars in highly anthropized Cerrado areas, 

this product was optimized and validated by considering regional aspects (e.g. 

anthropogenic LCLUC and fire dynamic) ensuring a high accuracy (79%) and quality 

to perform ecological and environmental analyses. 

 

Land cover and land use change  

Yearly land cover and land use change (LCLUC) was obtained from 

MapBiomas project – collection 5 (Souza et al., 2020, https://mapbiomas.org/). The 

MapBiomas Project is a multi-institutional initiative to generate annual maps of land 

cover and use from automatic classification processes applied to Landsat 5, 7 and 8 

imagery. The land cover classes considered of this study were: forest formation, 

savanna formation, grassland formation, wetland, forestry, pasture, temporary crop, 

soybean, sugar cane and perennial crop.  

 

Data processing and analysis  

Pre-processing burned area data 

Burned area data was provided by year (34 years) and by Landsat WRS-2 

path/row (9 path/row) scenes, totalizing 309 raster files. First, we mosaic to a new 

raster all the individual scenes for each year. We obtained 34 raster files (1 from each 

year) where pixel values were range from 0 to 365 (0= unburned, 1 to 365= Julian 

https://bit.ly/FireGIS_SP
https://mapbiomas.org/
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day of the burn scar detection). An additional binary dataset was generated by 

reclassifying each yearly burned area data in 0= unburned and 1= burned (1-365 

values).  

 

Burned area by land cover and land use 

We matched the yearly binary burned area with yearly MapBiomas collection 

5 data. For each year, we overwritten pixel value equal to 1 (burned) in the burned 

area dataset with the LCLUC pixel value (Supplementary Table S1).  Thus, we 

generated a dataset containing the land cover and land use that was burned in each 

year from 1985 to 2018. 

 

Fire regime metrics 

We described the fire regime by using the metrics suggested by Alvarado et 

al., (2017) and Conciani et al. (2021) to assess the fire regime of the highly 

anthropized Cerrado in Sao Paulo (Table 2). Each metrics was calculated by 

considering the IBGE Cerrado’s total area, PA and Buffer zones during the period 

from 1985 to 2018, such as a general sum of these metrics across the time-series.  

 

Table 2. Derived metrics used to assess fire regime patterns on São Paulo’s Cerrado area, 
its protected areas and buffer zones.  

Metric Unit Description 

Fire count count Raster file with the total number of fire events observed 

over the 34 years of study, obtained from the per-pixel 

sum of all overlapped binary raster files.  

 

Burned area  km² Sum of burned pixels (30 x 30 m of resolution) multiplied 

by the conversion factor 0.0009 (m to km²)  

 

Accumulated burned area 

 

km² Sum of annual burned area maps 

Relative burned area % Proportion between burned area in a given year and the 
total area (e.g. IBGE Cerrado area, PA area or Buffer 
zone). 

 
Relative accumulated 
burned area  
 

        
% Sum of relative burned areas over time (previous years 

+ current year)  
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Results and Discussion  

General burned area pattern from the highly anthropized Cerrado  

On average, 888 km² (± 770 km²) have burned per year in São Paulo’s 

Cerrado during the last three decades, totalizing 30 198 km² of burned areas from 

1985 to 2018 (~37.2% of the São Paulo’s Cerrado total area, Figure 3A). Of these, 18 

644 km² was burned only once (equivalent to 61.7% of the total burned area), 9 074 

km² twice or three times (30%), 1 815 km² between four and six times (6.2%), 353 

km² between seven and nine times (1.1%) and only 309 km² were burned more than 

ten times (Figure 3B). Higher fire frequencies were rare and spatially restricted to the 

north of São Paulo, specifically to “Ribeirão Preto” and “Barretos” regions, both 

dominated mainly by sugar-cane croplands.  

Our results indicates that most of São Paulo's Cerrado area (62.7%) was not 

subjected to any fire since 1985, probably as consequence of the fire suppression 

policies and the expansion of agricultural lands. Low fire frequencies were expected 

in high managed landscapes, especially in lands with economic use, and higher fire 

frequencies are usually associated with specific land uses (e.g. cropland and pasture) 

(Archibald et al., 2010; Mataveli et al., 2018). Considering that a natural fire regime is 

characterized by a fire occurs every 5 years (Dias, 2006), only 1.1% of the São 

Paulo’s Cerrado have satisfied this criteria, burning 7 to 9 nine times in the last 34 

years. However, we cannot consider these 1.1% as a “Cerrado under natural fire 

regime” because most of these areas are not covered by native remnants vegetation, 

but mainly covered by pasture and croplands. 



72 
 

 

Figure 3. General burned area pattern from the highly anthropized Cerrado. A) Map of fire 
count from 1985 to 2018. Gray lines represent the boundaries of São Paulo state. Black 
labels represent regional towns as spatial reference. Each 30-meter pixel in the São Paulo’s 
Cerrado (IBGE) was colored from yellow (low fire count) to purple (high fire count) 
considering the number that every pixel burnt. B) Histogram of accumulated burned area 
(km²) by fire count.  
 

Considering the temporal distribution of LCLUC in the São Paulo’s Cerrado, 

we detected that native vegetation classes (forest, savanna and grassland) were 

relatively stable from 1985 to 2018. In contrast, large variations were detected in 

anthropogenic land uses. We observed a decrease of 54% in the total area occupied 

by pastures and an increase of 147% in the total area of sugar-cane croplands from 

1985 to 2018 (Figure 4A).  Aiming to diversify the energy industry and develop the 

countryside in the 80’s, São Paulo’s government implemented the “PROALCOOL” – a 

large tax incentive program for the production of fuel ethanol (Carlos et al., 2006). 

One of the direct results from this policy was the massive conversion of pasture areas 

into sugar-cane croplands (Bray et al., 2000), as we observed.  

Despite fire has been largely used as a tool to renew pastures in the Cerrado 

(Coutinho, 1990; Dias, 2006), as we previously described, we found a trend of 

gradual decrease in total burned area across time (1985= 2473 km², 2000= 1976 km² 

and 2018= 1053 km²). In1992 we observed the lowest burned area (334 km²) while 

1993 had the highest burned area (3996 km²). Interestingly, with the gradual 
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replacement of pastures by croplands in São Paulo state across time (Figure 4A), we 

also detected a decrease in yearly burned area (Figure 4B). On the other hand, 

because fire is often used to facilitate sugar-cane harvesting, we expected the 

maintain of fire occurrence across time. However, we didn’t observe that, suggesting 

that fire associated to pastures is a most important practice when compared to its 

agricultural use. Moreover, We observed  that despite the sugar-cane cropland area 

was lower in the 80's and 90's in relation with the current distribution, we detected 

some fire peaks on this LCLUC in 1988, 1993 and 1998, corresponding to the final 

years of moderate and strong El Niño events (CPTEC/INPE, 2020).  
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Figure 4. Burned area general patterns during the period between 1985 and 2018. A) 
Distribution of the main land cover and land uses in São Paulo’s Cerrado. B) Burned area by 
land cover class across time.   
 

To mitigate health and environmental impacts caused by the uncontrolled use 

of fire in sugar-cane harvesting, the state law 10 547 /2001 introduced legal 

constraints to reduce fire use as agricultural practice. That could explain why we 

observed a relative “stability” in total burned area from 2000. However, the 

uncontrolled increasing of sugar-cane croplands, especially in areas where fire is 

allowed (e.g. highly slope areas), was probably the cause of the peaks in total burned 

area in 2010 and 2014.  

 

Fire frequency within protected areas 

According to the general patterns identified for the highly anthropized 

Cerrado in Sao Paulo state, all the protected areas have showed low fire frequencies 

in the last three decades, independently of its SNUC category of protection (Figure 

5). Considering the PAs with the lowest fire frequencies, we constated that the Entre 

Rios Private Reserve have not been subjected to any fire during the studied period, 

followed by Assis Ecological Station (99.1% of unburned area), Porto Ferreira State 

Park (89.5%), Bauru Ecological Station (86.1%) and Itapeva Ecological Station 

(83.9%). On the other hand, the protected areas with the highest fire frequency were 

Santa Maria Ecological Station (61% of total area burned three or more times), 

Juquery State Park (38% burned 3 times or more), Itirapina Ecological Station (17% 

burned 3 times or more) and Santa Bárbara Ecological Station (11% burned 3 times 

or more). 

We performed two Principal Component Analyses (PCAs) considering the 

proportion (%) of land cover classes for all the protected areas in 2018 (Figure 6) and 

1985 (Supplementary Figure S2). First, we did not detect a significative structural 

variation in vegetation cover for the PAs from 1985 to 2018, except for the cases of 

Santa Maria Ecological Station and Juquery State Park where grasslands and 

savannas were converted into pastures. Second, we found that the vegetation 

structure of the PAs is highly associated with fire occurrence, thus we found the 

higher fire frequencies in areas that varied between pasture and grasslands. As 

expected, we found the lowest fire frequencies in the PAs covered by forest 

vegetation (Figure 6).   
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Figure 5. Relative burned area (%) across a gradient of fire counts for each protected area 
(PA). PA were separated in different boxes according with its SNUC protection categories. 
Labels inside boxes indicate the name of each PA following the table 1 description.   
 

 

Figure 6. Principal Component Analysis (PCA) considering the proportion of predominantly 
land cover and land use change (LCLUC) by protected area in 2018 (70% of explanation). 
Black arrows represent the loadings of each variable; Red labels shows the name of each 
variable (class of land cover); the labels highlight each PA and its colors represent the SNUC 
category. 
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Considering the PAs with the highest fire frequencies in São Paulo's Cerrado, 

we cannot affirm that these areas have a high fire frequency when compared with the 

results for other Cerrado PAs (Alvarado et al., 2018; Alves & Pérez-Cabello, 2017; 

Augusto Verola Mataveli et al., 2018). We can only consider the particular cases of 

Santa Maria Ecological Station and Juquery State Park as a high fire frequency for 

three reasons: 1) both presented areas that have burned more than 7 times in 34 

years; ii) these areas also presented ~20% of their areas covered by pasture, and; iii) 

these PA are inserted into a region with a context of social conflicts. In Santa Maria, 

the social conflicts have a land use issue,  originated since 1998 when some social 

movements linked to the agrarian reform agenda have occupied and claimed the use 

of the PA for agricultural purposes (Povo, 2006). These movements did not succeed 

to find an agreement with the government, and fire has become a tool for political 

pressure until present time. On the other hand, Juquery is inserted into a dense urban 

zone with highways crossing their limits (increasing accidental fires). Besides, a 

prison complex is located within Juquery State Park, with some related inmate 

escapes who set the fire in native vegetation as distraction (G1, 2016; R7, 2017). 

It is important to highlight that the transitions from grassland/savanna to 

pasture mapped by using the MapBiomas product for Santa Maria and Juquery is 

mainly caused by an invasion and very fast colonization of african grasses (Urochloa 

brizantha and Mellinis minutiflora) in areas without cattle livestock. Thanks to its plant 

strategies of fast colonization and high biomass production, these african grasses 

have suppressed the native grasses, herbs and shrubs, causing a decrease of  

biodiversity and an increase of fuel build-up (Damasceno et al., 2018; Durigan et al., 

2007). Comparing fire behavior in invaded areas by african grasses vs. native 

grasslands, fire is able to reach higher temperatures in areas dominated by African 

grasses, increasing consequently fire severity and damages of vegetation (Gorgone-

Barbosa et al., 2015). To exacerbate this situation, post-fire conditions can enhance 

African grasses seed germination, increasing their invasiveness and accelerating the 

Cerrado’s degradation (Gorgone-Barbosa et al., 2016).  

In the case of Santa Maria and Juquery, we can suggest the relationship 

between african grasses invasion and high fire frequencies as a trade-off. Areas with 

invasive grasses are more susceptible to accidental and arson fires due to its fast fuel 
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build-up. Consequently, the expansion and densification of invasive grasses are 

favored by high fire frequencies. This scenario creates a conceptual dilemma: How to 

ensure Cerrado grasslands conservation when fire, its evolutionary driver, becomes 

its biggest enemy? 

 
 

Spatio-temporal variation of burned areas across PAs and its buffer zones 

 

We detected 222 km² of burned areas within the protected areas vs. 6 736 

km² of burned areas in its buffer zones during the period between 1985 and 2018. 

Despite the buffer zones have presented an absolute sum of burned areas 30 times 

greater than the PAs, when we consider the relative areas ( = total burned area / total 

area of PA or Buffer), this situation is reversed and we observed 78% of the PAs that 

was burned vs. 70% of its buffer zones.  

When assessing the relative accumulated burned area for each PAs, we 

observed that Santa Maria Ecological Station was the PA that burned the most in the 

past 34 years (62 km²= 473%), followed by Juquery Ecological Station (47 km²= 

238%), Jataí Ecological Station (135 km²= 150%) and Itirapina Ecological Station (25 

km²= 117%). The highest relative accumulated burned areas on the buffer zones was 

found in Toca do Paca Private Reserve (668 km² = 178%), Jataí Ecological Station 

(1204 km² = 136%), Vassununga State Park (875 km² = 120%) and Porto Ferreira 

State Park (530 km² = 116%). Our results show that despite a rigorous fire exclusion 

policy implemented by the PA managers, these areas tends to burn relatively more 

than their buffer zones (Figure 7) where fire use is allowed under legal authorization. 

Even, different patterns of burned area were detected for PAs and its buffer 

zones across the time. Buffer zones have showed a continuous pattern of burned 

areas across the entire period, with lower variation of total burned area between 

years, highlighting “linear” patterns for all the buffer zones. Contrary, we found a 

pattern of burned area “peaks” within most of the PAs. These fire peaks range from 

decades in the PAs with lower fire frequencies to intervals between 4-5 years in the 

PAs with higher fire frequencies. These intervals without fire can be explained by the 

fire exclusion policies implemented within the PAs (Durigan & Ratter, 2016), with 

larger intervals without fire detected in PAs with forest vegetation and shorter 

intervals detected into PAs with predominance of grassland and invasion by african 
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grasses. Furthermore, while we found a distribution of burned areas across every 

months (including wet and dry season) in the buffer zones, most of the detected 

burned areas within PAs were detected in mid-late dry season (from July to 

September) (Supplementary Figure S3).  

 

 

Figure 7.  Relative accumulated burned area (%) over time (years) for each protected areas 
(PA- right boxes) and its respective buffer zones (Buffer- left boxes). Labels in the right 
margins refers to the SNUC category of protection.  
 

As expected, the PAs that showed higher fire frequencies have also showed 

largest accumulated burned areas (Santa Maria Ecological Station and Juquery State 
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Park). Contrary to the peaks pattern described for the other PAs, both areas showed 

to be exceptions and followed the trends of its buffer zones (continuous and stable 

burned areas across time).  These PA have a context of conflict among the PA 

managers and the neighbor communities. Additionally, when we assess the types of 

land cover that was burned on these PAs during the last three decades, we found 

that most of fires on these PAs were on areas covered by native grasslands and 

invaded areas by african grasses (treated as “pasture” in this study), while most of 

fires in the buffer zones occurs in areas covered by pasture and sugar-cane, following 

the general pattern previously related for the highly anthropized Cerrado (Figure 8). 

Figure 8. Relative accumulated burned area (%) by land cover and land use (LCLUC) for 
each PAs (top) and its buffer zones (bottom) between 1985 and 2018. Note the range of 
values in the y-axis from the buffer zones corresponds to a half of the values from the PAs.   
 

Interestingly, our results show that the full preservation areas have presented 

larger burned area and higher fire frequencies than sustainable use areas. Most of 

full preservation areas have burned more than their buffer zones, creating a paradox 

scenario: if these areas have a stronger and strict conservation status and more 
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restrictive laws are implemented, how they can burn relatively more than sustainable 

use areas and unprotected areas? This has been a historical and political issue. First, 

following the “myth of the untouchable nature” (Diegues, 2001), the rare remnants of 

open ecosystems in the São Paulo’s Cerrado were protected under the most 

restrictive SNUC categories in the 80’s. Second, this management strategy follows 

the premise of total isolation of these areas, something that is impossible considering 

the fact that these areas are represented by small fragments surrounded by an 

anthropogenic matrix. Finally, other studies have highlighted the level of protection 

(and restrictiveness) is inversely proportional that the perception of conservation 

importance of these areas by the local communities and directly proportional to the 

probability of conflicts between local people and managers (Fiori et al., 2006; 

Ferreira, 2005; Silva et al., 2009).  

PAs mainly covered by forest (“cerradão” and ecotonal zones with Atlantic 

Rainforest) showed lower fire frequencies and accumulated burned areas than its 

buffer zones, independently of the SNUC protection level. However, we observed 

three exceptions: Jataí Ecological Station, Vassununga State Park and Mogi-Guaçú 

Biological Reserve. These PAs have presented peaks of burned area of native forest 

in the end of 90’s (equivalent to 120%, 130% and 50% of their total areas, 

respectively), with few remaining areas without or with a small percent of burned area 

during the last two decades. In all the cases, fire have affected areas of transition 

between savannas and forest (“cerradão”), associated to dry events, and also burning 

mainly disturbed forest areas with lower tree canopy.  

 

    Management implications and future perspectives 

The history of land use and the transformation of land cover for agriculture on 

São Paulo's Cerrado created a highly fragmented landscape that can acts as barriers 

for fire spread (Andela & van der Werf, 2014; Archibald, 2016). In a temporal scale, 

this fragmentation caused the decrease of burned area, especially considering the 

conversion of pastures into sugar-cane croplands, just as we observed in the highly 

anthropized Cerrado of Sao Paulo. 

In the context of highly human managed landscapes, fuel build-up trends to 

be lower when compared to natural areas. Residual organic matter is mechanically 

harvested and used as natural fertilizer in temporary croplands of sugar-cane and 
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soybean (Martins et al., 1999).  Also, cattle consume most of biomass into pastures, 

having none or low fuel build-up rate available to burn during the dry season. 

Considering that the protected areas are small patches of native vegetation under a 

fire exclusion policy, these PAs are inserted into the landscape highly flammable with 

enough dry out vegetation to carry fire, especially those covered by grassland and 

african grasses (higher fuel build-up than the buffer zones) which are more 

susceptible to wildfires on the late dry season (Conciani et al., 2021). Fires in the late 

dry season are  hotter, more severe and burn large areas in the Cerrado (Coutinho, 

1990). Besides, most of fire occurrences that involves fire brigades and direct 

firefighting that have been officially registered by PA managers occurs in the late dry 

season (DATAGEO, 2021), pointing out that fire exclusion alone was not successful 

to prevent wildfires on the Cerrado and conversely created a repeated scenario of 

large wildfires as has been observed in other Cerrado Areas (Alvarado et al., 2018; 

Batista et al., 2018).  

Considering the PAs dominated by grassland and savanna vegetation, we 

observed two different situations: i) the case of PAs dominated by african grasses 

that burned with a high fire frequency and; ii) PAs that had a lower fire frequency that 

the historical Cerrado(Dias, 2006), evidencing a process of woody encroachment and 

open ecosystem biodiversity loss (Oliveira & Marquis, 2002; Stevens et al., 2017). 

For this last case, on both Itirapina and Santa Bárbara Ecological Stations, it is highly 

recommended the development of an adaptive management plan that considers the 

use of prescribed fires spatially distributed in mosaics over the PA, especially in areas 

of grassland (“campo limpo”) and open savanna (“campo sujo”). This strategy has 

results effective for wildfires prevention by breaking the spatial continuity of fuel load 

(Franke et al., 2018) as well as improving the abundance and richness of forbs and 

graminoids in these areas (Durigan et al., 2020).  

On the other hand, management strategies that aims to increase 

conservation effectiveness in PAs with high fire frequency and large invaded areas by 

african grasses needs to be carefully planned. Despite the positive effects of fire on 

open ecosystems that have been previously reported (Abreu et al., 2017; Durigan et 

al., 2020; Fidelis et al., 2019; Fidelis & Pivello, 2011), we need to consider that the 

densely invaded areas are environmentally degraded and should be treated as such. 

To treat the degraded areas by using the same conservation policies and strategies 

that are used to manage Cerrado’s native areas could result in an error and these 
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conservation intervention can be completely inefficient. Par example, fire occurrence 

have a high potential to favor african grasses over native grasses (Damasceno et al., 

2018; Gorgone-Barbosa et al., 2015, 2016), further aggravating the environmental 

problem of these areas. We suggest to acknowledge these degraded areas need an 

active intervention to successfully reach its conservation purpose and thus managers 

should center the conservation efforts looking for alternatives to restore these areas. 

Most of these degraded areas are currently managed by following the same 

non active-intervention policy applied within full preservation PAs. This could be a 

misconception since most of these densely invaded areas are located in the border 

between the PA and the neighbor human communities. These degraded areas inside 

the PAs accumulate high amounts of fuel during the annual cycles, and the absence 

of management by the conservation system is often interpreted by local communities 

as abandoned by the government being seen as unproductive lands. This perception 

of abandon and unproductiveness of these degraded areas have created a historical 

scenario of conflict between managers and local population, with constant human 

invasions and unauthorized uses of these areas.  

Since these social conflicts already exists, mainly based in the differences of 

perception between local communities and the conservation goals of PA managers, 

every management plan biased only by institutional interest is subjected to failure. 

New strategies are thus need to consider social and cultural aspects, and local 

communities should be included in the management councils to participate on the 

discussions about the management decisions. Until this happens, fire will continue to 

be used as a political pressure tool (Kull, 2002), favoring the invasion of african 

grasses and compromising the effective conservation of these PAs.  

 

Conclusion 

São Paulo’s Cerrado fire regime is mainly drive by anthropogenic factors and 

most of burned areas in the last three decades are concentrated in pastures and 

sugar-cane croplands. Variations in burned area across time have follow the 

variations in land use and land cover, highlighting the anthropogenic drivers of fire 

regime. 

Protected areas covered by forest formations burned rarely across time, 

except for degraded areas. Conversely, protected areas dominated by grassland 
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formation burned more than its buffer zones. Surprisingly, all the protected areas with 

higher fire frequencies and larger burned areas were categorized into the most 

restrictive levels of conservation (SNUC), questioning the effectiveness of the 

national fire exclusion policy.   

Since all PAs on savanna and grassland formation are periodically burning, 

management policies needs change to allow that managers apply prescribed fires to 

generate a landscape mosaic of burned and unburned areas, and thus reduce large 

and uncontrollable fire occurrences, increasing conservation effectiveness. Managers 

also should recognize that areas with dominance of african grasses do not fulfil its 

conservation purpose and needs to be restored. Strategies of management needs to 

be rethink by the decision makers and PA managers to include the local communities 

as active actors of conservation as a way to decrease social tensions, change the 

perception of conservation about these protected areas and mitigate conflicts.  
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Supplementary 
Supplementary Table S1. MapBiomas collection 5 pixel value legend. 

MapBiomas LCLUC class Pixel value 

Forest  
Forest formation 3 
Savanna formation 4 
Mangrove 5 
Forest plantation 9 

Natural non-forest formations  
Wetland 11 
Grassland formation 12 
Salt flat 32 
Rocky outcrop  29 
Other non-forest formations 13 

Farming  
Pasture 15 
Agriculture 18 
Temporary crop 19 
Soybean 39 
Sugar cane 20 
Perennial crop 36 
Mosaic of agriculture and pasture 21 

Non vegetated area  
Beach and dune 23 
Urban infrastructure 24 
Mining 30 
Other non-vegetated areas 25 

Water  
River, lake and Ocean 33 
Aquaculture 31 
Non observed 27 

 

 

 

 

 

 

 

 

 

 

 



89 
 

Supplementary Figure S2.  Principal Component Analysis (PCA) considering the 
proportion of predominantly LCLUC by protected area for the year of 1985 (72% of 
explanation). Black arrows represent the loadings of each variable; Red labels shows 
the name of each variable (class of land cover); Colored labels point each one of the 
PAs where colors represent the SNUC category. 
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Supplementary Figure S3. Distribution of relative burned area (%) over months 
considering accumulated values for the interval between 1985 and 2018. Right boxes 
show the results for the buffer zones while right boxes show the results for the 
protected areas (PA). Black bars represent the observed value of accumulated burned 
area for each julian day (1-365). Red curve represents the trends estimated by multiple 
non-parametric LOESS regressions (locally estimated scatterplot smoothing).  
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CONSIDERAÇÕES FINAIS 

 

Em termos gerais, resumimos os principais resultados e contribuições deste 

trabalho da seguinte forma: 

1. As bibliotecas em código aberto em linguagem R, o algoritmo Random Forest 

e etapas de pós-processamento foram suficientes para gerar uma 

metodologia automatizada e reproduzível para mapeamento de áreas 

queimadas no Cerrado. O código fonte do projeto pode ser acessado através 

do link https://github.com/musx/FireGIS_SP  

 

2. O produto de áreas queimadas gerado conseguiu atingir qualidade satisfatória 

para sua posterior aplicação em análises ambientais e ecológicas (79% de 

acurácia, 16% de omissão e 9% de comissão).  

 

3. Apesar de satisfatório, o produto de áreas queimadas mostrou-se limitado 

para o correto mapeamento de cicatrizes de queimadas em áreas úmidas, 

havendo alta comissão nestas áreas. 

 

4. O desenvolvimento da plataforma “FireGIS SP” para análise interativa dos 

resultados irá contribuir na disseminação e divulgação dos resultados para 

comunidade científica, gestores e demais usuários. A plataforma pode ser 

acessada através do link https://bit.ly/FireGIS_SP 

 

5. A combinação entre dados de área queimada e dados de uso e cobertura do 

solo mostrou-se extremamente eficiente na compreensão dos regimes de 

queimas do Cerrado paulista. 

 

6. O regime de queimas do Cerrado paulista é essencialmente antrópico, 

respondendo diretamente pelos padrões de uso e cobertura do solo nas 

últimas três décadas. Isto é, transições no uso da terra de pastagem para 

cana-de-açúcar, incentivadas principalmente por políticas públicas de crédito 

e subsídios ao setor sucroalcooleiro, explicam as maiores variações regionais 

no regime de queimas. 

 

https://github.com/musx/FireGIS_SP
https://bit.ly/FireGIS_SP
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7. As zonas de amortecimento das Unidades de Conservação repetem o padrão 

geral de queimas identificado para o Cerrado paulista. 

 

8. Considerando as Unidades de Conservação (UCs), aquelas cobertas 

principalmente por florestas e cerradão pouco queimaram ou nunca 

queimaram ao longo da série (1985-2018). Por outro lado, UCs campestres 

sofreram queimas de grandes proporções em intervalos de 7-8 anos e UCs 

com dominância de gramíneas africanas apresentaram alta frequência de 

fogo, potencialmente favorecendo espécies invasoras em detrimentos das 

espécies nativas. 

 

9. Uma vez que as UCs campestres queimam periodicamente por motivo 

acidental ou criminoso, faz-se necessário o delineamento de novas 

estratégias de manejo que viabilizem a prescrição de queimas controladas 

pelos gestores destas UCs como forma de promover a fragmentação do 

material combustível e a manutenção da biodiversidade.  

 

10. O fogo foi muito frequente em UCs conflituosas e dominadas por gramíneas 

africanas. Nesse contexto, faz-se necessário a integração da comunidade 

local em um modelo de gestão participativa como forma de alterar a 

percepção de abandono, fomentar a educação ambiental e buscar alternativas 

viáveis e realistas de restauração para as áreas degradadas.  


