

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

NÍCOLAS COELHO SALES

INFLUÊNCIA DOS COMPOSTOS NA MANUFATURA POR IMPRESSÃO 3D*PRINTER* NO COMPORTAMENTO MECÂNICO BIOMODELOS

NÍCOLAS COELHO SALES

INFLUÊNCIA DO TIPO DE COMPOSTO UTILIZADO NA MANUFATURA POR IMPRESSÃO 3D*PRINTER* NO COMPORTAMENTO MECÂNICO DE COMPONENTES E BIOMODELOS

Dissertação apresentada à Faculdade de Engenharia –UNESP- Campus de Ilha Solteira, para Obtenção do título de mestre em Engenharia Mecânica. Área de Conhecimento: Materiais e Processos de fabricação.

Orientador: Prof. Dr. Ruís Camargo

Tokimatsu

FICHA CATALOGRÁFICA Desenvolvido pelo Serviço Técnico de Biblioteca e Documentação

Sales, Nícolas Coelho.

S163i

Influência dos compostos na manufatura por impressão 3Dprinter no comportamento mecânico biomodelos / Nícolas Coelho Sales. -- Ilha Solteira: [s.n.], 2017

85 f.: il.

Dissertação (mestrado) - Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Área de conhecimento: Materiais e Processos de Fabricação, 2017

Orientador: Ruís Camargo Tokimatsu Inclui bibliografia

1. Impressão tridimensional. 2. 3Dprinter. 3. Biomodelgem. 4. Composição. 5. Granulometria.

UNIVERSIDADE ESTADUAL PAULISTA

Câmpus de Ilha Solteira

CERTIFICADO DE APROVAÇÃO

TÍTULO: Influência dos compostos na manufatura por impressão 3DPRINTER no comportamento mecânico de biomodelos.

AUTOR: NICOLAS COELHO SALES

ORIENTADOR: RUIS CAMARGO TOKIMATSU

Aprovado como parte das exigências para obtenção do Título de Mestre em ENGENHARIA MECÂNICA, área: MATERIAIS E PROCESSOS DE FABRICAÇÃO pela Comissão Examinadora:

Prof. Dr. RUIS CAMARGO TOKIMATSU

Departamento de Engenharia Mecânica / Faculdade de Engenharia de Ilha Solteira

Prof. Dr. VICENTE APONSO VENTRELLA

Departamento de Engenharia Mecânica / Faculdade de Engenharia de Ilha Solteira

Prof. OTAXIO VILLAR DA SILVA NETO

Profissional Liberal / Perito Judicial da Poder Judiciário dos Estados

Ilha Solteira, 31 de agosto de 2017.

DEDICO

A minha mãe Ana Maria Coelho e principalmente ao meu pai Jone Marcos Sales que sem dúvida é o principal responsável por mais esta etapa em minha vida.

Aos meus novos amigos em Ilha Solteira - SP que dividiram moradia comigo em todo este tempo de busca por este novo título.

A todos outros amigos de três Lagoas- MS, São José do Rio Preto- SP e familiares que sempre acreditaram em meu potencial.

A Deus por me dar força pra buscar meus objetivos sempre.

AGRADECIMENTOS

Agradeço primeiramente ao meu professor e orientador DR. Ruís Camargo Tokimatsu, por todo o companheirismo durante o mestrado além dos ensinamentos em suas matérias ministradas no programa.

Ao técnico Elton pelo auxílio na utilização do microscópio eletrônico de varredura.

Ao técnico José Luís Lisboa pelo auxílio nos ensaios de flexão e compressão realizados na faculdade de engenharia mecânica (FEM) da universidade de campinas (UNICAMP).

Aos alunos do programa de pós-graduação em engenharia mecânica Silvia Teixeira e Newton Salvador Grande Neto pelo auxílio em alguns momentos em meus experimentos.

A todos os professores da pós-graduação pelo conhecimento transmitido durante o programa e aos professores DR. Vicente Ventrella e o professor convidado Dr. Otávio Villar por terem aceitado serem membros da minha banca de dissertação de mestrado.

A minha família e amigos pelo apoio sempre presente.

RESUMO

Na medicina atual, uma técnica destaca-se cada vez mais, a biomodelagem. Esta técnica consiste na construção de um biomodelo físico a partir de imagens bidimensionais (de tomografias, ressonâncias, ultrassom), que são tratadas e através de softwares transformadas em um biomodelo virtual que por fim torna-se um biomodelo físico, impresso por uma impressora tridimensional, possibilitando a equipe médica, a percepção de detalhes dificilmente observados apenas através de imagens bidimensionais. Porém o material importado utilizado na biomodelagem é de custo elevado. Neste trabalho o objetivo foi através de uma formulação tida como ideal, publicada no artigo de (Meira), variar as porcentagens de sua composição, o ligante utilizado, o método de mistura, as granulometrias dos pós e adicionar um novo constituinte (sulfato de magnésio), e assim, adquirir um material mais barato e observar qual a influência da composição e granulometria em propriedades fundamentais para a qualidade de um pó para manufatura aditiva, tais como fluidez para distribuição homogênea, alto empacotamento das partículas para maximizar a densidade das peças, espessura da camada maior que as dimensões dos aglomerados e bom acabamento superficial após a camada ser depositada. Posteriormente, foram produzidos corpos de prova com diferentes composições, granulometrias e submetidos a ensaios de compressão e flexão três pontos. Após estes ensaios, médias e desvios padrões foram calculados para cada composição e granulometria. Por fim, a composição que apresentou os melhores resultados foi comparada ao material importado atualmente utilizado. O novo material, com custo de produção por volta de dez vezes menor, atendou às necessidades mecânicas que um biomodelo exige, como por exemplo, resistência mínima ao manuseio.

Palavras-chave: Impressão tridimensional. *3Dprinter.* Biomodelgem. Composição. Granulometria.

ABSTRACT

In modern medicine, a technique that stands out increasingly is biotemplating. This technique involves the construction of a physical biomodel from two-dimensional images (tomography, resonance, ultrasound) which are handled and by software processed in a virtual biomodel which eventually becomes a physical biomodel printed by the 3D printer, allowing the medical team, the perception of details hardly observed through two-dimensional images. However the material used in the imported biotemplating is relatively expensive. In this work the aim was through regarded as optimum formulation published in the article (Meira, 2013) vary the percentages of composition (and adding a new constituent, magnesium sulfate), the binder used, the mixing method and granulometry of powders, and thus acquire a more inexpensive material and understand which influences the composition and granulometry properties essential to the quality of a powder additive manufacturing, such as flowability for homogeneous distribution, higher packing of the particles to maximize the density of manufactured, thickness of the layer higher than the dimensions of the agglomerates and good surface finish after the layer is deposited. Later, produced specimens with different compositions and particle sizes, and subjected them to compression tests and bending three points. After these tests, averages and standard deviations were calculated for each composition and grain size. Finally, the best results were compared to the imported material currently used. The new material, with a cost around ten times lower, meets the mechanical requirements that a biomodel requires, for example, minimum handling strength.

Keywords: Three-dimensional printing. 3Dprinter. Biomodeling. Composition. Granulometry.

LISTA DE FIGURAS

Figura 1A - Biomodelagem virtual do membro torácico esquerdo de um cão	20
Figura 1B - Biomodelagem física do membro torácico esquerdo de um cão	20
Figura 2A - Etapas para construção de um biomodelo através de manufatura aditi	iva
a partir de um modelo CAD	23
Figura 2B - Etapas para construção de um biomodelo através de manufatura adit	iva
a partir de uma tomografia	24
Figura 3 - Ilustração do funcionamento da estereolitografia	25
Figura 4 - Ilustração do funcionamento da sinterização seletiva a laser	26
Figura 5 - Ilustração do funcionamento da sinterização direta de metais a laser	27
Figura 6 - Ilustração do funcionamento da modelagem por fusão e deposição	28
Figura 7 - Ilustração do funcionamento da Impressão 3D PRINTER	29
Figura 8 - Plataforma de construção da impressora	31
Figura 9 - Máquina de ar comprimido para pós-processamento	32
Figura 10 - micrômetro mitutoyo 0-25mm - 0.001mm	32
Figura 11 - micrômetro mitutoyo 25-50mm 0.001mm	33
Figura 12 - Microscópio eletrônico de varredura	33
Figura 13 - Gesso puro antes do aquecimento	36
Figura 14 - Gesso puro depois do aquecimento	36
Figura 15 - pó importado	36
Figura 16 - Pó alternativo	36
Figura 17 - Pó alternativo + pó importado	37
Figura 18 - Corpo de prova manufaturado com binder importado	38
Figura 19 - Corpos de prova manufaturados com binder nacional	38
Figura 20 - Superfície corpo de prova para ensaio de flexão fabricado com binde	r
importado – aumento nominal de 100 vezes	38
Figura 21 - Superfície corpo de prova para ensaio de flexão fabricado com binder	•
nacional - aumento nominal de 100 vezes	38
Figura 22 - Corpos de prova para ensaio de compressão impressos com gesso p	uro
antes do aquecimento	39
Figura 23 - Corpos de prova para ensaio de compressão impressos após	
aquecimento de 24h a 90 graus celsius	39
Figura 24 - Corpo de prova manufaturado com binder e pó alternativos	40

Figura 25 - Superfície corpo de prova para ensaio de flexão fabricado com pó e	
binder alternativos – aumento nominal de 100 vezes	40
Figura 26 - Corpo de prova manufaturado com pó alternativo + pó importado e bir	nder
alternativo	40
Figura 27 - Superfície de corpo de prova para ensaio de flexão manufaturado con	n
pó alternativo + pó importado e binder importado – aumento nominal de 100 x	40
Figura 28 - comparação entre os corpos de prova na condição A1F	54
Figura 29 - comparação entre os corpos de prova na condição A2F	55
Figura 30 - comparação entre os corpos de prova na condição A3F	56
Figura 31 - comparação entre os corpos de prova na condição B1F	57
Figura 32 - comparação entre os corpos de prova na condição B2F	58
Figura 33 - comparação entre os corpos de prova na condição B3F	59
Figura 34 - comparação entre os corpos de prova na condição C1F	60
Figura 35 - comparação entre os corpos de prova na condição C2F	61
Figura 36 - comparação entre os corpos de prova na condição C3F	62
Figura 37 - comparação entre os corpos de prova na condição D1F	63
Figura 38 - comparação entre os corpos de prova na condição D2F	64
Figura 39 - comparação entre os corpos de prova na condição D3F	65
Figura 40 - Realização do ensaio de flexão	67
Figura 41 - Corpo de prova numero três sendo submetido a ensaio de flexão	67
Figura 42 - Curva tensão deformação do ensaio de flexão	68
Figura 43 - comparação entre os corpos de prova na condição A1C	69
Figura 44 - comparação entre os corpos de prova na condição A2C	70
Figura 45 - comparação entre os corpos de prova na condição A3C	71
Figura 46 - comparação entre os corpos de prova na condição B1C	72
Figura 47 - comparação entre os corpos de prova na condição B2C	73
Figura 48 - comparação entre os corpos de prova na condição B3C	74
Figura 49 comparação entre os corpos de prova na condição C1C	75
Figura 50 - comparação entre os corpos de prova na condição C2C	76
Figura 51 - comparação entre os corpos de prova na condição C3C	77
Figura 52 - comparação entre os corpos de prova na condição D1C	78
Figura 53 - comparação entre os corpos de prova na condição D2C	79
Figura 54 - comparação entre os corpos de prova na condição D3C	80
Figura 55 - Corpo de prova sendo submetido a ensaio de compressão	81

Figura 56 - Corpo de prova sendo submetido a ensaio de compressão	82
Figura 57 - Curva tensão deformação sendo gerada no ensaio de compressão	82

LISTA DE TABELAS

Tabela 1: Corpos de prova para ensaio de flexão fabricados com pó e binder	
importado	42
Tabela 2: Corpos de prova para ensaio de flexão fabricados com pó importado e	
binder nacional	43
Tabela 3: Corpos de prova para ensaio de flexão fabricados com pó alternativo e	
binder nacional	44
Tabela 4: Corpos de prova para ensaio de flexão fabricados com pó alternativo +	рó
importado e <i>binder</i> nacional	45
Tabela 5: Corpos de prova para ensaio de compressão fabricados com pó e bind	er
importados	46
Tabela 6: Corpos de prova para ensaio de compressão fabricados com pó import	adc
e binder alternativo	47
Tabela 7: Corpos de prova para ensaio de compressão fabricados com pó e bino	der
alternativo	48
Tabela 8: Corpos de prova para ensaio de compressão fabricados com pó	
alternativo + pó importado e <i>binder</i> alternativo	49
Tabela 9: código para as diferentes formulações dos manufaturados	50
Tabela 10: média das densidades dos corpos de prova para flexão	51
Tabela 11:média das densidades dos corpos de prova para compressão	51
Tabela 12: Dados de ensaio de flexão para corpos de prova na condição A1F	54
Tabela 13: Dados de ensaio de flexão para corpos de prova na condição A2F	55
Tabela 14: Dados de ensaio de flexão para corpos de prova na condição A3F	56
Tabela 15: Dados de ensaio de flexão para corpos de prova na condição B1F	57
Tabela 16: Dados de ensaio de flexão para corpos de prova na condição B2F	58
Tabela 17: Dados de ensaio de flexão para corpos de prova na condição B3F	59
Tabela 18: Dados de ensaio de flexão para corpos de prova na condição C1F	60
Tabela 19: Dados de ensaio de flexão para corpos de prova na condição C2F	61
Tabela 20: Dados de ensaio de flexão para corpos de prova na condição C3F	62
Tabela 21: Dados de ensaio de flexão para corpos de prova na condição D1F	63
Tabela 22: Dados de ensaio de flexão para corpos de prova na condição D2F	64
Tabela 23: Dados de ensaio de flexão para corpos de prova na condição D3F	65
Tabela 24: Tensões máximas de flexão nas diferentes condições e formulações	66

Tabela 25: Dados de ensaio de compressão para corpos de prova na condiç	ão A1C
	68
Tabela 26: Dados de ensaio de compressão para corpos de prova na condiç	ão A2C
	69
Tabela 27: Dados de ensaio de compressão para corpos de prova na condiç	ão A3C
	70
Tabela 28: Dados de ensaio de compressão para corpos de prova na condiç	ão B1C
	71
Tabela 29: Dados de ensaio de compressão para corpos de prova na condiç	
	72
Tabela 30: Dados de ensaio de compressão para corpos de prova na condiç	
	73
Tabela 31: Dados de ensaio de compressão para corpos de prova na condiç	
Tabala 00. Dadaa da ayaa'a da ayaayaa ayaa ayaa ayaa	74
Tabela 32: Dados de ensaio de compressão para corpos de prova na condiç	ao C2C 75
Tabela 33: Dados de ensaio de compressão para corpos de prova na condiç	
Tabela 33. Dados de elisalo de compressão para corpos de prova ha condiç	76
Tabela 34: Dados de ensaio de compressão para corpos de prova na condiç	
Tabola o II Dadoo do olicalo do compressão para corpos do prova ha comarş	77
Tabela 35: Dados de ensaio de compressão para corpos de prova na condiç	
	78
Tabela 36: Dados de ensaio de compressão para corpos de prova na condiç	ão D3C
	79
Tabela 37: Tensões de compressão máximas nas diferentes condições e	
formulações	80

LISTA DE ABREVIAÇÕES

TM Tomografia computadorizada.

RM Ressonância magnética.

DICOM Digital Imaging Communications on *Medicine*.

STL Standard Triangulation Language.

MEDCOM Média do comprimento.

MEDLAR Média da largura.

MEDEXP Média da espessura.

MEDDIAM Média do diâmetro.

PIBIM Pó importado e binder importado como manufaturados.

PIBIS Pó importado e binder importado pós-processados com sulfato

de magnésio.

PIBIR Pó importado e binder importado pós-processados com resina de baixíssima viscosidade.

PIBAM Pó importado e binder alternativo como manufaturados.

PIBAS Pó importado e binder alternativo pós-processados com sulfato de magnésio.

PIBAR Pó importado e binder nacional pós-processados com resina de baixíssima viscosidade.

PABAM Pó alternativo e binder alternativo como manufaturados.

PABAS Pó alternativo e binder alternativo pós-processados com sulfato de

magnésio.

PABAR Pó alternativo e binder alternativo pós-processados com resina de baixíssima viscosidade.

PAPIBAM Pó alternativo + pó importado e binder alternativo como manufaturados.

PAPIBAS Pó alternativo+ pó importado e binder alternativo pós-processados com sulfato de magnésio.

PAPIBAR Pó alternativo + pó importado e binder alternativo pós-processados com resina de baixíssima viscosidade.

F Flexão.

C Compressão.

SUMÁRIO

1	INTRODUÇÃO	17
2	OBJETIVOS	19
2.1	Objetivos Geral	19
2.2	Objetivos Específicos	19
3	REVISÃO DA LITERATURA	20
3.1	Biomodelagem	20
3.1.1	Beneficios da biomodelagem	21
3.1.2	Aquisição de imagens	22
3.1.3	Tratamento de imagens	22
3.1.4	Construção de um biomodelo	23
3.1.5	Tipos de processos de impressão por manufatura aditiva	24
3.1.5.1	Estereolitografia (SL)	24
3.1.5.2	Sinterização seletiva a laser (SLS)	25
3.1.5.3	Sinterização direta de metais a laser (DMLS)	26
3.1.5.4	Modelagem por fusão e deposição (FDM)	27
3.1.5.5	Impressão tridimensional (3D PRINTER)	28
4	MATERIAIS E MÉTODOS	30
4.1	Produção do <i>binder</i> nacional	30
4.1.2	Comparações entre binder produzido e binder importado	30
4.2	Comparações entre matérias-primas (pó)	34
4.2.1	Produção matéria-prima nacional	34
4.2.2	Produção matéria-prima nacional + Matéria prima importada	35
5	RESULTADOS E DISCUSSÕES	36
5.1	Imagens de MEV das cinco formulações de pó utilizadas	para
	manufatura dos corpos de prova	36
5.2	Imagens dos corpos de prova impressos com pó e binder importa	ado e
	pó importado e <i>binder</i> nacional	38
5.3	Imagens dos corpos de prova impressos com gesso puro e b	inder
	alternativo	39
5.4	Imagens dos corpos de prova impressos com pó alternativo e b	inder
	alternativo	40

5.5	Imagens dos corpos de prova impressos com pó alternativo +	
	importado e <i>binder</i> alternativo	40
6	MEDIDAS DE DENSIDADES PARA DIFERENTES FORMULAÇÕES	
	(FLEXÃO)	42
6.1	Densidades dos manufaturados com binder e pó importados	42
6.2	Densidades dos manufaturados com pó importado e binder nacion	nal
		43
6.3	Densidades dos manufaturados com pó alternativo e binder nacio	nal
		44
6.4	Densidades dos manufaturados com pó alternativo +pó importado	е
	binder nacional	45
7	MEDIDAS DE DENSIDADES PARA DIFERENTES FORMULAÇÕES	
	(COMPRESSÃO)	46
7.1	Densidades dos manufaturados com pó e binder importados	46
7.2	Densidades dos manufaturados com pó importado e binder	
	alternativo	47
7.3	Densidades dos manufaturados com pó alternativo e binder	
	alternativo	48
7.4	Densidades dos manufaturados com pó alternativo + pó importado	ое
	binder alternativo	49
8	TABELA COM CÓDIGOS PARA DIFERENTES FORMULAÇÕES	50
9	TABELA COM AS MÉDIAS DAS DENSIDADES PARA AS DIFERENT	ΓES
	FORMULAÇÕES	51
9.1	Médias das densidades dos corpos de prova para flexão	51
9.2	Médias das densidades dos corpos de prova para compressão	51
10	ANÁLISE DA RESISTÊNCIA MECÂNICA DAS DIFERENTES	
	COMPOSIÇÕES	53
10.1	Resistência mecânica a flexão	54
10.1.1	Corpos de prova compostos de pó e binder importados	54
10.1.2	Corpos de prova compostos de pó importado e binder nacional	57
10.1.3	Corpos de prova compostos de pó alternativo e binder nacional	60
10.1.4	Corpos de prova compostos de pó importado + pó alternativo e bi	nder
	nacional	63
10.2	Imagens dos ensaios de flexão	67

10.3	Resistência mecânica a compressão	68	
10.3.1	Corpos de prova compostos de pó e binder importados	68	
10.3.2	Corpos de prova compostos de pó importado e binder nacional	71	
10.3.3	Corpos de prova compostos de pó alternativo e binder nacional	74	
10.3.4	Corpos de prova compostos de pó alternativo + pó importado e bi	inder	
	nacional	77	
10.4	Imagens dos ensaios de compressão	81	
11	CONCLUSÕES	83	
12	SUGESTÕES PARA TRABALHOS FUTUROS	84	
	REFERÊNCIAS	85	

1 INTRODUÇÃO

No passado, os recursos da medicina eram muito limitados. Os médicos estudavam doenças, causas de mortes, apenas através das dissecações e tinha como auxilio apenas a própria experiência.

Em virtude do grande desenvolvimento da tecnologia, gradativamente surgiram equipamentos e técnicas medicinais que buscavam facilitar a vida dos médicos e pacientes como raios-X, descobertos em 1895 pelo físico alemão Wilhelm Conrad Röntgen (MARTINS, 1997), ultrassom, que começou a ser efetivamente utilizado para terapia física, principalmente para membros de equipes da Europa de futebol na década de 1920 e 1930 (SANTOS; AMARAL; TACON, 2012) e ressonância magnética, utilizada na medicina pela primeira vez no ano de 1977, mais precisamente no dia 03 de julho (SILVA, 2012) Na medicina atual tem a biomodelagem, que consiste na construção de um biomodelo físico a partir de imagens bidimensionais (de tomografias, ressonâncias, ultrassom), que são tratadas através de softwares e transformadas em um biomodelo virtual, que por fim torna-se um biomodelo físico, impresso por uma máquina de manufatura aditiva (D'URSO et al, 1999). Dentre as principais vantagens que a biomodelagem possibilita para a medicina estão: Planejamento cirúrgico aprimorado eficaz; o médico planeja a cirurgia através do biomodelo, diminuição de riscos presentes durante e após as intervenções, pois no planejamento cirúrgico através do biomodelo, o tempo operatório é reduzido e assim minimiza-se, por exemplo, o tempo de anestesia do paciente e redução do número de procedimentos cirúrgicos necessários para se obter resultados finais satisfatórios (FERRAZ, 2009; ANTAS, 2007).

Umas das impressoras utilizadas para produção dos biomodelos é a 3D PRINTER, que tem algumas vantagens em relação a outras impressoras como a não utilização de laser, ampla gama de matérias-primas utilizáveis, o próprio pó serve como suporte para as camadas. No entanto existem algumas desvantagens, tal como baixa resistência mecânica, baixa qualidade do acabamento superficial, necessidade de pós-processamento para aumento de resistência mecânica (VOLPATO et al,2007; UPCRAFT, 2003).

A impressão 3D PRINTER funciona da seguinte maneira: O pó é disperso no reservatório da impressora e um *binder* (aglutinante) depotitado em cima deste pó. O

pistão da impressora desce e o binder aglomera apenas na geometria desejada. O pó que não está na geometria da peça serve como suporte, e a cada descida do pistão o rolo nivelador, compacta e planifica o pó, assim camada por camada a peça é produzida. O material para a impressão destes biomodelos pode ser resinas, polímeros ou cerâmicos, dependendo do que se deseja observar no biomodelo. Para este trabalho utilizaremos material cerâmico (gesso). O gesso mais comum encontrado no mercado é a gipsita, segundo o Departamento Nacional de Produção Mineral a produção de gipsita foi de 160 milhões de toneladas no ano de 2013 e o Brasil é o maior produtor da América do Sul e o 11° do ranking mundial (DA LUZ; LINS, 2005), o que torna o gesso um material economicamente viável para a manufatura aditiva. Porém apenas o gesso não é suficiente para a impressão de um biomodelo, e a composição do material importado atualmente utilizado é de custo elevado, o que acaba dificultando a utilização da técnica de biomodelagem em hospitais e consultórios. Partindo de uma formulação tida como ideal por (Meira, 2013) sendo esta de 94 Vol.% de gesso em pó, 5 Vol.% de ligante PVB (polivinil butiral) e 1 Vol.% de agente higroscópico CMC (carboximetilcelulose), neste trabalho foram elaboradas diferentes composições a partir desta, variando as porcentagens dos três constituintes do pó e adicionando um novo constituinte, sulfato de magnésio. No entanto a mistura dos componentes foi realizada a seco, diferente do processo feito por Meira que foi barbotina, e o ligante diferente, em vez de PVB foi utilizado PVA (acetato de polivinila). Desta forma foi verificada a influência da composição nas propriedades mecânicas dos biomodelos como resistência a flexão e compressão, análises físicas como porosidade e fidelidade dos biomodelos e por fim o objetivo principal foi alcançado: Produzir uma composição com propriedades mecânicas mais semelhantes possíveis ao material importado e custo menor.

2 OBJETIVOS

2.1 Objetivo Geral

 Verificar as influências da composição no comportamento mecânico de biomodelos.

2.2 Objetivos específicos

- Desenvolver um material alternativo para manufatura aditiva.
- Analisar a resistência mecânica de compressão e flexão dos corpos de prova constituídos do material comercial.
- Analisar fisicamente os corpos de prova constituídos do material comercial, em relação à porosidade, fidelidade dimensional e densidade.
- Analisar a resistência mecânica de compressão e flexão dos corpos de prova constituídos dos novos materiais envolvidos.
- Analisar fisicamente os corpos de prova constituídos dos materiais desenvolvidos, em relação à porosidade, fidelidade dimensional e densidade.
- Comparar economicamente os materiais comercial e os novos desenvolvidos.

3 REVISÃO DA LITERATURA

3.1 Biomodelagem

É o processo de uso de energia radiante para capturar dados morfológicos e processá-los ~computacionalmente, com o objetivo de transformar um modelo virtual em modelo físico através de uma máquina de manufatura aditiva (D'URSO et al, 1999). A biomodelagem pode ser dividida em duas principais etapas: a biomodelagem virtual e a física.

Biomodelagem virtual elabora um modelo digital para melhorar a visualização anatômica, por exemplo, a imagem de uma estrutura esquelética criada a partir de imagens de tomografia computadorizada (Figura 1 A). Esta definição também inclui modelos computacionais que podem ser manipulados em software CAD (GROESEL; GFOEHLER; PEHAM, 2009).

Figura 1 A: Biomodelagem virtual do membro torácico esquerdo de um cão

Fonte: (LEE et al., 2012).

Biomodelagem física como o próprio nome diz, cria um biomodelo físico (Figura 1B) replicando fielmente a geometria encontrada no modelo virtual (FERRAZ, 2009; FOGGIATO, 2006).

Figura 1B: Biomodelagem física do membro torácico esquerdo de um cão

Fonte: (LEE et al., 2012).

3.1.1 Benefícios da biomodelagem

Dentre outras vantagens a biomodelagem possibilita maior entendimento do paciente em relação ao que será realizado e procedimentos reais diretamente sobre o biomodelo, resultando assim em uma redução nos erros médicos e consequente economia no custo de tratamentos, devido a melhores resultados finais (PAIVA et al, 2007; ROBIONY et al, 2007).

Na medicina é mais comumente usada nas regiões da cabeça e pescoço. O processo também é utilizado para produzir próteses personalizadas e implantes cirúrgicos (BIBB; WINDER, 2010).

A utilização de um biomodelo físico, possibilita ao médico explicar detalhadamente a sua equipe todos os passos da cirurgia, resultando assim não somente em uma diminuição do tempo operatório, o que possibilita redução do tempo de anestesia e risco de infecções, mais também em uma diminuição de procedimentos cirúrgicos para que se alcance o resultado desejado. Em casos de reconstrução, por exemplo, constantemente são necessários vários procedimentos durante as intervenções, porém, quando se utilizam biomodelos para o planejamento operatório, há uma diminuição do número de cirurgias. Em muitos casos, este número é reduzido para uma única (FERRAZ, 2009; ANTAS, 2007).

3.1.2 Aquisição de imagens

Hoje em dia os aparelhos de tomografia computadorizada e ressonância magnética são considerados os melhores para diagnóstico e planejamento cirúrgico (BIBB; WINDER, 2010).

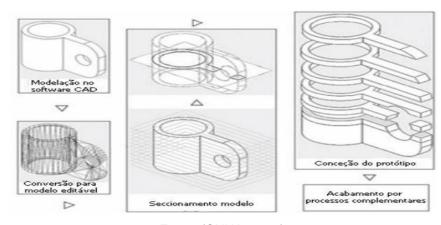
A Tomografia Computadorizada é um método complementar de diagnóstico por imagem que consiste na captação de fatias do corpo, através do processamento via computador de informações recebidas após a exposição do corpo a uma sucessão de raios-x (JÚNIOR; YAMASHITA, 2001).

Porém, essas informações (imagens) fornecidas pelos equipamentos radiológicos, não podem ser processadas diretamente pelos aparelhos de prototipagem.

3.1.3 Tratamento de imagens

Dentre os motivos pelos quais as imagens geradas pelos equipamentos radiológicos não podem ser processadas diretamente pelos aparelhos de manufatura aditiva tem-se o fato de que a espessura das camadas produzidas por tomografia computadorizada ou ressonância magnética varia entre um e cinco milímetros, enquanto que os cortes processados por maquinas de manufatura aditiva são em torno de um décimo de milímetro (MEURER et al, 2008). Para solucionar tais problemas, os arquivos devem ser importados em software específico para sua conversão em um formato capaz de ser reconhecido pelas máquinas de manufatura aditiva, softwares como Analyze® da Clínica Mayo, Mimics® da Materialise, 3D Doctor® da Able Software (WOHLERS, 2007). Porém, esses softwares são de alto custo, então o CTI (Centro de Tecnologia da Informação Renato Archer) em 2003, desenvolveu O software brasileiro Invesalius®, o qual se tornou uma opção mais acessível para médicos e cirurgiões brasileiros.

InVesalius é um software público para área de saúde que visa auxiliar o diagnóstico e o planejamento cirúrgico. A partir de imagens em duas dimensões (2D) obtidas através de equipamentos de tomografia computadorizada ou ressonância magnética, o programa permite criar modelos virtuais em três dimensões (3D) correspondentes às estruturas anatômicas dos pacientes em acompanhamento


médico. O software tem demonstrado grande versatilidade e vem contribuindo com diversas áreas dentre as quais medicina, odontologia, veterinária, arqueologia e engenharia. O programa foi desenvolvido pelo antigo CenPRA atual CTI, unidade do Ministério da Ciência e Tecnologia (MCT), através das linguagens de programação Python e C++. Atualmente opera em GNU Linux (Ubuntu, Fedora e *OpenSuse* já foram testados) e *Windows* (XP e Vista), sendo que é licenciado pela CC-GNU GPL (Licença Pública Geral) versão 2 (em português). (SOFTWAREPUBLICO, 2016).

3.1.4 construção de um biomodelo

Um biomodelo pode ser construído de duas formas. A primeira é criado utilizando um sistema CAD (*Computer Aided Desing*) por exemplo, que em seguida, através de softwares, é convertido em um formato que pode ser reconhecido pela máquina de manufatura aditiva, como o extensão STL (*Standard Triangulation Language*) – Figura 2A.

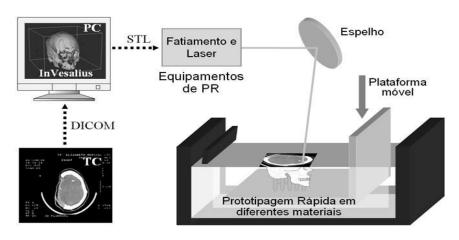

Na segunda, se obtém um arquivo por uma tomografia computadorizada, em formato DICOM e este arquivo também é convertido para um formato STL o qual é reconhecido pela máquina. Em ambos os casos, posteriormente à conversão, o arquivo é enviado para o software da própria máquina. Por fim o biomodelo é construído camada por camada sobre a plataforma de construção, depois de retirado, realizam-se os pós processamentos necessários (VOLPATO et al, 2007) – figura 2B. Etapas para construção de um biomodelo através de manufatura aditiva

Figura 2A - Etapas para construção de um biomodelo através de manufatura aditiva a partir de um modelo CAD

Fonte: (CHUA, 2003).

Figura 2.B - Etapas para construção de um biomodelo através de manufatura aditiva a partir de tomografia computadorizada

Fonte: (CHUA, 2003).

3.1.5 Tipos de processos de impressão por manufatura aditiva

Os processos de manufatura aditiva são classificados de acordo com o tipo de material no qual o biomodelo é construído, sendo estes baseados em sólidos, líquidos e pós (VOLPATO et al, 2007).

Existem diversos processos de manufatura aditiva que devem ser escolhidos de acordo com a aplicação do biomodelo, como estereolitografia (SL), quando há a necessidade de um material translúcido; Sinterização seletiva a laser (SLS) ou Modelagem por Fusão e Deposição (FDM), para correção de uma restauração ou deformidade do esqueleto); Impressão Tridimensional (3DPrinter), para o planejamento de cirurgias craniofaciais; sinterização direta de metais a laser (DMLS) para construção tanto de biomodelos quanto de próteses personalizadas. Cada Processo possui vantagens e desvantagens de acordo com a aplicação em que o biomodelo será utilizado (GOUVEIA, 2009).

3.1.5.1 Estereolitografia (SL)

Apresentada em 1988 pela empresa 3D Systems Inc. dos Estados Unidos, como a primeira máquina de manufatura aditiva disponível comercialmente. Nesta técnica, sobre a plataforma de construção contem um recipiente que armazena uma resina fotossensível. A cada camada de construção a resina é curada pela varredura do feixe

de laser. Após vários ciclos de exposição ao feixe e movimentação da plataforma, a peça é retirada e realizam-se os pós-processamentos necessários (VOLPATO et al, 2007).

Este processo possui vantagens como boa precisão geométrica, bom acabamento superficial dos manufaturados, alta de velocidade de construção, disponibilidade de confecção de objetos com geometrias complexas. No entanto, tem como desvantagens a necessidade de pos-processamentos, exigência de suporte pra construção do objeto, ocorre somente com resinas poliméricas como matéria prima e tem odor tóxico nocivo ao operador (PHAM; GAULT, 1998; FLETCHER; VOLPATO, 2007).

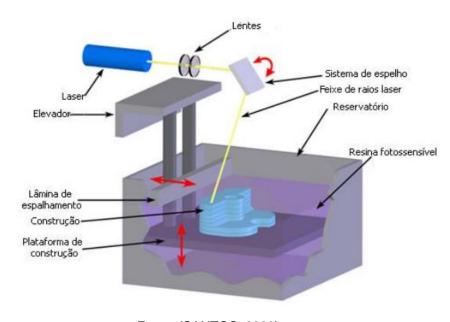


Figura 3 - Ilustração do funcionamento da estereolitografia

Fonte: (SANTOS, 2009).

3.1.5.2 Sinterização seletiva a laser (SLS)

Desenvolvida e patenteada na universidade do Texas nos EUA, tendo seu primeiro equipamento no mercado em 1992 através da empresa *DTM Corporation*. O processo ocorre da seguinte maneira: Primeiramente um rolo espalha nivela a matéria prima na plataforma de construção formando a camada na câmara de construção, câmara esta que é aquecida a uma temperatura próxima a de fusão do material e

atmosfera controlada por nitrogênio para evitar oxidações. Em seguida, o laser incide na matéria prima sintetizando as partículas. Posteriormente a plataforma se desloca para baixo e o processo se repete ate que a peça seja inteira confeccionada e quando finalizada, é retirada da câmara com auxílio de aspirador de pó e ar comprimido (VOLPATO et al, 2007).

Tem como vantagens a utilização de diferentes matérias primas, em alguns casos ocorre pouco pós-processamento, podem ser fabricados protótipos ou até mesmo produtos finais, porém não possibilita um ótimo acabamento superficial, o equipamento é de alto custo e consome um nível elevado de energia durante o processo (KAI et al, 2003; VOLPATO et al, 2007)

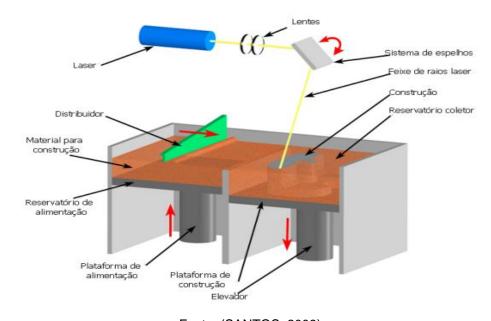
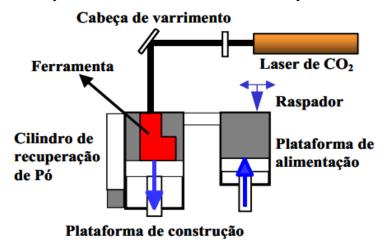


Figura 4 - Ilustração do funcionamento da sinterização seletiva a laser

Fonte: (SANTOS, 2009).


3.1.5.3 Sinterização direta de metais a laser (DMLS)

Em relação à deposição das camadas e varredura do laser é muito semelhante a sinterização seletiva a laser, com a diferença apenas na potência do laser que varia de 150 a 250W. Velocidade de varredura, potência do feixe de laser e espessura de camada de pó, estratégias de construção, distância entre linhas influenciam em fatores como resistência mecânica e acabamento superficial (LONGHITANO, 2015).

Neste processo podem ser utilizadas diferentes matérias-primas, os objetos manufaturados podem ser protótipos ou peças finais, já que possuem boa precisão

dimensional, entretanto, há um alto consumo de energia devido a alta potencia do laser (VOLPATO et al, 2007)

Figura 5 - Ilustração do funcionamento da sinterização direta de metais a laser

Fonte: (ESPERTO; OSORIO, 2008).

3.1.5.4 modelagem por fusão e deposição (FDM)

Apesar de esta tecnologia ter se tornado disponível no mercado em 1992, umas das primeiras empresas a desenvolvê-la foi a Stratasys, Inc em 1988. Em 1996 superou concorrentes como a 3D *Systems*, Inc. (KAI et al, 2003)

Esta técnica contém um cabeçote extrudor que se movimenta nos eixos X e Y e depõe o material extrudado dobre uma plataforma que se movimenta no eixo Z, determinando a espessura das camadas. A matéria prima que passa pelo bico extrudor encontra-se em forma de filamento e é aquecida até um estado semilíquido ou pastoso e quando a camada posterior encontra-se com o filamento anterior, ela se solidifica. Após a repetição deste processo por vários ciclos a peça finaliza-se (VOLPATO et al, 2007). Na técnica FDM não há necessidade de pós-cura, não se utiliza lazer, flexibilidade para escolha do local de produção dos objetos, todavia, há necessidade de suportes, baixa precisão dimensional e velocidade de processamento lenta (UPCRAFT; FLETCHER, 2003; VOLPATO, 2007).

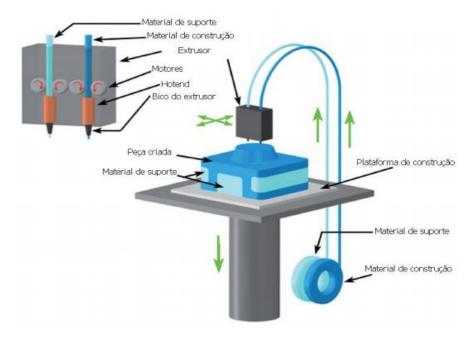


Figura 6 - Ilustração do funcionamento da modelagem por fusão e deposição

Fonte: (SANTOS, 2009).

3.1.5.5 Impressão tridimensional (3D PRINTER)

Tecnologia que utiliza pó como matéria prima, porém não há presença de laser, se assemelha com a impressão a jato de tinta comum.

A primeira etapa do processo é a distribuição do pó na plataforma de construção e seu nivelamento através do rolo nivelador. Posteriormente o cabeçote de impressão inicia a varredura na camada, liberando na região da geometria desejada da peça um reagente chamado *Binder*, para fabricação da camada. Assim forma-se uma camada bidimensional, porém essa camada somada a todas as outras que serão construídas da origem à peça final tridimensional. As propriedades físicas e químicas da matéria prima e do aglutinante influenciam diretamente na qualidade final dos manufaturados por impressão 3D *Printer* (VOLPATO et al, 2007).

Nesta técnica, não há utilização de lazer e suporte, permite uma variedade de matérias-primas, processo relativamente barato quando comparado a outros e permite impressão colorida, contudo não oferece uma elevada resistência mecânica, o acabamento superficial é baixo e por estes fatores há necessidade de um pósprocessamento nos objetos para resultados mais satisfatórios (UPCRAFT; FLTCHER, 2003; VOLPATO, 2007).

Espalhar o Pó Imprimir a Camada Descer o Pistão
Repetir o Ciclo

Figura 7 - Ilustração do funcionamento da Impressão 3D *PRINTER*

Fonte: (VOLPATO et al, 2007).

4 MATERIAIS E MÉTODOS

4.1 Produção do binder nacional

Para imprimir um objeto seja ele biomodelo ou não utilizando a técnica 3D *PRINTER*, é necessário o pó como matéria-prima na plataforma de construção e o *binder* que é o aglutinante. Portanto, para entender a influência do tipo de composto utilizado na manufatura por impressão 3D *PRINTER* no comportamento mecânico de biomodelos, é necessário descobrir tanto a influência do pó quanto do *binder* nas propriedades do produto final.

Primeiramente, o composto que foi observado no trabalho foi o aglutinante. Para tal análise, tem-se o *binder* comercial, que é o que já pertence à máquina, e o *binder* que desenvolvido a partir da composição sugerida por (MEIRA, 2013) de 90 Vol.% de água destilada, 5 Vol.% de álcool isopropilico, 4,5 Vol.% de glicerina e 0,5 Vol.% de extran. Foram produzidos dois litros do aglutinante e para isso foram utilizados:

- 1800 ml de agua destilada;
- 100 ml de álcool isopropílico;
- 90 ml de glicerina;
- 10 ml de extran;
- Recipiente para armazenar o binder;
- Béquer;
- Pipeta.

A metodologia para produção do aglutinante constituiu no uso da pipeta para medir os volumes necessários de cada ingrediente do *binder* que foram despejados no béquer, misturados e posteriormente armazenados em um recipiente com boa vedação para evitar contaminação.

4.1.2 Comparação entre Binder produzido e importado

Para comparar o *binder* produzido com o importado através de uma impressora que utiliza a técnica de impressão 3D printer, foram impressos 15 corpos de prova de

flexão e 15 de compressão com o *binder* importado, que já estava na máquina, posteriormente o reservatório foi esvaziado para então ser preenchido com o *binder* produzido na universidade UNESP-FEIS no laboratório GC3M (grupo de caracterização mecânica e microestrutural dos materiais), e então foram impressos mais 15 corpos de prova de flexão e 15 de compressão.

Estes corpos de prova foram desenhados com 6x4x40mm (flexão) e Ø7x14mm (compressão) segundo as normas ASTMC1161-13 e ASTMC1424-10. Após terem sido impressos, passaram pela máquina de ar comprimido para retirada de excesso de pó, além de 10 de flexão e 10 de compressão confeccionados tanto com binder importado quanto com alternativo terem sido submetidos a pós-processamento com sulfato de magnésio diluído em água e resina epox de baixíssima viscosidade. Ambos os processos foram realizados por gotejamento.

Figura 8 – Plataforma de construção da impressora

Fonte: Próprio autor.

Figura 9 : Máquina de ar comprimido para pós-processamento

Fonte: Próprio autor.

A segunda etapa foi realizar medidas de comprimento, largura, expessura e massa e comparar as densidades dos corpos de prova produzidos com cada binder. Para estas medidas foram utilizados dois micrometros, mitutoyo 0-25mm 0.001mm e mitutoyo 25-50mm 0.001mm.

Figura 10: micrômetro mitutoyo 0-25mm - 0.001mm

Fonte: Próprio autor.

Figura 11: micrômetro mitutoyo 25-50mm 0.001mm

Fonte: Próprio autor.

Posteriormente, foram feitas imagens de superfície utilizando um microscópio eletrônico de varredura (MEV).

Figura 12: Microscópio eletrônico de varredura

Fonte: Próprio autor.

Por fim, para esta formulação de pó comercial e *binder* tanto comercial quanto desenvolvido, foram realizados ensaios de flexão três pontos e compressão para comparação da resistência mecânica entre os diferentes *binders* além de imagens de MEV da região de fratura.

4.2 Comparação entre matérias-primas (pó)

Após as análises comparativas entre o *binder* comercial e o desenvolvido, foram realizados ensaios no intuito de compreender a influência do pó no comportamento mecânico de componentes e biomodelos. Então, primeiramente foram feitas imagens de MEV do pó importado e do gesso odontológico da forma que é vendido comercialmente. Visto que já foram impressos corpos de prova com material importado e binder nacional, o próximo passo foi imprimir corpos de prova com o binder nacional e o pó sendo apenas gesso odontológico. Porém, estes corpos de prova não apresentaram resistência mínima ao manuseio, o principal fator até então responsável era a umidade, portanto, 12kg de gesso (massa para o funcionamento ideal da impressora) foram aquecidos em um forno durante 24h, sua massa foi reduzida em 1%, No entanto, apesar dos corpos adquirirem um melhor acabamento superficial, a resistência ainda não era mínima ao manuseio, então se tornou necessária a elaboração de outras formulações para o pó.

4.2.1 produção matéria-prima nacional

Partindo de uma composição e faixa de granulometria tida como ideal por (MEIRA, 2013) que é de 94 Vol.% de gesso em pó, 5 Vol.% de ligante e 1 Vol.% de agente higroscópico, e granulometria entre 200 e 400 mesh, foram propostas variações e elaborada uma nova composição. Para confecção desta matéria prima foram utilizados:

- Gesso odontológico da marca chaves s/a;
- Álcool Polivinílico (PVA) da marca NEON;
- Carboximetilcelulose (CMC) da marca Synth;
- Peneiras granulométrica de #200, #325 e #400 mesh da marca

- Granutest;
- Pistilo e almofariz;
- Balança digital BG8000 da marca GEHAKA;
- Liquidificador;
- Sulfato de magnésio.

A partir da nova composição (96% gesso odontológico, 2% PVA, 1% de CMC e 1% de sulfato de magnésio) foram impressos 15 corpos de prova para flexão e 15 corpos de prova para compressão, sendo que 10 de flexão e 10 de compressão foram submetidos a pós-processamento com sulfato de magnésio diluído em água e resina epox de baixíssima viscosidade. Por fim estes corpos de prova foram submetidos a ensaios de compressão e flexão três pontos.

4.2.2 produção matéria-prima nacional + Matéria prima importada

Na tentativa de alcançar resultados mais próximos possíveis do material importado, minha ultima formulação foi a impressão com o pó contendo 50% de matéria prima nacional e 50% de matéria prima importada. Também foram produzidos 15 corpos de prova para compressão e 15 corpos de prova para flexão, sendo que 10 de cada situação passaram por pos processamento com sulfato de magnésio diluído em água e resina epox de baixíssima viscosidade.

5 RESULTADOS E DISCUSSÕES

5.1 Imagens de MEV das cinco formulações de pó utilizadas para manufatura dos corpos de prova.

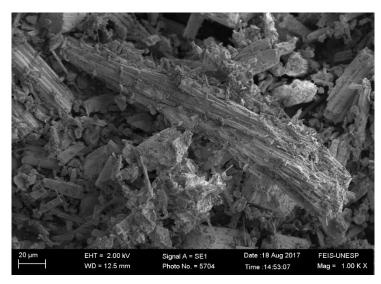


Figura 13: Gesso puro antes do aquecimento (elaborada Pelo próprio autor).

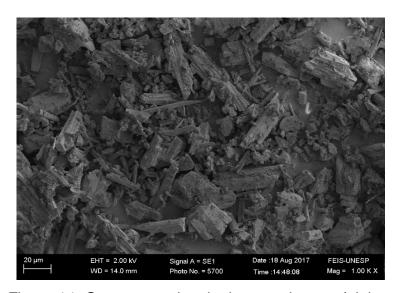


Figura 14: Gesso puro depois do aquecimento (elaborada pelo próprio autor).

A partir de um aumento nominal de 1000 vezes é possível observar uma maior uniformidade nas partículas de gesso após o aquecimento de 24 horas.

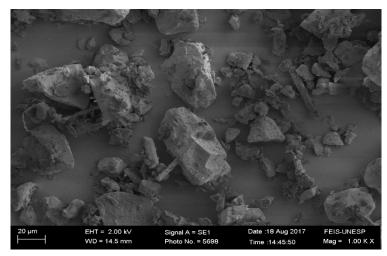


Figura 15: pó importado (elaborada pelo próprio autor)

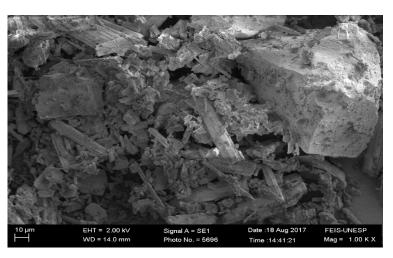


Figura 16: Pó alternativo (elaborada pelo proprio autor).

A partir de um mesmo aumento nominal de 1000 vezes, é possível notar partículas mais uniformes e menos aglomeradas no pó importado.

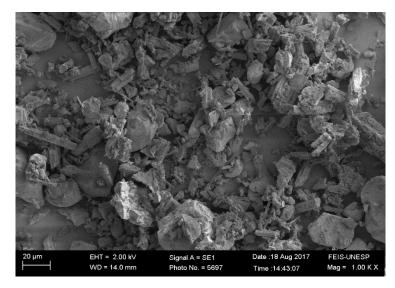


Figura 17: Pó alternativo + pó importado

Já na mistura, pode-se observar que as partículas não estão tao uniformes quanto no pó importado, porém não estão aglomeradas como no pó na condição de apenas alternativo.

5.2 Imagens dos corpos de prova impressos com pó e binder importado e pó importado e binder nacional.

Figura 18: Corpo de prova manufaturado com *binder* Importado (elaborada pelo próprio autor).

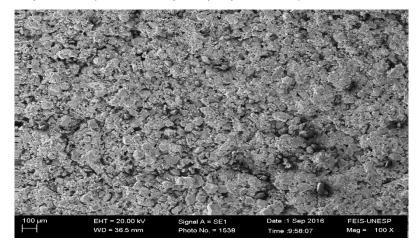


Figura 20: Superfície corpo de prova para ensaio de Figura 20: Superfície corpo de Fig

Figura 19: Corpos de prova manufaturados com *binder* nacional (elaborada pelo próprio autor).

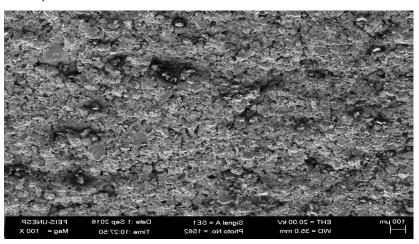


Figura 21: Superfície corpo de prova para ensaio de flexão fabricado com *binder* nacional – aumento nominal de 100 vezes (elaborada pelo próprio autor).

Como já era de se esperar, a mudança apenas do binder não alterou no comportamento dos grãos do pó importado.

5.3 Imagens dos corpos de prova impressos com gesso puro e binder alternativo.

Figura 22: Corpos de prova para ensaio de compressão impressos com gesso puro antes do aquecimento (elaborada pelo próprio autor).

Figura 23: Corpos de prova para ensaio de compressão impressos após aquecimento de 24h a 90 graus celsius (elaborada pelo próprio autor).

Obs: Devido à fragilidade dos corpos de prova não foi possível a realização de MEV.

5.4 Imagens dos corpos de prova impressos com pó alternativo e binder alternativo.

alternativos (elaborada pelo próprio autor).

Figura 24: Corpo de prova manufaturado com binder e pó Figura 25: Superfície corpo de prova para ensaio de flexão fabricado com pó e e binder alternativos – aumento nominal de 100 vezes (elaborada pelo próprio autor).

5.5 Imagens dos corpos de prova impressos com pó alternativo + importado e binder alternativo.

Figura 26: Corpo de prova manufaturado com pó alternativo + Pó importado e binder alternativo (elaborada pelo proprio autor).

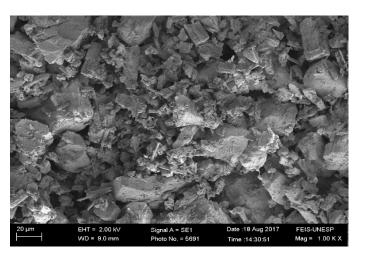


Figura 27: Superfície de corpo de prova para ensaio de flexão manufaturado com pó alternativo + pó importado e binder importado – aumento nominal de 100 vezes (elaborada pelo próprio autor).

A partir das fotografias e das imagens de MEV, foi possível observar que os corpos de prova manufaturados com o pó sendo a mistura (alternativo + importado), apresentaram menor rugosidade na superfície e grãos mais uniformes com partículas menos aglomeradas.

6 MEDIDAS DE DENSIDADES PARA DIFERENTES FORMULAÇÕES (FLEXÃO)

6.1 Densidades dos manufaturados com *binder* e pó importados

Tabela 1 – Corpos de prova para ensaio de flexão fabricados com pó e *binder* importado

nº C.P	Comp 1	Comp 2	Comp 3	Larg 1	Larg 2	Larg 3	Essp 1	Essp 2	Essp 3	Méd Comp	Méd Larg	Méd Essp	Volume	Massa	densidade	Situação
1	40,1	40,15	40,16	5,9	6,01	6,02	4,16	4,04	4,11	40,13666667	5,97666667	4,10333333	984,32187	1,3	0,001320706	Manufaturado
2	39,99	39,98	40,06	6,04	6,02	6,03	3,94	3,97	4,02	40,01	6,03	3,97666667	959,41179	1,3	0,001354997	Manufaturado
3	40,1	40,12	40,11	5,98	6,01	6,03	3,98	3,93	3,95	40,11	6,00666667	3,95333333	952,46632	1,3	0,001364878	Manufaturado
4	40,09	40,07	40,1	6,02	6	6	3,96	3,97	3,93	40,08666667	6,00666667	3,95333333	951,91224	1,3	0,001365672	Manufaturado
5	40,05	40,09	40,11	6,04	6,04	5,98	3,95	3,93	3,95	40,08333333	6,02	3,94333333	951,53291	1,3	0,001366217	Manufaturado
11	40,78	40,67	40,75	6,2	6,16	6,21	4,3	4,34	4,34	40,73333333	6,19	4,32666667	1090,9228	1,5	0,001374983	Sulfato de magnésio
12	40,25	40,25	40,25	6,11	6,11	6,17	4,06	4,06	4,02	40,25	6,13	4,04666667	998,44418	1,4	0,001402182	Sulfato de magnésio
13	4,084	40,63	40,75	6,21	6,25	6,32	4,35	4,28	4,4	28,488	6,26	4,34333333	774,56783	1,5	0,001936564	Sulfato de magnésio
14	40,66	40,56	40,59	6,21	6,24	6,2	4,29	4,19	4,3	40,60333333	6,21666667	4,26	1075,2981	1,5	0,001394962	Sulfato de magnésio
15	40,54	40,56	40,54	6,18	6,16	6,17	4,19	4,19	4,17	40,54666667	6,17	4,18333333	1046,5568	1,4	0,00133772	Sulfato de magnésio
21	40,12	40,1	40,14	5,9	5,92	5,94	4,11	4,07	4,11	40,12	5,92	4,09666667	973,00094	1,6	0,001644397	Resinado
22	40,03	40	40,06	5,89	5,96	5,97	4,04	4,04	3,96	40,03	5,94	4,01333333	954,28318	1,5	0,00157186	Resinado
23	40,02	40,05	40,09	6	6,14	6,06	3,95	3,97	3,96	40,05333333	6,06666667	3,96	962,24128	1,5	0,001558861	Resinado
24	40,02	40,04	40,06	5,86	5,87	5,95	4,05	4,06	3,99	40,04	5,89333333	4,03333333	951,7419	1,4	0,001470987	Resinado
25	39,99	40,02	40,04	5,82	5,82	5,86	4,03	4,03	4,04	40,01666667	5,83333333	4,03333333	941,50324	1,5	0,001593197	Resinado
Comp, Larg, Exp, Méd cor	mp, Méd Larg, Méd Exp: (mm)															
Volume: (mm³)																
Massa: (g)																
Densidade: (g/mm³)																

6.2 Densidades dos manufaturados com pó importado e binder nacional

Tabela 2 – Corpos de prova para ensaio de flexão fabricados com pó importado e *binder* nacional

nº C.P	Comp 1	Comp 2	Comp 3	Larg 1	Larg 2	Larg 3	Essp 1	Essp 2	Essp 3	Méd Comp	Méd Larg	Méd Essp	Volume	Massa	densidade	Situação	Colunas1
31	40,31	40,33	40,32	6,13	6,16	6,07	4,19	4,17	4,08	40,32	6,12	4,14666667	1023,2248	1,4	0,001368223	Manufatu	rado
32	40,24	40,23	40,25	6,14	6,13	6,16	4,21	4,2	4,11	40,24	6,14333333	4,17333333	1031,6803	1,4	0,00135701	Manufatu	rado
33	40,09	40,24	40,3	6,1	6,07	6,1	4,13	4,06	4,13	40,21	6,09	4,10666667	1005,636	1,4	0,001392154	Manufatui	rado
34	40,2	40,27	40,27	6,14	6,12	6,09	4,09	4,08	4	40,24666667	6,11666667	4,05666667	998,65172	1,4	0,00140189	Manufatu	rado
35	40,2	40,28	40,23	6,12	6,16	6,11	4,08	4,14	4,04	40,23666667	6,13	4,08666667	1007,9795	1,4	0,001388917	Manufatui	rado
41	40,51	40,53	40,56	6,15	6,12	6,1	4,26	4,2	4,14	40,53333333	6,12333333	4,2	1042,4363	1,5	0,001438937	Sulfato de	magnésio
42	40,6	40,54	40,63	6,25	6,15	6,22	4,27	4,24	4,05	40,59	6,20666667	4,18666667	1054,7411	1,5	0,00142215	Sulfato de	magnésio
43	40,6	40,56	40,75	6,09	6,08	6,1	4,25	4,2	4,05	40,63666667	6,09	4,16666667	1031,1554	1,5	0,001454679	Sulfato de	magnésio
44	40,17	40,1	40,25	5,92	5,94	5,96	4,06	4,1	4,03	40,17333333	5,94	4,06333333	969,63161	1,4	0,001443847	Sulfato de	magnésio
45	40,09	40,1	40,13	5,92	5,94	5,9	3,95	3,94	3,97	40,10666667	5,92	3,95333333	938,64573	1,3	0,001384974	Sulfato de	magnésio
51	39,99	39,87	40,03	5,87	5,94	5,84	3,94	3,97	3,95	39,96333333	5,88333333	3,95333333	929,49829	1,5	0,001613774	Resinado	
52	40,14	40,09	40,23	5,9	5,87	5,91	3,96	3,96	3,96	40,15333333	5,89333333	3,96	937,08243	1,6	0,001707427	Resinado	
53	40,05	40,04	40,09	5,87	5,98	5,91	3,94	3,96	3,92	40,06	5,92	3,94	934,39149	1,5	0,001605323	Resinado	
54	39,89	39,88	40	5,87	5,92	5,94	4	3,93	3,97	39,92333333	5,91	3,96666667	935,9227	1,5	0,001602696	Resinado	
55	39,99	40	40,03	5,8	5,81	5,89	3,98	3,98	3,95	40,00666667	5,83333333	3,97	926,48772	1,5	0,001619018	Resinado	
Comp, Larg, Exp, Méd cor	mp, Méd Larg, Méd Exp: (mm)																
Volume: (mm³)																	
Massa: (g)																	
Densidade: (g/mm³)																	

6.3 Densidades dos manufaturados com pó alternativo e binder nacional

Tabela 3 – Corpos de prova para ensaio de flexão fabricados com pó alternativo e *binder* nacional

nº C.P	Comp 1	Comp 2	Comp 3	Larg 1	Larg 2	Larg 3	Essp 1	Essp 2	Essp 3	Méd Comp	Méd Larg	Méd Essp	Volume	Massa	densidade	Situação	Colunas1
61	40,23	40,29	40,33	5,8	5,76	5,98	3,95	3,94	4,05	40,28333333	5,84666667	3,98	937,38242	0,9	0,00096012	Manufatu	rado
62	40,21	40,3	40,32	5,86	5,91	5,96	3,98	3,85	3,94	40,27666667	5,91	3,92333333	933,89104	0,9	0,00096371	Manufatu	rado
63	40,09	40,12	40,14	5,87	5,7	5,95	3,7	3,85	3,95	40,11666667	5,84	3,83333333	898,07844	0,8	0,000890791	Manufatu	rado
64	40,08	40,19	40,24	5,92	5,87	5,98	4,08	3,91	3,97	40,17	5,92333333	3,98666667	948,58866	0,9	0,000948778	Manufatu	rado
65	40,23	40,35	40,39	5,78	5,9	5,91	3,93	3,95	4,05	40,32333333	5,86333333	3,97666667	940,1999	0,9	0,000957243	Manufatui	rado
71	41,67	41,61	41,63	6,28	6,44	6,39	4,54	4,56	4,4	41,63666667	6,37	4,5	1193,5151	1,1	0,000921647	Sulfato de	magnésio
72	41,7	41,94	41,85	6,77	6,8	6,62	4,72	4,85	4,48	41,83	6,73	4,68333333	1318,4328	1,2	0,000910172	Sulfato de	magnésio
73	41,12	41,32	41,28	6,36	6,39	6,35	4,39	4,59	4,38	41,24	6,36666667	4,45333333	1169,2731	1,2	0,001026279	Sulfato de	magnésio
74	41,61	41,86	41,84	6,64	6,53	6,68	4,56	4,83	4,71	41,77	6,61666667	4,7	1298,9774	1,3	0,001000787	Sulfato de	magnésio
75	41,9	41,79	41,68	6,45	6,66	6,54	4,76	4,58	4,77	41,79	6,55	4,70333333	1287,4176	1,2	0,000932099	Sulfato de	magnésio
81	40,29	40,28	40,34	5,99	5,8	6,09	4,09	4,06	4,08	40,30333333	5,96	4,07666667	979,2474	1,4	0,001429669	Resinado	
82	40,27	40,27	40,32	5,92	6,01	6,11	3,98	4,01	4,05	40,28666667	6,01333333	4,01333333	972,25872	1,3	0,001337093	Resinado	
83	40,18	40,19	40,25	6,2	5,78	5,83	3,92	4	4,09	40,20666667	5,93666667	4,00333333	955,56996	1,3	0,001360445	Resinado	
84	40,29	40,36	40,31	6,01	6,06	6,18	4,1	4,04	4,17	40,32	6,08333333	4,10333333	1006,4656	1,4	0,001391006	Resinado	
85	40,28	4,24	40,33	5,86	5,82	5,94	4,04	4,09	4,11	28,28333333	5,87333333	4,08	677,75917	1,3	0,001918085	Resinado	
Comp, Larg, Exp, Méd co	mp, Méd Larg, Méd Exp: (mm)																
Volume: (mm³)																	
Massa: (g)																	
Densidade: (g/mm³)																	

6.4 Densidades dos manufaturados com pó alternativo +pó importado e binder nacional

Tabela 4 – Corpos de prova para ensaio de flexão fabricados com pó alternativo + pó importado e *binder* nacional

nº C.P	Comp 1	Comp 2	Comp 3	Larg 1	Larg 2	Larg 3	Essp 1	Essp 2	Essp 3	Méd Comp	Méd Larg	Méd Essp	Volume	Massa	densidade	Situação	Colunas1
91	39,99	39,93	39,98	5,63	5,66	5,68	3,88	3,92	3,91	39,96666667	5,65666667	3,90333333	882,45823	1	0,001133198	Manufatu	rado
92	39,96	39,89	40,02	5,82	5,67	5,7	3,89	3,94	3,96	39,95666667	5,73	3,93	899,78018	1,1	0,001222521	Manufatu	rado
93	40,04	40,05	40,08	5,66	5,63	5,77	3,9	3,89	4	40,05666667	5,68666667	3,93	895,21042	1,1	0,001228761	Manufatu	rado
94	40,02	40,01	40,08	5,77	5,74	5,8	3,88	3,89	3,91	40,03666667	5,77	3,89333333	899,40503	1,1	0,001223031	Manufatu	rado
95	3,94	3,94	40,01	5,74	5,75	5,75	3,95	3,97	4,01	15,96333333	5,74666667	3,97666667	364,80332	1,1	0,003015323	Manufatu	rado
111	40,2	40,19	40,25	5,92	5,88	6,07	3,95	4,05	3,97	40,21333333	5,95666667	3,99	955,75431	1,2	0,001255553	Sulfato de	magnésio
112	40,17	40,06	40,17	5,85	5,9	5,9	4,12	4,04	4	40,13333333	5,88333333	4,05333333	957,06406	1,2	0,001253835	Sulfato de	magnésio
113	40,12	40,13	40,19	5,92	5,89	5,92	4,01	4	4,01	40,14666667	5,91	4,00666667	950,64898	1,2	0,001262296	Sulfato de	magnésio
114	40,12	40,08	40,15	5,93	5,83	5,94	3,94	4,05	4,1	40,11666667	5,9	4,03	953,85398	1,2	0,001258054	Sulfato de	magnésio
115	40,25	40,24	40,35	5,97	5,81	5,99	3,98	3,99	4,02	40,28	5,92333333	3,99666667	953,57216	1,3	0,001363295	Sulfato de	magnésio
101	40,02	39,96	40,1	5,78	5,78	5,93	4,01	3,96	4,01	40,02666667	5,83	3,99333333	931,86616	1,4	0,001502362	Resinado	
102	40,03	40,1	40,13	5,88	5,94	5,97	3,94	3,94	3,89	40,08666667	5,93	3,92333333	932,631	1,4	0,00150113	Resinado	
103	40,03	40,04	40,12	5,84	5,87	5,93	3,98	3,96	3,91	40,06333333	5,88	3,95	930,51098	1,4	0,00150455	Resinado	
104	40,07	40,02	40,09	5,77	5,65	5,89	3,97	3,99	3,94	40,06	5,77	3,96666667	916,87993	1,4	0,001526917	Resinado	
105	40,04	40,09	40,18	5,82	5,75	5,93	3,98	3,88	3,95	40,10333333	5,83333333	3,93666667	920,92849	1,4	0,001520205	Resinado	
Comp, Larg, Exp, Méd co	mp, Méd Larg, Méd Exp: (mm)																
Volume: (mm³)																	
Massa: (g)																	
Densidade: (g/mm³)																	

7 MEDIDAS DE DENSIDADES PARA DIFERENTES FORMULAÇÕES (COMPRESSÃO).

7.1 Densidades dos manufaturados com pó e binder importados

Tabela 5 – Corpos de prova para ensaio de compressão fabricados com pó e binder importados

nº C.P	Comp 1	Comp 2	Comp 3	Diamet 1	Diamet 2	Diamet 3	Méd comp	Méd Diamet	Volume	Massa	Densidade	Situação	Colunas1
6	14,07	14,09	14,11	6,82	6,88	6,9	14,09	6,866666667	521,77107	0,7	0,001341585	Manufatura	do
7	14,03	14,04	14,04	6,8	6,85	6,86	14,03666667	6,836666667	515,26408	0,7	0,001358527	Manufatura	do
8	14,14	14,15	14,17	6,88	6,6	6,81	14,15333333	6,763333333	508,4607	0,6	0,001180032	Manufatura	do
9	14,1	14,09	14,11	6,71	6,87	6,89	14,1	6,823333333	515,57204	0,7	0,001357715	Manufatura	do
10	14,04	14,06	14,06	6,84	6,79	6,8	14,05333333	6,81	511,85935	0,7	0,001367563	Manufatura	do
16	14,56	14,53	14,51	7,05	7,17	7,27	14,53333333	7,163333333	585,6965	0,8	0,001365895	Sulfato de m	nagnésio
17	14,89	14,89	14,84	7,1	7,27	7,16	14,87333333	7,176666667	601,63201	0,8	0,001329716	Sulfato de m	nagnésio
18	14,62	14,57	14,63	6,81	7,19	7,19	14,60666667	7,063333333	572,33143	0,8	0,001397791	Sulfato de m	nagnésio
19	14,6	14,7	14,64	7,15	7,15	7,17	14,64666667	7,156666667	589,16569	0,8	0,001357852	Sulfato de m	nagnésio
20	15,02	15,01	14,95	7,03	7,16	7,34	14,99333333	7,176666667	606,48605	0,8	0,001319074	Sulfato de m	nagnésio
26	14	14,03	14,1	6,84	6,98	6,96	14,04333333	6,926666667	529,17078	0,8	0,001511799	Resinado	
27	14,12	14,15	14,08	6,8	6,75	6,83	14,11666667	6,793333333	511,65248	0,8	0,001563561	Resinado	
28	14,05	14,04	14,05	6,85	6,89	6,93	14,04666667	6,89	523,7075	0,9	0,001718517	Resinado	
29	14,11	14,09	14,08	6,89	6,85	6,95	14,09333333	6,896666667	526,46471	0,9	0,001709516	Resinado	
30	14,08	14,07	14,06	6,91	6,78	6,8	14,07	6,83	515,4809	0,9	0,001745942	Resinado	
Comp, Dia	met, Méd (Comp, Méd	Diamet: (m	m)									
Volume: (ı	mm³)												
Massa: (g)													
Densidade	e: (g/mm³)												

7.2 Densidades dos manufaturados com pó importado e *binder* alternativo

Tabela 6 – Corpos de prova para ensaio de compressão fabricados com pó importado e *binder* alternativo.

nº C.P	Comp 1	Comp 2	Comp 3	Diamet 1	Diamet 2	Diamet 3	Méd comp	Méd Diamet	Volume	Massa	Densidade	Situação	Colunas1
36	14,27	14,26	14,32	7,07	7,08	7,06	14,28333333	7,07	560,71926	0,8	0,001426739	Manufatura	do
37	14,23	14,2	14,26	6,94	6,86	6,87	14,23	6,89	530,54279	0,8	0,00150789	Manufatura	do
38	14,3	14,33	14,36	6,97	6,98	6,9	14,33	6,95	543,6168	0,8	0,001471625	Manufatura	do
39	14,31	14,32	14,28	7	6,97	6,96	14,30333333	6,976666667	546,77705	0,8	0,001463119	Manufatura	do
40	14,48	14,39	14,33	7	7,04	7,15	14,4	7,063333333	564,23363	0,8	0,001417852	Manufatura	do
46	14,49	14,54	14,25	7,05	7,21	7,17	14,42666667	7,143333333	578,15582	0,8	0,00138371	Sulfato de m	nagnésio
7,01	14,44	14,46	14,38		7,03	7,04	14,42666667	7,026666667	559,42488	0,8	0,00143004	Sulfato de m	nagnésio
7,14	14,56	14,53	14,59		7,14	7,09	14,56	7,123333333	580,23642	0,8	0,001378748	Sulfato de m	nagnésio
49	14,4	14,45	14,31	7,12	7,09	7,01	14,38666667	7,073333333	565,30848	0,8	0,001415157	Sulfato de m	nagnésio
50	14,4	14,37	14,44	7	7,08	7,06	14,40333333	7,046666667	561,70403	0,8	0,001424238	Sulfato de m	nagnésio
56	14,13	14,03	14,05	6,82	6,8	6,85	14,07	6,823333333	514,47508	0,8	0,001554983	Resinado	
57	14,01	14	14,01	6,8	6,83	6,83	14,00666667	6,82	511,659	0,8	0,001563541	Resinado	
58	14	14,04	14,06	6,7	6,72	6,75	14,03333333	6,723333333	498,20399	0,9	0,001806489	Resinado	
59	14,04	14,02	14,03	6,9	6,89	6,87	14,03	6,886666667	522,5801	0,9	0,001722224	Resinado	
60	14,11	14,13	14,13	6,75	6,81	6,82	14,12333333	6,793333333	511,89411	0,9	0,001758176	Resinado	
Comp, Dia	met, Méd (Comp, Méd	Diamet: (mı	m)									
Volume: (mm³)												
Massa: (g)													
Densidade	e: (g/mm³)												

7.3 Densidades dos manufaturados com pó alternativo e *binder* alternativo

Tabela 7 – Corpos de prova para ensaio de compressão fabricados com pó e *binder*

nº C.P	Comp 1	Comp 2	Comp 3	Diamet 1	Diamet 2	Diamet 3	Méd comp	Méd Diamet	Volume	Massa	Densidade	Situação	Colunas1
66	14,09	14,19	14,21	6,59	6,41	6,49	14,16333333	6,496666667	469,48716	0,5	0,001064992	Manufatura	do
67	14,01	13,81	14,02	6,75	6,8	6,77	13,94666667	6,773333333	502,51889	0,4	0,00079599	Manufatura	do
68	19,75	13,94	14,09	6,53	6,82	6,77	15,92666667	6,706666667	562,62031	0,4	0,000710959	Manufatura	do
69	14,05	14,22	14,15	6,57	6,76	6,59	14,14	6,64	489,62394	0,5	0,001021192	Manufatura	do
70	14,01	14,11	14,14	6,84	6,77	6,78	14,08666667	6,796666667	511,06631	0,4	0,000782677	Manufatura	do
76	15,57	15,52	15,6	7,21	7,44	7,23	15,56333333	7,293333333	650,17732	0,6	0,000922825	Sulfato de n	nagnésio
77	15,27	15,56	15,65	7,57	7,41	7,29	15,49333333	7,423333333	670,53255	0,7	0,001043946	Sulfato de n	nagnésio
78	15,67	15,76	15,69	7,4	7,36	7,12	15,70666667	7,293333333	656,16525	0,7	0,001066804	Sulfato de n	nagnésio
79	15,67	15,61	15,63	7,3	7,29	7,33	15,63666667	7,306666667	655,63155	0,7	0,001067673	Sulfato de n	nagnésio
80	15,46	15,55	15,64	7,33	7,38	7,32	15,55	7,343333333	658,55788	0,7	0,001062929	Sulfato de n	nagnésio
86	14,12	14,05	14,17	6,79	6,94	6,96	14,11333333	6,896666667	527,21183	0,7	0,00132774	Resinado	
87	14,21	14,16	14,14	6,94	6,7	6,9	14,17	6,846666667	521,68133	0,7	0,001341815	Resinado	
88	14,04	14,07	14,07	6,58	6,93	6,91	14,06	6,806666667	511,60097	0,7	0,001368254	Resinado	
89	13,9	14,26	14,2	6,83	6,69	6,97	14,12	6,83	517,31274	0,8	0,001546453	Resinado	
90	14,13	14,06	14,09	6,95	6,82	6,88	14,09333333	6,883333333	524,43105	0,7	0,00133478	Resinado	
Comp, Dia	met, Méd (Comp, Méd	Diamet: (mı	m)									
/olume: (mm³)												
Massa: (g))												
Densidade	e: (g/mm³)												

7.4 Densidades dos manufaturados com pó alternativo + pó importado e *binder* alternativo

Tabela 8 – Corpos de prova para ensaio de compressão fabricados com pó alternativo + pó importado e *binder*

nº C.P	Comp 1	Comp 2	Comp 3	Diamet 1	Diamet 2	Diamet 3	Méd comp	Méd Diamet	Volume	Massa	Densidade	Situação	Colunas1
96	13,99	14,1	14,08	6,46	6,56	6,75	14,05666667	6,59	479,43557	0,6	0,001251472	Manufatura	do
97	13,97	13,96	14	6,64	6,52	6,74	13,97666667	6,633333333	482,99688	0,6	0,001242244	Manufatura	do
98	13,99	14,12	14,02	6,7	6,65	6,67	14,04333333	6,673333333	491,17122	0,6	0,00122157	Manufatura	do
99	14,01	14,06	14,03	6,55	6,47	6,78	14,03333333	6,6	480,09345	0,6	0,001249757	Manufatura	do
100	14,01	14,12	14,06	6,71	6,75	6,8	14,06333333	6,753333333	503,73452	0,6	0,001191104	Manufatura	do
116	14,14	14,16	14,37	6,69	6,38	6,88	14,22333333	6,65	493,99409	0,7	0,001417021	Sulfato de m	agnésio
117	14,09	14,21	14,17	6,93	6,84	7,13	14,15666667	6,966666667	539,62013	0,7	0,001297209	Sulfato de m	agnésio
118	14,06	14,26	14,1	6,79	6,76	6,71	14,14	6,753333333	506,48065	0,6	0,001184645	Sulfato de m	agnésio
119	14,06	14,17	14,09	6,89	6,89	6,91	14,10666667	6,896666667	526,96279	0,7	0,001328367	Sulfato de m	agnésio
120	14,11	14,08	14,09	6,82	6,86	6,8	14,09333333	6,826666667	515,83189	0,7	0,001357031	Sulfato de m	agnésio
106	14,06	13,99	14,07	6,85	6,95	6,97	14,04	6,923333333	528,53611	0,9	0,001702816	Resinado	
107	14,05	14,07	14,08	6,77	6,78	6,83	14,06666667	6,793333333	509,84025	0,9	0,001765259	Resinado	
108	14,03	14,29	14,12	6,84	6,91	6,95	14,14666667	6,9	528,96797	0,8	0,001512379	Resinado	
109	13,96	14,12	14,03	6,77	6,83	6,86	14,03666667	6,82	512,75489	0,8	0,0015602	Resinado	
110	13,99	14,09	13,99	6,88	6,72	6,91	14,02333333	6,836666667	514,77464	0,8	0,001554078	Resinado	
Comp, Dia	met, Méd (Comp, Méd	Diamet: (mı	m)									
Volume: (mm³)												
Massa: (g)													
Densidade	e: (g/mm³)												

8 TABELA COM CÓDIGOS PARA DIFERENTES FORMULAÇÕES

Tabela 9 – código para as diferentes formulações dos manufaturados

PIBIM	Pó importado e binder importado como manufaturados									
PIBIS	Pó importado e binder importado pós-processados com	sulfato de	magnésio							
PIBIR	pó importado e binder importado pós-processados com	resina de l	oaixíssima [·]	viscosidade)					
PIBAM	Pó importado e binder alternativo como manufaturados									
PIBAS	Pó importado e binder alternativo pós-processados com sulfato de magnésio									
PIBAR	Pó importado e binder nacional pós-processados com resina de baixíssima viscosidade									
PABAM	Pó alternativo e binder alternativo como manufaturados									
PABAS	Pó alternativo e binder alternativo pós-processados com sulfato de magnésio									
PABAR	Pó alternativo e binder alternativo pós-processados cor	m resina de	baixíssima	viscosidad	le					
PAPIBAM	Pó alternativo + pó importado e binder alternativo como	manufatur	ados							
PAPIBAS	Pó alternativo+ pó importado e binder alternativo pós-p	rocessados	com sulfat	o de magn	ésio					
PAPIBAR	Pó alternativo + pó importado e binder alternativo pós-p	processado	s com resin	a de baixís	sima visco	sid				
F	Flexão									
С	Compressão									

9 TABELA COM AS MÉDIAS DAS DENSIDADES PARA AS DIFERENTES FORMULAÇÕES

9.1 Médias das densidades dos corpos de prova para flexão

Tabela 10: média das densidades dos corpos de prova para flexão

Colunas1	Média das densidades (g/mm³)
PIBIMF	0,001364878
PIBISF	0,001394962
PIBIRF	0,00157186
PIBAMF	0,001388917
PIBASF	0,001438937
PIBARF	0,001613774
PABAMF	0,000957243
PABASF	0,000932099
PABARF	0,001391006
PAPIBAMF	0,001223031
PAPIBASF	0,001258054
PAPIBARF	0,00150455

Fonte: Próprio autor.

Pelos resultados de densidades aparentes pode-se concluir sobre os corpos de prova para flexão que, em todas as formulações os pós-processados com resina de baixíssima viscosidade apresentaram maior densidade, e dentre as formulações a de maior densidade com este pós-processamento foi a pó importado + *binder* nacional (B3).

9.2 Médias das densidades dos corpos de prova para compressão.

Tabela 11: média das densidades dos corpos de prova para compressão

Colunas1	Média das densidades (g/mm³)
PIBIMC	0,00135772
PIBISC	0,00135772
PIBIRC	0,00170952
PIBAMC	0,00146312
PIBASC	0,00141516
PIBARC	0,00172222
PABAMC	0,00079599
PABASC	0,00106293
PABARC	0,00134182
PAPIBAMC	0,00124224
PAPIBASC	0,00132837
PAPIBARC	0,00155714

Pelos resultados de densidades aparentes pode-se concluir sobre os corpos de prova para compressão que, em todas as formulações os pósprocessados com resina de baixíssima viscosidade apresentaram maior densidade, e dentre as formulações a de maior densidade com este pósprocessamento foi a pó importado + *binder* nacional (B3).

10 ANÁLISE DA RESISTÊNCIA MECÂNICA DAS DIFERENTES COMPOSIÇÕES

As análises de resistência mecânica a flexão e compressão foram realizadas no Laboratório de Ensaios Mecânicos do DEMM/FEM/UNICAMP.

Equipamento utilizado: Equipamento servo-hidráulico para ensaios mecânicos.

células de carga utilizadas: 1,5kN e 10kN.

Capacidade de 100kN.

Modelo 810-FlexTest 40

Fabricante: MTS

Software utilizado: TestWorks 4 - MTS

10.1 Resistência mecânica a flexão.

10.1.1 Corpos de prova compostos de pó e binder importados

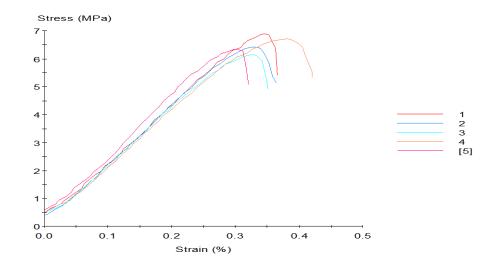

PIBIMF - Como manufaturados.

Tabela 12: Dados de ensaio de flexão para corpos de prova na condição A1F

Specimen	Width	Thickness	Modulus	Peak Load	Peak Stress	Load At	Stress At
#						Break	Break
	Mm	mm	MPa	N	MPa		
						N	MPa
1	5.97000	4.10000	2173.08266	14.41843	6.89631	14.33310	6.85550
2	6.03000	3.97000	2165.56875	12.72691	6.42785	12.25695	6.19049
3	6.00000	3.95000	2159.09769	12.00405	6.15494	11.58866	5.94195
4	6.00000	3.95000	2104.91683	13.09312	6.71335	12.54517	6.43239
5	6.02000	3.94000	2389.87971	12.34763	6.34214	12.22980	6.28162
Mean	6.00400	3.98200	2198.50913	12.91803	6.50692	12.59074	6.34039
Std. Dev.	0.02302	0.06686	110.30306	0.93262	0.29645	1.03486	0.33856

Fonte: Próprio autor.

Figura 28: comparação entre os corpos de prova na condição A1F

PIBISF – Pós-processados com sulfato de magnésio.

Tabela 13: Dados de ensaio de flexão para corpos de prova na condição A2F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#	Mm		MDo	N	Stress	Break	Break
	Mm	mm	MPa	IN	MPa	N	MPa
					&		۵
1	6.19000	4.32000	2754.24945	8.62200	3.58254	8.35716	3.47249
2	6.13000	4.04000	2718.00331	10.70901	5.13768	10.30436	4.94355
3	6.26000	4.34000	3796.16599	8.62095	3.50948	8.18215	3.33085
4	6.21000	4.26000	2274.47997	7.60283	3.23822	7.36066	3.13507
5	6.17000	4.18000	2370.62752	8.02838	3.57463	7.69032	3.42411
Mean	6.19200	4.22800	2782.70525	8.71664	3.80851	8.37893	3.66122
Std. Dev.	0.04817	0.12215	604.19362	1.19394	0.75616	1.14647	0.72839

Fonte: Próprio autor.

Figura 29: comparação entre os corpos de prova na condição A2F

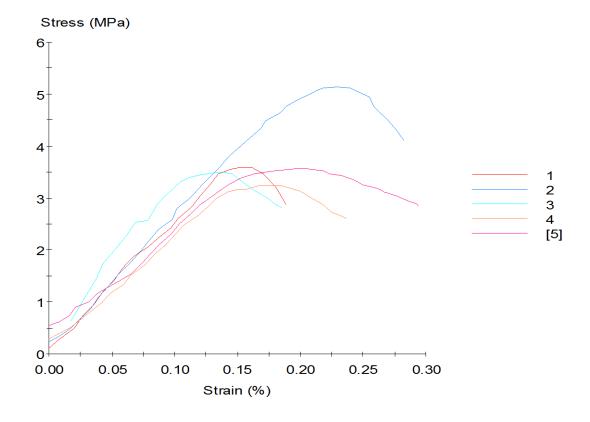


Tabela 14: Dados de ensaio de flexão para corpos de prova na condição A3F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#	Mm	mm	MPa	N	Stress	Break	Break
	IVIIII	111111	IVII a	14	MPa	N	MPa
1	5.92000	4.09000	4227.91485	40.85812	19.80392	39.04094	18.92314
2	5.94000	4.01000	3833.38508	39.43797	19.81895	37.75403	18.97271
3	6.06000	3.96000	4491.38393	39.70899	20.05705	38.83387	19.61503
4	5.89000	4.03000	3782.20863	35.74856	17.93801	35.09637	17.61076
5	5.83000	4.03000	4195.17311	38.58514	19.56062	37.23824	18.87782
Mean	5.92800	4.02400	4106.01312	38.86775	19.43571	37.59269	18.79989
Std. Dev.	0.08468	0.04669	296.01334	1.92377	0.85545	1.58282	0.72966

Figura 30: comparação entre os corpos de prova na condição A3F

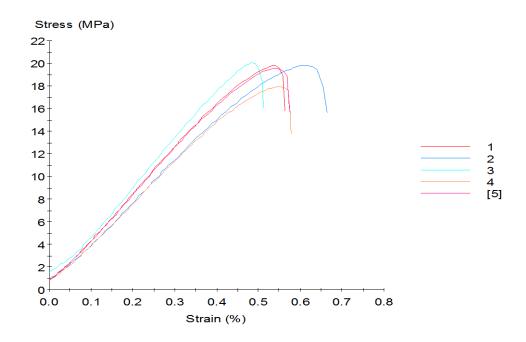


Tabela 15: Dados de ensaio de flexão para corpos de prova na condição B1F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#	Mm	mm	MPa	N	Stress	Break	Break
	IVIIII	111111	IVII a	IN	MPa	N	MPa
1	6.12000	4.14000	2384.02157	12.23981	5.60098	11.68329	5.34631
2	6.14000	4.17000	1846.70449	12.96080	5.82683	12.63234	5.67917
3	6.09000	4.10000	2532.29602	12.01144	5.63185	11.43751	5.36275
4	6.13000	4.05000	2598.89131	12.09500	5.77400	11.54710	5.51243
5	6.13000	4.08000	2557.63093	12.92104	6.07796	12.41105	5.83807
Mean	6.12200	4.10800	2383.90887	12.44562	5.78233	11.94226	5.54775
Std. Dev.	0.01924	0.04764	311.04827	0.45969	0.19038	0.54175	0.21071

Figura 31: comparação entre os corpos de prova na condição B1F

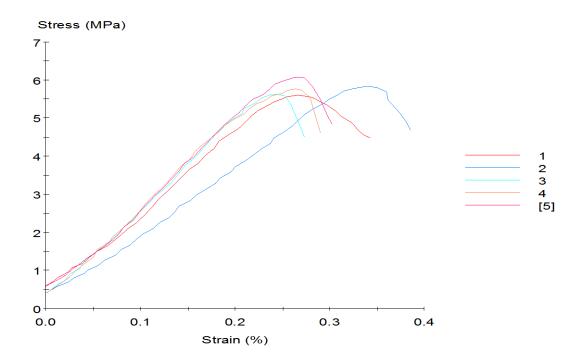
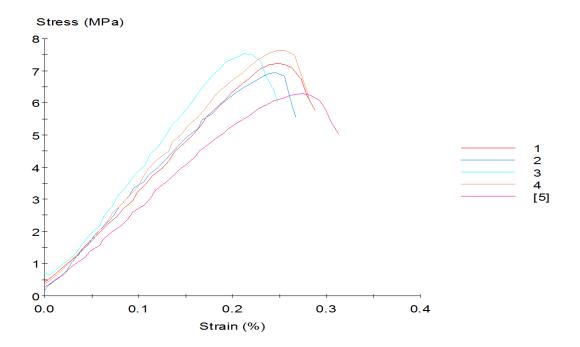
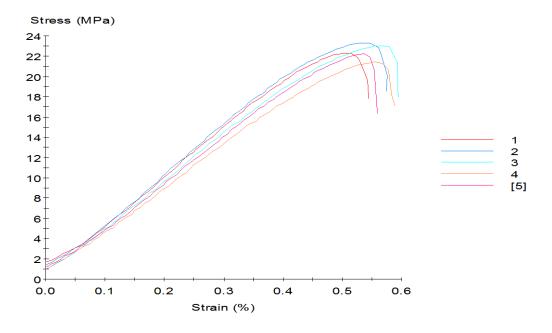



Tabela 16: Dados de ensaio de flexão para corpos de prova na condição B2F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N	MDa	NI	MD-
					MPa	N	MPa
1	6.12000	4.20000	3195.68212	16.26687	7.23261	16.01242	7.11948
2	6.20000	4.18000	3465.33964	15.67596	6.94594	15.43373	6.83861
3	6.09000	4.16000	3874.78552	16.51030	7.51956	16.00237	7.28822
4	5.94000	4.06000	3485.21121	15.55461	7.62539	15.27054	7.48613
5	5.92000	3.95000	2717.39144	12.09102	6.28331	11.70746	6.08398
Mean	6.05400	4.11000	3347.68199	15.21975	7.12136	14.88531	6.96329
Std. Dev.	0.12033	0.10440	427.48271	1.79382	0.53807	1.80735	0.54591

Figura 32: comparação entre os corpos de prova na condição B2F


Fonte: Próprio autor.

PIBARF - Pós-processados com resina de baixíssima viscosidade.

Tabela 17: Dados de ensaio de flexão para corpos de prova na condição B3F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N			
					MPa	N	MPa
1	5.88000	3.95000	5022.65848	42.63549	22.30699	40.67109	21.27921
2	5.89000	3.96000	5137.21715	44.82538	23.29483	42.94561	22.31795
3	5.92000	3.94000	4830.03990	44.12191	23.04525	43.35193	22.64308
4	5.91000	3.96000	4463.41322	41.37911	21.43110	40.00901	20.72150
5	5.83000	3.97000	4693.85921	42.55169	22.22842	42.03356	21.95775
Mean	5.88600	3.95600	4829.43759	43.10272	22.46132	41.80224	21.78390
Std. Dev.	0.03507	0.01140	266.65439	1.36922	0.73741	1.43679	0.78055

Figura 33: comparação entre os corpos de prova na condição B3F

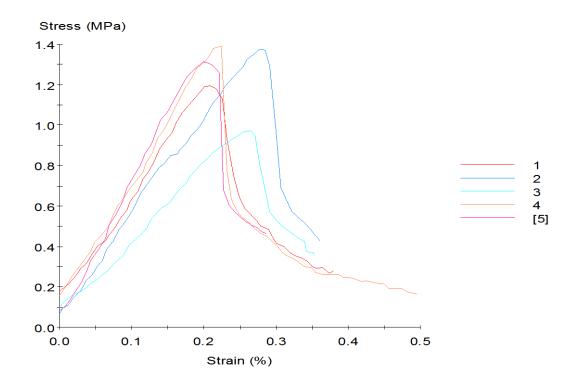

10.1.3 Corpos de prova compostos de pó alternativo e binder nacional. PABAMF – Como manufaturados.

Tabela 18: Dados de ensaio de flexão para corpos de prova na condição C1F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#	Mm	mm	MPa	N	Stress	Break	Break
	IVIIII	111111	IVIFa	IN	MPa	N	MPa
1	5.84000	3.98000	625.34073	2.30049	1.19367	2.17280	1.12741
2	5.91000	3.92000	578.32323	2.60383	1.37624	2.44894	1.29437
3	5.84000	3.83000	410.75327	1.73965	0.97475	1.69514	0.94981
4	5.92000	3.98000	676.19258	2.71619	1.39032	2.71619	1.39032
5	5.86000	3.97000	723.44430	2.52438	1.31195	2.42411	1.25984
Mean	5.87400	3.93600	602.81082	2.37691	1.24938	2.29144	1.20435
Std. Dev.	0.03847	0.06427	120.34394	0.38739	0.17205	0.38486	0.17064

Fonte: Próprio autor.

Figura 34: comparação entre os corpos de prova na condição C1F

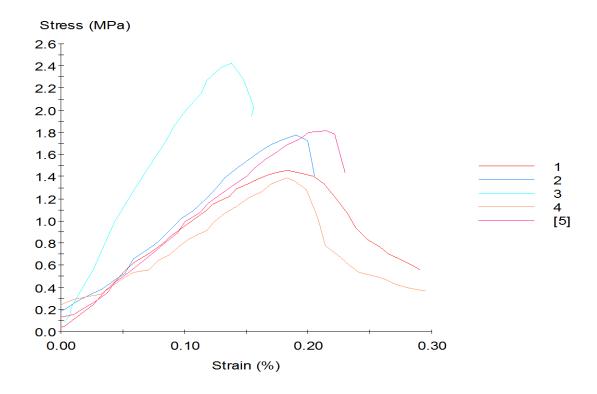

PABASF – Pós-processados com sulfato de magnésio.

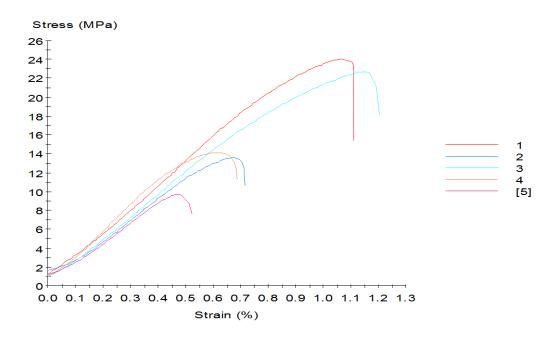
Tabela 19: Dados de ensaio de flexão para corpos de prova na condição C2F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N			
					MPa	N	MPa
1	6.37000	4.50000	1039.21650	3.91215	1.45577	3.77228	1.40372
2	6.73000	4.68000	1031.88344	5.46562	1.77981	5.29436	1.72404
3	6.36000	4.45000	2199.36014	6.35816	2.42323	5.98944	2.28271
4	6.61000	4.70000	795.96436	4.21314	1.38500	4.14782	1.36353
5	6.55000	4.70000	962.83480	5.46989	1.81461	5.38287	1.78574
Mean	6.52400	4.60600	1205.85185	5.08379	1.77168	4.91735	1.71195
Std. Dev.	0.15900	0.12116	563.94949	1.00619	0.41102	0.92352	0.37005

Fonte: Próprio autor.

Figura 35: comparação entre os corpos de prova na condição C2F

PABARF – Pós-processados com resina de baixíssima viscosidade


Tabela 20: Dados de ensaio de flexão para corpos de prova na condição

-	_	
_	$\boldsymbol{\neg}$	г
	. 1	

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N			
					MPa	N	MPa
1	5.96000	4.07000	2646.87260	49.41561	24.02538	48.56055	23.60966
2	6.01000	4.01000	2309.54304	27.28791	13.55340	26.49458	13.15937
3	5.93000	4.00000	2423.73121	44.86753	22.69858	43.26261	21.88665
4	6.08000	4.10000	2889.80151	30.09408	14.13354	28.96205	13.60189
5	5.87000	4.08000	2218.48353	19.74934	9.70142	18.80739	9.23871
Mean	5.97000	4.05200	2497.68638	34.28290	16.82247	33.21744	16.29926
Std. Dev.	0.07969	0.04438	271.49232	12.43718	6.22569	12.32144	6.15725

Fonte: Próprio autor.

Figura 36: comparação entre os corpos de prova na condição C3F

10.1.4 Corpos de prova compostos de pó importado + pó alternativo e binder nacional.

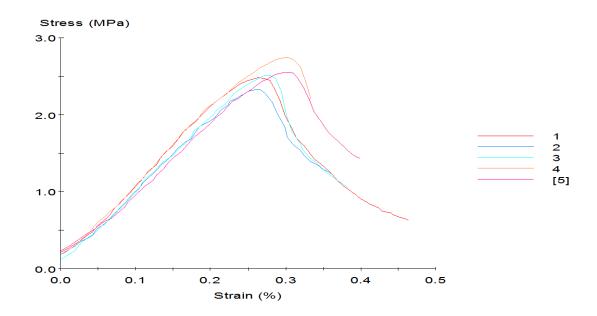

PAPIBAMF - Como manufaturados.

Tabela 21: Dados de ensaio de flexão para corpos de prova na condição D1F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N			
					MPa	N	MPa
1	5.65000	3.90000	1074.63854	4.44618	2.48342	4.19614	2.34376
2	5.73000	3.93000	997.86267	4.28256	2.32276	4.19410	2.27479
3	5.68000	3.93000	1002.00596	4.57854	2.50516	4.52058	2.47344
4	5.77000	3.89000	1072.43943	4.99231	2.74453	4.78719	2.63176
5	5.74000	3.97000	952.05253	4.80234	2.54801	4.66064	2.47283
Mean	5.71400	3.92400	1019.79983	4.62039	2.52078	4.47173	2.43932
Std. Dev.	0.04827	0.03130	52.83410	0.28180	0.15137	0.26954	0.13741

Fonte: Próprio autor.

Figura 37: comparação entre os corpos de prova na condição D1F

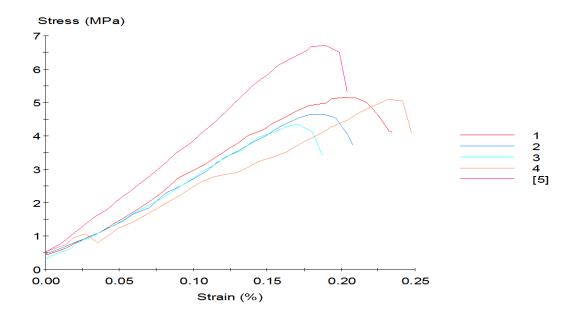

PAPIBASF - Pós- processados com sulfato de magnésio.

Tabela 22: Dados de ensaio de flexão para corpos de prova na condição D2F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#	Mm		MPa	N	Stress	Break	Break
	IVIITI	mm	IVIPa	IN	MPa	N	MPa
1	5.95000	3.99000	2938.38685	10.14952	5.14309	9.87003	5.00146
2	5.88000	4.05000	2730.30234	9.34014	4.64844	9.12153	4.53964
3	5.91000	4.00000	2729.58064	8.56658	4.34852	8.14341	4.13371
4	5.90000	4.03000	2419.48832	10.14630	5.08261	10.07822	5.04851
5	5.92000	3.99000	3897.32910	13.19377	6.71959	12.78846	6.51317
Mean	5.91200	4.01200	2943.01745	10.27926	5.18845	10.00033	5.04730
Std. Dev.	0.02588	0.02683	564.71628	1.75671	0.91580	1.73329	0.90045

Fonte: Próprio autor.

Figura 38: comparação entre os corpos de prova na condição D2F

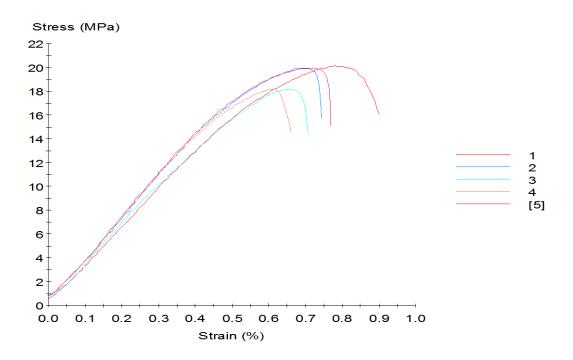

PAPIBARF - Pós- processados com resina de baixíssima viscosidade.

Tabela 23: Dados de ensaio de flexão para corpos de prova na condição D3F

Specimen	Width	Thickness	Modulus	Peak Load	Peak	Load At	Stress At
#					Stress	Break	Break
	Mm	mm	MPa	N			
					MPa	N	MPa
1	5.83000	3.99000	3282.63882	38.86259	20.09827	36.89904	19.08279
2	5.93000	3.92000	3656.09122	37.88090	19.95422	36.50070	19.22718
3	5.88000	3.95000	3441.32649	34.68893	18.14933	33.55078	17.55385
4	5.77000	3.96000	3680.15013	34.22563	18.15626	32.67417	17.33324
5	5.83000	3.93000	3708.70719	37.37779	19.92513	36.24688	19.32227
Mean	5.84800	3.95000	3553.78277	36.60717	19.25664	35.17431	18.50387
Std. Dev.	0.06017	0.02739	184.79905	2.04050	1.00980	1.92165	0.97481

Fonte: Próprio autor.

Figura 39: comparação entre os corpos de prova na condição D3F

Para melhor visualização segue uma tabela com as tensões máximas em todas as condições de flexão:

Tabela 24: Tensões máximas de flexão nas diferentes condições e formulações

Condição	Tensão Máxima (Mpa)
PIBIMF	6.89
PIBISF	5.13
PIBIRF	20.05
PIBAMF	6.07
PIBASF	7.62
PIBARF	23.04
PABAMF	1.39
PABASF	2.42
PABARF	24.02
PAPIBAMF	2.5
PAPIBASF	6.71
PAPIBARF	19.92

Fonte: Próprio autor.

Observando os diferentes valores de tensões nas diferentes composições, pode-se observar que:

- A tensão máxima em PIBIM é maior que PIBIS, porém a tensão máxima em PIBIR é mais que o dobro de PIBIM.
- A tensão máxima em PIBAS é maior do que em PIBAM e em PIBAR a tensão é três vezes maior que PIBAS.
- é possível notar uma queda considerável na tensão máxima de PABAM
 e PABAS em relação a PIBIM,PIBIS,PIBAM e PIBAS, porém uma superioridade de PABAR em relação a PIBIR e PIBAR.
- A tensão máxima de PAPIBAS é maior do que em relação a PAPIBAM e novamente PAPIBAR é a condição mais resistente a flexão.

10.2 Imagens dos ensaios de flexão

Abaixo pode-se observar nas figuras 40 e 41, o equipamento servohidráulico para ensaios mecânicos realizando os ensaios de tração e, na figura 42, a construção da curva tensão x deformação.

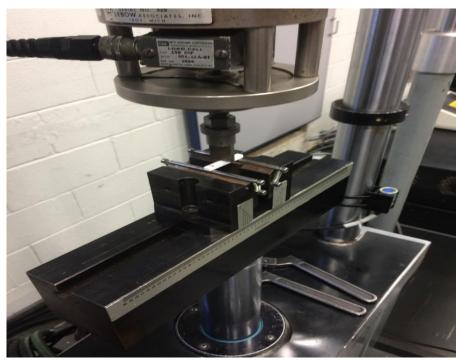
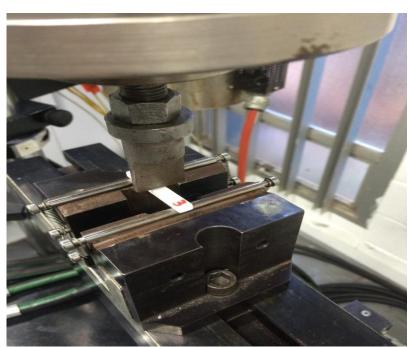



Figura 40 - Realização do ensaio de flexão

Figura 41: Corpo de prova numero três sendo submetido a ensaio de flexão

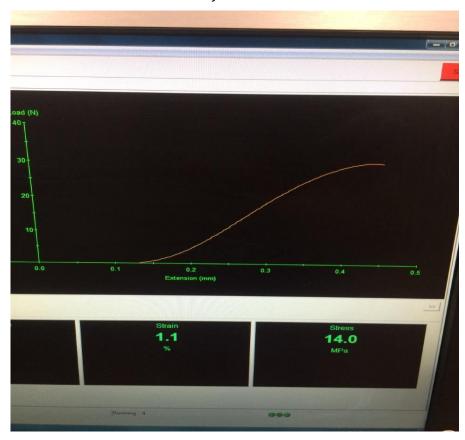
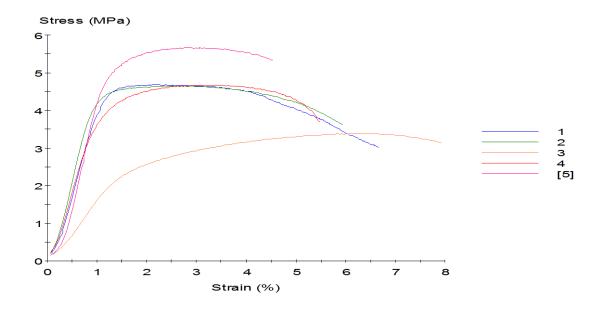


Figura 42: Curva tensão deformação do ensaio de flexão

10.3 Resistência mecânica a compressão


10.3.1 Corpos de prova compostos de pó e binder importados

PIBICM - Como manufaturados.

Tabela 25: Dados de ensaio de compressão para corpos de prova na condição A1C

Specimen #	Load At	Stress At	Peak Load	Peak Stress
	Yield	Yield	N	MPa
	N	MPa	14	IVII u
1	172.40960	4.66470	172.85893	4.67685
2	169.29556	4.62077	170.14414	4.64393
3	121.11047	3.37441	121.39667	3.38239
4	169.86963	4.65004	170.83381	4.67644
5	206.13324	5.65932	206.33101	5.66475
Mean	167.76370	4.59385	168.31291	4.60887
Std. Dev.	30.31959	0.81104	30.31866	0.81079

Figura 43: comparação entre os corpos de prova na condição A1C

Fonte: Próprio autor.

PIBISC – pós-processados com sulfato de magnésio.

Tabela 26: Dados de ensaio de compressão para corpos de prova na condição A2C

Specimen #	Load At Yield	Stress At Yield	Peak Load	Peak Stress
#	rieia	rieia	N	Stress
	N	MPa		MPa
1	197.46254	4.90421	197.46254	4.90421
2	136.32018	3.37623	165.05522	4.08791
3	154.02258	3.93446	160.72544	4.10568
4	210.01530	5.23057	210.01530	5.23057
5	99.67286	2.46859	99.67286	2.46859
Mean	159.49869	3.98281	166.58627	4.15939
Std. Dev.	45.10971	1.12572	42.87634	1.06876

Stress (MPa)

6

5

4

3

2

1

2

3

4

[5]

Strain (%)

Figura 44: comparação entre os corpos de prova na condição A2C

PIBIRC – pós-processados com resina de baixíssima viscosidade.

Tabela 27: Dados de ensaio de compressão para corpos de prova na condição A3C

Specimen #	Load At	Stress At	Peak Load	Peak Stress
	Yield	Yield	27	. m
	N	MPa	N	MPa
1	1420.73356	37.77553	1420.73356	37.77553
2	1419.57377	39.20383	1419.91104	39.21315
3	1486.22118	39.86164	1486.22118	39.86164
4	1663.51541	44.61681	1664.01165	44.63012
5	1594.88602	43.53097	1595.17773	43.53893
Mean	1516.98599	40.99776	1517.21103	41.00387
Std. Dev.	108.67317	2.93285	108.81727	2.93725

Figura 45: comparação entre os corpos de prova na condição A3C

10.3.2 Corpos de prova compostos de pó importado e binder nacional PIBAMC- Como manufaturados.

Tabela 28: Dados de ensaio de compressão para corpos de prova na condição B1C

Specimen #	Load At	Stress At	Peak Load	Peak Stress
	Yield	Yield		
			N	MPa
	N	MPa		
1	293.07883	7.46545	293.20249	7.46860
2	253.30042	6.79372	254.02149	6.81306
3	229.60419	6.05230	229.61097	6.05248
4	312.83913	8.19909	312.83913	8.19909
5	335.22762	8.56329	335.22762	8.56329
Mean	284.81004	7.41477	284.98034	7.41930
Std. Dev.	43.11751	1.02211	42.99047	1.01918

Stress (MPa)

9

8

7

6

5

4

3

4

3

[5]

Strain (%)

Figura 46: comparação entre os corpos de prova na condição B1C

PIBASC- Pós-processados com sulfato de magnésio.

Tabela 29: Dados de ensaio de compressão para corpos de prova na condição B2C

Specimen	Load At	Stress At	Peak Load	Peak
#	Yield	Yield		Stress
"	11010	11014	N	0000
	N	MPa	14	MPa
	IN	IVII a		IVII a
1	261.67279	6.53540	261.67279	6.53540
2	297.25142	7.67998	297.25142	7.67998
3	316.70389	7.95433	316.70389	7.95433
4	9.98275	0.25429	360.66811	9.18711
5	341.35263	8.76936	341.35263	8.76936
Mean	245.39270	6.23867	315.52977	8.02524
Std. Dev.	134.78298	3.43970	38.53681	1.03048

Stress (MPa)

10

9

8

7

6

5

4

3

4

3

4

5

Strain (%)

Figura 47: comparação entre os corpos de prova na condição B2C

PIBARC- Pós-processados com resina de baixíssima viscosidade

Tabela 30: Dados de ensaio de compressão para corpos de prova na condição B3C

Specimen #	Load At Yield	Stress At Yield	Peak Load	Peak Stress
"	N	MPa	N	MPa
1	1479.42611	40.49810	1481.02888	40.54197
2	719.13884	19.68585	719.13884	19.68585
3	1466.21393	41.33985	1466.60229	41.35080
4	1520.01644	40.88665	1520.01644	40.88665
5	1445.45344	39.91854	1445.54299	39.92102
Mean	1326.04975	36.46580	1326.46589	36.47726
Std. Dev.	340.36432	9.39479	340.59332	9.40116

Stress (MPa)

50

40

30

20

10

0 1 2 3 4 5 6 7 8 9 10

Strain (%)

Figura 48: comparação entre os corpos de prova na condição B3C

10.3.3 Corpos de prova compostos de pó alternativo e binder nacional.

PABAMC - Como manufaturados.

Tabela 31: Dados de ensaio de compressão para corpos de prova na condição C1C

~	Г	~ .		
Specimen #	Load At	Stress At	Peak Load	Peak Stress
	Yield	Yield		
			N	MPa
	N	MPa		
	11	1 111 u		
1	11.76104	0.35552	12.48393	0.37737
2	12.38740	0.34412	12.46718	0.34634
3	9.91151	0.28113	10.10636	0.28665
4	14.78195	0.42688	15.10067	0.43608
5	12.64695	0.34927	12.89484	0.35611
Mean	12.29777	0.35138	12.61060	0.36051
Std. Dev.	1.75239	0.05175	1.77405	0.05402

Figura 49: comparação entre os corpos de prova na condição C1C

PABASC - Pós- processados com sulfato de magnésio.

Tabela 32: Dados de ensaio de compressão para corpos de prova na condição C2C

Specimen	Load At	Stress At	Peak Load	Peak
#	Yield	Yield	N	Stress
	N	MPa		MPa
1	26.45051	0.63371	26.58468	0.63692
2	15.76757	0.36464	31.29062	0.72363
3	10.14338	0.24302	29.90021	0.71636
4	11.08406	0.26483	37.56660	0.89757
5	18.46195	0.43631	29.93151	0.70737
Mean	16.38149	0.38850	31.05472	0.73637
Std. Dev.	6.57775	0.15767	4.03225	0.09654

Stress (MPa)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 1 2 3 4 5

Figura 50: comparação entre os corpos de prova na condição C2C

PABARC - Pós- processados com resina de baixíssima viscosidade

Strain (%)

Tabela 33: Dados de ensaio de compressão para corpos de prova na condição C2C

Specimen	Load At	Stress At	Peak Load	Peak
#	Yield	Yield		Stress
	N	MPa	N	MPa
1	1379.21613	36.99168	1380.03188	37.01355
2	1139.80250	31.01898	1139.80250	31.01898
3	601.38400	16.55938	601.38400	16.55938
4	1299.07762	35.45715	1299.07762	35.45715
5	880.65319	23.68853	880.65319	23.68853
Mean	1060.02669	28.74314	1060.18984	28.74752
Std. Dev.	319.34284	8.54823	319.54682	8.55351

Stress (MPa)

40

30

20

1 2 3 4 5 6 7 8 9 10 11 12
Strain (%)

Figura 51: comparação entre os corpos de prova na condição C3C

10.3.4 Corpos de prova compostos de pó alternativo + pó importado e binder nacional.

PAPIBAMC - Como manufaturados.

Tabela 34: Dados de ensaio de compressão para corpos de prova na condição D1C

Specimen	Load At	Stress At	Peak Load	Peak
#	Yield	Yield		Stress
	N	MPa	Ν	MPa
1	67.84375	1.98907	68.18968	1.99921
2	68.49162	1.98390	68.55586	1.98576
3	72.04787	2.06196	72.33124	2.07007
4	73.03043	2.13465	73.06615	2.13569
5	74.46931	2.08104	74.85497	2.09181
Mean	71.17660	2.05012	71.39958	2.05651
Std. Dev.	2.88768	0.06394	2.91442	0.06322

Stress (MPa)

2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 1 2 3 4 5 6
Strain (%)

Figura 52: comparação entre os corpos de prova na condição D1C

PAPIBASC – Pós-processados com sulfato de magnésio.

Tabela 35: Dados de ensaio de compressão para corpos de prova na condição D2C

Specimen #	Load At Yield	Stress At Yield	Peak Load	Peak Stress
	N	MPa	N	MPa
1	176.90292	5.09333	176.90292	5.09333
2	183.26827	4.81703	183.26827	4.81703
3	140.32973	3.92150	141.22481	3.94651
4	180.53625	4.84213	180.57849	4.84326
5	122.62133	3.35666	122.62133	3.35666
Mean	160.73170	4.40613	160.91916	4.41136
Std. Dev.	27.52393	0.73611	27.36806	0.73223

Stress (MPa)

6

5

4

3

4

2

3

4

[5]

Strain (%)

Figura 53: comparação entre os corpos de prova na condição D2C

PAPIBARC – Pós-processados com resina de baixíssima viscosidade.

Tabela 36: Dados de ensaio de compressão para corpos de prova na condição D3C

Specimen #	Load At	Stress At	Peak Load	Peak Stress
	Yield	Yield		
			N	MPa
	N	MPa		
1	1617.89485	43.01780	1617.89485	43.01780
2	1554.40665	42.92746	1554.40665	42.92746
3	1364.30920	36.48587	1365.91812	36.52890
4	1365.38903	37.37643	1370.39233	37.51339
5	1518.30765	41.44083	1521.98413	41.54118
Mean	1484.06147	40.24968	1486.11922	40.30575
Std. Dev.	114.51678	3.10941	113.08768	3.07477

Stress (MPa)

50

40

30

20

10

10

Strain (%)

Figura 54: comparação entre os corpos de prova na condição D3C

Para melhor visualização segue uma tabela com as tensões máximas de compressão em todas as condições:

Tabela 37: Tensões de compressão máximas nas diferentes condições e formulações

Condição	Tensão Máxima (Mpa)	
PIBIMC	5.66	
PIBISC	5.23	
PIBIRC	44.63	
PIBAMC	8.56	
PIBASC	9.18	
PIBARC	40.88	
PABAMC	0.43	
PABASC	0.89	
PABARC	37.01	
PAPIBAMC	2.13	
PAPIBASC	5.09	
PAPIBARC	43.01	

Fonte: Próprio autor.

Observando os diferentes valores de tensões nas diferentes composições, pode-se observar que:

- A tensão máxima em PIBIM é maior que PIBIS, porém a tensão máxima em PIBIR é oito vezes a de PIBIM.
- A tensão máxima em PIBAS é maior do que em PIBAM e em PIBAR a tensão é mais que quatro vezes maior que PIBAS.
- É possível notar uma queda considerável na tensão máxima de PABAM e PABAS em relação a PIBIM, PIBIS, PIBAM, PIBAS e PABAR também inferior a PIBIR, PIBAR e PAPIBAR.
- A tensão máxima de PAPIBAS é maior do que em relação a PAPIBAM e novamente PAPIBAR muito superior, podendo ser considerada praticamente a mesma em relação a tensão do material importado PIBIR.

10.4 Imagens dos ensaios de compressão

Abaixo pode-se observar nas figuras 55 e 56, o equipamento servohidráulico para ensaios mecânicos realizando os ensaios de compressão e, na figura 57, a construção da curva tensão x deformação.

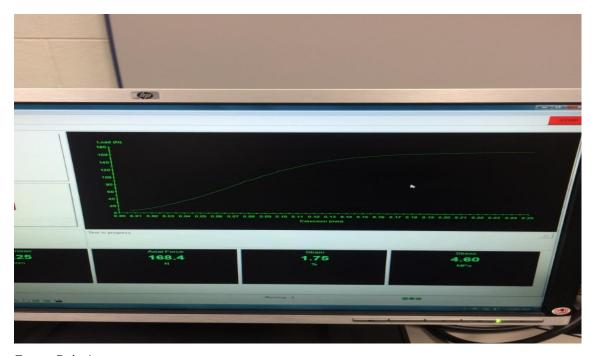


Figura 55: Corpo de prova sendo submetido a ensaio de compressão

Figura 56: Corpo de prova sendo submetido a ensaio de compressão

Figura 57: Curva tensão deformação sendo gerada no ensaio de compressão

11 CONCLUSÕES

- O pó estando em contato com a humidade faz com que as partículas se aglomerem e assim a impressora projet 160, que foi estudada neste trabalho e que utiliza o principio da impressão 3d printer, não consiga produzir as camadas com a espessura adequada e imprima corpos de prova com baixíssima resistência mecânica além de mal acabamento superficial.
- Pode-se concluir também que, no caso dos corpos de prova a flexao, a formulação elaborada neste trabalho PABARF, apresentou maior resistência mecânica entre todas as formulações, até em relação ao material importado, o que a partir de agora, pode tornar o processo de impressão até dez vezes mais barato.
- Em relação aos corpos de prova, apesar da formulação produzida neste trabalho não ter sido superior ao material importado quando se trata de compressão, foi bem próxima, e atende satisfatoriamente os critérios necessários para a impressão de biomodelos, como por exemplo, resistência mínima ao manuseio.
- Portanto, os dois principais objetivos deste trabalho que eram entender a influência da composição no comportamento mecânico de biomodelos e, elaborar uma formulação para tornar esta impressão mais barata, já que a matéria prima é muito cara, foram alcançados com sucesso, sendo o material desenvolvido superior ao comercial quanto a flexão, desde que pós- processado com resina de baixíssima viscosidade e suportando praticamente a mesma resistência à compressão.

12 SUGESTÕES PARA TRABALHOS FUTUROS

- Verificar através de MEV, por exemplo, os componentes químicos existentes no material importado, para investigar como as partículas se aglomeram.
- A partir da matéria-prima sendo gesso puro, pesquisar uma forma de separar partículas aglomeradas, reter a humidade e realizar a impressão com o pó sendo apenas gesso.
- Imprimir um biomodelo físico a partir da composição elaborada neste trabalho.
- Verificar a possibilidade de utilizar outro constituinte como matéria prima,
 não apenas gesso, já que este é muito higroscópio.

REFERENCIAS

- ANTAS, A. F. F. **Utilização das tecnologias de prototipagem rápida na área médica**. 2007. 130 f. Dissertação (Mestrado em Design Industrial) Escola Superior de Artes e Design de Matosinhos, Faculdade de Engenharia da Universidade do Porto Porto, Porto, 2007.
- BESSA, J. S. **Prototipagem rápida:** engenharia do produto. São Paulo: Faculdade de Pitágoras, 2015. Disponível em: http://amigonerd.net/exatas/engenharia/prototipagem-rapida. Acesso em: 23 mar. 2015.
- BIBB, R.; WINDER, J. A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques. **Radiography**, Canterbury, v.16, n.1, p. 78-83, fev. 2010.
- CHUA, C. K. **Rapid prototyping:** principles and applications. 2. ed. New Jersey: World Scientific, 2003.
- DA LUZ, A. B.; LINS, F. A. F. **Rochas e minerais industriais**: usos e especificações. CETEM-MCT. Rio de Janeiro: A. B. DA LUZ; F. F. LINS, 2005.
- D'URSO et al. Cerebrovascular biomodelling: a technical note. **Surgical Neurology**, Philadelphia, v. 52, n. 5, p. 490-500, nov. 1999.
- ESPERTO, L.; OSORIO, A. Rapid tooling sinterização directa por laser de metais. **Revista da Associação Portuguesa de Análise Experimental de Tensões**, Lisbon, v. 15, p. 118, 2008.
- FERRAZ, E. G. Efeito do processamento de reconstruções tridimensionais virtuais para confecção de biomodelos de prototipagem rápida: estudo experimental em mandíbulas secas humanas. 2009. 81 f. Dissertação (Mestrado em Odontologia Clínica Odontológica) Faculdade de Odontologia, Universidade Federal da Bahia, Salvador, 2009.
- FOGGIATTO, J. A. O Uso da Prototipagem Rápida na Área Médico-Odontológica. **Revista Tecnologia & Humanismo,** Curitiba, v. 20, n. 30, p. 60-68, 2006.
- GOUVEIA, M. F. Aplicação da prototipagem rápida no planejamento de cirurgias craniofaciais. 2009. 180 f. Tese (Doutorado em Engenharia Mecânica) Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2009.
- GROESEL, M.; GFOEHLER, M; PEHAM, C. Alternative solution of virtual biomodeling based on CT-scans. **Journal of Biomechanics**, Kidlington, v. 42, n. 12, p. 2006-2009, ago. 2009.
- JÚNIOR, E. A.; YAMASHITA, A. Aspectos básicos de tomografia computadorizada e ressonância magnética. **Revista Brasileira de Psiquiatria,** Sao Paulo, v. 23, maio 2001.

- KAI, C.C.; FAI, L. K.; SING, L. C. **Rapid protoyping:** principles and applications. 2. ed. [S. I.]: World Scientif Pub., 2003. 448 p.
- LEE, S.; LEE, H.; TSE, K.; CHEONG, E.; LIM, S. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery. **Craniomaxillofacial trauma and reconstruction**, New York, v. 5, n. 2, p. 75-82, 2012.
- LONGHITANO, G. A. Estudo de tratamentos térmicos e acabamentos de superfície na liga ti-64l-4v produzida via dmls para aplicação em implantes. 2015. 107 f. Dissertação (Mestrado em Engenharia Mecânica) Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2015.
- MARTINS, R.A. A Descoberta dos Raios X O Primeiro Comunicado de Rontgen. **Revista Brasileira de Ensino de Física,** Campinas, v. 20, n.4, p. 373, nov. 1997.
- MEIRA, C. R. et al. Desenvolvimento de pó à base de gesso e binder para prototipagem rápida. **Cerâmica**, São Paulo, v. 59, n. 351, p. 401-408, 2013. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0366-6913201300030009&lng=en&nrm=iso. Acesso em: 10 de abril de 2016.
- MEURER, M. I. et al. Aquisição e manipulação de imagens por tomografia computadorizada da região maxilofacial visando à obtenção de protótipos biomédicos. **Radiologia Brasileira**, Sao Paulo, v. 41, n. 1, p. 49-54, jan./fev, 2008.
- MIYASHITA, E. R. Avaliação das tensões ósseas geradas por prótese obturadora maxilar classe IV de Aramany por meio da análise de elementos finitos. 2008. 100 f. Dissertação (Mestrado em Odontologia Prótese buco maxilo facial) Faculdade de Odontologia, Universidade de São Paulo, São Paulo, 2008.
- PAIVA, W. S. et al. Aplication of the stereolithography technique in complex spine surgery. **Arquivos de Neuropsiquiatria**, São Paulo, v. 65, n. 2-B, p. 443-445, 2007.
- PORTAL DO SOFTWARE PÚBLICO BRASILEIRO. *Site.* [S. I.: s. n.], 2015. Disponível em: <www.cti.gov.br>. Acesso em: 14 maio de 2016.
- PHAM, D. T.; GAULT, R. S. A comparison of rapid prototyping technologies. **International Journal of Machine Tools & Manufacture**, New York, v. 38, p. 1257-1287, 1998.
- ROBIONY, M. et al. Virtual reality for surgical planning maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. **Journal of Oral Maxillofacial Surgery,** Maryland Heights, v. 65, n. 6, p. 1198-1208, jun. 2007.
- SANTOS, F.C. Desenvolvimento de software para equipamento de prototipagem rápida por sinterização seletiva a laser (SLS). 2009. Tese (Mestrado em Engenharia Mecânica) Universidade Federal de Santa Catarina, Florianópolis, 2009.

SANTOS, H. C.; AMARAL. W. N.; TACON. K. C A história da ultrassonografia no Brasil e no mundo. **Revista Digital**, Buenos Aires, v 17, n. 167, p. 1, abril 2012.

SILVA,F.B. **Ressonância Magnética e seu contexto histórico.** 2012. 21 f. Trabalho (Curso Tecnológico) – Radiologia. CENETI, 2012. Disponível em: https://pt.scribd.com/doc/84176783/Trabalho-sobre-Ressonancia-Magnetica. Acesso em: 22 mar. 2016.

UPCRAFT, S. Fletcher, r. the rapid prototyping technologies. **Rapid Prototyping Journal**, Bingley, v. 23, n. 4, p. 318-330, 2003.

VOLPATO, N.; FERREIRA, C. V.; SANTOS, J. R. L. **Prototipagem rápida:** tecnologias e aplicações. São Paulo: Edgard Blücher, 2007. 244 p.

WOHLERS T. **Wohlers report 2007**: state of the industry: annual worldwide progress report. [S. I.]: Wohlers Associates, 2007.