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RESUMO 

 

O presente trabalho teve como objetivo estimar as profundidades da zona eufótica (Zeu) e do 

disco de Secchi (ZSD) a partir do coeficiente de atenuação da luz (kd) utilizando dados do sensor 

Operational Land Imager (OLI)/Landsat-8 no reservatório de Bariri. Como importantes 

parâmetros de medida da claridade da água, kd, Zeu e ZSD são afetados pelas substâncias 

opticamente significativas (SOS). A caracterização óptica do reservatório foi realizada a partir 

de duas campanhas de campo realizadas no período seco, aqui nomeadas como BAR1 

(agosto/2016) e BAR2 (junho/2017), que contaram com análises das propriedades ópticas 

inerentes (POIs), das SOS e da coleta de dados radiométricos para o cálculo da reflectância de 

sensoriamento remoto (Rsr). A localização do reservatório de Bariri como o segundo do Sistema 

de Reservatórios em Cascata (SRC) do Rio Tietê promove a heterogeneidade dos seus níveis de 

eutrofização na direção montante-jusante além de caracterizá-lo como altamente produtivo. As 

campanhas de campo foram marcadas por uma significativa diferença nos valores de 

concentração de clorofila-a ([Chl-a]) que apresentou variação média entre 7,99 e 119,76 μg L
-1

 

com os maiores valores em BAR1, com decréscimo das SOS em BAR2 em relação a BAR1 e 

predomínio de material particulado orgânico (MPO) nas duas campanhas de campo; a turbidez 

variou entre 5,72 e 16,60 NTU. A absorção por matéria orgânica colorida dissolvida (aCDOM) foi 

predominante nas duas campanhas de campo, sendo mais expressiva em BAR2. Para as 

estimativas de kd, nove modelos empíricos e três modelos semi-analíticos baseados em dados 

radiométricos como razões entre as bandas azul/verde e azul/vermelho do sensor OLI/Landsat-8 

e baseados em [Chl-a] foram avaliados. Considerando a propriedade óptica aparente (POA) do 

kd, um modelo semi-analítico baseado em POIs e na distribuição angular da luz apresentou os 

menores erros (erro médio percentual absoluto – MAPE) de   40% em relação aos modelos 

empíricos de [Chl-a] com   60% e de   80% para os modelos empíricos baseados em razões de 

bandas. A partir das estimativas de kd, modelos de estimativa de Zeu e ZSD foram avaliados. Para 

as estimativas de Zeu, cinco modelos empíricos, baseados na relação entre o coeficiente de 

atenuação da luz da radiação fotossinteticamente ativa [kd(PAR)] e de kd em 490 nm [kd(490)], e 

um modelo semi-analítico, baseado na equação de transferência radiativa, foram considerados; 

para as estimativas de ZSD, um modelo semi-analítico foi testado. Os resultados obtidos foram 

melhores para um modelo empírico (erro percentual absoluto – ε) de Zeu com   16% em relação 

ao modelo semi-analítico (ε   30%) e os erros nas estimativas de ZSD foram de   57%. Os erros 

nas estimativas de kd revelaram que a acurácia dos modelos empíricos foi comprometida devido 

à influência por CDOM e que o modelo semi-analítico, por considerar a natureza óptica de kd 

como uma POA, apresentou os melhores resultados. As estimativas de ZSD também foram 

afetadas pelas características ópticas de Bariri, não apresentando correlação com a matéria 

orgânica em BAR2, marcado pelo decréscimo de [Chl-a] e aumento dos valores de aCDOM. Zeu 

mostrou melhores resultados a partir de um modelo empírico calibrado com dados ópticos 

semelhantes aos do reservatório de Bariri em comparação ao modelo semi-analítico, 

desenvolvido para abranger as variações bio-ópticas sazonais e regionais. kd, Zeu e ZSD foram 

espacializados a partir de imagens do sensor OLI/Landsat-8 permitindo a avaliação espaço-

temporal desses parâmetros que apresentaram um padrão sazonal quando analisados em relação 

aos dados de precipitação. kd apresentou variação entre 0,89 e 5,60 m
-1

 para o período analisado 

(2016) e Zeu e ZSD apresentaram variação entre 0,30 e 7,60 m e entre 0,32 e 2,95 m, 

respectivamente, para o período de 2014-2016. Pode-se concluir então, que apesar das 

estimativas de kd, Zeu e ZSD terem sido afetadas pela influência de CDOM no reservatório de 

Bariri, o esquema semi-analítico foi capaz de estimar kd com menor erro e permitiu as 

estimativas de Zeu e ZSD. 

Palavras-chave: atenuação da luz; qualidade da água; dados de satélite; modelos bio-ópticos. 

 

 



ABSTRACT 

 

The objective of this present work was estimate the euphotic zone (Zeu) and Secchi disk (ZSD) 

depths from the light attenuation coefficient (kd) using the Operational Land Imager 

(OLI)/Landsat-8 data in Bariri reservoir. The kd, Zeu and ZSD are important water clarity 

parameters and are influenced by the optically significant substances (OSS). The optical 

characterization was carried out with data collected in two field campaigns in the dry period, 

here called BAR1 (august/2016) and BAR2 (june/2017), that included analysis of the inherent 

optical properties (IOPs), of the OSS and radiometric data to calculate the remote sensing 

reflectance (Rrs). The location of Bariri reservoir as the second of the Cascading Reservoir 

System (CRS) of Tietê River promotes the heterogeneity of the eutrophication levels from 

upstream to downstream besides characterizes the reservoir as highly productive. The field 

campaigns presented a significant difference in chlorophyll-a concentrations ([Chl-a]) with 

mean variation between 7.99 and 119.76 μg L
-1

 with the highest values in BAR1, with reduce of 

the OSS in BAR2 in relation to BAR1 and predominance of organic particulate matter (OPM) in 

both field campaigns and variation in turbidity from 5.72 to 16.60 NTU. The absorption of 

chromophoric dissolved organic matter (CDOM) was dominant in both field campaigns and 

more expressive in BAR2. For the kd estimates, nine empirical models and three semi-analytical 

models based on radiometric data such as ratios of blue-green and blue-red bands of 

(OLI)/Landsat 8 sensor and based on [Chl-a] were evaluated. Considering the apparent optical 

property (AOP) of kd, a semi-analytical model based on IOPs and the light angular distribution 

presented the lowest errors (mean absolute percentage error – MAPE) of   40% in relation to 

the empirical models of [Chl-a] with   60% and of   80% for the empirical models based on 

the band ratios. Through the kd estimates, models to derive Zeu and ZSD were evaluated. For the 

Zeu estimates, five empirical models were considered based on the relation between the 

attenuation coefficient of the photosynthetically active radiation [kd(PAR)] and the kd at 490 nm 

[kd(490)], and one semi-analytical model, based on the radiative transfer equation; for the ZSD 

estimates, one semi-analytical model was tested. The empirical model of Zeu showed the better 

results with the (unbiased absolute percentage error – ε)   16% in relation to the semi-analytical 

model (ε   30%) and the estimates errors of ZSD were   57%. The errors in kd estimates 

revealed that the accuracy of the empirical models was affected by the CDOM influence in 

Bariri reservoir and the semi-analytical model presented a better performance when considering 

the optical nature of kd as an AOP. The ZSD estimates were also affected by the optical 

characteristics of Bariri with no correlation to the SPM in BAR2, where the [Chl-a] decreased 

and the aCDOM increased. Zeu showed better results from an empirical model calibrated with 

similar optical data to Bariri reservoir in relation to the semi-analytical model developed to be 

applied in a wide range of bio-optical seasonal and regional variations. The kd, Zeu and ZSD were 

spatially distributed through OLI/Landsat-8 images allowing the temporal-spatial assessment of 

theses parameters, which presented a seasonal pattern when analyzed in relation to rainfall data. 

kd presented variation from 0.89 to 5.60 m
-1

 to the analyzed period (2016) and Zeu and ZSD 

presented variations between 0.30 and 7.60 m and between 0.32 and 2.95 m, respectively, for 

2014-2016 period. It can be concluded, therefore, that despite of the CDOM have affected the 

kd, Zeu and ZSD retrievals in Bariri reservoir, the semi-analytical scheme was able to estimate kd 

with lowest error and enable the Zeu and ZSD estimates. 

Key-words: light attenuation; water quality; satellite data; bio-optical models. 
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CHAPTER 1: Introduction 

 

1.1 Background 

 

Inland waters embrace the reservoirs, lakes and rivers and provide important 

support to diverse ecosystems and habitats. The reservoirs are commonly found in the 

Brazilian hydropower context and are subject of anthropogenic interferences as 

agricultural productions, grazing lands, urban centers and waste water which alter the 

natural biogeochemical characteristics of the water body. The reservoirs become 

environments where the algal proliferation and eutrophication processes are favorable 

by the nutrient increments through runoff and the increase of retention time, reducing 

the water quality (Lira et al., 2009; Calijuri et al., 2002). 

The water quality is affected by the alteration of the quantities of the optical 

significant substances (OSS) such as the non-algal particles (NAP), phytoplankton and 

chromophoric dissolved organic matter (CDOM). The increase of OSS alters the 

turbidity and reduces the water clarity; the changes in turbidity affect the zooplankton 

community, increase the water temperature due to the high absorption of the sunlight by 

the suspended particles and reduce the dissolved oxygen rates in water column 

(Alcântara et al., 2010). 

The complex environment of the reservoir requires a qualitative and quantitative 

monitoring. The remote sensing based on satellite data allows the spatial-temporal study 

of a wide region in comparison with the traditional methods as point stations of 

sampling collection. Recent researches have shown suitable results in estimate water 

properties and constituents through remote sensing data in turbid inland waters (Yang et 

al., 2013; Mishra et al., 2014; Watanabe et al., 2015; Alcântara et al., 2016; Bernardo et 

al., 2016; Rotta et al., 2016; Zheng et al., 2016; Rodrigues et al., 2017). 

An important study of water clarity monitoring was developed in Minnesota lakes 

using a 20 years of satellite data from Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) sensors (TM/Landsat 5 and ETM+/Landsat 7 series, respectively) 

generating satisfactory results in relation to in situ data and revealing the potentiality of 

the Landsat for optical complex waters (Olmanson et al., 2008). The potentially of the 

Landsat systems for water clarity and CDOM measurements were evaluated in inland 

waters optically complex and CDOM-dominated. The OLI/Landsat-8 and ETM+/ 



16 

 

Landsat-7 presented satisfactory results (coefficient of determination – R²) for CDOM 

measures (R² = 0.81 and R² = 0.79, respectively) and for water clarity as the Secchi disk 

depth - ZSD (R² = 0.818), relating the slight better performance of OLI/Landsat-8 to the 

higher radiometric sensitivity (Olmanson et al., 2016). The OLI/Landsat-8 data 

presented a satisfactory performance (R² = 0.82) in kd retrieval in extremely turbid 

inland lakes (Zheng et al., 2016) and in kd (mean absolute percentage error – MAPE = 

10.35%) and ZSD (linear correlation – R = 0.73) retrievals in optically variant inland 

waters producing good outcomes to spatial modeling of water transparency (Rodrigues 

et al., 2017). The Operational Land Imager (OLI) data collected by the Landsat-8 

satellite present a high spatial resolution of 30 meters and a swath width of 185 

kilometers with increase of the signal-to-noise ratio (SNR) indicating that the Landsat-

8/OLI is suitable to monitoring water-quality parameters in a regional scale (Zheng et 

al., 2016). 

The water clarity can be quantified from the vertical diffuse attenuation coefficient 

(kd) which is estimated by measuring the decrease of downwelling irradiance with 

depth. The kd is an intermediary product to estimate other two water clarity parameters: 

the euphotic zone (Zeu) and the Secchi disk (ZSD) depths. The Secchi disk is a black-

and-white disk and the oldest instrument used to measure the water clarity (Lee et al., 

2015). The kd is controlled by the inherent optical properties (IOPs) of water such as 

absorption (a) and scattering (bb) processes and the angular distribution of light; the kd 

at the wavelength of 490 nm is commonly derived from spectral remote sensing 

reflectance (Austin and Petzold, 1981; Mueller, 2000; Lee et al., 2013) and is 

considered as the inverse of ZSD which can be derived through satellite data in a semi-

analytical model (Lee et al., 2015; Lee et al., 2016). The Zeu corresponds to the depth 

where the downwelling irradiance achieves 1% of that measure at the water subsurface 

(Kirk, 1994). Considering the homogeneity of water column, a relation between 

kd(PAR), the kd at the photosynthetically active radiation (PAR), is used to estimate Zeu 

in empirical and semi-analytical ways (Lee et al., 2007; Zhao et al., 2013; Liu et al., 

2016). 

Lee et al. (2013) proposed a semi-analytical equation to derive kd as the inversion 

of the IOPs estimated via a quasi-analytical algorithm (QAA) using the fifth version 

(QAA_v5). Yang et al. (2014) and Rodrigues et al. (2017) applied the semi-analytical 

equation and found that the lowest accuracy of kd estimation and, consequently, the ZSD 
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and Zeu estimations, in turbid inland waters can be related to the propagated errors of the 

IOPs estimations. 

The QAA is a multi-band effective algorithm with easily applicable sequential steps 

to estimate IOPs via remote sensing reflectance (Rrs) data for optically deep waters (Lee 

et al., 2002). The sequence consists, firstly, in the conversion of Rrs into the subsurface 

reflectance (rrs) and is followed by empirical, analytical and semi-analytical steps in 

four levels to acquisition of a(λ) and particle backscattering coefficient (bbp(λ)) and able 

to separate the a(λ) in absorption coefficients of phytoplankton and CDOM (aϕ and 

aCDOM, respectively), allowing the estimations of Chl-a and CDOM concentrations. The 

empirical steps such as the estimation of a and bbp were calibrated to seawater properties 

limiting the application of the QAA in optically complex waters (Yang et al., 2013). 

Versions of QAA were created since the original version with modifications in the 

empirical steps and reference wavelengths (λ0) in order to improve the results. The fifth 

version (QAA_v5), set for λ0 = 560 nm, was applied in turbid inland waters, making 

possible the estimations of IOPs through adjustments in the algorithm (Le et al., 2009; 

Yang et al., 2013; Li et al., 2016).  

This work was carried out in Bariri reservoir, part of the Cascading Reservoir 

System (CRS) of Tietê River, São Paulo. Bariri is dominated by CDOM which 

compromise the phytoplankton activity, ecosystem productivity and present other 

effects on aquatic ecology and water chemistry that affect the water quality for human 

use (Zhang et al., 2009; Brezonik et al., 2015). The CDOM-rich freshwaters are greatly 

influenced by allochthonous source, susceptible to environmental factors such as 

hydrodynamic and anthropogenic activities (Zhu et al., 2014) that can compromise the 

kd, Zeu and ZSD estimations. 

 

1.2. Hypothesis 

 

Considering the nature of kd, the semi-analytical algorithm developed by Lee et al. 

(2013) respects the dependence on the IOPs and the angular distribution light and, 

therefore, will be able to produce good results in inland waters through the original form 

of QAA_v5, set for the Landsat-8/OLI center bands, in relation to others semi-analytical 

and empirical models analyzed in this study. Thus, our hypothesis bases on the fact that 

the semi-analytical algorithm used to derive kd, even with errors related to the 
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estimative of the IOPs via QAA_v5 when applied to turbid inland waters, will enable 

the estimation of Zeu and ZSD through a semi-analytical scheme. 

 

1.3. Objectives 

 

This study aimed to investigate the performance of a semi-analytical scheme to 

estimate Zeu and ZSD using kd estimates from remotely sensed data in Bariri reservoir. 

For this, the specific objectives were to: 

 

- Characterize the optical properties of Bariri reservoir; 

- Evaluate the performance of nine empirical and three semi-analytical models of 

kd to choose the more suitable one for Bariri reservoir; 

- Evaluate the performance of six Zeu algorithms and one semi-analytical model 

of ZSD using as input the kd model best fitted for the Bariri reservoir and choose 

the best models to map the Zeu and ZSD in Bariri reservoir; 

- Assess the temporal-spatial distribution of derived kd, Zeu and ZSD; 

- Assess the effects of CDOM and the seasonality in rainfall terms on the 

performance of the water clarity parameters. 

 

1.4. Outline of the Dissertation 

 

This dissertation is organized in 4 chapters. The chapter 1 introduces the theme, 

delineating the problems of this research and the steps followed to answer the questions 

proposed. The chapter 2 corresponds to the investigation of the performance of kd 

models in the aquatic environment of Bariri reservoir, exploring the limiting factors of 

the CDOM dominance on the absorption coefficients in the evaluated models structure. 

The chapter 3 corresponds to the evaluation of models to retrieve Zeu and ZSD through 

the derived kd data and their performances in the field campaigns. The relation of Zeu 

and ZSD with the water constituents also was evaluated. The chapters 2 and 3 present the 

characterization of the study site, the description of the field campaigns, sampling 

planning and the optical properties characterization of the study site. Lastly, the chapter 

4 highlights the main findings and challenges of this research. 
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CHAPTER 2: Retrieval of diffuse attenuation coefficient in inland waters 

dominated by colored dissolved organic matter 

 

2.1. Introduction 

 

The diffuse attenuation coefficient (kd) is an apparent optical property (AOP) and is 

defined as the exponential decrease of the ambient downwelling irradiance (Ed) with 

depth, therefore is related to light penetration and availability and can be used to predict 

the euphotic depth. AOP are those properties that depend both on the medium and on 

the geometric structure of the radiance distribution (Mobley, 1994). 

kd is largely determined by the inherent optical properties (IOPs), absorption (a) 

and backscattering (bb) coefficients in first order and, in lesser magnitude dependent on 

the incident radiation field as the Sun angle. IOPs are properties of the medium and do 

not depend on the ambient light field (Mobley, 1994). 

Non-algal particles (NAP), phytoplankton, chromophoric dissolved organic matter 

(CDOM) and water are considered the four optically significant substances (OSS) that 

control the kd. The kd at 490 nm [kd(490)] is generally considered and classified as a 

parameter of water quality, therefore is essential for monitoring the eutrophication 

process due to light attenuation by phytoplankton growth or suspended matter (Zheng et 

al., 2016). Since light availability is a critical regulator of physical, chemical and 

biological processes the accurate estimation of kd is critical to better understanding and 

modeling primary productivity, heat and gas transfer in aquatic systems. 

In order to estimate kd(490), some empirical algorithms were developed using a 

direct form from normalized water-leaving radiance (nLw) or remote sensing reflectance 

(Rrs) ratios or indirect form through products based on chlorophyll-a concentrations 

([Chl-a]) (Morel et al., 2007; Mueller, 2000; Mueller and Tress, 1997; Chauhan et al., 

2003; Werdell, 2005; Kratzer et al., 2008; Zhang and Fell, 2007; Wang et al., 2009). 

However, these models are considered site specific, which is a limiting factor for a 

broader application. Wang et al. (2009) and Lee et al. (2013) came up with a semi-

analytical approach covering a wide range of waters. Wang et al. (2009) used a 

combination of two models suitable for ocean and turbid coastal waters, aiming to 

improve the application range of kd(490) estimations. The model from Lee et al. (2013) 

considered the IOPs derived from Rrs through a quasi-analytical algorithm QAA (Lee et 

al., 2002), and the solar zenith angle using the radiative transfer theory. The algorithm 
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make it possible the estimation of spectral kd, as well as kd(490), for water bodies 

ranging from the clearest ocean to turbid coastal waters. 

Even so, studies showing the use of remote sensing for kd(490) estimation in 

tropical productive inland waters are hampered by the lack of in situ data and theoretical 

framework to predict and interpret ocean color data in such waters (Gallegos et al., 

1990). The optically complexity of turbid waters (mineral suspended solids, algae and 

associated organic particles) produce multiple scattering making it difficult the 

mathematical analysis of radiative transfer (Gallegos et al,. 1990). From our 

understanding there are no investigation of kd(490) estimation in inland waters 

dominated by CDOM, which is an optically active component of dissolved organic 

matter and plays an important role in the cycling carbon. 

CDOM is considered an important water quality indicator due to its impact on the 

drink water, carbon balance and aquatic ecosystems; mainly because CDOM affects 

penetration of photosynthetically active radiation into the water column, which affects 

the primary productivity. Most models use Rrs or nLw from the blue-green spectral 

region, in which the CDOM has high absorption. Because of that the following 

questions came up: (1) The kd(490) models that use the blue/green ratio will be 

impacted in such way that the errors will make it impossible to use? (2) How will these 

models be impacted in the presence of high [Chl-a]? (3) Semi-analytical models, which 

use IOPs as input data will perform better than the empirical ones? (4) What are the 

perspectives for kd monitoring from space in inland waters dominated by CDOM? 

Therefore the main goal of this paper was to assess the performance of algorithms 

to estimate kd(490) in inland waters dominated by CDOM, which are widely available 

to end users. We tested nine empirical and three semi-analytical algorithms. The 

selected models will help us to answer the above questions. 

 

2.2. Materials and Methods 

 

2.2.1. Study Area and Sampling Planning 

 

Bariri hydroelectric reservoir (22° 9‟ 49.260” S 48° 44‟ 21.420” W) is in the middle 

of the São Paulo State and is part of the Cascading Reservoir System (CRS) of the Tietê 

River (Figure 2.1). Bariri is the second of a total of six reservoirs and presented the 

smallest flooded area of 63 km² in an average altitude of 450 meters. The Bariri 
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reservoir is situated in a tropical climate with a dry period (April-September) and a wet 

period (October-March) according to Köppen classification. The water retention time 

varies among 7 and 24 days (Tundisi et al., 2008). 

 

Figure 2.1. Graphics showing the location of (a) São Paulo State in Brazilian context; 

(b) Bariri Reservoir in the Cascading Reservoir System of Tietê River; (c) sampling 

points of the two field campaigns carried out, BAR1 and BAR2 and (d) precipitation 

rate data (mm) from NASA‟s GIOVANNI database for the period of 2014-2017 

(TRMM Data Product; Spatial Resolution of .0.25º; Monthly Temporal Resolution). In 

2017, the precipitation monthly averages were available just until July month. 

 
 

The amount of wastewater coming from the metropolitan region of Tietê River 

characterizes the Bariri Reservoir as highly productive water with high average 

concentrations of total nitrogen (2750 μg L
-1

), phosphorus (87 μg L
-1

) and [Chl-a] (55.8 

μg L
-1

) with the phytoplankton community dominated by cyanobacteria. As the second 

reservoir, the Cascading Reservoir Continuum Concept (CRCC) effect promotes the 

heterogeneity of the eutrophication levels in upstream to downstream in Bariri, revealed 

by the water transparency of the water (Barbosa et al., 1999). 

Two fieldworks were carried out where in the first one (BAR1), 30 samples were 

collected from 15 to 18 August 2016 and in the second one (BAR2), 18 samples were 
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taken from 23 to 24 June 2017 (see Figure 2.1 for samples locations). The days of the 

field campaigns were determined according to the temporal resolution of OLI/Landsat-8 

aiming to match the data collection with the satellite overpass the study site. 

 

2.2.2.  Water quality and Optical Data 

 

The wind speed (m s
-1

), pH, depth (m), Secchi disk depth (ZSD; m) and turbidity 

(NTU) were measured in the field with an anemometer, pHmeter, Secchi disk and 

turbidity meter, respectively. The water samples were collected in the field to derive the 

OSS, such as the Chl-a and the suspended particulate matter (SPM) as well as the 

inorganic (IPM) and organic particulate matter (OPM) concentrations according to 

Golterman et al. (1978) and the American Public Health Association Protocol (APHA, 

1998), respectively. 

The IOP data analysis followed the methodology proposed in Bricaud et al. (1981) 

for aCDOM while for the absorption coefficients of non-algal particle (aNAP) and the total 

particulate (ap), that consists in the sum of aNAP and aϕ, the acquisition and analyses 

were made in accordance with the Transmittance-Reflectance method according to 

Tassan and Ferrari (1995, 1998, 1999). 

The radiometric data were obtained from the two hyperspectral RAMSES sensors 

(TriOS, Rastede, Germany). The sky and total radiance data (Lsky and Lt, respectively, 

both in W m
-2 

sr
-1

) and the downwelling and sky irradiance data (Ed and Esky, 

respectively, both in W m
-2

) were taken with the sensors fixed by a steel frame in the 

boat, in a configuration of 40° from nadir (zenith) and to azimuthal angle of 90° in order 

to minimize the specular reflection (Mobley (1999). The radiometric quantities were 

used to calculate the remote sensing reflectance according to Equation (2.1). 

 

       
              

      
 = 

                 

      
      (2.1) 

 

where   + is the downwelling irradiance measured at the water surface. The LSR is the 

surface-reflected radiance and consists in a multiplicative product of Lsky and ρ - an 

effective surface reflectance. The ρ value ( 0.02-0.05) depends on the viewing 

geometry and spectral variation. In agreement with that, Lee et al. (2010) proposed a 

calculation approach of Rrs as a function of the total remote-sensing reflectance (Trs, 
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ratio of Lt to Ed) and sky remote-sensing reflectance (Srs, ratio of Lsky to Ed) for each Lt 

and Lsky scan from the Equation (2.2): 

 

                                (2.2) 

 

where F refers to Fresnel reflectance and it was set as 0.021 according to the viewing 

geometry;   is a spectrally constant settled before     can be derived (Lee et al., 2010). 

In oceanic waters, the     is negligible in the red and near-infrared wavelengths and   

can be assumed as zero beyond 700 nm, however, for turbid inland waters, the IOPs 

have a significant influence in    , thus, one alternative is to model the spectral     

based on the IOPs, and then resolve Δ after comparing modeled     and derived     

from Equation (2.2). 

In sequence, the Rrs used in estimates models of kd must be simulated to the satellite 

signal at each spectral channel centered at a wavelength (λ = 443; 482; 561; 655 nm). 

The band simulation consists in the convolution of the radiation signal of hyperspectral 

sensor and the spectral response function [Fr(λ)] of the OLI sensor in wavelength 

interval of the spectral resolution (Barsi et al., 2014): 

 

   
     

∫            
    
    

∫      
    
    

        (2.3) 

 

where    
     is the remote-sensing reflectance simulated at center wavelength; xmax and 

xmin are, respectively, the maximum and minimum values of the sensor spectral channel. 

According to Ed data, the kd(490) in both field campaigns was determined as the 

slope of Ed at subsurface depth (z)    
      (Mobley, 1994): 

 

        
 

  
    

   
    

  
        (2.4) 

 

In order to eliminate the noise in the         due to changes in the sun illumination 

condition caused by cloud cover during the   
     measurements, a normalization factor 

was required in all scans. The Ed normalization consists in a division of Esky at first scan 

t(z1) to Esky at subsequent scans t(zi) as factor normalization of the   
 t(zi) according 

Mishra et al. (2005) and Mueller (2000): 
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where           is the normalized   
        

 

2.2.3.  Kd(490) models 

 

The Table 2.1 summarizes the kd(490) algorithms tested in this study. 

 

Table 2.1. kd(490) models developed for clear ocean, coastal, turbid ocean, slightly 

turbid and global waters. 

 

*
kw(490) = 0.016m

-1
 is a constant of the diffuse attenuation coefficient for pure sea water (Zhang and Fell, 

2007). 

Type Model Formula
Calibration 

Dataset

Mueller (2000)

Mueller and 

Tress (1997)

Chauhan et al. 

(2003)

Werdell (2005) Global Waters

Kratzer et al. 

(2008)

Coastal 

Waters

Zhang and Fell 

(2007)*

Turbid Ocean 

Waters

Wang et al. 

(2009)

Slightly 

Turbid 

Waters

Lee  et al. 

(2013)

Global Ocean 

Waters 

Semi-analytical 

model

Wang et al. 

(2009)

Empirical model 

with normalized 

water-leaving 

radiance (nL w ) 

or remote 

sensing 

reflectance (R rs )

Clear Ocean 

Waters

Slightly 

Turbid 

Coastal 

Waters

Morel et 

al. (2007)

Empirical model 

with Chl-a 

concentration

Clear Ocean 

Waters
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We have tested three types of model: (1) empirical relationships between the kd and 

[Chl-a]; (2) empirical relationship between the water-leaving radiance (nLw) and kd and 

(3) semi-analytical models which are based on radiative transfer models. 

The nLw is calculated trough the conversion of     as                 where 

      is the extraterrestrial solar irradiance (Wang et al. 2009; Zhao et al., 2013). The 

R(λ) is the irradiance reflectance beneath the water-surface and is calculated as a 

function of extraterrestrial solar irradiance [F0(λ)] and     (Wang et al., 2009). 

The equations from Morel et al. (2007) are based on [Chl-a] whereas the others 

empirical algorithms use a simple ratio of    (λ). The Zhang and Fell (2007) and Wang 

et al. (2009) are the unique empirical models based on a        ratio. The semi-

analytical model of Wang et al. (2009) was developed using the R(λ) ratios and the Lee 

et al. (2013) model previously requires the calculation of a(λ) and bb(λ) which are 

obtained from the QAA_v5 (the version 5 was used in this study) with     as input at 

the reference wavelength (    of 561 nm, the nearest OLI center band of    = 55x of 

QAA_v5. In the equation, the zenith solar angle (θs) was set as 40º following the 

geometry used in the radiometric data collection. 

 

2.2.4.  OLI/Landsat-8 Data Processing and Acquisition 

 

The Landsat 8 Surface Reflectance on-demand data generated by the Landsat 

Surface Reflectance Code (LaSRC) were obtained in the U.S. Geological Survey 

platform (http://earthexplorer.usgs.gov/). The LaSRC algorithm for atmospheric 

correction was developed using the Second Simulation of the Satellite Signal in the 

Solar Spectrum Vectorial (6SV) model. The algorithm uses the OLI Coastal Aerosol 

Band (0.433–0.450 μm) which works as cover for shorter wavelength as the blue band 

in previous Landsat and is helpful to retrieve aerosol properties (Vermote et al., 2016). 

Pahlevan et al. (2017) and Bernardo et al. (2016) showed that LaSRC is a consistent 

product to derive aquatic estimates. A total of 10 atmospherically corrected images 

(Path/Row 221/75) were acquired during the year of 2016, covering the months from 

February to November. The criteria used for the images choice was attributed to cloud 

free data over the reservoir. 

To obtain the nLw(λ) and R(λ) and to test the kd(490) models, the surface 

reflectance images were divided by π to convert them into Rrs (Moses et al., 2012). The 

kd(490) model with the best performance was applied to the time-series of LaSRC 
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images selected to obtain the spatial distribution of the vertical attenuation coefficient. 

The kd(490) model best fitted for Bariri reservoir was validated through the use of the 

satellite image from August 15
th

 2016, correspondent to the first day of BAR1. In the 

same way, the LaSRC accuracy in kd(490) estimations was evaluated from the analysis 

between the Rrs converted images with the Rrs calculated from TriOS data in BAR1. 

 

2.2.5.  Statistical Analysis and Accuracy Assessment 

 

Statistical analyses, including calculations of the maximum, minimum and average 

values and linear and non-linear regressions were performed. The kd(490) analyzed 

models were applied for BAR1 and BAR2 datasets. The Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE) and the bias were used to assess the 

accuracy of the kd(490) models. 
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where      is the kd(490) estimated value and      is the in situ measure of kd(490). 

 

2.3. Results and Discussion 

 

2.3.1.  Remote Sensing Reflectance Spectra 

 

In BAR1 spectral curves (Figure 2.2) is possible to see a high absorption feature at 

about 680 nm and a reflectance peak at approximately 710 nm that can be associated 

with the Chl-a pigment. The sampling points with the highest [Chl-a] presented a 

significant peak at 550 nm, expected for water with a great amount of algae, just as seen 

in field campaign. The increase of reflectance in longer wavelength was an indicative of 

total suspended matter concentration increases. The [Chl-a] in BAR1 was 

approximately 37 times higher than in BAR2 dataset (see Table 2.2), which explains 

why the absorption by pigments was more evident during the first survey. 



27 

 

In all data set, the organic particles were predominant (Table 2.2), therefore the 

spectra of BAR1 and BAR2 were quite similar with lesser reflectance magnitude of 

BAR2 mainly because lowest OSS concentrations. In BAR2 spectra, the feature 

characteristic of phytoplankton absorption was not evident such as was for BAR1 due to 

the decrease of [Chl-a] in relation to BAR1, with the exception of the feature of the 

sampling point that presented the maximum value of [Chl-a] in BAR2 (19.11 μg L-1). 

 

Figure 2.2. The Rrs spectra for BAR1 (a) and BAR2 (b) surveys. 

  

 

The light absorption by CDOM was the highest in both field campaigns (1.57   

0.37 m
-1 

in BAR1 and 1.98   0.76 m
-1

 in BAR2) in relation to light absorption by others 

OSS. In CDOM-rich lakes, the spectra shapes vary according to CDOM levels and the 

influence of other substances in absorption processes (Brezonik et al., 2015). In BAR1, 

the light absorption was dominated by CDOM, however the reflectance spectra assumed 

a shape of Chl-a due to the high concentrations and presented low reflectance values at 

400-500 nm. In BAR2, with the predominance of CDOM absorption and reduction of 

OSS concentrations, the reflectance values assumed a nearly flat feature at   600 nm. 

 

2.3.2. Optical Properties and Water Constituents 

 

Table 2.2 presents the descriptive statistics for optical and water parameters for the 

two field campaigns, BAR1 and BAR2. In BAR1, the sky was sunny in the most of the 

days with some moments of overcast. In BAR2, the sky was more favorable with sunny 

days during all field campaign. In all dataset, the average wind speed was 3.32   1.77 

m s
-1

 producing some small waves on the water surface. The minimum values for both 
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field campaigns were 0 m s
-1

 and the maximum value was 8 m s
-1 

for BAR1 and 6.50 m 

s
-1

 for BAR2. 

 

Table 2.2. Descriptive statistics for optical and water quality parameters for BAR1, 

BAR2 and the mixed data. 

S.D. = Standard Deviation. C.V. = coefficient of variation. 

Field 

Campaigns 
Parameters Minimum Maximum Mean S.D. C.V. 

BAR1 (N 

= 30) 

ZSD (m) 0.50 1.60 1.16 0.23 20.03% 

Turbidity (NTU) 7.80 80.90 16.60 7.61 45.82% 

pH 6.10 9.90 7.94 0.83 10.46% 

Wind Speed (m s
-1

) 0.00 8.00 3.47 1.80 51.73% 

kd(482) (m
-1

) 1.87 3.98 2.80 0.30 10.69% 

[Chl-a] (μg L
-1

) 25.67 709.89 119.76 96.43 80.52% 

[SPM] (mg L
-1

) 3.60 40.33 8.40 4.64 55.25% 

[IPM] (mg L
-1

) 0.90 4.00 2.35 0.51 21.92% 

[OPM] (mg L
-1

) 1.40 36.33 6.06 4.57 75.43% 

aphy(482) (m
-1

) 0.16 1.25 0.41 0.22 53.46% 

aNAP(482) (m
-1

) 0.15 0.55 0.33 0.09 28.52% 

aCDOM(482) (m
-1

) 0.92 2.74 1.57 0.37 23.73% 

BAR2 (N 

= 18) 

ZSD (m) 1.60 2.50 2.06 0.19 9.31% 

Turbidity (NTU) 3.48 8.80 5.72 1.25 21.92% 

pH 6.83 7.28 6.97 0.13 1.89% 

Wind Speed (m s
-1

) 0.00 6.50 3.06 1.72 56.28% 

kd(482) (m
-1

) 1.54 2.34 1.79 0.12 6.47% 

[Chl-a] (μg L
-1

) 3.82 19.11 7.99 3.27 40.90% 

[SPM] (mg L
-1

) 0.20 2.60 1.59 0.44 27.92% 

[IPM] (mg L
-1

) 0.24 1.30 0.58 0.24 42.39% 

[OPM] (mg L
-1

) 0.40 1.60 1.11 0.32 28.81% 

aphy(482) (m
-1

) 0.02 0.11 0.07 0.02 26.67% 

aNAP(482) (m
-1

) 0.06 0.19 0.12 0.03 26.39% 

aCDOM(482) (m
-1

) 0.76 4.38 1.98 0.76 38.17% 

All data 

(N = 48) 

ZSD (m) 0.50 2.50 1.49 0.43 29.03% 

Turbidity (NTU) 3.48 80.90 12.66 6.34 50.03% 

pH 6.10 9.90 7.58 0.71 9.39% 

Wind Speed (m s
-1

) 0.00 8.00 3.32 1.77 53.37% 

kd(482) (m
-1

) 1.55 3.98 2.42 0.51 21.10% 

[Chl-a] (μg L
-1

) 3.82 709.89 77.84 77.15 99.10% 

[SPM] (mg L
-1

) 0.20 40.33 5.79 4.05 69.82% 

[IPM] (mg L
-1

) 0.20 4.00 1.96 0.79 40.25% 

[OPM] (mg L
-1

) 0.40 36.33 4.99 3.96 79.52% 

aphy(482) (m
-1

) 0.02 1.25 0.28 0.19 67.72% 

aNAP(482) (m
-1

) 0.06 0.55 0.25 0.12 45.70% 

aCDOM(482) (m
-1

) 0.76 4.38 1.72 0.52 30.36% 

 



29 

 

The water collected in BAR1 was green in most of the samples, which is explained 

by the presence of phytoplankton pigments due to high [Chl-a] averaging 119.76 ± 

96.43 μg L
-1

, and ranging between 25.67 and 709.89 μg L
-1

. In BAR2, the [Chl-a] 

variability reduced significantly with average of 7.99   3.27 μg L
-1

, varying from 3.82 

to 19.11 μg L
-1

. Therefore, the mixed data resulted in a range from 3.82 to 709.89 μg L
-1

 

of [Chl-a]. 

The SPM concentration (average of 8.40   4.64 mg L
-1

) showed predominance of 

organic particles with average of 6.06   4.57 mg L
-1

 in BAR1 as well as in BAR2, 

where the organic compounds predominated the SPM (1.59   0.44 mg L
-1

) with 

average of 1.11   0.32 mg L
-1

. The SPM presented low concentration in BAR2. In all 

dataset, the organic particle dominated the SPM concentration, with an average of 4.99 

  3.96 mg L
-1

. In respect to absorption, aNAP(482) was higher in BAR1 (average of 0.33 

  0.09 m
-1

) than BAR2 (average of 0.12   0.03 m
-1

). The aCDOM(482) averaged 1.57   

0.37 m
-1

 in BAR1 and 1.98   0.76 m
-1

 in BAR2. The aφ(482) averaged 0.41   0.22 m
-1 

in BAR1 and 0.07   0.02 m
-1

 in BAR2. 

The Figure 2.3 shows the average spectra of IOPs for BAR1 and BAR2 dataset. 

 

Figure 2.3. Absorption spectra of NAP, phytoplankton, CDOM and pure water (aw) in 

BAR1 (a) and BAR2 (b). 

 
 

The aCDOM spectra presented the highest values in all spectral range in both field 

campaigns. On the other hand, the aφ spectra was higher for BAR1 than BAR2; it is 

possible to see two peaks of absorption at 450 and 670 nm in BAR1 whereas in BAR2, 

the characteristic aφ spectra was not evident. In BAR2, the aφ and aNAP spectra were 

similar with light absorption by NAP slightly higher than the absorption by 

phytoplankton, with the absorption curve decay at 550 nm. The absorption curve of 
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NAP at blue portion of the visible spectrum represents the typical spectra of mineral 

and/or detrital particles, verified in BAR1 and BAR2 absorptions spectra. The atypical 

aφ spectra in BAR2, with the exponentially increase at wavelengths shorter than 500 nm, 

indicate an environment with elevated CDOM absorption (Binding et al., 2008). 

Among the three absorption coefficients already mentioned, aCDOM(482) showed the 

highest values in both field campaigns. Zhang et al. (2009) proved that high [Chl-a] and 

high aCDOM indicate that the accumulation and degradation of phytoplankton were a 

source of CDOM in eutrophic waters. It suggests that the organic matter is possibly 

originated by the phytoplankton degradation in BAR1. In BAR2, the aCDOM is also 

predominant with significant reduction of [Chl-a] which can suggest an allochthonous 

source of CDOM. The Bariri reservoir has been undergoing impacts due to the 

sugarcane production and the input of urban and industrial wastewaters (Pamplin, 

2004). 

The proportional contribution of the IOPs in BAR1 and BAR2 among the total 

absorption (at) budget in Bariri aquatic environment was computed considering the OLI 

bands (443, 482, 561 and 655 nm) (Figure 2.4a-d). The light absorption in BAR1 was 

predominant by CDOM in all wavelengths, with 63.49%   11.59%; 67.74%   9.98% 

and 69.82%   12.56% at 443, 482 and 655 nm, respectively. At 561 nm, the CDOM 

contribution was the highest with 76.08%   8.84%. The same was verified for BAR2, 

where the CDOM predominance was even higher with 88.28%   5.43% at 443 nm; 

88.85%   5.70% at 482 nm; 92.07%   5.24% at 561 nm but with the highest 

contribution at 655 nm with 94.02%  .6.03%. 

In BAR1, the phytoplankton contributed with 22.40%   13.06%, 17.40%   

10.84%, 13.84%   8.36% and 25.10%   12.16% at 443, 482, 561 and 655 nm, 

respectively. The highest proportions at the blue and red spectral regions confirm the 

absorption peaks by Chl-a pigment. In sequence, the NAP presented the lowest 

proportion of the absorption budget with 14.11%   4.80% at 443 nm; 14.86%   5.27% 

at 482 nm; 10.07%   4.40% at 561 nm and 5.08%   2.99% at 655 nm. The peak of 

NAP absorption in the blue spectral region is typical of detrital or mineral particle 

which was also verified in BAR2, with 6.85%   3.31% and 6.91%   3.89% at 443 and 

482 nm, respectively, and 5.03%   3.77% at 561 nm and 2.99%   3.01% at 655 nm. 

The phytoplankton achieved 4.86%   2.30% at 443 nm and 4.24%   2.05% at 482 nm, 



31 

 

being higher in the blue spectral region. At 561 nm, the percentage was 2.90%   1.65% 

and at 655 nm, 2.99%   3.01%. 

 

Figure 2.4. Ternary plots depicting BAR1 and BAR2 for center OLI bands (a) 443 nm, 

(b) 482 nm, (c) 561 nm and (d) 655 nm. 

 
 

Considering both dataset, the [Chl-a] had an average of 77.84   77.15 μg L
-1

 and 

the organic particles had the highest concentration (4.99   3.96 mg L
-1

), with the greater 

part of light absorbed by CDOM. 

The average of kd(490) in BAR1 and BAR2 was 2.80   0.30 m
-1

 (ranging from 

1.87 to 3.98 m
-1

) and 1.79   0.12 m
-1 

(ranging from 1.54 to 2.34 m
-1

), respectively. The 

water column was more attenuated in August/2016 than June/2017. Both months are in 

the dry season; however, 2016 presented the highest mean rate of precipitation from 

January to June when compared with 2017 over the Bariri reservoir area (Figure 2.1d). 

The rain carries organic matter, mainly from industrial effluents; wastewater and 

particulate matter to the Bariri reservoir, as well as facilitates the increasing of organic 

matter fluxes along the Tietê River from upstream to downstream. The Tietê River is 

one of the most industrialized basin of São Paulo State and the reservoirs construction 

promoted the rapid transformation in the land use and land cover, facilitating the 

pollution problems and accelerating the sedimentation process (Prado et al., 2007). The 
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concentration of water constituents was higher in August, increasing the process of 

absorption and backscattering of light and, consequently, showing the highest kd(490) 

values. 

 

2.3.3. Assessment of the vertical attenuation coefficient models 

 

Due to the lack of data from turbid inland waters used in the calibration of kd(490) 

algorithms, the adjustment for Bariri reservoir can be compromised. The algorithm 

coefficients developed for a wide range of waters tries to minimize this limitation 

although it is not a guarantee of success (Lee et al., 2005). For all kd(490) algorithms, 

the bands were defined according to the center bands from OLI/Landsat-8, including the 

blue band at 490 nm that was replaced by 482 nm. The Table 2.3 summarized the 

statistical results yielded after the application of kd(490) models. 

 

Table 2.3. Error assessment of kd(490) models developed for clear, slightly turbid, 

turbid ocean waters, coastal waters and global waters applied to all dataset of Bariri. 

Type Model MAPE (%) RMSE (m
-1

) bias (m
-1

) 

 
Morel et al.(2007) I 60.96 1.48 -1.21 

Empirical 

Morel et al.(2007) II 61.03 1.50 -1.19 

Mueller (2000) 86.46 2.19 -2.12 

Mueller and Tress (1997) 86.15 2.19 -2.11 

Chauhan et al. (2003) 82.35 2.04 -1.86 

Werdell (2005) 86.05 2.18 -2.11 

Kratzer et al. (2008) 60.62 1.63 -1.52 

Zhang and Fell (2007) 42.90 1.22 -1.07 

Wang et al. (2009) 54.04 1.39 -1.15 

Semi-

analytical 

Wang et al. (2009) I 46.34 1.31 -1.18 

Wang et al. (2009) II 63.68 1.69 -1.59 

Lee et al. (2013) 41.04 1.07 -0.90 

 

The empirical models of kd(490) based on [Chl-a] underestimated the results for 

almost the entire dataset, except for two samples with high values of [Chl-a] which 

were overestimated. The coefficients of the model from Morel et al. (2007) were 

developed for Case I waters, with the optical properties dominated by phytoplankton, 

therefore, the accuracy of the model in aquatic environments with high rates of CDOM 

and/or suspended solids is expected to be fail (Zhao et al., 2013). The models from 

Morel et al. (2007) were calibrated with open ocean waters with values of [Chl-a] < 2.4 
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μg L
-1

, highly discrepant of the values found in Bariri reservoir, resulting in kd(490) 

errors of MAPE   61% and RMSE   1.50 m
-1

. 

The empirical models using nLw spectral ratio developed for ocean open and global 

waters presented the worst results with MAPE around 80% and RMSE   2 m
-1

. Mueller 

(2000); Mueller and Tress (1997), Chauhan et al. (2003) and Werdell (2005) models 

underestimated the results of kd(490) with bias around 2 m
-1

. The calibration dataset 

involved waters with values of kd(490) up to 0.61 m
-1 

whereas in Bariri all dataset 

varied from 1.55 to 3.98 m
-1

. 

The blue-green ratio nLw(490)/nLw(555) or Rrs(490)/Rrs(555) has a large 

uncertainties when kd(490) is greater than 0.25 m
-1

. The spectral ratio presents an 

asymptotic value with increasing OSS concentration (Mueller, 2000). Thus, this spectral 

ratio is not sensitive for the variations in OSS that occurred in turbid inland waters, 

resulting in significant underestimation of kd(490). In addition, this spectral ratio does 

not consider the effects of sun angle changes that decrease the accuracy of empirical 

algorithms for estimating kd(490) (Lee et al., 2005). 

Aiming to investigate the estimation of kd(490) from MERIS, Kratzer et al. (2008) 

developed the empirical algorithm from the ratio of 490 nm and 620 nm for a Case 2 

water optically dominated by CDOM which showed inversely relation to salinity in 

Baltic Sea. The Kratzer et al. (2008) model applied to all dataset from Bariri presented 

MAPE of 60.62% and RMSE of 1.63 m
-1

. 

The empirical algorithm developed by Wang et al. (2009) combined open ocean 

and turbid coastal waters (from 0.3 to 0.6 m
-1

) through a linear regression equation of 

Rrs(670)/Rrs(490) ratio that showed better matching of kd(490) data when the kd(490) 

values of calibrated data were higher than 0.3 m
-1

. The application of this model in 

Bariri reservoir data resulted in a MAPE of 54.04% and RMSE of 1.39 m
-1

, yielding 

underestimated values (bias of -1.15) of kd(490). 

The semi-analytical algorithms of Wang et al. (2009) were developed considering 

the MODIS satellite data and the absorption and backscattering coefficients derived 

from Lee et al. (2002). The algorithm based on the ratio R(667)/R(488) presented 

MAPE of 46.34% and RSME of 1.31 m
-1

, while the ratio R(645)/R(488) showed MAPE 

around 63.68% and RMSE of 1.69 m
-1

. The OLI sensor does not have a spectral band 

centered at 488 neither at 667 nm or 645 nm, but at 482 and 655 nm, respectively. 

Therefore, in both semi-analytical equations, the R(482) and R(655) were used and the 
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differences found in the results above are explained by the coefficients, which in the 

first model presented better adjustment than the second model in Bariri reservoir. 

The Zhang and Fell (2007) empirical algorithm and the semi-analytical algorithm 

developed by Lee et al. (2013) presented similar performances corresponding to MAPE 

of 42.90%; RMSE of 1.22 m
-1

 and MAPE of 41.04%; RMSE of 1.07 m
-1

, respectively. 

Calibrated with a wide range of environments (0.016 – 4.6 m
-1

), the Zhang and Fell 

(2007) model have showed greater correlation for clear waters whereas the Lee et al. 

(2013) algorithm showed the greatest application for turbid waters such as happens for 

this study site. The difference in errors among these empirical and semi-analytical 

algorithms could be explained by the use of 655 nm wavelength in Zhang and Fell 

(2007) model which introduce noise due to the high absorption rate of water in the red 

wavelength even after corrections in data processing. 

The Lee et al. (2013) semi-analytical algorithm showed the lowest errors (MAPE = 

41.04%; RMSE = 1.07 m
-1

) for kd(490) estimation in Bariri reservoir. In inland waters, 

the regional variability of the OSSs generates significant changes in the attenuation of 

light process, therefore, the Lee et al. (2013) algorithm in considering a( ), bb( ) and 

Sun angle resulted in a fewer uncertainties regarding data matching. Besides, the 

algorithms coefficients derived from numerical simulations reduce the dependence of a 

specific data range. 

Empirical algorithms were developed (results not shown here) from Bariri using all 

dataset, however the results were not satisfactory, therefore Lee et al. (2013) model was 

chosen for mapping the variability of kd(490) in the study site. 

 

2.3.4. Assessment of the OLI atmospheric correction product 

 

The evaluation of LaSRC accuracy consisted in the comparison between the OLI-

derived Rrs product from August/2016 and the Rrs calculated from TriOS data in BAR1. 

The relative percentage errors were 50.09% at 443 nm, 20.68% at 482 nm; 17.24% at 

561 nm and 29.64% at 655 nm. The highest errors at the coastal and blue regions are 

related to the increase of scattering in those regions. The lowest error was verified at 

green region with 17.24% and, in sequence at red region, the error increased again to 

29.64%. The LaSRC accuracy results encountered here are compatible with the 

atmospheric correction analysis presented in Rodrigues et al. (2017) and Bernardo et al. 

(2017). 
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2.3.5. Application of kd(490) on OLI/Landsat-8 images 

 

The variability of kd(490) in Bariri reservoir expressed in OLI/Landsat-8 was 

presented in Figure 2.5. 

 

Figure 2.5. Spatial distribution of kd(490) in Bariri reservoir using the semi-analytical 

model from Lee et al. (2013) considering the months from February to November of 

2016. The arrows A and B highlight the reservoir zones near urban centers. 

 
 

The spatial distribution of Lee et al. (2013) in Bariri reservoir was validated from 

the kd(490) estimations obtained from the image of 15
th

 August and presented MAPE of 

32.54% and RMSE of 0.95 m
-1

. The errors of kd(490) estimations from Lee et al. (2013) 

model applied for the all dataset, using the in situ Rrs, were 41.04% of MAPE and 1.07 

m
-1

 of RMSE. The differences between the kd(490) estimations from in situ Rrs and Rrs 

from LaSRC are related to the decrease of the variability among the sampling points 

through the sample size reduction, that in the former case was 48 (all dataset) and in the 

latter case was 26 (4 sampling points with missing information in the image from 

August in region highlighted as zone B in Figure 2.5) that presented the lowest errors. 

The increase of the percentage error between the OLI-derived Rrs at 482 nm used as 

input of kd(490) estimation and the kd(490) estimations for BAR1 was 11.86% and 

A 

B 
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could be related to IOPs estimations via QAA_v5. The application with no 

modifications in some empirical steps can affect the QAA_v5 performance in complex 

optically waters (Watanabe et al., 2016; Li et al., 2016). 

The maximum value of kd(490) was 5.60 m
-1

 in April and the minimum value was 

0.89 m
-1

 in September, both in the dry season. In the image from April, specifically in 

the zone B highlighted by the arrow, an expressive increase of the kd(490) was 

observed, which is probably related to the reduction of water velocity favoring the 

increase of [Chl-a] and, in a drastically way, an algal bloom, intensifying the 

attenuation of light in the water. Along the reservoir, excepting for zone B, the kd(490) 

values remained below the mean (Figure 2.6), which was expected for a period of low 

precipitation, confirming an atypical event in April. In September, the kd(490) was 

uniformly distributed around the mean, with values closer the maximum (4.40 m
-1

) in 

the northeast region of the reservoir which presents agricultural activities and bare soil 

areas that facilities the input of external material into the reservoir even in periods of 

low precipitation. Other regions of high values of kd(490) were in zone B and another 

winding points where the water fluxes is slower than in zone A. 

 

Figure 2.6. Boxplot of kd(490) spatial distribution regarding the months of February to 

November of 2016 in Bariri reservoir. 

 
 

The boxplot in Figure 2.6 summarizes the statistical performance of kd(490) for 

each month. In dry season, the kd(490) values were closer to the maximum in May and 

June, with the mostly values above the mean and, concomitantly values above 2.50 m
-1

 

in zone A. In July and August, the kd(490) started to decrease with mostly of the values 

closer to the minimum and below the mean, with also decreasing of kd(490) in zone A. 

The precipitation rates were quite smaller in July (  3.99 mm) and August (  53.83 
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mm) than in May (  125.25 mm) and June (  125.43 mm) in conjunction with reducing 

of kd(490) in zone A which could be revealed a point source of wastewater. 

Unfortunately, the image from August, coincident with the BAR1 field campaign, 

has no information in the region highlighted as zone B that prevent to show the highest 

Chl-a concentrations in these sampling points which generated high values of kd(490) as 

mentioned in section 2.3.1. The mean was 1.48 m
-1

, with values closer to the minimum, 

ranging from 1.30 to 1.73 m
-1

,
 
not corresponding with in situ kd(490). The precipitation 

rate in August was very low, resulting in low kd(490) in zone A. 

The months of October, November, February and March are representative of wet 

season, however in October the mean kd(490) almost coincided with the minimum 

resulting in low values with some peaks in reservoir northeast and in a winding region. 

In November, the increase of kd(490) was observed with the mean closer to 

maximum value, presenting some points above 2.50 m
-1

. In February, with higher 

precipitation rates than the months previously mentioned, the kd(490) was around 3.00 

m
-1

 even with approximately 30% of the reservoir covered by clouds. In March, the 

kd(490) was well distributed around the mean, ranging from 1.69 to 4.87 m
-1

, with the 

highest values in northeast and extremely north of reservoir and values above 2.50 m
-1

 

in some part of zone B and in zone A. 

 

2.4. Conclusions 

 

After the application of several tests with the kd(490) estimation models available 

for a wide range of waters, it was verified that the empiricism does not allowed to 

estimate the kd(490) in an accurate way in Bariri reservoir. The uncertainty presented by 

the empirical models ( 80% of MAPE) confirms that the blue/green wavelength ratio is 

not able to express the kd(490) variability in an environment dominated by CDOM 

which was verified in the two surveys realized. The [Chl-a] empirical models presented 

intermediary errors (  60% of MAPE) when applied with the aggregated data from the 

two surveys realized. In BAR1, the [Chl-a] were significantly higher than BAR2; the 

light absorption by CDOM was maintained predominant in both surveys. Among the 

tested empirical models, the model developed by The Zhang and Fell (2007) was an 

exception achieving lower errors and statistical results close to those obtained from the 

semi-analytical models. 
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The semi-analytical model developed by Lee et al. (2013) presented the lowest 

error (MAPE of 41.04%) among the 12 models analyzed. The coefficients present in 

Lee et al. (2013) model were calibrated from a wide range of waters, filling the lack of 

the empirical models that are based on a specific dataset. However, the IOPs estimations 

through the original QAA_v5 can introduce some errors in inland waters due to the 

optical complexity. 

The Lee et al. (2013) model was applied in atmospherically corrected OLI/Landsat-

8 images (LaSRC) with a relative error percentage difference of 8.50% in relation to the 

application to all dataset from the Rrs obtained in situ. Therefore, the atmospheric 

correction was appropriate to retrieve the kd(490) and the Lee et al. (2013) model was 

able to highlights the main variations of kd(490) in an environment dominated by 

CDOM as the Bariri reservoir, allowing identify the regions with more or less light 

attenuation and, consequently, the biota modifications that are dependent of the photic 

conditions in the water column. 

The application of kd(490) model on OLI/Landsat-8 images exhibited important 

temporal and spatial variability. The spatial variability was verified in points where the 

sinuosity of reservoir promoted the reduction of water velocity and facilitates the OSS 

concentrations, increasing the attenuation of light. The temporal variability was linked 

to significant activities around the reservoir that increase the runoff and the input of 

external material into the reservoir mainly in periods of high precipitation rates. 

Besides, the precipitation in wet season promotes the resuspension and carriage of 

sediments, increasing the attenuation of light. 
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CHAPTER 3: Remotely sensed estimation of euphotic zone and Secchi disk depths 

in a CDOM dominated inland waters 

 

3.1. Introduction 

 

The penetration and availability of underwater light are controlling factors of 

biological (phytoplankton photosynthesis), chemical (nutrient cycling) and physical 

(heat transfer) processes (Kirk, 1994). The water transparency is an important parameter 

for environmental monitoring and water quality (Al Kaabi et al., 2016; Alikas & 

Kratzer, 2017). The freshwater environments provide support for diverse ecosystems 

and habitats, however they suffer with anthropogenic interference with waste discharge 

and runoff which drives to changes of the water quality characterized as algal 

proliferation, eutrophication and increasing of turbidity and reducing of water 

transparency (Wetzel, 2001; Calijuri et al., 2002; Lira et al., 2009). The water 

transparency is affected by the optical significant substances (OSS) such as 

phytoplankton, chromophoric dissolved organic matter (CDOM), non-algal particles 

(NAP) and the pure water that absorb and/or scatter the downwelling irradiance which 

diminish with the depth. 

The parameters used to quantify the water transparency are the attenuation 

coefficient [kd(PAR)] of the photosynthetically active radiation (PAR), the euphotic 

zone depth (Zeu) and the Secchi disk depth (ZSD). The kd(PAR) is the exponential 

decrease of downwelling irradiance with the depth and it is related to Zeu. The Zeu is 

defined as the depth where the downwelling irradiance of the PAR [Ed(PAR)] achieved 

1% of the Ed(PAR) measured at the surface water; assuming that the water column is 

homogenous, kd(PAR) and Zeu are related through the equation                   

(Kirk, 1994). In the euphotic zone, there is sufficient light intensity for significant 

photosynthesis, therefore, the Zeu had been use to provide information of primary 

production in water bodies and the Zeu changes can depict environmental patterns and 

anthropogenic impacts (Kirk, 1994; Majozi et al., 2014; Yang et al., 2015; Ma et al., 

2016). 

The most common and easy way to quantify the water transparency is the ZSD, 

taken when the black-and-white disk, lowered in water, is no longer viewable by an 

observer; because the simple and universal method, the ZSD is routinely used for 

turbidity monitoring, water transparency, estimate the order of magnitude of optical 
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substances in water and indicate the eutrophic state in water bodies (Binding et al., 

2007; Lee et al., 2015; Shang et al., 2016; Alikas & Kratzer, 2017). The ZSD is able to 

provide in first-hand the water transparency whereas Zeu measures the water clarity 

more rigorously and generate more reliable results (Lee et al., 2007; Majozi et al., 

2014). 

In order to estimate the water clarity using remote sensing data, some empirical and 

semi-analytical models were developed. Empirical models explore the relation between 

the diffuse attenuation coefficient at 490 nm [kd(490)] and kd(PAR) to estimate Zeu in 

coastal waters and turbid lake waters (Zhao et al., 2013; Zhang et al., 2012; Wang et al., 

2009). Zhao et al. (2013) used MODIS/Acqua/Terra and SeaWiFS satellite-data to 

understand the light environment in SW Florida coastal waters. Zhang et al. (2012) 

calibrated a simple model to estimate kd and, further, Zeu in a shallow, turbid Taihu 

Lake, China using MODIS data and Wang et al. (2009) proposed to use a combination 

of kd(490) models to improve the accuracy of estimation of kd(490) and kd(PAR) 

products for both turbid and clear waters using MODIS data in Chesapeake Bay. 

Lee et al. (2007), aiming an approach that avoided parameterizations regarding the 

wide seasonal and regional bio-optical variations, developed a semi-analytical Zeu 

model based on kd(PAR) and the inherent optical properties (IOPs) derived from the 

quasi-analytical algorithm (QAA; Lee et al., 2002) using SeaWiFS and MODIS satellite 

data in ocean and coastal waters. Still using the QAA scheme and a mechanistic model 

to overcome the empirical limitations, Lee et al. (2015) proposed a semi-analytical 

equation to estimate ZSD as an inverse relation of kd, derived from the IOPs calculated 

via QAA, at the transparent window of the water body within the visible domain. This 

mechanist model of ZSD is a new approach of the underwater visibility theory 

(Preisendorfer, 1986) that aimed to interpret the exactly sighting of Secchi disk in water 

by the human eye. The ZSD model achieved good performance (R² = 0.96 and absolute 

percentage difference of 16.7%) for a wide range of water clarities (ZSD   0.1-30 m) in 

configuration of OLI/Landsat-8 visible bands (Lee et al., 2016). 

From our understanding there are no investigation of water clarity through the Zeu 

and ZSD parameters using satellite data in inland waters dominated by CDOM, which is 

an OSS of dissolved organic matter and it is considered an important water quality 

indicator which affect the primary productivity due to the interference in penetration of 

PAR into water column of water bodies, reducing the accuracy of water transparency 

estimation (Zhang et al., 2009). The main goals of this paper were to assess the 
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performance of models to estimate Zeu and the new ZSD model developed by Lee et al. 

(2015) in CDOM dominant inland waters; investigate how the estimations are affected 

by this optical water type and comprehend the influences of the seasonality in rainfall 

terms on Zeu and ZSD. The intermediary product to obtain Zeu and ZSD through the 

available models, kd(490), was derived from the semi-analytical equation of Lee et al. 

(2013) for rich-CDOM inland waters through the QAA using the OLI/Landsat-8 with 

mean absolute percentage error of  41%. Six Zeu algorithms were tested and the 

temporal and spatial distributions of the euphotic zone and Secchi disk depths were 

evaluated. 

 

3.2. Material and Methods 

 

3.2.1. Study Site 

 

The Bariri hydroelectric reservoir (22° 9‟ 49.260” S 48° 44‟ 21.420” W) is in the 

middle of the São Paulo State, in Tietê River, being part of the Cascading Reservoir 

System (CRS) as the second one of a total of six reservoirs (Figure 3.1). 

The Bariri reservoir has been in operation since 1969, presenting the smallest 

flooded area of 63 km² in an average altitude of 450 meters and has serviced the water 

supply for human use, irrigation and recreation. By the reduced dimension of the 

reservoir, the operation type is water line with retention time variation from 7 to 24 days 

(Barbosa et al., 1999). The reservoir is situated in a tropical climate with a dry period 

(April-September) and a wet period (October-March) according to Köppen 

classification. 

The Tietê River traverses the metropolitan region of São Paulo State bringing an 

amount of wastewater in the downstream direction. The Cascading Reservoir 

Continuum Concept (CRCC) allows the gradual decrease of nutrients and pollutants 

along the reservoirs and location and retention time of Bariri reservoir promotes the 

heterogeneity of the eutrophication levels in upstream to downstream, revealed by the 

water transparency of the water. The Bariri reservoir is characterized as highly 

productive water with high average concentrations of total nitrogen (2750 μg L
-1

), 

phosphorus (87 μg L
-1

) and Chl-a (55.8 μg L
-1

) with the phytoplankton community 

dominated by cyanobacteria (Barbosa et al., 1999). 
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Figure 3.1. Maps showing the location of (a) São Paulo State in Brazilian territory and 

the path/row of OLI/L8 images which the coordinates of Bariri reservoir are contained, 

highlighted by the red square; (b) CRS of Tietê River in São Paulo State with the six 

reservoirs and their respective dams (1 – Barra Bonita; 2 – Bariri; 3 – Ibitinga; 4 – 

Promissão; 5 – Nova Avanhadava; 6 – Três Irmãos) and (c) Bariri reservoir boundaries 

with the sampling points of the two field campaigns. 

 
 

3.2.2. Planning of Sampling and Fieldworks 

 

The establishment of the samples was based on a random stratified sampling 

method using an annual cycle (2013) of OLI/L8 images acquired at the USGS website 

(www.earthexplorer.usgs.gov). In order to analyze the natural and anthropic variations 

along the reservoir, the same band of each radiometrically calibrated image (each one 

with 6 spectral bands) were compressed and submitted to calculation of the mean and, 

sequentially, of the standard deviation (SD). The SD images were used in a Principal 

Component Analysis (PCA) for selection of the image with the highest variability, 

which was sliced for the random stratified sampling (Rodrigues et al., 2016). 

For Bariri reservoir, 30 sampling points were established ensuring the minimal 

distance of 1 km between them to avoid clusters. Two fieldworks were carried out in the 

dry period, being the first one (BAR1) realized from 15 to 18 August 2016 with the 30 
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sampling points considered and the second one (BAR2), realized from 23 to 24 June 

2017 with 12 samples points less than BAR1, maintaining the points which presented 

high values of OSS concentrations and avoiding the clusters to ensure the spatial 

variability (see Figure 3.1 for sampling locations). The days of the field campaigns were 

determined according to the temporal resolution of OLI/Landsat-8 aiming to match the 

data collection with the satellite overpass the study site. The months of fieldworks were 

chosen to avoid rainy periods and facilitate the field data collection. 

 

3.2.3. Field Data Collection 

 

During the BAR1 and BAR2, water samples for laboratory analyses, water quality 

parameters and optical data were collected. The water quality parameters such as depth 

(m), turbidity (NTU) and Secchi disk depth (ZSD; m) were sampled in both fieldworks. 

The wind speed (m
-1

) was measured using a portable anemometer. 

The water samples were collected in the field and stored refrigerated in 

polyethylene bottles to derive the OSSs and IOPs. The OSSs such as the Chl-a and the 

suspended particulate matter (SPM) as well as the inorganic (IPM) and organic 

particulate matter (OPM) concentrations were obtained from 0.2-0.5L of filtered water 

and replica in each sample point according to Golterman et al. (1978) and the American 

Public Health Association Protocol (APHA, 1998), respectively. The laboratorial 

analyses of the IOPs were made from 0.1L of filtered water and replica in each 

sampling point following the methodology proposed in Bricaud et al. (1981) for the 

absorption coefficient of the CDOM (aCDOM) while for the absorption coefficients of the 

non-algal particle (aNAP) and the total particulate (ap), that consists in the sum of aNAP 

and phytoplankton absorption coefficient (aϕ). The acquisition and analyses were made 

in accordance with the Transmittance-Reflectance method according to Tassan and 

Ferrari (1995, 1998, 2002). 

The radiometric data were obtained from the two hyperspectral RAMSES sensors, 

the ARC type with an angle-of-view of 7º used for the radiance measurements and the 

ACC type with a cosine collector for the irradiance measurements (TriOS, Rastede, 

Germany). The sky and total radiance data (Lsky and Lt, respectively, both in W m
-2 

sr
-1

) 

and the downwelling and sky irradiance data (Ed and Esky, respectively, both in W m
-2

) 

were taken with the sensors fixed by a steel frame in the boat, in a configuration of 40° 

from nadir (zenith) and to azimuthal angle of 90° in order to minimize the specular 
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reflection (Mobley, 1999). The radiometric quantities were used to calculate the remote 

sensing reflectance according to Equation (3.1). 

 

       
              

      
 = 

                 

      
      (3.1) 

 

where   + is the downwelling irradiance measured at the water surface. The LSR is the 

surface-reflected radiance and consists in a multiplicative product of Lsky and ρ - an 

effective surface reflectance. The ρ value ( 0.02-0.05) depends on the viewing 

geometry and spectral variation. In agreement with that, Lee et al. (2010) proposed a 

calculation approach of Rrs as a function of the total remote-sensing reflectance (Trs, 

ratio of Lt to Ed) and sky remote-sensing reflectance (Srs, ratio of Lsky to Ed) for each Lt 

and Lsky scan from the Equation (3.2): 

 

                                (3.2) 

 

where F refers to Fresnel reflectance and it was set as 0.021 according to the viewing 

geometry;   is a spectrally constant settled before     can be derived (Lee et al., 2010). 

In oceanic waters, the     is negligible in the red and near-infrared wavelengths and   

can be assumed as zero beyond 700 nm, however, for turbid inland waters, the IOPs 

have a significant influence in    , thus, one alternative is to model the spectral     

based on the IOPs, and then resolve Δ after comparing modeled     and derived     

from Equation (3.2). 

In sequence, the Rrs used in estimates model of kd and, in sequence, estimates 

models of ZSD and Zeu, must be simulated to the satellite signal at each spectral channel 

centered at a wavelength (λ = 443; 482; 561; 655 nm). The band simulation consists in 

the convolution of the radiation signal of TriOS RAMSES hyperspectral sensor and the 

spectral response function [Fr(λ)] of the OLI/L8 sensor in wavelength interval of the 

spectral resolution (Barsi et al., 2014): 

 

   
     

∫            
    
    

∫      
    
    

        (3.3) 

 

where    
     is the remote-sensing reflectance simulated at center wavelength; xmax and 

xmin are, respectively, the maximum and minimum values of the sensor spectral channel. 
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According to Ed data, the kd(490) in both field campaigns was determined as the 

slope Ed data simulated to satellite signal at spectral channel centered at 482 nm at 

subsurface depth (z)    
      (Mobley, 1994): 

 

        
 

  
    

   
    

  
        (3.4) 

 

In order to eliminate the noise in the         due to changes in the sun illumination 

condition caused by cloud cover during the   
     measurements, a normalization factor 

was required in all scans. The Ed normalization consists in a division of Esky at first scan 

t(z1) to Esky at subsequent scans t(zi) as factor normalization of the   
 t(zi) according 

Mishra et al. (2005) and Mueller (2000): 

 

           
                     

             
       (3.5) 

 

where           is the normalized   
        

The Ed data was still used for Zeu determination in both field campaigns by 

summing the hyperspectral         from 350 nm to 700 nm, obtaining vertical profiles 

of         for each sampling point according to Equation (3.6). 

 

           ∫        
   

   
        (3.6) 

 

In sequence, the Zeu was derived at the depth where the            achieves 1% of 

the         available at subsurface water              or, shortly, as 
          

          
    

(Lee et al., 2005, 2007). 

 

3.2.4. Euphotic Zone Depth Models 

 

The Table 3.1 summarizes the six Zeu models, which cover the semi-analytical and 

empirical ones. 
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Table 3.1. Zeu models developed from coastal and ocean waters, slightly turbid ocean 

waters and turbid lake waters data. 

 
 

The semi-analytical model developed by Lee et al. (2007) (Zeu_Lee) is a cubic-

polynomial equation with the constants based on numerical simulations and two 

parameters, k1 and k2, estimated from the IOPs (a(490) and bb(490)) and sun angle (θs = 

40°). The parameters, k1 and k2, are related with kd(PAR)(z), the diffuse attenuation of 

Ed(PAR)(z) in the visible domain (400-700 nm). Considering that Zeu is the layer within 

which the Ed(PAR) falls 1% of the surface value and kd(PAR) is approximately constant 

with the depth (Morel, 1988) the Zeu was related through kd(PAR) to k1 and k2 from the 

Equation (3.7). 

 

     
     

       
          (3.7) 

 

The model generates three solutions, one negative and two positive, but the smallest 

positive value is consistent with the radiative transfer theory. The IOPs were obtained 

from the QAA_v5 proposed by Lee et al. (2009) (the version 5 was used in this study) 

with in situ     as input, simulated at the satellite center channel of reference 

wavelength (    of 561 nm, the nearest OLI center band of    = 55x of QAA_v5. 

Zhao et al. (2013) aiming to improve the Zeu estimations for the calibration set of 

coastal waters developed an empirical hyperbolic function based on the relation 

between in situ measures of Zeu and kd(490), achieving better results for their study site 

than Zeu_Lee application. 

Calibration 

Dataset 

Coastal and 

Ocean Waters

Coastal Waters

Turbid Coastal 

Waters

Turbid Lake 

Waters 

Wang et al. 

(2009)

Zhang et al. 

(2012)

Equations Model

Lee et al. (2007)

Zhao et al. 

(2013)

   
                 

   
   

                

   
  

      

   
  

                        

    
             

              

    
     

       

(I)                         

(II)                         

(III)              
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The Zeu values from the empirical models were derived from the correlation 

between kd(PAR) and kd(490) for Zeu estimations in Wang et al. (2009) (Zeu_Wang) and 

in the two first equations of Zhang et al. (2012) (Zeu_Zhang_I and Zeu_Zhang_II, 

respectively). The equation III of Zhang et al. (2012) (Zeu_Zhang_III) was calibrated 

with MODIS data with a channel at the near infra-red spectral region of 748 nm and 

considered the ratio of Rrs(   ) and solar zenith angle cosine (μ0), calculated according 

to the sampling time, latitude and solar declination. Taking into account the attenuation 

coefficient dependence on the sun angle and the light angular distribution, the ratio 

Rrs( )/μ0 reduces the effect of sun angle on kd(PAR) estimations. From the kd(PAR) 

obtained in Zeu_Wang, Zeu_Zhang_I-III, the Zeu was estimated using the Equation (3.7). 

The relation used to obtain Zeu from kd(PAR) has been commonly applied in water 

quality studies (Ma et al., 2016; Liu et al., 2016; Majozi et al., 2014). 

 

3.2.5. Secchi Disk Depth Model 

 

The ZSD model analyzed in this study was developed by Lee et al. (2015) based on 

the inversion relation between ZSD and kd. The ZSD estimations require the application 

of a sequential scheme with three steps, initializing with the IOPs (a(λ) and bb(λ)) 

estimations from QAA_v5 (λ0 = 561 nm); in sequence, as second step, the kd(561) 

calculation according to the Lee et al. (2013) from the IOPs previously estimated and, 

finally, as third step, the ZSD calculation from the Equation (3.8). 

 

      
 

            
  (

|              |

     
)      (3.8) 

 

where    at 561 nm was the minimal value of attenuation of Ed in the visible domain 

(443-665 nm) as recommended in Lee et al. (2015). The light attenuation in turbid 

waters is higher in the blue and red spectral regions because the selective absorption 

(Cairo et al., 2017; Kirk, 1994). In accordance with that, the maximum transmission of 

light happens at the green spectral region, called the transparency window in the visible 

domain, justifying the choice of Rrs(561) among the OLI center wavelengths. 
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3.2.6. OLI/Landsat-8 Data Acquisition and Processing 

 

The Landsat 8 Surface Reflectance on-demand data generated by the Landsat 

Surface Reflectance Code (LaSRC) were obtained in the U.S. Geological Survey 

platform (http://earthexplorer.usgs.gov/). The LaSRC algorithm for atmospheric 

correction was developed using the Second Simulation of the Satellite Signal in the 

Solar Spectrum Vectorial (6SV) model. The algorithm uses the OLI Coastal Aerosol 

Band (0.433–0.450 μm) which works as cover for shorter wavelength as the blue band 

in previous Landsat and helpful to retrieve aerosol properties (Vermote et al., 2016). 

Pahlevan et al. (2017) and Bernardo et al. (2016) showed that LaSRC is a consistent 

product to derive aquatic estimates. 

A total of 31 images atmospherically corrected images (Path/Row 221/75 or 

220/76) were acquired during the years of 2014, 2015 and 2016. The criteria used for 

the images choice was attributed to cloud free data over the entire reservoir (images 

with some parts covered were selected). In 2014, the twelve images were selected; in 

2015, nine images were selected with March, November and December images missing; 

in 2016, ten images were selected with January and December images missing. In order 

to map the Zeu and ZSD models, surface reflectance images were divided by π to convert 

them into Rrs and rescaled by a factor scale of 0.0001 to convert to the 0 to 1 range 

(Moses et al., 2012; USGS, 2018). 

The Zeu model with the best performance and the ZSD model from Lee et al. (2015) 

were applied to the time-series of LaSRC images selected to obtain the spatial 

distribution of depths of the euphotic zone and the Secchi disk. The Figure 3.2 

displayed the flowchart of the of Zeu and ZSD spatialization. 

 

Figure 3.2. Flowchart showing the sequential steps followed to mapping ZSD and Zeu. 
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The Rrs of first four bands of LaSRC time-series images were used in the equations 

in original configuration of QAA_v5 (Lee et al., 2009) in order to obtain the a(λ) and 

bb(λ) images. The a(490) and bb(490) and a(561) and bb(561) images were used to 

generated the kd(490) and kd(561) images, respectively, from the semi-analytical model 

proposed by Lee et al. (2013). These two steps enable the mapping of ZSD using the 

semi-analytical equation by Lee et al. (2015) and the mapping of Zeu from any model 

tested in this study. 

The ZSD model and Zeu model best fitted for Bariri reservoir were validated through 

the satellite image from August 15
th

 2016, correspondent to the first day of BAR1. In 

the same way, the LaSRC accuracy in Zeu and ZSD estimations were evaluated from the 

analysis between the Rrs converted images with the Rrs calculated from TriOS data in 

BAR1. 

 

3.2.7. Statistical Analysis and Accuracy Assessment 

 

Statistical analyses, including calculations of the maximum, minimum and average 

values and linear and non-linear regressions were performed. The Zeu and ZSD analyzed 

models were applied for BAR1 and BAR2 datasets. The Root Mean Square Error 

(RMSE), Unbiased Absolute Percentage Error (ε) and the bias were used to assess the 

accuracy of the models. 

 

     √
 

 
∑ (             )

  
          (3.9) 

  
    

 
∑
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∑ (             )

 
          (3.11) 

where      and the ZSD and Zeu estimated values and      is the in situ measures of ZSD 

and Zeu. 

 

3.3.  Results 

 

3.3.1. In situ Measurements 

 

The water color in BAR1 was green in most of the sampling points whereas in 

BAR 2, the water was brownish. The sky during the field campaigns was in most 
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favorable with sunny days with the exception of some period of overcast in BAR1. The 

wind speed (m s
-1

) ranged from 0 to 8 among the field campaigns with the maximum 

value in BAR1 that presented average of 3.47   1.80 m s
-1

 and 3.10   2.00 m s
-1

. 

The in situ Rrs spectral curves are in Figure 3.3. The spectral feature of BAR1 was 

predominant by Chl-a pigment influence with a significant absorption at 680 nm and 

two peaks of reflectance at 550-570 nm and 710 nm, corresponding to typical waters 

with high phytoplankton concentrations. At the green spectral region, the pigments 

assume the minimal absorption and all the particulate matter play the major role in 

reflectance. The sampling points with the highest values of Chl-a concentration ([Chl-

a]) presented a peak of absorption at 440 nm. The dip verified at 625 nm is associated 

with the phycocyanin pigment that is present mainly in cyanobacteria (Majozi et al., 

2014; Gitelson et al., 2007). The Rrs magnitude in BAR2 was lower than BAR1 due to 

the OSS concentrations reduction (see Table 2). The CDOM dominated the light 

absorption process in both field campaigns (67.74%   9.98% in BAR1 and 88.85% 

  5.70% in BAR2 at 490 nm) and it was verified in BAR1 with the lower Rrs at 400-

500 nm while in BAR2, the Rrs curves assumed a flat feature at    600 nm, resulted of 

a CDOM-rich water with other substances influence (Binding et al., 2008; Brezonik et 

al., 2015). 

 

Figure 3.3. The Rrs spectra for BAR1 (a) and BAR2 (b) surveys. 

 
 

The Table 3.2 presents the summary of in situ optical properties. The variability 

among the parameters in BAR1 was expressively higher than in BAR2. The water depth 

presented a range from 5.60 to 19.60 m (11.43   4.32 m) in BAR1 and a range from 

4.70 to 21.20 m (12.65   4.13 m) in BAR2, showing a slight difference in water level 

among the field campaigns. The OSS concentrations are higher in BAR1 than BAR2, 

(a) (b) 
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with a drastic decrease of [Chl-a] mean from 119.76   96.43 μg L
-1

 to 7.99   3.27 μg 

L
-1

 and a decrease of [SPM] from 8.40   4.64 mg L
-1

 to 1.59   0.44 mg L
-1

. The 

absorption process by the organic matter also decreased with aCDOM mean of from 1.57 

  0.37 m
-1

 to 1.06   0.50 m
-1

 and, in the same way, the kd(490) reduced from 2.80   

0.30 m
-1

 to 1.79   0.12 m
-1

 in BAR1 and BAR2, respectively. The reduction of optical 

substances in water reduced the turbidity from 16.60   7.61 NTU in BAR1 to 5.72   

1.25 NTU in BAR2. From the decreasing of turbidity, the water clarity in Bariri 

reservoir increased from 2016 to 2017 that can be confirmed by the increasing of ZSD 

and Zeu. The ZSD presented in BAR1 a mean of 1.16   0.23 m and in BAR 2, the mean 

ZSD increased 0.9 m (2.06   0.19 m). In the same way, the Zeu mean in BAR1 of 2.52   

0.29 m increased to 3.63   0.47 m. 

 

Table 3.2. Summary of statistical parameters of the optical properties acquired in BAR1 

and BAR2 showing the minimum, maximum, mean, standard deviation (SD) and 

coefficient of variation (CV). CV = SD/mean. 

 
 

3.3.2. Zeu evaluation using in situ data 

 

The Table 3.3 relates the errors found in the application of the Zeu models for the 

Bariri dataset. 

To test the Zeu models, with the Zeu_Lee exception, it was necessary estimates 

kd(490) previously. For this, some kd(490) models were tested using as input data 

collected in the field campaigns in order to find the best model fitted for Bariri 

reservoir. The results showed that the semi-analytical model developed by Lee et al. 

(2013) had the lowest errors (MAPE = 41.04%; RMSE = 1.07 m
-1

). The kd(490) was 

derived from IOPs (a(λ) and bb(λ)) by applying the QAA_v5 scheme, considering the 

sun angle, that makes the uncertainties regarding the data matching reduce. Therefore, 

Field 

Campaign 

Wind Speed 

(m s
-1

)

Water 

Depth 

(m)

ZSD 

(m)

Zeu 

(m)

Turbidity 

(NTU)

kd(490) 

(m
-1

)

[Chl-a ] 

(μg L
-1

)

[SPM] 

(mg L
-1

)

aCDOM(490) 

(m
-1

)

Min 0.00 5.60 0.50 1.59 7.80 1.87 25.67 3.60 0.92

Max 8.00 19.60 1.60 2.88 80.90 3.98 709.89 40.33 2.74

Mean 3.47 11.43 1.16 2.52 16.60 2.80 119.76 8.40 1.57

S.D. 1.80 4.32 0.23 0.29 7.61 0.30 96.43 4.64 0.37

C.V. 51.73% 38.00% 20.03% 12.00% 45.82% 10.69% 80.52% 55.25% 23.73%

Min 0.00 4.70 1.60 2.22 3.48 1.54 3.82 0.20 0.18

Max 6.50 21.20 2.50 4.03 8.80 2.34 19.11 2.60 2.07

Mean 3.10 12.65 2.06 3.63 5.72 1.79 7.99 1.59 1.06

S.D. 2.00 4.13 0.19 0.47 1.25 0.12 3.27 0.44 0.50

C.V. 65.10% 33.00% 9.31% 13.00% 21.92% 6.47% 40.90% 27.92% 47.84%

BAR1 (N 

= 30)

BAR2 (N 

= 18)
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after the analysis among the kd(490) models tested, the one developed by Lee et al. 

(2013) was chosen to mapping the variability of kd(490) and to support the mapping of 

Zeu and ZSD in Bariri reservoir. 

 

Table 3.3. Errors assessment of Zeu models developed for ocean, costal, slightly turbid 

ocean and turbid lake waters that were tested for Bariri dataset. 

 
 

The Zeu_Lee presented RMSD = 1.40 m, ε = 35.11% and bias = 1.18 m when 

applied for Bariri all dataset (aggregated = BAR1 + BAR2). The errors were considered 

high among the other analyzed models. Despite the model have been developed from a 

semi-analytical scheme with the Rrs in situ data, the empirical models showed better 

matching with Zeu data in Bariri reservoir. 

The Zeu_Lee model was applied to ocean and coastal productive waters with Zeu 

ranging among   4.30 to 82 m achieving satisfactory agreement between measured and 

estimated data. However, for turbid inland waters dominated by CDOM as Bariri 

reservoir with Zeu ranging from 1.59 to 4.03 m, the Zeu_Lee did not fit so well and 

overestimated Zeu in all sampling points. Some authors in order to improve the IOPs 

estimations in turbid inland waters parameterized some empirical phases and the 

reference wavelength of QAA (Li et al., 2016; Yang, et al., 2013; Watanabe et al., 

2016). In contrast with that, the kd(490) estimations obtained from Lee et al. (2013) and 

also dependent on IOPs estimations through the semi-analytical model no parameterize 

achieved the best results in comparison with the empirical ones when applied for Bariri 

all dataset. 

BAR1 BAR2 Aggregated 

RMSD (m) 1.26 1.87 1.40

ε (%) 37.85 39.55 35.11

bias (m) 1.19 1.74 1.18

RMSD (m) 0.46 0.88 0.64

ε (%) 15.12 19.66 16.76

bias (m) -0.34 -0.38 -0.33

RMSD (m) 1.24 1.93 1.53

ε (%) 36.38 40.62 37.91
bias (m) 1.13 1.55 1.28

RMSD (m) 0.94 1.44 1.15
ε (%) 29.04 31.68 29.99

bias (m) 0.82 1.55 0.90

RMSD (m) 1.02 1.56 1.24

ε (%) 31.11 33.90 32.12

bias (m) 0.90 1.17 1.00

RMSD (m) 0.78 1.36 1.03

ε (%) 30.65 29.46 30.22

bias (m) -0.08 0.22 0.024

Lee et al. 

(2007)

Zhao et al. 

(2013)

Validation Dataset

Wang et al. 

(2009)

Zhang et al. 

(2012)

Equations Model

   
                 

   
   

                

   
  

      

   

                        

    
             

              

    
     

       
(I)                         

(II)                         

(III)              
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The radiative transfer approach used in kd calculation (Lee et al., 2005; Lee et al., 

2013) is consistent with the definitions about the nature variations of kd, considered as 

an apparent optical property (AOP) (Kirk, 1994). Highly dependent on zenithal sun 

angle and IOPs, the semi-analytical kd ensure the adjustment in light field structure 

changes and the contributions of absorption coefficients of pure water (aw) and other 

optical constituents (a) that affect the scattering coefficients of pure water (bbw) and 

other optical constituents (bb), reducing, for instance, errors in longer wavelengths (600-

800 nm) due to high aw (Lee et al., 2018). 

The Zeu_Lee model was applied to coastal waters with optical environmental 

significantly affected by CDOM and suspended matter and showed larger errors relative 

to in situ data. The mismatch was associated to the kd algorithm applicability that 

derived the Zeu values and the algorithm parameterization. The kd model used was also 

the Lee et al. (2013) model but in the formula version from 2005, without the extension 

of the minimal wavelength used in equation development that aimed in amplify the 

waters range application (Zhao et al., 2013). 

The Zeu_Zhao developed for turbid coastal waters (water depth ranged between 2.5-

20 m) presented the lowest errors with RMSD = 0.64 m, ε = 16.76% and bias = -0.33 m 

when applied for Bariri all dataset. The empirical model explored the relation between 

kd(490) and Zeu measured in situ. The success of results for aggregated data can be 

explained by the similar optical constituents in water. The Zeu measures were taken in 

data stations that showed variations in spectral shapes covering waters with optical 

properties influenced by allochthonous source of CDOM and waters with significant 

amount of absorption and scattering processes, presenting kd(490) values in situ from 

0.03 to 1.29 m
-1

. In analyzing all dataset of Bariri reservoir, the [Chl-a] had an 77.84   

77.15 μg L
-1

 with organic particles predominance and the greater part of light absorbed 

by CDOM indicating a multiple external source of organic matter and the kd(490) range 

found was 1.55-3.98 m
-1

. Although the Bariri is more turbid than the calibration dataset 

in Zhao et al. (2013), the Zeu_Zhao showed a significant matching, higher for BAR1 

(1.59   Zeu   2.88 m) than BAR2 (2.22   Zeu   4.03 m) which showed some disperse 

sampling points. 

The empirical model Zeu_Wang had the worst performance for Bariri dataset 

(RMSD = 1.53 m, ε = 37.91% and bias = 1.28 m) with values in general overestimated. 

The kd(PAR) are related to kd(490) through an in situ data with kd(490) ranging from 
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0.35 m
-1

 to 6.6 m
-1

 and turbid coastal waters more influenced by phytoplankton and 

suspended sediment and phytoplankton absorption predominant (Wang et al., 2009). 

Although the range of kd(490) values covers the range found in Bariri dataset, the 

equation coefficients calibrated for different optical environment showed a limitation of 

the model application in turbid inland waters. The equation to estimate Zeu also did not 

perform well in turbid inland waters in a Japan Lake, achieving relative error above 

100% (Yang et al., 2015). 

The equations available in Zhang et al. (2012) when applied with Bariri dataset 

resulted in intermediary values of errors regarding other evaluated models with RMSD 

= 1.15 m, ε = 29.99% and bias = 0.90 m for Zeu_Zhang_I; RMSD = 1.24 m, ε = 32.12% 

and bias = 1.00 m for Zeu_Zhang_II and RMSD = 1.03 m, ε = 30.22% and bias = 0.024 

m for Zeu_Zhang_III. The Zeu_Zhang_I and Zeu_Zhang_II are simple optical models 

based on the correlation between the kd(PAR) measured and kd(490) estimated by an 

empirical relation using the ratio Rrs(670)/Rrs(490) calibrated for turbid inland waters. 

The coefficients in Zeu_Zhang_I equation showed slightly better results than the 

ones used in Zeu_Zhang_II. The Zeu_Zhang_III equation used the Rrs(748)/μ0 because 

the significant correlation between the near-infrared wavelength and kd(PAR), that is 

97.5% explained by inorganic particles in water, and to reduce the sun angle effect. 

However, the results were not so different from the two former equations. The different 

bio-optical conditions of Bariri reservoir in relation to the extremely turbid waters, 

dominated by NAP, increased the mismatch between the Zeu estimations and Zeu 

measured. Furthermore, the kd(490) equation, available in Zhang et al. (2012), used in 

kd(PAR) equations was applied for Bariri aggregated data and produced large 

uncertainties, which maximized the errors in Zeu estimations. 

The application of Zeu models in BAR1, BAR2 and the aggregated dataset 

presented few differences in results. BAR1 showed slightly lowest errors than BAR2 

and it can be explained by the highest OSS concentrations in BAR1 than BAR2 once 

the models were based on the IOPs (Lee et al., 2007) and kd(490) which is also 

determined by absorption and scattering processes. The Zeu estimations (just 

Zeu_Zhang_I was considered from Zhang et al. (2012) due to the lowest errors 

presented) were plotted against the Zeu measured from in situ data for Bariri aggregated 

data (Figure 3.4). The estimations of Zeu_Zhao were closer to the 1:1 line and it was 

used to mapping the euphotic zone in Bariri reservoir. 
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Figure 3.4. Comparison between derived-Zeu from in situ data and those estimated from 

Zeu models analyzed. 

 

 
 

3.3.3. ZSD evaluation using in situ data 

 

The kd(561) intermediary products to obtain ZSD semi-analytical equation (Lee et 

al., 2015) showed some uncertainties for Bariri dataset. When the kd model (Lee et al., 

2013) was applied, the errors were almost the same with RMSD = 0.53 m
-1

, ε = 34.72% 

and bias = - 0.41 m
-1

 for BAR1; RMSD = 0.31 m
-1

, ε = 31.66% and bias = - 0.17 m
-1

 for 

BAR2 and RMSD = 0.47 m
-1

, ε = 33.61% and bias = 0.33 m
-1

 for Bariri all dataset. 

The errors obtained in ZSD estimations are in Table 3.4. The errors showed a large 

variability among the data sets with the lowest errors for BAR 1 and extremely large 

errors for BAR2. 

 

Table 3.4. Errors assessment of ZSD (Lee et al., 2015) considering the two field and the 

aggregated data. 

Dataset RMSD (m) bias (m) ε (%) 

BAR1 0.41 -0.18 34.10 

BAR2 1.39 -1.30 97.70 

Aggregated 0.90 -0.12 57.10 

 

The ZSD results in BAR2 presented highly underestimation in relation to BAR1 and 

Bariri all dataset. Rodrigues et al. (2017) tested the ZSD model performance in native 

form in Nova Avanhadava reservoir (downstream to Bariri reservoir) for three different 
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data groups, the first and third group were characterized by the slight dominance of 

inorganic particles whereas the second one showed a higher CDOM proportion. The 

group with higher CDOM influence presented the highest errors in ZSD estimations 

(RMSD = 1.18 m and bias = - 1.00 m) in relation to others influenced by inorganic 

matter (RMSD and bias equivalent to 0.55 m and -0.35 m, respectively, for the first 

group; 0.99 m and -0.90 m, respectively, for third group). Aiming to improve the 

results, Rodrigues et al. (2017) re-calibrated some empirical steps in QAA_v5 and the 

uncertainties in ZSD estimations were slightly reduced, more significantly in first and 

third data group than second one, which led to ZSD underestimations. 

Lee et al. (2016) using the same algorithm and OLI bands for ZSD varying from   

0.1 – 30 m covering clear oceanic and turbid coastal waters, achieved R² = 0.96 and 

unbiased absolute percent difference of 16.7% and 18%. However, the ZSD accuracy for 

Bariri environment was significantly compromised. 

 

3.3.4. Assessment of LaSRC 

 

The LaSRC have been used successfully to mapping water quality (Bernardo et al., 

2016; Concha & Schott, 2016; Rodrigues et al., 2017). The evaluation of LaSRC 

accuracy consisted in the comparison between Rrs from TriOS simulated to OLI bands 

and the Rrs derived from the reference image of August/2016 for the sample points 

raised in the same day of satellite overpass day. The highest variability in matching the 

Rrs data was at 443 nm and one sample point was chosen to show the LaSRC 

performance (Figure 3.5a-b). 

 

Figure 3.5. The spectral distribution of the sample points in Rrs in situ and Rrs_LaSRC 

derived (a) and the Rrs_LaSRC derived performance in relation to Rrs in situ. 
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At 443 nm and 482 nm, the errors were the highest with ε = 78.9% and ε = 60.9%, 

respectively. At 561 nm, the error decreased (ε = 39.4%) and increased again at 655 nm 

(ε = 53.02%). The highest errors at the coastal and blue regions are related to the 

increase of scattering in those regions. 

 

3.3.5. Rainfall Data 

 

As depicted in Figure 3.6a, BAR1 and BAR2 were realized in periods of low 

monthly precipitation rate with 53.83 mm and 29.03 mm in comparison to annual 

average of 171.10 mm in 2016 and 164.31 mm in 2017 registered in Bariri reservoir, 

respectively. These values are expected once they occurred in the dry period. In BAR1 

period (from 15 to 18 of August of 2016), the first day of surveying data in Bariri 

reservoir was affected by rainfall at night period and it was verified the increase of 

turbidity mainly in the two last days of the field campaign where the sampling points 

presented the water color predominantly green. In BAR2 period (23 and 24 of June of 

2017), the monthly precipitation rate was lower than in BAR1 with no rainfall events 

during the surveying. 

 

Figure 3.6. Graphics of monthly average of (a) rainfall (mm) data for Bariri reservoir, 

obtained from NASA‟s GIOVANNI (TRMM Data Product; Spatial Resolution of 

.0.25º; Monthly Temporal Resolution) database between 2014 and 2017. In 2017, the 

precipitation data were available just until October and (b) the flow rate (m³ s
-1

) of 

Bariri reservoir in the period 2014-2017 available in the SAR/National Water Agency 

(http://sar.ana.gov.br/MedicaoSin). 
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The precipitation achieved the lowest values in June/2014 (5.10 mm), August/2015 

(16.77 mm) and July of 2016 (3.98 mm) and 2017 (1.56 mm). The wet months showed 

the monthly average nearest the maximum values, mainly in January when the 

precipitation rates achieved   380 mm in 2016 and 2017. In turn, January of 2014 

showed the lowest precipitation (101.26 mm), lower than the average of 262.38 mm as 

well as 2015, with 181.61 mm in January. The highest precipitation in 2015 was in 

February (238.94 mm) and significant rainfall was observed in September, October and 

November in relation to other years. 

The pattern in the shape of precipitation lines in 2016 and 2017 were quite similar 

with the exception in May-June/2016 and April/2017 which presented expressive 

rainfall amount in the southeastern south-center in May/2016 and April/2016 and 

rainfall above the mean in São Paulo State in June/2016 according the Weather 

Prevision Center and Climate Studies (available in http://infoclima.cptec.inpe.br). The 

precipitation rates were 125.25 mm, slightly higher than monthly average (122.47 mm), 

in May/2016 and significant value of 125.42 mm in June/2016, compared with the 

annual average of 45.22 mm. In April/2017, the precipitation rate was 136.20 mm 

whereas the annual average for this month was 74.32 mm. 

The lowest values were verified in 2014 even for the wet period (exception of 

November and December months). The Tietê River received only about one-sixth of the 

usual amount of rain and was classified as extremely dry situation according to 

Standardized Precipitation Index (SPI), presenting the most severe drought with seven 

months of duration in 2014 which implied directly in water supply problems (Gomes et 

al., 2017-a; Coelho et al., 2015; NASA, 2015). The reservoirs in Tietê River dwindled 

from 3 to 5% of its reservoirs storage capacity (Coelho et al., 2015) reducing the flow 

rate in Bariri reservoir in the entire year of 2014 which remained above the mean 

(Figure 3.6b). The flow rate in 2014 presented the lowest values in relation to the 

subsequent years (exception of January/2015) with the minimum value of time-series of 

136.57 m³ s
-1

 in October. The annual average for October month was 280.74 m³ s
-1

. The 

flow rate maximum value was 1419.23 m³s
-1

 in January/2016. The water flow 

delineation was according to a water line reservoir, maintaining the water retained in 

months with less precipitation and in the period of the drought. 

 

3.3.6. Zeu using satellite-derived data 
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The Figure 3.7 presented the spatial and temporal variability of Zeu in Bariri 

reservoir expressed in OLI/Landsat-8 images. The annual cycle of available LaSRC 

images in 2014, 2015 and 2016 were used. Two images of each period (dry and wet) 

were chosen to show the Zeu variation in Bariri reservoir and boxplot graphic were 

constructed to analyze the statistical performance of Zeu in each month of the studied 

period (Figure 3.8). The criteria of images choice presented in this study was the 

months, at least two for period, with available images simultaneously in 2014-2016 and 

not sequentially in order to improve visually the Zeu variability. Therefore, the February, 

May, August and October were the months, which met the conditions mentioned above. 

 

Figure 3.7. Spatial distribution of Zeu using the model based on Zhao et al. (2013) for 

February, May, August and October months of (a) 2014, (b) 2015 and (c) 2016. The A 

and B arrows highlight zones which presented high variability in Zeu values among the 

images analyzed. 
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The maximum and minimum Zeu values were 7.30 m in May-2015 and 0.60 m in 

June-2014, both in the dry season (Figure 3.8a-b). The arrows highlight two zones (A 

and B) in Bariri reservoir which presented variability between the analyzed images. The 

zone A showed low Zeu values, except for May-15 image where the Zeu were high. The 

May-2015 image was marked by atypical rainfall (122.8 mm) equivalent to the monthly 

average for the 2014-2017 period (Figure 3.6a), increasing the reservoir water level and, 

possibly, the water velocity in this zone, reducing the optical component concentrations 

which, in turn minimize the water turbidity; a high Zeu variability (from 3.25 to 7.32 m) 

can be observed in this month (Figure 3.8b). The zone B presented significantly low Zeu 

in relation to zone A taking into account the proxy among them; the stain aspect in zone 

B can be related to an external increment which increased the turbidity punctually 

(Figure 3.7b). The months of May and June presented the Zeu well distributed around 

the mean (Figure 3.8b). In February and October, the Zeu average was 1.76 m and 2.77 

m, respectively. 

 

Figure 3.8. Boxplot of Zeu spatial distributions in Bariri reservoir for 2014 (a), 2015 (b) 

and 2016 (c). 
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The drought event in Tietê River in 2014 reduced drastically the precipitation rate 

in Bariri (Figure 3.6), mainly in dry period; the Zeu values were below of 4 m in most 

reservoir (Figure 3.8a). The high variability (from 0.59 to 4.34 m) was observed in 

August month with expressive decreasing of Zeu in zone A, where it was verified an 

algal bloom episode in analysis of the respective satellite image. The variability reduced 

in February and October, with lowest Zeu values in the former month (average of 1.65 

m) in the beginning of drought, in relation to October (2.88 m). May-2014 showed a 

slight Zeu variability (from 1.83 to 2.84 m), characterized by the stain aspect (Figure 

3.7a). 

The 2016 year presents the lowest Zeu values for February, May and October in 

relation to previous years (Figure 3.8c). The Zeu variability was lower in February with 

average of 1.54 m and in October with average of 3.00 m, when the Zeu values remained 

closest to the maximum (Figure 3.8c). The wet period of 2016 presented great amount 

of rainfall with high precipitation rate in January (  300 mm) which possibly enriched 

the runoff process and, consequently, the increment of a great amount of suspended 

material into the reservoir, increasing turbidity and reducing Zeu in February. In May-

2016 (Zeu average of 1.40 m), it was possible to see the Zeu increase in some part of 

zone A and in zone B. In August-2016, the Zeu average was 2.46 m with low variability 

(Figure 3.8c); it was compatible with the high [Chl-a] values (range from   100 to 234 

μg L
-1

)
 
found in BAR1 survey in the sample points in zone A, increasing the turbidity 

and reducing the Zeu values. It was possible to see that Zeu followed a pattern, with high 

values in months of dry periods, when the amount of rainfall is reduced. Tang et al. 

(2007), analyzing the annual variation of Zeu, showed that in South China Sea, the 

values were lower in December-February (correspondent to austral summer) than in 

June-August (correspondent to austral winter). 

 

3.3.7. ZSD using satellite-derived data 

 

The spatial distribution of ZSD (Lee et al., 2013) also consisted of years of 2014, 

2015 and 2016 and the same months of Zeu spatialization were highlighted (Figure 3.9); 

boxplot graphics (Figure 3.10) were also constructed to comprise the statistical 

performance of ZSD model in Bariri reservoir. The maximum ZSD value found was 2.95 

m in May-15 and the minimum value was 0.32 m in June-2014, same months of 

minimum and maximum, respectively, in Zeu spatialization (Figure 3.9a-b). The ZSD 
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variability in May-15 was from 1.23 to 2.95 m and from 0.32 to 1.74 m in June-14 

(Figure 3.10a-b). The zone A presented low ZSD values with the exception of May-15, 

where ZSD values were high and in zone B, the ZSD was low in relation to the reservoir 

in upstream direction. The ZSD in May-15 and June-15 showed highest values for these 

years (Figure 3.10b), accompanied by the atypical rainfall observed in this period. In 

2014, the highest ZSD was in August (varying from 0.33 to 1.87 m) with decrease in 

zone B due to an algal bloom episode which reduced the water transparency (Figure 

3.9a). 

 

Figure 3.9. Spatial distribution of ZSD using the model from Lee et al. (2015) for 

February, May, August and October months of (a) 2014, (b) 2015 and (c) 2016. The A 

and B arrows highlight zones which presented high variability in ZSD values among the 

images analyzed. 
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In May-14, the ZSD was low (mean of 1.00 m), varying from 0.68 to 1.25 m. 

February and October months, in 2014, showed ZSD means of 0.67 m and 0.93 m, 

respectively. In 2016, the high precipitation rate in January can be related to the ZSD 

reduce in respective month and in February month, which showed the most values close 

to the minimum (1.25 m) according to the boxplot and the spatialization (Figures 3.9c, 

3.10c). In May-16, the ZSD values remained close to the minimum, varying from 1.14 m 

to 4.84 m, with the increase of ZSD in zones A and B. In August-16, ZSD varied from 

0.54 to 0.88 m, showing low variability (Figure 3.10c). The ZSD measured in situ in the 

same month, varied from 0.50 to 1.60 m. In October-16 image (Figure 3.9c); it was 

possible to observe visually the variability (0.67 to 1.17 m) of ZSD when the values 

remained close to the maximum value (Figure 3.10c). 

 

Figure 3.10. Boxplots of ZSD spatial distributions in Bariri reservoir for 2014 (a), 2015 

(b) and 2016 (c). 

 

 
 

The patterns of Zeu and ZSD images were the same with different magnitudes, 

indicating that the ZSD also is influenced by seasonal differences among the dry and wet 

periods and influence of external material in Bariri reservoir. In 2014, due to the 

occurrence of the drought event in Tietê River, it was not possible to delineate the effect 
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of seasonality in ZSD values, however, it was observed that in months which achieved 

the lowest rainfall values (January, June and August, for instance) the ZSD was the 

highest. In 2015, the months in the dry period (mainly, May and June) showed high ZSD 

and, in 2016, the ZSD increased according to reduce of rainfall in the dry period. Al 

Kaabi et al. (2016) registered that in Arabian Gulf, the ZSD was higher in April-

September period than in October-March period. Such seasonal variability was 

observed in ZSD studies that the lowest values were found in summer and spring, when 

the rainfall is higher, in relation to winter (decrease of rainfall) that showed higher ZSD 

(Wu et al., 2015; Rodrigues et al., 2017). 

 

3.4. Discussion 

 

3.4.1. Relationships between Zeu; ZSD and water quality constituents 

 

In both field campaigns, the SPM concentration ([SPM]) was dominated by organic 

matter. The relationship between [SPM] and [Chl-a] was strong in BAR1 (R = 0.985; p 

< 0.001), however, in BAR2, the relationship was much weaker (R = 0.369) with no 

significance. The second field campaign had the [Chl-a] reduced and the organic matter 

in [SPM] was almost totally dominated by aCDOM(443) with the correlation of R = 0.996 

(p < 0.001) while the relationship with aphy(443) was not significant. When the data of 

the two field campaigns were aggregated, the relationship between [SPM] and [Chl-a] 

(R = 0.984; p < 0.001) was very close of the relationship of BAR1. 

The Zeu models tested in this study and, mainly, the Zeu_Zhao used for mapping the 

euphotic zone in Bariri reservoir showed increasing of the errors when applied for 

BAR2 (RMSD = 0.88 m; ε = 19.66%; bias = - 0.38 m) in relation to BAR1 (RMSD = 

0.46; ε = 15.12%; bias = - 0.38 m). The relationship between Zeu and [SPM] in BAR2 

was extremely weak (R = 0.10) and it is due to the high correlation of aCDOM(443) with 

[SPM] once the relationship between Zeu and [SPM] was higher for BAR1 than for the 

aggregated data (R = 0.62 and R = 0.56, respectively). The errors of Zeu estimations 

when applied for all dataset had a slight increase in relation to BAR1 (RMSD = 0.64 m; 

ε = 16.76%; bias = - 0.33 m). Therefore, the predominance of aCDOM and the decreasing 

of [Chl-a] in BAR2 increased the mismatch between Zeu_Zhao estimations and in situ 

Zeu. 
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Figure 3.11 shows that the Zeu is negatively correlated to [SPM] (R = - 0.546; p < 

0.001), [Chl-a] (R = - 0.557; p < 0.001) and turbidity (R = - 0.550; p < 0.001). So, the 

Zeu measured in situ was slightly affected by [Chl-a] in the Bariri all dataset. The 

correlation between [SPM] and aphy(443) found in Bariri all dataset confirms the 

predominance of organic matter in the optical environment (R = 0.836; p < 0.001). High 

values of [Chl-a] indicates excessive input of nutrients in water; these regions present 

deficit in underwater light and, therefore, reduction of euphotic depths (Liu et al., 2016). 

The nutrients enrichment in water, accelerate the primary productive with great amount 

of phytoplankton production which was verified trough the strong relationship between 

[Chl-a] and aphy(443) which was R = 0.885; p < 0.001 (Figure 3.11). The correlation 

between [Chl-a] was not significant (not shown here). 

 

Figure 3.11. Relationships between in situ Zeu and (a) [Chl-a], (b) [SPM], (c) turbidity 

and between the aphy(443) with (d) [SPM] and (e) [Chl-a]. 

 
 

The high [Chl-a] verified in BAR1 and predominance of aCDOM in the total 

absorption of light in both field campaigns suggest a multiple external sources of 

organic matter entrance in Bariri reservoir depicted by the meteorological conditions, 

urban/industrial and agricultural waste. In addition, no significant correlation between 

[Chl-a] and aCDOM was verified in neither of the two field campaigns that cannot 

confirm the influence of autochthonous CDOM in Bariri reservoir system (Binding et 

al., 2008). Alterations in land use and land cover (LULC) in sub-watershed of Barra 

Bonita reservoir (upstream of Bariri reservoir) showed replacement of forest fragments 

by grazing land advanced and intensification of sugarcane production, promoting 
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erosion, soil degradation and, consequently, reducing of water quality (Gomes et al., 

2017a). 

In relation to ZSD, the semi-analytical model to estimate water transparency from 

Lee et al. (2013) also showed an expressive increase of mismatching between the 

estimations and ZSD measured when applied for BAR2 in relation to BAR1. The errors 

increased around 63% in the first field campaign in relation to the second with RMSD = 

0.41; ε = 34.10%; bias = - 0.18 m in BAR1 and RMSD = 1.39; ε = 97.70%; bias = - 

1.30 m in BAR2; the underestimations were observed in all sample points. 

In BAR1, inverse correlations were verified: ZSD and [Chl-a] (R = - 0.737; p < 

0.001); ZSD and [SPM] (R = -0.786; p <0.001); ZSD and turbidity (R = - 0.652; p < 

0.001). However, in BAR2, no correlation was verified between ZSD and the OSS; the 

relationship between ZSD and turbidity was also inverted (R = - 0.695; p < 0.05). The 

BAR2 survey showed [Chl-a] mean of 7.99   4.10 μg L
-1 

whereas in BAR1 survey, the 

mean was 119.76   96.43 μg L
-1

; the absorption of light in both field campaigns was 

dominated by CDOM. The ZSD is a reasonable indicator of trophic conditions once it 

was inversely correlated to [Chl-a], however it was not observed in colored lakes with 

low [Chl-a] (Gholizadeh et al., 2016), justified by the high mismatch of ZSD estimations 

in BAR2 related to in situ ZSD. 

Considering the Bariri all dataset, the relationships between in situ ZSD and [Chl-a], 

[SPM] and turbidity were inverses (R = - 0.658; p < 0.001, R = - 0.655; p < 0.001 and 

R = - 0.643; p < 0.001, respectively) (Figure 3.12). 

 

Figure 3.12. Relationships between in situ ZSD and (a) [Chl-a], (b) [SPM], (c) turbidity. 

 
 

The ZSD varied inversely in relation to OSS concentrations and turbidity; sampling 

points with high [Chl-a] and [SPM], and, consequently high turbidity values, presented 

low ZSD; the effect of phytoplankton production on water transparency was identified by 

the reduction of ZSD. The in situ Zeu and ZSD showed similar responses to influence of 
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optical constituents in Bariri reservoir, with ZSD showing highest correlation with them. 

The relationship between the two parameters of water transparency and quality was 

significantly strong (R = 0.893; p < 0.001). 

 

3.5. Conclusions 

 

After the application of several tests with the Zeu estimation models available for a 

wide range of waters, it was verified that the empirical model of Zhao et al. (2013) (ε   

16.76%) excelled the semi-analytical algorithm performance presenting (ε   35.11%), 

countering the affirmation that IOP-centered approach is able to be applied in a wide 

range of bio-optical waters. The Zeu semi-analytical algorithm achieved the lowest 

accuracy between all the others empirical models tested with the exception of the 

Zeu_Wang (ε   37.91%).  

The ZSD estimations from the semi-analytical model presented uncertainties (ε   

57%); the estimations were highly affected by the predominance of CDOM in Bariri 

reservoir (ε   97.7% when applied for BAR2) confirmed by the inexistence of 

correlation between ZSD and [Chl-a] and ZSD and [SPM], despite the reduction of the 

correlation between ZSD and the OSS when the data was aggregated. The accuracies of 

Zeu estimations among the tested models also compromised the results with the 

reduction of [Chl-a] in BAR2, however the magnitude was lesser than the ZSD 

estimations once the correlation between Zeu and [SPM] was higher in BAR2. It is 

possible to conclude that ZSD is highly affected by the increase of [Chl-a]. 

The Zeu in situ varied from 1.58 m to 4.00 m and ZSD varied from 0.5 m to 2.50 m, 

showing reliable results of water transparency. The accuracy of ZSD reading is subject to 

properties of observer eye as a contrast sensor; the boat shadow and also depends on the 

wind speed with an error varying from 0.2 to 0.5m (Alikas & Kratzer, 2017) whereas 

the Zeu was obtained from Ed(PAR) normalized to reduce the changes in sun illumination 

condition and in a geometry configuration to avoid the wind and boat shadow effects in 

radiometric data acquisition. 

Using the atmospherically corrected OLI/Landsat-8 (LaSRC) Zeu and ZSD images, 

we verified the seasonality pattern controlled by the rainfall in Zeu and ZSD which 

remained the same delineation but with different magnitudes. The Zeu and ZSD showed 

high values in the dry period (April-September); in contrast, showed low values in the 
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wet period (October-March), when the input of external material is facilitated in 

reservoir. 
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CHAPTER 4: Final Considerations 

 

4.1. Highlights 

 

The results achieved in this dissertation confirm the hypothesis that the semi-

analytical algorithm (Lee et al., 2013) to estimate kd produced the lower errors (MAPE 

= 41.04% and RMSD = 1.07 m
-1

) among others semi-analytical and empirical models; 

the kd semi-analytical model was effective to map the attenuation coefficient and to be 

an intermediary product for Zeu and ZSD estimations. In a semi-analytical scheme, the 

ZSD was derived as an inverse relation with kd through the semi-analytical model from 

Lee et al. (2015). The accuracy achieved in ZSD estimations was lesser than the kd 

estimations through the semi-analytical scheme (ε = 57.10% and RMSD = 0.90 m) and 

it was related to the strong influence of CDOM in the ZSD. 

The Zeu and ZSD estimations were affected by the CDOM dominance in Bariri 

reservoir and the accuracies of estimations were more compromise in BAR2 where the 

influence of CDOM was higher than in BAR1. The Zeu and ZSD are highly related to 

precipitation, presenting the highest values in dry periods, where the input of external 

material is reduced. 

The applicability of the semi-analytical equation to estimate Zeu developed by Lee 

et al. (2007) was not verified with high errors (ε = 35.11% and RMSD = 1.40 m) in 

relation to the empirical model by Zhao et al. (2013) (ε = 16.76% and RMSD = 0.64 m). 

These results suggest that the Zeu was more represented by a model developed for an 

aquatic environmental with similar optical constituents to Bariri reservoir than for a 

semi-analytical model using the IOP approach and calibrated for waters optically 

described only by phytoplankton. 

From the spatialization, the inverse relation between kd; Zeu and kd; ZSD was 

observed, with the high kd values correspondent to low Zeu and ZSD values where the 

increase of the attenuation of light indicates increase of water constituents and, 

consequently, increase of turbidity and reduce of the Zeu and ZSD. 

To our knowledge, there is no previous study to assess the potentiality of Landsat-

8/OLI data to estimate and map the water clarity parameters considered in this research 

in inland waters dominated by CDOM. The QAA_v5 in the configuration of the band 

centers of the Landsat-8/OLI was able to estimate the IOPs used in the semi-analytical 
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model to derive kd, making possible the estimations of Zeu and ZSD and the asses of the 

temporal-spatial distribution of the water clarity parameters in Bariri reservoir. 
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