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RESUMO

A estimulação elétrica é uma técnica promissora para reabilitação motora em casos de lesão

medular. A saturação do estimulador também é um requisito importante no projeto de sistemas

de controle aplicados à estimulação elétrica. A negligência da saturação do atuador pode con-

duzir a resultados de controle indesejados, que evidencia os efeitos de fadiga muscular. Pela

primeira vez é proposto um controlador chaveado sujeito à saturação para membro inferior es-

timulado eletricamente. O modelo dinâmico de extensão do membro inferior é não linear e

incerto. O sistema descrito por modelos fuzzy Takagi-Sugeno e operando dentro de uma região

de operação no espaço de estados é considerado neste trabalho. Além disto, falha do atuador,

incerteza de ativação muscular, e não idealidades musculares, tais como fadiga, espasmos e

tremor foram considerados em três níveis de severidade. O controle chaveado é comparado

com a compensação distribuída paralela. Simulações denotam melhores resultados do contro-

lador chaveado lidando com incertezas paramétricas da planta. Por outro lado, um desafio dos

sistemas de controle para estimulação elétrica funcional émonitorar a dinâmica do torque em

contrações musculares. Em aplicações de contração isotônica, medir o torque é algo difícil. A

novidade neste estudo é a proposta de um novo modelo não linear, cujas variáveis de estado são

posição angular, velocidade angular e aceleração angular.Neste novo modelo a variável torque

é substituída adequadamente pela aceleração angular. Ensaios experimentais listam os parâmet-

ros correspondentes a 24 indivíduos (20 saudáveis e 4 paraplégicos) para o modelo linearizado

usando abordagem de identificação caixa cinza.

Palavras-chave:Estimulação elétrica. Paraplégicos. Modelos fuzzy Takagi-Sugeno. Desigual-

dades matriciais lineares. Controle chaveado.



ABSTRACT

Electrical stimulation is a promising technique for motor rehabilitation in cases of spinal cord

injury. Stimulator saturation is important in the control system designs applied to electrical

stimulation. The negligence of the actuator saturation in the electrical stimulation can lead to

unwanted control results, which evidences the muscular fatigue effects. For the first time a

switched controller subject to actuator saturation for electrically stimulated lower limb is pro-

posed. The dynamic limb extension model is nonlinear and uncertain. The uncertain nonlinear

system described by Takagi-Sugeno fuzzy models operating within an operating region in the

state space is considered in this study. In addition, fault in the actuator, muscle activation uncer-

tainty, and muscular non-idealities, such as fatigue, spasms, and tremor were considered at three

three severity levels. The switched controller is comparedto parallel distributed compensation

technique. Simulations denote better results of the switched controller by dealing with paramet-

ric uncertainties. On the other hand, a challenge for FES control systems is to monitor torque

in muscle contractions. In isotonic contraction applications, measuring torque is difficult. The

novelty in this study is the proposal of a new nonlinear model, whose state variables are angular

position, angular velocity and angular acceleration. In this new model the torque variable is

replaced by the angular acceleration. Experimental tests list the parameters corresponding to 24

individuals (20 healthy and 4 paraplegic) for the linearized model using gray box identification

approach.

Key words: Electrical stimulation. Paraplegics. Takagi-Sugeno fuzzy models. Linear matrix

inequalities. Switched control.
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1 INTRODUCTION

This chapter describes the problem treated and briefly introduces the proposal, motivation,

objectives and thesis outline.

1.1 Context of the problem

Spinal cord injury has a significant incidence in the world population. The lesion may

result in a partial or total obstruction of the sensory and motor connections below the level of

the lesion. With this, the central nervous system ceases to receive the sensory-motor signals

referring to the parts of the body below the level of the lesion. Paraplegic individuals begin

to live under different limitations of locomotion and changes in their daily activities. Simple

activities for healthy individuals become complex and painful for paraplegics. In this sense, the

use of functional electrical stimulation has the potentialto restore the movement of paralyzed

limbs, offering both therapeutic and functional benefits.

Results in the area of motor rehabilitation with electricalstimulation show a promising

future of this technique. Different approaches by researchers have concentrated efforts in intra-

muscular and surface stimulation, neuro technological implants, and hybrid mechanisms aided

by robotic systems to enable that paraplegic individuals walk again.

One strand of this field is the study of controllers using surface electrical stimulation. Re-

cent works in this area of closed-loop control highlights the challenges related to muscle delay;

to high frequency switching in the control signal, also called chattering; to modulation param-

eters; to the parametric uncertainties of the plant; strategies to compensate muscular fatigue,

among others.

However, the effect of the actuator saturation is also an important requirement in the sys-

tem control design applied to electrical stimulation. The negligence of the actuator saturation

in electrical stimulation can lead to unwanted control results, causing a overstimulation that

evidences the effects of muscular fatigue.

By the author’s knowledge, for the first time, a switched controller for the lower limb is pro-

posed considering the saturation and fault of the electric stimulation actuator and analysis under
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non-ideal muscular conditions (fatigue, spasm and tremor). The dynamic model of the lower

limb extension is nonlinear and uncertain. An exact description by the Takagi-Sugeno fuzzy

model of the plant, operating within a region of operation isconsidered in the control design.

A comparative analysis between the switched and parallel distributed compensation controllers

is presented. Due to the uncertainties of the plant, the parallel distributed compensation (PDC)

performance is compromised, because it is dependent on the knowledge of membership func-

tions. Results obtained by simulation emphasize the best performance of the switched control

law in non-ideal conditions, treated as parametric uncertainties.

In this study, the idea is to design several feedback gains, being only one gain used at a

time, chosen based on a switching law that depends on the state vector of the controlled system.

A schema that represents the use of the switched control is shown in the Figure 1.

A challenging problem is to measure muscle torque dynamics.In general, the variable

of muscle torque state is estimated through strategies fromthe control signal or from state

observers. Therefore, measuring torque becomes a complex task, especially for isotonic con-

tractions.

The novelty in this study refers to a new nonlinear dynamic model. The proposed model

presents the state variables: angular position, velocity,and acceleration. Therefore, the torque

state variable is replaced by angular acceleration, which can be measured easily by accelerom-

eters, for example. In addition, the nonlinear plant is described by fuzzy TS models and the

LMIs-based control design is presented. LMIs are convex constraints to solve optimization

problems with convex objective functions. The LMI constraints can easily be solved efficiently

using specific softwares. In recent years, this method has been widely used among control

engineers because a wide variety of control problems can be formulated as LMIs.

1.2 Objectives

1.2.1 General

This doctoral thesis proposes application of the switched control subject to actuator satura-

tion and a new dynamic model for electrically stimulated lower limbs.

1.2.2 Specific

• Research and investigate the state-of-the-art on closed-loop control techniques in knee

joint applications using electrical stimulation.

• Perform the control system design by parallel distributed compensation and switched law

via LMI’s.
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Figure 1 - Electrical stimulation system of the lower limbs using switched controller subject to
actuator saturation.

Source: From author.

• Simulate the two control techniques for different operating points of the lower limb under

isometric conditions, considering healthy and paraplegicindividuals.

• Analyze and compare the controlled system results by inserting saturation and fault in the

actuator using torque-based model.

• Develop and test different levels to non-ideal muscle conditions (fatigue, spasms and

tremor).

• To highlight the results obtained from switched control lawin relation to parametric un-

certainties.

• Measure and compare the RMS error between the PDC and switched controllers for the

time interval corresponding to the transient and steady-state.

• Propose a new dynamic model applied to electrically stimulated lower limbs.
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• Describe by TS fuzzy models and design PDC and switched control using the new pro-

posed model.

• Perform experiments with healthy and paraplegic individuals and state-space identifica-

tion of the electrically stimulated lower limb using gray-box approach.

1.3 Justification

The life expectancy of individuals with spinal cord injury is lower than the average of

healthy people. In this sense, efforts have been made so thatthese individuals have facilitated

access to physiotherapy activities for muscular strengthening using electrical stimulation with

a closed-loop control system. In addition to granting therapeutic and/or functional benefits

to individuals with spinal cord injury, the main objective is that these individuals are socially

inserted, offering expectation and quality of life.

Arguably, rehabilitation systems using closed-loop control can improve performance and

achieve desired movements with safety and reliability. However, some challenges must be

overcome to allow a wide reach of this technology, among themwe highlight:

• Nonlinear musculoskeletal system and parametric uncertainties in control system

design: the great challenge of this area corresponds to the system being nonlinear and

endowed with uncertain parameters make the control task more complex. More advanced

control techniques have been employed in recent years. We propose a contribution to

literature using a switched controller for regulation improvement under uncertain and

non-ideal conditions of the lower limb.

• Difficulty in monitoring and designing control systems based on muscular variables:

numerous mathematical models propose state variables thatare difficult to measure. One

contribution of this thesis is to establish an improved model based on measurable state

variables of kinematics and which implicitly contemplating the lower limb muscle dy-

namics.

• Model parameter variability in a larger individuals number : the statistical analysis

of parametric variability under electrical stimulation indifferent situations for a larger

number of individuals is a gap in the literature. In this work, we investigate the parameter

variability from 24 individuals considering the new model proposed.

1.4 Thesis outline

This work is organized as follows. Chapter 2 establishes thestate-of-the-art on the sub-

ject of closed-loop control for electrical stimulation of lower limbs, focusing on studies of the
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knee joint. It presents the basic principles for understanding the area of electrical stimula-

tion. It shows a systematic methodology for the literature review. It discusses and exposes the

control techniques already investigated. It then reveals the technical characteristics of the ex-

perimental studies regarding the modulation type, stimulator and its output topology, electrode

dimension, stimulation parameters, performance indexes of tracking and regulation in isomet-

ric contractions. Finally, the levels of spinal cord injury, the benefits and limitations of the FES

closed-loop systems are indicated.

Chapter 3 introduces the switched controller and the regulation problem at an operating

point subject to the non-ideal muscle condition (fatigue, spasms and tremor), as well as fault and

saturation of the actuator. The torque-based model is evaluated for healthy and paraplegic indi-

viduals. LMIs conditions are established for the system to operate using switched control law

in a region of operation and subject to symmetric saturation. The performance of the switched

controller is compared to technique proposed by Gaino et al.(2017). Simulated results attest

minor RMS error using switched controller applied to regulation considering non-idealities in

the muscular model.

Chapter 4 emphasizes the new dynamic model for electricallystimulated lower limb. The

design of the acceleration-based model is presented from a generic system of state space equa-

tions, whose states variables relate kinematics of movement and muscle torque dynamics. A

description by TS fuzzy models of the nonlinear system is detailed. From this model, fuzzy

controllers via PDC are designed to a region of operation considering healthy and paraplegics

individuals.

Chapter 5 shows the experimental apparatus for lower limbs electrical stimulation. It then

details the protocol of motor-point identification, and technical specifications of the tests. Ex-

perimental results are obtained from 24 individuals (20 healthy and 4 paraplegics) and the pa-

rameters of the state space model are listed by gray box approach.

Finally, the main conclusion of this work and some future works are in the Chapter 6.
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6 GENERAL CONCLUSION

In this thesis, the state-of-the-art on closed-loop control systems applied to knee joint reha-

bilitation using superficial electrical stimulation were presented.

The knee joint control system using electrical stimulationwas treated as an uncertain non-

linear system. In the control design, LMIs conditions constrained the TS fuzzy modeling to

a state-space operation region was performed. The switchedcontrol subject to actuator satu-

ration was compared to Gaino et al. (2017). The performance of these were evaluated under

non ideal conditions of the muscle (fatigue, spasms and tremor) and fault in the actuator. Re-

membering that the fuzzy control law is dependent on the membership functions. When the

system has uncertainties, the fuzzy controller is inadequate for this problem. On the other hand,

the switched-control law has proved to be an interesting approach because it does not depend

on the membership functions. Using the switched control law, we obtained better results than

the combination of the control gains by the membership functions, because it chooses a state-

feedback controller gain belonging to a given set of gains, that minimizes the time derivative

of Lyapunov function, and reduces the control signal. However, an unwanted effect is that the

control signal is susceptible to a high frequency switchingof the controller gains. This problem

can be overcome by using the soft minimum, proposed in (ALVESet al., 2016).

In addition, a new dynamic model of electrically stimulatedlower limbs was proposed. The

advantage of this model is to obtain the kinematics and muscular dynamics represented in state

space through the variables angular position, angular velocity and acceleration. Therefore, in

this new representation the torque variable has been replaced by acceleration. A TS fuzzy mod-

eling of this plant was shown, as well as the parallel distributed compensation control design

considering an operating region.

Finally, an experimental arrangement was set up to identifyparameters of the linearized

model. The gray-box identification approach was performed from third-order transfer function.

The muscular behavior was investigated in three tests of thesystem response to the step signal,

load disturbance and analysis on different days. A well-defined behavior of parametric variation

was observed in the presence of muscle fatigue.

6.1 Future works

The research field is broad and promising, it is possible and interesting to investigate: LMIs

conditions for switched control design considering actuator subject to saturation and delay;
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LMIs conditions for asymmetric saturation and/or null constraint (e.g. PWM control signal);

data-driven TS fuzzy local models; real-time system to monitor muscle fatigue in isotonic and

isometric contractions; an electrical stimulator based onamplitude modulation and isolated

channels; a electrical stimulator that monitors the current flow into or out of the electrode, and

adjusts the voltage output of the power supply to maintain a constant current; and a new hybrid

system for lower and upper limb rehabilitation.
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