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Abstract. Universal aspects of few-body systems will be reviewed motivated by recent interest in
atomic and nuclear physics. The critical conditions for the existence of excited states in three-body
systems with two-identical particles will be explored. In particular, we consider halo nuclei that can
be modeled as three-body nuclear systems, with two halo neutrons and a core. In this context, we
also discuss the low-energy neutron—'°C elastic scattering, near the conditions for the appearance

of an Efimov state.

1 Introduction

In order to understand the concept of universality in
low-energy few-body systems and, in this context, de-
scribe low-energy properties of rich-neutron halo nu-
clei in a three-body model, we introduce here a his-
torical review on some three-body properties and few-
body correlations which are well-known by the nuclear
physicists. We point out that three-body low-energy
properties have been quite well studied in the nuclear
physics context since 1935 with Thomas [1], concerned
with few-body aspects of nuclear physics, evidenced
by some well-known correlations among low-energy
nuclear-physics observables: Phillips line [2], Coester
line [3] and Tjon line [4]. Such correlations will be
discussed in section 2, together with analysis consid-
ering a few more recent works. In the same section,
we also briefly discuss another relevant effect that was
discovered by Efimov [5] in the nuclear physics con-
text when considering low-energy three identical par-
ticles. This effect, which is also valid for more general
three-body systems, will be further discussed along
the other sections of the present review. As it will be
pointed out [6], the Efimov effect is closely related to
the results obtained by Thomas in [1].

Actually, a review on such few-body correlations
is quite relevant in view of recent experiments in cold
atom laboratories [7—11], which are claiming to have
observed manifestations of the Efimov effect (for re-
cent discussions on that, see also Refs. [12-14]). One
should also realize that several low-energy few-body
correlations, verified in few-nucleon systems, can be
more deeply studied in atomic laboratories, consider-
ing the actual possibilities in varying the two-body in-
teraction by using Feshbach resonance techniques [15].

Few-body correlations are also shown to be im-
portant to study properties of low-mass exotic nu-
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clei, with neutron halos, such as Helium-6, Lithium-11,
Carbon-20, etc., which can be described as neutron-
neutron-core (n —n — ¢) three-body systems [16-19].
In view of that, in section 3, we will discuss universal
aspects and scaling behavior of low-energy three-body
systems, considering non-identical two kind of parti-
cles. The discussion is limited to the case of three-
boson systems (with two different masses), in order to
obtain threshold conditions for the existence of Efi-
mov states. In this respect, in section 4, the approach
is illustrated by considering the halo nucleus carbon-
20 (?°C) in a three-body n — n—'¥C model. In this
section, it is also reported scattering results for the
n—19C system and an effective range analysis. The
main conclusions and some perspectives are presented
in the last section.

2 Few-body correlations in nuclear physics
2.1 Thomas effect

In 1935, when studying the fundamental forces bind-
ing the nucleons together, in a nonrelativistic quan-
tum approach for the neutron-proton interaction and
the triton structure, Thomas verified that the triton
energy will collapse if the range of the two-body inter-
action goes to zero for a fixed two-body binding [1].
At the time this effect was recognized as a proof of
the finite range of nuclear forces (See Sec. IV of Bethe
and Bacher [20]) and also referred as Thomas’s the-
orem [21], considering that Thomas was able to con-
clude that the range of the nuclear forces could not be
less than 1.10~*3cm (On the range of nuclear forces
and Thomas results, see also Refs. [22]). The collapse
of the three-body ground-state for zero-range two-body
interactions, sometimes also referred as Thomas’s col-
lapse, has been discussed in many other subsequent
works: in the context of three-nucleon systems [23-28],
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as well as when discussing more general low-energy
few-body properties and correlations [5,6,29-34]. It
was pointed out by Gibson and Stephenson [26] that
such collapsing effect can be understood by a qualita-
tive simplified argument given by Wigner [35], relating
the kinetic and potential energies in the deuteron and
triton, when ignoring short-range repulsion and prob-
lem of saturation. From the Wigner’s argument, in
the deuteron one has a relation such that 2T+ V = 0,
while in the triton the corresponding relation is given
by 3T + 2V =~ —T, which has no lower bound as the
size of the system is decreased.

By considering that a three-boson system, inter-
acting via two-body separable potentials with fixed
two-boson binding, is known to lead to bound-state
collapse (BSC) when the potential parameters allow
two-boson S-matrix poles close to or on the real mo-
mentum axis [27], in Ref. [29] the BSC was investi-
gated for the case of two-terms form-factor Tabakin
potential [28]. In this case, after recognizing that such
BSC is a manifestation of the Thomas collapse, the
effect was shown to be accompanied by an increase
in the average kinetic energy of the two-body bound
state, which signals a decrease in the range of the two-
body interaction for fixed two-body binding.

In the study of nuclear forces, several other cor-
relations among observables have been found in the
study of few-nucleon interactions [2,4] and nuclear
matter [3]. Later on, the Thomas effect was shown [6]
to be closely related to another observed low-energy
effect, the Efimov effect [5], which as discovered in
1970. This will be discussed in the next subsections.

2.2 Phillips line

One of the first general correlations verified in the nu-
clear force investigations, among low-energy observ-
ables, is known as the Phillips line [2]. Phillips, by an-
alyzing several model calculations, found a consistent
linear correlation between the triton binding energy
and the doublet nucleon-deuteron scattering length [2].
An explanation of the Phillips line in the three-nucleon
problem was presented by Efimov and Tkachenko in
Ref. [36]. This line, which represents the correlation
between calculated values of the triton binding energy
and the neutron-deuteron doublet scattering length,
is shown to be due to the fact that the binding en-
ergies of both the triton and the deuteron, as well as
the energy eigenvalue of the two-nucleon singlet vir-
tual state, are all small on the energy scale of nuclear
forces. An equivalent statement is that the Phillips
line is due to the loose spatial structure of these few-
nucleon systems.

The observed strong correlation among theoreti-
cally calculated s—wave spin doublet neutron-deuteron
scattering length and the triton binding energy, given
by the Phillips line, was followed by several studies
on the trinucleon observables [37-42]. Among them,
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Fig. 1. Two-body potential model for the nucleon-
deuteron.

in the next, it will be considered the two-body anal-
ysis given in [42], from where more references can
be traced on this subject, together with analysis of
the Los Alamos group [39-41]. In Ref. [42], the trin-
ucleon system was considered in a two-body model
with Coulomb effect on bound and scattering states.
As observed, the correlation of triton binding with the
nucleon-deuteron scattering length can essentially be
explained in a two-body model, by using the N/D
approach [38], or in a three-body model with zero-
range nucleon-nucleon interaction. The aim in [42] was
to suggest an effective nucleon-deuteron interaction
in order to explain most of these properties. With
the conjecture that the effective interaction is dom-
inated by a truncated 7=2 interaction at large dis-
tances, it was demonstrated that the trinucleon low-
energy properties can be explained by varying only the
short-range part of this effective interaction, keeping
the long-range behavior unchanged. The depth V; of
the potential is the required parameter. So, it was sug-
gested the following effective interaction (see Fig. 1):

%) r<R
2
Vi) = Vo <E> e Mr=HR) > R (1)
" >

where, in addition to Vj, we have also the parameters
w1 and R which are given in [42].

First, the parameters are evaluated by requiring
that the effective interaction produce the experimen-
tal values of the neutron-deuteron (n — d) scattering
length, 2a,4 and the binding energies, H and 3He,
where for the 3He case it was added the Coulomb in-
teraction. The parameters, with observables, are given
in Table I of [42]. Next, the Phillips plot was easily
reproduced by varying the short-range part (Vp) of
the effective interaction, as shown in Fig.2. The cor-
relation of the triton binding with the (s—wave spin
doublet) neutron-deuteron scattering length (2a,q), as
well as with the corresponding proton-deuteron scat-
tering length (2a,q), was explicitly demonstrated by
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Fig. 2. Correlation between the trinucleon binding energy
and the scattering length. From the results obtained in
Ref. [42] with a two-body model we have the solid line for
the proton-deuteron (p—d) case; and the dotted line for the
neutron-deuteron (n — d) case. The other results shown in
the figure are from Refs. [39] and [40]: the circles (n — d)
and squares (p — d) are from [39]; triangles (p — d) and
inverted triangles (n — d) from [40]. From [39,40] it is also
shown the corresponding correlations for p — d (dashed-
line) and n — d (dashed-dotted and dashed-dotted-dotted
lines).

using the same nucleon-deuteron effective interaction.
Within this model, the predicted value for 2a,q (~
0.15+0.1 fm) is consistent with the analysis of Refs. [39,
40]. (For the problem on the experimental determina-
tion of the proton-deuteron doublet scattering length,
see Ref. [43].) In such two-body model, the p—d polar-
ization potential was neglected. However, it was found
in [41] that, because of the very low polarizability of
deuteron, the effect of the polarization potential on
2apq could be virtually neglected.

By considering this two-body model, it was possi-
ble to conclude that such a correlation is not a mani-
festation of three-body dynamics.

2.3 Tjon line

Following the above observed correlation of the triton
binding with the neutron-deuteron doublet scattering
length, Tjon observed a similar correlation between
the three and four-body observables. More specifically,
it was found that the “*He energy is determined by the
triton one, which is known as the Tjon line [4]. This
correlation was also studied by Perne and Kroger [44]
and by Noyes using nonrelativistic equations for three
and four particle systems, within a zero-range scat-
tering [45]. Once the triton energy is fitted to its ex-
perimental value the Tjon-line gives the observed “He
binding. The observed correlation implies that, within
the renormalization group approach [46], there is no
need of a new scale to describe the four nucleon sys-
tem. However, such result may be particular to the

nuclear potential models used in the calculations, with
their strong short-range repulsive interaction. In a more
general context, the conclusion that the four-body scale
is not independent of the three-body one has being
discussed in Refs. [47,48]. As argued in [48] that it
may be not valid near a Feshbach resonance in atomic
systems, some experimental studies are being carried
out in cold-atom latoratories [49], with actual analysis
supporting the prediction that the universal tetramer
states are in close connection with Efimov trimer [47].

However, one should note that a three-body repul-
sive force was introduced in [47] to stabilize the shal-
lowest three-body state, against the variation of the
cut-off. The three-body interaction may be attractive
or repulsive with the attractive part indicating a pos-
sible independent behavior of the four body ground-
state energy from the three-body one. In Ref. [48], it
is shown that an independent four-body momentum
scale, fi4), can drive the tetramer binding energy for
fixed trimer energy and large scattering length a. The
three- and four-body forces from the one-channel re-
duction of the atomic interaction near a Feshbach res-
onance is expected to disentangle the four- and three-
body scales, j1(4) and ps), respectively. The four-body
independent scale should be manifested through a fam-
ily of Tjon-lines, with slope given by 4/ ) when
a~! = 0. If this conjecture is realized, a new renormal-
ization group limit cycle is expected to appear due to
the new scale.

2.4 Coester line

By considering that for any given two-body Hamil-
tonian, there exists a large class of unitarily equiv-
alent Hamiltonians that lead to the same scattering
phase shifts at all energies, Coester, Day and Good-
man [3] have studied the saturation curves for reason-
able equivalent potentials. It was observed that the
saturation minimum shifts to higher or lower density
as the binding increases or decreases. Softening the
potential increases the binding.

This interesting correlation was recently studied
in Ref. [50], in a search for possible generalizations
of the Tjon line to the many-nucleon context, from
light nuclei to nuclear matter. As the nuclear matter
saturates due to the composed repulsive and attrac-
tive short-ranged two-nucleon potential, it may also
seen as a typical low-energy problem. So, it is natural
to search for possible connections between the proper
few-body scales with those of many-body problem. It
was pointed out evidences for scaling between light nu-
clei binding energies and the triton, and argued that
the saturation energy and density of nuclear matter
are correlated to the triton binding energy, B;. The
available systematic nuclear matter calculations in-
dicates a possible band structure representing these
correlations. It was found that the original correla-
tion between the nuclear matter binding energy per
nucleon, with the Fermi momentum described by the
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Fig. 3. Infinite nuclear matter binding energy as a func-
tion of Er, both in units of the triton binding energy.
The calculation results are extracted from Ref. [51] (solid
circles and squares). The squares includes the single par-
ticle contribution in the continuum. The full triangle rep-
resents the empirical values. This figure was reproduced
from Ref. [50].

Coester band, can be seen as robustly represented by
the scaling of nuclear matter properties with the triton
binding energy. As an example, in Fig. 3 we reproduce
one of the results shown in [50], where we can see the
behavior of the finite nuclear matter binding energy
Ba/A (where A is the mass number) as a function of
the Fermi energy Er, both given in units of B;.

2.5 Efimov effect

The Efimov effect [5] refers to the infinite number
of s—wave three-body energy levels, which appears
when a two-body state is exactly at the dissociation
threshold. So, the number of three-body states start
to increase as one reduces to zero the absolute value
of the two-body binding (virtual) energy; or, corre-
spondingly, when one increases the absolute value of
the two-body scattering length to infinite. As verified,
three bosons can form a loosely bound system even if
the two-particle attraction is too weak to allow two
bosons to form a pair.

This apparently counter-intuitive effect is shown
in Ref. [6] to be related to the Thomas effect by a
scaling transformation. Both, Efimov and Thomas ef-
fects, result from the same singularity structure of the
kernel of the nonrelativistic scattering integral equa-
tion of a three-body system in the s—wave. It was
also verified that both effects occur in three dimen-
sions but not in two dimensions. More precisely, it
was also demonstrated by Jensen, Riisager and Fe-
dorov [33] that the Thomas and Efimov effects can
only occur for dimensions between 2.3 and 3.8. A sim-
ple variational proof of the Thomas effect, provided in
Ref. [30], shows clearly why it is related to the Efimov
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effect. The relation of both effects was also recognized
in some other recent works, such as in Refs. [14,52].
The experimental study of Efimov states became
accessible in ultra-cold atom laboratories, in view of
the possibilities to alter the two-body scattering length,
in a wide range by using Feshbach resonance tech-
niques [15]. In 2006, it was reported in Ref. [8] that
they had detected Efimov states in scattering using
caesium atoms at 10 nanokelvin. This result was also
discussed by Lee et al. [14]. More recent reports on ex-
perimental investigations on the existence of Efimov
spectrum in ultracold atoms are given in Refs. [10,11].

3 Universality and Scaling

The concepts of universality, scaling, renormalization,
and limit cycle have been considered in many recent
works, in order to understand and classify the low-
energy few-body correlations. The relevance of such
studies can be appreciated in view of the recent ex-
periments [7,8,10,11] that are confirming universal
properties coming from the Efimov physics [5] occur-
ring for large two-body scattering lengths [32-34,12].
Near a Feshbach resonance the two-atom scattering
length, a, can vary from very large negative values
to positive values, allowing virtual or weakly-bound
dimers. The scattering length is large in respect to
the atom-atom interaction range (r¢), driving to the
use of concepts developed for short range interactions
and halo states [33]. In the limit of large a, the inter-
action can be taken as of zero range [53]. The appear-
ance of Thomas-Efimov states in three-boson systems
is controlled by the ratio ro/|a|] — 0. In this exact
limit, it is observed an infinite sequence of three-body
bound states [18,54], identified [55] with an underlying
renormalization group limit cycle [46]. The collapse of
the three-boson system when the two-body interaction
range goes to zero for fixed a demands one three-body
scale to stabilize the system.

Such sequence of Efimov states, appearing as the
two-body subsystem energy is reduced to zero, was
presented in [54] as a scaling function when consider-
ing the interaction of three particles system o —a — (3,
with the corresponding masses given by M, and Mg
having the mass-ratio A = Mg/M,,. The scaling func-
tion is given by the ratio of two consecutive three-body
energy states BY and Bév +1 (the ground-state corre-
spond to N = 0):

BN+ Koo K,
: —f( ﬁuo, (2)

Bé\] /—Bév ) /—Bév )
where, for v = o, 3, K, is related to the two-body
scattering length a.~, or the two-body energy Bg.:

1
Kyy= ——— =+/Ba,. (3)
Aoy 2Mozv
In the above, the signal (+) stands for a bound two-
body state, and (—) for a virtual two-body state; with
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Fig. 4. Scaling limit (solid line) compared with realistic
model calculations for the *He trimer, as shown in [54].
With dashed, we have a guide line through the realistic
model calculations.

o~ the reduced mass for the (ay) system. We should
observe that, the exact Efimov limit is given when the
two-body energy states are equal to zero. This scaling
limit, by using the renormalized zero-range approach,
was first presented in Fig.2 of Ref. [54], considering
three identical particles. In Fig. 4 we reproduce this
scaling function, compared with realistic model cal-
culations for the *He trimer. From such comparison
with finite range results, one can estimate range ef-
fects, which are enhanced as the two-body binding
energy is increased.

More recently, this results for the scaling function
were further explored in order to verify the behavior of
the three-body states. In figure 5 (where Ep 3 = —Ba 3
in case of bound-states), it is shown the Efimov states
following a continuous transition when we vary the
two-body scattering length a. A virtual state emerges
by the elastic scattering cut coming from the second
Riemmann sheet becoming a bound state. Then, for
a virtual two-body state (a < 0) a bound state turns
into a resonance. For a < 0 we have a more favorable
condition for the formation of trimers as the competi-
tion with weakly bound dimers is absent.

By considering the more general case of o —a — 3
system, it was determined the region where at least
one Efimov excited state can exist in a parametric
region defined by the ratios of the energies of the
subsystems, in units of the three-body ground-state
energy. In this case, it was verified the possible ex-
istence of Efimov states in a few light nuclei with
two-neutron halos, which are considered as three-body
neutron-neutron-core (n — n — ¢) systems, such that
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Fig. 5. Ratio of the (N+1)"" trimer binding, virtual or
resonance energy, E§N+l)7 with respect to the threshold
(B3 is the two-body binding energy) and the N trimer
binding energy, EéN) as a function of the dimer energy Fo
and EéN). Regions I and II refer, respectively, to virtual
and bound trimers for bound dimers. Regions III and IV
refer, respectively, to bound states and resonances for vir-
tual dimers. All results are for N = 0. The right vertical

label is valid for regions I and II and the left one for regions
IIT and IV.

a =n and 8 = c. The result is shown in Fig. 6. From
the experimental data that were examined, only the
carbon-20 was found with possibility to have at least
one excited Efimov state. In Fig. 6 it is also shown
the analytical cut structure of each four regions of the
plane. The borromean case, where all two-body sub-
systems are unbound, is labelled as region (III). As
discussed in Ref. [56] for the trajectories of excited
three-body Efimov states, when at least one two-body
substystem is bound, the Efimov bound state turns
to a virtual state when decreasing the corresponding
scattering length. However, in the Borromean case,
such three-body bound state turns to a resonance.

The above results, shown in Figs. 4 and 6, are com-
bined in a pictorial 3D scaling plot, given in Fig 7. For
the case that E,,,, = E,,. = 0 we have the exact Efimov

limit, with z = \/(E{" ™) /EN) = \/1/515. Finally,

we should also observe that the universal properties of
few-body physics, renormalization and scaling limits,
have also being studied by several authors in the con-
text of Effective Field Theories (EFT). For some re-
views and recent works on EFT applied to few-nucleon
systems, see Refs. [32,57,58] and references therein.

01013-p.5
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Fig. 6. Parametric region defined by Knn/\/m and
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zero. For details, on the comparison with a few experi-
mental halo-nuclei systems, see Ref. [18]. The analytical
two- and three-body cut structures are schematically rep-
resented near the corresponding region, in the upper and
lower side of the figure.
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Fig. 7. Threshold conditions and scaling function. When
z =y = 0 we have the Efimov result z = /1/515 ~ 0.044.

4 Halo nuclei - Efimov states and
scattering properties

The actual renewed interest in investigations of Efi-
mov states brought by the possibilities in atomic labo-
ratories, commented in the previous sections, had also
a lot of interest in nuclear context with the studies
on the properties of exotic nuclei systems with two
halo neutrons (n — n) and a core (c) [33]. In this re-
spect, some of the most favorable systems for search-
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ing Efimov states in systems with two-neutron ha-
los are light nuclei such as Helium-6 (He), Lithium-
11 (M Li), Beryllium-14 (14 Be), Carbon-18 (18C), and
Carbon-20 (2°C). Among these systems, as verified in
Fig. 6, one of the possible candidates to present these
states is the 2°C [18,19,33,59).

4.1 Radii of halo nuclei systems

For a general classification scheme of A-A-B systems,
applied not only for halo nuclei, but also to weakly
bound molecules as well, see Ref. [60], where it is made
a systematic study of the root-mean-square distances
between the constituents of weakly-bound nuclei sys-
tems, \/(r2 ,) and \/(r2,,). The study was focused on
the halo nuclei ''Li and *Be. The approach consid-
ered was a renormalized three-body model with pair-
wise Dirac-d interactions, with a minimal number of
physical inputs directly related to observables, such
as the two-neutron separation energy and the n-n and
n-core s-wave scattering lengths. As it was concluded,
the low-energy properties of the halo neutrons are,
to a large extend, model independent as long as few
physical input scales are fixed. The results are consis-
tent with experimental data, within the error bars. A
systematic underestimation of the data was observed,
which are naturally due to the simplified model that
was considered, where some properties are missing,
such as the finite size of the core allied to the anti-
symmetrization of the total nuclear wave function.
The consequences of a classification scheme pro-
posed in Ref. [61] for weakly-bound three-body sys-
tems was studied in detail in [60], by analyzing the
dimensionless products +/(r2 ,)E5 and /(r2,)Es3 in
terms of scaling functions depending on dimension-
less products of scattering lengths and square-root of
the neutron-neutron separation energy. The qualita-
tive properties of the different possibilities of three-
body systems are understood in terms of the effective
attraction in the model: when a pair has a virtual state
the effective interaction is weaker than when the pair
is bound. Thus, a three-body system has to shrink to
keep the binding energy unchanged if a pair which is
bound turns to be virtual. Several examples illustrate
this property, which show that dimensionless sizes,
V(r2 1) E5 and /(r2,)E3, increase from Borromean
(unbound subsystems), Tango (two unbound subsys-
tem), Samba (one unbound subsystem) and to All-
Bound configurations. And the size is expected to in-
crease beyond limits when a nonvanishing three-body
energy hits the scattering threshold, with the Bor-
romean configuration being the only exception.

4.2 Scattering properties and the 2°C

When studying the scattering properties of the halo
nuclei 2°C, in a three-body model n — n—18C, the au-
thors of Refs. [59] have observed a strong enhancement
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of the n—'°C elastic cross section. The result of this
kind of study can be quite relevant also for the anal-
ysis of actual cold-atom experimental results, where
the two-body interaction can be varied. In this respect,
the collisional properties of weakly-bound dimers with
mixture of two-species of atoms, have recently been
considered in Ref. [62]. The proximity of an Efimov
state (bound or virtual) makes the elastic cross-section
extremely sensitive to the corresponding pole of the S-
matrix. For the analysis of the n — n—'¥C, one should
first observe that this is not a Borromean system, con-
sidering that it has only one subsystems unbound. The
analytic properties of the S-matrix are expected to be
quite different for Borromean system in comparison
with systems where some (or all) of the subsystems
are bound. In case of Borromean systems, only the
three-body continuum exists, while in the other cases
the two-body continuum also appears.

Considering the above, as well as the recent moti-
vations on the behavior of Efimov states, going from
excited bound states to virtual or resonant states as
the two-body scattering length is altered, it was inves-
tigated in Ref. [56] the trajectory of the first excited
Efimov state using a renormalized zero-range three-
body model for a system with two bound and one vir-
tual two-body subsystems. Previously, it was already
investigated in Ref. [63] the occurrence of p—wave vir-
tual states in three-body non-Borromean halo nuclei
such as n — n—'8C. By considering the analytical cut
structure of this kind of three-body systems, it was
shown [56] for the trajectories of excited three-body
Efimov states that, when at least one two-body sub-
system is bound, the Efimov bound state turns to a
virtual state when decreasing the corresponding scat-
tering length. However, in the Borromean case, such
three-body bound state turns to a resonance. The
analytical cut structures of the four possible regions
are also schematically represented in Fig. 6, near the
corresponding region. The Borromean case, where all
two-body subsystems are unbound, is labelled as re-
gion (III); in all the other three regions we have to
consider at least one bound subsystem.

Following the studies on the trajectories of Efi-
mov excited three-body states [56], the 2°C scatter-
ing properties were further explored in Ref. [64] by
analysing the elastic scattering of a neutron on '°C
near the condition for an Efimov state of 2°C. The
n — n—'8C halo system presents a virtual state that
turns into an excited state when the '°C binding is
decreased [56]. So, close to this condition, it is sugges-
tive to study the low-energy n—1°C elastic scattering
in s—wave as the Efimov poles of the scattering am-
plitude are near the elastic scattering threshold. By
using a zero-range interaction, it was shown in [64]
that the real part of the elastic s—wave phase-shift
(6F) presents a zero, or a pole in kcotdft, when the
system has an Efimov excited or virtual state. More
precisely the pole scales with the energy of the Efimov
state (bound or virtual).

In view of the structure of the scattering S—matrix
for the n—'°C system, and corresponding similarity
with the neutron-deuteron (n — d) system, one should
recall the long-time discussion on the n—d elastic dou-
blet state scattering, studied in several authors [65—
71]. The change in the off-shell behavior of the two-
body potential, or three-body forces, modifies the cor-
responding phase-shift correlated to the triton binding
in a way that the scattering length can vanish. This
was already seen in the well-known Phillips plot where
the doublet scattering length is presented as a func-
tion of the triton binding energy [2]. In the case of
zero scattering length, kcotdg has a pole at zero rela-
tive n — d kinetic energy, pointed out in the analysis
of the experimental data for the n — d doublet s—wave
phase-shifts [65,66]. Van Oers and Seagrave [66] pro-
posed to incorporate a pole in a phenomenological ef-
fective range formula used to fit the kcotdy low energy
data for the n —d s—wave doublet state just below the
elastic threshold. The effective range expansion has a
form given by

C
T 4
1+ Dk?’ )

where A, B, C, and D are fitted constants. The exis-
tence of the triton virtual state was found on the basis
of the effective range expansion [69]. From the solution
of a three-body model with separable two-body inter-
actions, it was also suggested that the triton virtual
state appears from an excited Efimov state moving to
the non-physical energy sheet through the elastic cut
[72]. The same reasoning can be applied to the case
of an excited Efimov state of the n — n—'8C system,
where the pole of the S-matrix migrates to the second
energy sheet through the elastic n—'°C cut when the
binding energy of the neutron in °C is increased.

In [64] it was shown that the n—19C s—wave low-
energy phase-shift exhibit analytical properties similar
to the one found in the case of the n—d doublet state,
where existence of a low-energy pole in kcotdft was
established. By extending the analysis, it is observed
that the physics related to the Efimov effect is also im-
plying a zero in the atom-dimer scattering length, and
consequently a pole in the effective range expansion at
zero kinetic energy. A pole in the effective range ex-
pansion of the n—'°C elastic phase-shift appears in a
quite good qualitative agreement with the above anal-
ysis. The parametrization of the phase-shift was done
by a simple analytical formula of the effective range
expansion with a pole, as proposed long ago by Van
Oers and Seagrave[66] to fit the low-energy experi-
mental data of the doublet s-wave neutron-deuteron
phase-shift. In this case, the low-energy parametriza-
tion of the effective range expansion is given by:

kcotdy = —A + Bk* —

_a,:iwc +B8E+~y E?

kcotslt = " E/E ,

(5)

where a,,_19¢ is the n —19 C scattering length, with 3
and ~ the effective range parameters to be adjusted.
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Fig. 8. (1 — E/FEy)kcots as a function of the center-of-
mass kinetic energy. From bottom to top the curves cor-
responds to the following *°C energies: 200, 400,600, 800
and 850 keV. Reproduced from Ref. [64].

Ey is the position of the pole with respect to the
threshold for elastic scattering.

The numerical solutions for (1— E/Ep)kcotdlt as a
function of the CM kinetic energy are shown in Fig. 8,
for different values of | Es | between 200 and 850 keV.
The effective range parameters are given in Table 1,
obtained from a fit of (5) to the results shown in Fig.8.

Table 1. Effective range parameters in Eq. (5) for different
|Evoc| energies, as determined in Ref. [64].

[Eioc]  a,_10¢ B Y Eo
(keV)  (fm) (fmkeV)™' (fmkeV?)™! (keV)
200 -169.2  5.69 10~ 2 4.6710°% 14427
400  -16.03  6.74 107* 8.82 1078 823.9
600  -4.721  9.34 1071 1.46 1077 451.4
800 -0.789  3.11 1073 4.42 1077 115.0
850  -0.181  1.20 1072 1.64 107° 28.8

5 Summary with perspectives

In conclusion, we start by reviewing some low-energy
few-nucleon correlations that are quite well-known by
the nuclear physicists, such as the Thomas collapse
of the three-body ground state when the two-body
range interaction goes to zero, and the Phillips line,
which gives a correlation between values of the tri-
ton binding energy and the neutron-deuteron doublet
scattering length. Some other few-body correlations
were discussed in this context, such as the Tjon and
Coester lines. These correlations among few-nucleon
observables was followed by a discussion on the Efi-
mov effect, represented by the accumulation of infi-
nite three-body energy levels in the limit when the
inverse of the two-body scattering length is zero. All

01013-p.8

the above revisions were considered in the actual con-
text, together with some recent related works.

A discussion on universality and scaling applied
to low-energy few-body systems, which is present in
the physics related to the Efimov effect, is given in
section 3. It is pointed out that the relevance of such
low-energy few-body correlations are due to the actual
possibilities to be verified in cold atom experiments,
where the two-body interaction can be varied by using
Feshbach resonance techniques.

Next, in section 4, it was discussed light halo-nuclei
properties, considering the size of such three-body sys-
tems, trajectories of Efimov states and scattering prop-
erties. For the scattering properties, the study was ex-
emplified with the Carbon-20, in view of recent calcu-
lations done for the n—'?C elastic cross section and
phase-shift analysis. In this context, some old studies
on the neutron-deuteron properties was revised, con-
sidering the similiarity of such system with n—19C.

Finally, it is relevant to emphasize the rich per-
spectives opened by the recent experimental researches
with few-atom and molecular systems in ultracold lab-
oratories, where previous correlations first verified in
nuclear physics can now be tested in atomic and molec-
ular physics. The low-energy few-body correlations can
be studied by also considering different kind of parti-
cles, from Bosons to Fermions. As observed, within the
renormalization group approach, the observed corre-
lation are governed by some physical scales. As one
increases the number of interacting particles, one can
also study the possible necessity of independent new
scales to describe the corresponding observables. Ac-
tually, this is being done in the context of four inter-
acting particles.

The improvement observed in the techniques used
in the coldatom laboratories has also opened many
new theoretical possibilities to study observable cor-
relations in few-particle systems, such that one can
explore the limits of validity of such correlations by in-
troducing new constraints (varying the external traps,
Coulomb effects, etc.). In this respect, in the perspec-
tives that mixed atom-dimer phases near the Efimov
limit can be tested experimentally, we should mention
a few works [73] in the context of atomic condensates
near the scattering threshold.
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