PHYSICAL REVIEW B 73, 014405 (2006)

Spin, charge, and orbital correlations in the one-dimensional #,,-orbital Hubbard model
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We present the zero-temperature phase diagram of the one-dimensional #,,-orbital Hubbard model, obtained
using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the
electron density n=>5 corresponding to five electrons per site, while several other cases for electron densities
between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramag-
netic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic
(FM) state by tuning the Hund’s coupling. The results also suggest a transition from the n=5 PM insulator
phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of
the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and
discussed. The robustness of these two states against varying parameters suggests that they may be of relevance
in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
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I. INTRODUCTION

The study of the exotic properties of cobalt oxides is an
exciting area of investigation that is currently attracting con-
siderable attention in the research field of condensed-matter
physics. Among the main reasons for this wide effort, the
recent discovery of superconductivity in layered two-
dimensional triangular lattices of Co atoms with the compo-
sition Na,CoO, has certainly triggered a rapid increase of
research activities on cobalt oxides. This material becomes
superconducting after H,O is intercalated,! while Na,CoO,
exhibits several other competing tendencies, such as charge-
ordered insulating, as well as metallic states with varying the
Na composition.2 Furthermore, an incommensurate spin-
density wave state has also been observed in this compound
and in the related compound [Ca,CoO3] [ C0O,].* The ex-
istence of such a rich phase diagram is a characteristic of
strongly correlated electron systems, where complex behav-
ior typically emerges due to the presence of competing states
that have similar energies but vastly different transport and
magnetic properties.*

Furthermore, the magnetic behavior of quasi-one-
dimensional Co oxides A,,,B'B,0x,,5 (A=Ca, Sr, Ba, B’
and B=Co) has also attracted much attention.’ For instance,
in the n— o compound BaCoO3, face-sharing CoO¢ octahe-
dra form one-dimensional cobalt chains in which the Co**
ions are in a low-spin state with S=1/2. It has been reported
that there occurs ferromagnetic (FM) order along the chain
below 53 K and a two-dimensional antiferromagnetic (AFM)
transition at 15 K due to interchain AFM interactions. The
electronic structure has been investigated by ab initio
calculations,® showing that a FM state with an intrachain
alternating orbital ordering is the most stable solution. How-
ever, in general, the microscopic mechanisms for the appear-
ance of particular spin and orbital configurations in Co ox-
ides is not fully understood, even in relatively simple one-
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dimensional systems, because of the complexity originating
from multiple degrees of freedom.

In such a circumstance, the theoretical study of models for
Co oxides is timely and needed to guide further experimental
developments. Ab initio calculations have already provided
important information about Na,CoO, (Ref. 7) as well as
BaCoO; (Ref. 6), and the inclusion of many-body effects is
the natural next step. Previous theoretical studies of Co-
based systems, including Coulombic repulsion, have mainly
focused on triangular lattices. In this context, recent Monte
Carlo investigations unveiled the presence of magnetic
correlations.® Fluctuation-exchange approximations also re-
vealed tendencies toward ferromagnetism and possible
triplet-pairing instabilities in a multiorbital model.” Several
approximate studies of z-J (Ref. 10) and single-band Hub-
bard models'! have also been presented. To further gain deep
insight into the behavior of complex oxides, it is quite im-
portant to clarify possible ordering tendencies among the
various competing states, stabilized as electron density and
coupling are modified. But, unfortunately, this task is diffi-
cult due to a lack of reliable unbiased analytical techniques.

In this paper, the first effort toward a detailed numerical
analysis of models for cobaltites is presented. We perform a
systematic study of a one-dimensional multiorbital Hamil-
tonian, exploring, in detail, the coupling and electron-density
parameter space, by using computationally exact techniques.
This level of accuracy is achieved through the use of reliable
methods, such as the density-matrix renormalization group
(DMRG)'? and the Lanczos techniques.'® Although there are
already quasi-one-dimensional Co-oxide materials with in-
teresting properties to compare with our results, we also en-
vision this effort as a first step toward a systematic compu-
tational analysis of more complicated quasi-two-dimensional
triangular-lattice systems.

The organization of this paper is as follows. In Sec. II, the
multiorbital model is introduced and the many-body compu-
tational techniques used here are briefly discussed. In Sec.
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III, the main results are presented. These results are orga-
nized based on the observable studied. First, the n=5 phase
diagram is discussed, where n denotes the number of elec-
trons per site. Then, the spin correlations are presented at
several values of n. This is followed by the charge and or-
bital correlations. Finally, conclusions are presented in Sec.
IV. The main result of the paper is the clear dominance of
two rather different ground states: (i) a FM state and (ii) a
PM state with short-range correlations. Both are found to be
very robust against varying couplings and densities, and for
this reason, we believe they should be of relevance in real
materials.

II. MODEL AND TECHNIQUE

In the investigation reported in this paper, we consider a
three-orbital Hubbard model, defined on a one-dimensional
chain along the x axis with L sites. The three orbitals repre-
sent the 7,, orbitals of relevance for cobaltites. The model
Hamiltonian is given by
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where the index j denotes the site of the chain; vy indicates
the orbitals xy, yz, and zx; and o is the z component of the
spin. The rest of the notation is standard. The hopping am-
plitudes are t,,,,=1.,.,=f=1, and zero for the other cases.
These simple values for the hopping amplitudes can be easily
derived from the overlap of dx), d),, and d_, orbitals between
nearest-neighbor sites along the x axis. The interaction pa-
rameters U, U’, J, and J' are the standard ones for multior-
bital Hamiltonians, and a detailed description can be found
in Ref. 14. These couplings are not independent, but they
satisfy the well-known relations J'=J and U=U"+2J, due to
the reality of the wave function and the rotational symmetry
in the orbital space.

We investigate the model described above mainly using
the DMRG technique with open boundary conditions.'? The
finite-system algorithm is employed for sizes up to L=48,
keeping up to m=350 states per block. The truncation errors
are kept around 10~> or smaller. The center blocks in our
DMRG procedure are composed of 64 states due to the three
orbitals. Note that, for instance, the 7-J model has only three
states in these center blocks. As a consequence, keeping m
=350 states per block in the 7,,-orbital Hubbard model is
analogous to keeping m~ 7000 states per block in the #-J
model.
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FIG. 1. Ground-state phase diagram for the one-dimensional
three-orbital Hubbard model for the electron density n=35, using a
six-site chain. FM and PMI denote the regions with ferromagnetism
and paramagnetism (insulator), the latter with robust short-range
correlations, respectively. We also present a schematic picture of the
electron configurations. AFO indicates the staggered population of
orbitals in the FM state. The reader should consult the text for more
details, as well as Fig. 2.

III. RESULTS

A. Phase diagram for density n=5

In Fig. 1, we present the ground-state phase diagram for
the electron density n=5 in the (Ug,J) plane with Uy
=U'—-J. This phase diagram is obtained by comparing the
lowest energies for different sectors of the z component of
the total spin, S¢ ., for L=6. For large J, there appears a
fully polarized FM phase. On the other hand, for small J, we
find a regime characterized by minimum total spin. For sim-
plicity, we refer to this regime as the PM phase, although the
results of the spin correlations suggest quantum critical be-
havior, i.e., quasi-long-range order, as discussed later. Then,
this PM phase has robust correlations at short distances.

Let us try to explain the boundary curve without detailed
calculations. The phase boundary in the large U, region is
understood from the competition betweem FM and AFM
states in the nearest-neighbor sites, leading to J=U. g/ V3 in
the second-order perturbation in terms of ¢. If we further
expand the phase diagram, even including the unphysical
region of U, <0 (which is only of theoretical interest), we
obtain another boundary line, given by J—U' ~ W, where W
is the bandwidth. Along the line U.=0 (U’'=J), at some
critical point J=J, the PM phase turns into a FM phase. In
the FM phase in the region of U, ;<<0, the system is de-
scribed by the attractive Hubbard model with the interaction
—U,p, if we express the orbital degree of freedom as a pseu-
dospin. Thus, in this rough argument, when the magnitude of
the interaction becomes of the order of the bandwidth,
|U.g| ~ W, the FM phase without double-occupancy changes
to a charge-ordered insulating phase with a periodic array of
double-occupied sites, to gain energy using the on-site attrac-
tion. For the region of small U and J, those two boundary
lines may lose their physical meaning, but we can easily
imagine that the phase boundary curve is obtalned by
smoothly connecting the two lines, J=U./ V3 and
U.s=-W, so as to pass through the point (U, J)=(0,J,).
Then, we can intuitively understand the shape of the phase
boundary curve in Fig. 1.
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Note that the phase diagram obtained here has similarities
with that already reported by two of the authors at n=4 in the
context of spin-1 Haldane chains.'> Note also that the phase
diagram in Fig. 1 is obtained by calculations for L=6, but
other several values of L are also studied. It was observed
that for L=4, 6, 8, and 10, in the PM regime the ground state
has total spin 0, 1, 0, and 1, respectively, for a large set of
couplings investigated. As a consequence, it is reasonable to
assume that the transition line separates two regions with the
minimum and maximum total spin, without intermediate par-
tially polarized regimes.

As described later, our results for the spin, charge, and
orbital correlations suggest, roughly, an electron distribution
schematically presented in Fig. 1. The electron configuration
in the FM phase is quite simple: five electrons per site with a
polarized net spin 1/2, and antiferro-orbital (AFO) correla-
tions along the chain. The yz orbital is fully occupied, since
there is no electron hopping for this orbital and it is favorable
to gain kinetic energy by introducing holes into the itinerant
xy and zx orbitals. The existence of FM correlations is a
direct consequence of the multiorbital nature of the model
and the robust value of J in the FM regime. Namely, when
we consider the subspace with five electrons per site and take
into account the electron hopping using second-order pertur-
bation theory, it is favorable to form a parallel spin configu-
ration in an intermediate state due to the large value of J.

On the other hand, a more complex electron configuration
emerges in the PM phase. The meaning of the full circles in
the inset of Fig. 1 for the PM phase is to denote either a spin
up or a spin down. Note, however, that quantum fluctuations
are strong enough to destroy rigid spin configurations, and
the spin arrangement shown in Fig. 1 is just a guidance. To
gain insight into the ground-state wave function, it is useful
to consider the case of a four-site chain, where results can be
obtained exactly by using the Lanczos method. In the strong-
coupling limit Ugu>J>1 [or, more precisely, 1/(U'—J)
<1], it is found that the most important portion of the
ground-state wave function is expressed as

| 11 | Tl 1
Iwzﬁg(—l)% tLlel1l el |e|1L],
| 11 1 Tl
)

where the sum is taken over the permutations of the four
spinors and np is the number of permutations we have to
perform to recover the original configuration. Namely, the
electron configuration presented in the PM phase of Fig. 1
should be regarded as the equivalent states composed of the
four spinors. Note that this is not a rigid configuration, but all
permutations are equally important at small J. In particular,
all 24 states have the same weight in the ground state at J
=0, while at finite J, the 24 states are split into three classes
with eight states for each, as shown in Fig. 2. Note that each
of these classes lead to a distinct peak position in the spin
and orbital structure factors. When the peak positions in
these channels are denoted by gqyi, and goeicar, the class (a)
has ggin=7/2 and Guuim=, class (b) gguin=7/2 and
Gorbital = /2, and class (C) qspinz’JT and qorbitalzﬂ-/z'
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FIG. 2. States with the largest weight in the ground state of a
four-site chain solved exactly. Note that each state has eightfold
degeneracy. At J=0, these three states have the same weight. On the
other hand, for nonzero J, the state (a) (and its eightfold degenerate
states) has the largest weight, with a spin (orbital) structure factor
peaked at 7/2 (m). The states (b) and (c) (each one also with
degeneracy 8) have the second- and third-largest weights, respec-
tively, for nonzero J.

We should note that a similar representation of the
ground-state wave function for four sites has been found for
the SU(4) spin-orbital model.'® In fact, these two models are
related to each other as follows. Since the yz orbital is fully
occupied in our studies, the f,,-orbital Hubbard model can be
regarded as a two-orbital Hubbard model composed only of
xy and zx orbitals. Note that for this two-orbital model, the
hopping amplitudes are symmetric and there is no off-
diagonal elements. Then, taking a second-order perturbation
with respect to electron hopping into consideration, we ob-
tain an effective Hamiltonian in the strong-coupling limit of
the form

Heff=2ﬁi,i+l’
. 4> (3 1
Hij=_ _+SI.SJ __Tl Tj
; U -J\4 4
4 (1 1
- __SIS] _'|"I‘I’I‘J—2’TIZY‘Z
U +J\4 4 J
41 (1 ) 1 1
- —=S.-S ||+ T = —(T:T,+ T-T;
U-7\4 ’JL R ”)}
47 (1 ) 1 1
- —=S:;-S;|| ~+TT+ —(TT)+ T T) |,
U+J’4 i ]|:4 1] 2(11 l]):|

where S;=(1/2)2,,,.d]

i,yo

O yord; o 18 the S=1/2 spin op-
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erator (o is the Pauli matrix), and we define the T=1/2
pseudospin operator representing the xy and zx orbitals as
T,=(1/ Z)Ewrodiwcrw,di,yfg. Note that this effective model
has SU(2) symmetry for the spin degree of freedom and
U(1) symmetry for the orbital degree of freedom, since H g
commutes with 2;S; and 2,T7, respectively. On the other
hand, when J=J'=0, there exists an extra SU(4) symmetry
involving both spin and orbital degrees of freedom. The
properties of such an SU(4) spin-orbital model have recently
been investigated intensively,'”"!? to clarify the combined
quantum effects of spin and orbital. Concerning a less sym-
metric case than SU(4), the effect of J has also been
discussed, 2?22 but the effect of J' was not included. If we
simply set J'=0 and U=U' and consider finite J in the
present case, the effective Hamiltonian of Eq. (3) certainly
reproduces the equivalent form given in previous works.?%-%2

B. Spin correlations at several densities

To understand more quantitatively the magnetic order
present in the PM phase, it is useful to measure the spin-spin
correlation function,

1
Conll =37 2 (535, @
i—j|=

where S;=2(p;,1—pi,)/2 is the z component of the total
spin at each site and M is the number of site pairs (i,j)
satisfying /=|i—j|. We average over all pairs of sites sepa-
rated by distance / in order to minimize boundary effects. In
Fig. 3(a), Cyy, is shown for the PM phase. Assuming the
behavior of the Tomonaga-Luttinger liquid,”® which is char-
acteristic of one-dimensional strongly correlated systems, we
apply the following fitting function:

< 77- .>

cos| —j

~ a 2

Coin) =5 +b——5—, ()
spin 7 2

where a and b are appropriate fitting parameters. As shown

by the dashed curve, we find that the numerical data of Cg,

are well reproduced by Espm. The result indicates that the
spin-spin correlation function has a four-site periodicity and
decays as a power law with critical exponent 3/2.2* These
results are consistent with previous analytical work? and
numerical investigations'’?! for the SU(4) spin-orbital
model. In the inset of Fig. 3(a), we also present the Fourier
transform of the spin-spin correlation function,

S(g) = 7S e0(s3s)), (6)
Jik

for L=16 and L=48. We clearly observe a peak in S(g) at
qg=1/2, corresponding to the four-site periodicity of the
spin-spin correlation function. Note that although finite-size
effects appear to be very small, the peak height increases for
larger L, indicating the development of the spin correlation

of g=/2 in these system sizes.
As shown in the linear-log scale in Fig. 3(b), the spin-spin
correlation function for n=5 clearly present distinct behavior
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FIG. 3. (Color online) (a) The spin-spin correlation function
Cspin(j) vs j for L=48 and density n=5. The dashed curve indicates
a fit using Eq. (5). The inset shows the spin structure factor S(g) for
L=16 and L=48. (b) The linear-log plot of the module of the spin-
spin correlation function |Cyy,()| for densities n=3, 4, and 5 with
L=48, as well as the fit used in (a). For details, see the main text.
(c) The spin structure factor S(g) for several densities n, and using
L=16. The arrows indicate the peak positions. In all plots Uy
=10 and J=1, as indicated. Inset shows S(g) for n=4 and 5.

from the results already reported for n=4."3 For better com-
parison, we have normalized Cg,, in such a way that the
correlations are the same at distance 1. We have eliminated
the odd sites for n=35, since the results there are close to zero
[see Fig. 3(a)]. Moreover, working with m=350, it is difficult
to reach good accuracy for the correlations at large distances,
since they are very small. For this reason, we show the re-
sults only for the first 19 sites. Here we stress that for n=5,

014405-4



SPIN, CHARGE, AND ORBITAL CORRELATIONS IN...

the power-law decaying correlation indicates a gapless spin-
excitation spectrum,?® in contrast to a gapful behavior for n
=4. We note that to confirm the quantum critical behavior, it
is necessary to clarify the decaying behavior of the spin cor-
relation at further long distances, for instance, using the ef-
fective two-orbital model composed of xy and zx orbitals.
This level of detailed analysis is left for future investigations.

In Fig. 3(b), we also show the spin-spin correlation func-
tion for n=3. In the case of n=3, it is naively expected that
a local spin §=3/2 is formed at each site. By analogy with
the half-odd-integer-spin antiferromagnetic Heisenberg
chains, we expect a power-law decay of the spin-spin corre-
lation function and a gapless spin-excitation spectrum as
well.?” On the contrary, we can observe in Fig. 3(b) that the
spin-spin correlation function shows an exponential decay
similar to the case for the integer-spin chains. To understand
this peculiar behavior, it is necessary to take into account the
effect of 7,, orbitals. As mentioned above, electrons in the yz
orbital cannot hop, whereas electrons in the xy and zx orbit-
als move to adjacent sites with the same amplitude. Then, it
is expected that only electrons in the xy and zx orbitals con-
tribute to the exchange interaction, and the n=3 system is,
thus, better regarded as an effective S=1 chain, leading to
the exponential decaying spin-spin correlation function.”

In Fig. 3(c), S(g) is shown for several densities. Since the
finite-size effects seem to be small, we consider L=16. As
observed in these studies, the results suggest that the peak
position changes linearly with the electron density as ¢
=(6-—n)7r/2 (mod ). Note that this peak is clearly robust for
n=4, as shown in the inset of Fig. 3(c), and substantially
decreases its intensity by increasing the density 7.

It is important to remark that the inset of Fig. 3(a) is very
similar to the results found by Ogata and Shiba in their study
of the one-dimensional Hubbard model at quarter-filling and
U= (see Fig. 9 of Ref. 29). Clearly, in the model studied in
this paper, the electrons in the two bands with a nonzero
hopping behave like one-band models with a strong on-site
repulsion, at least from the perspective of the spin correla-
tions. Note, however, that these two one-band models are
connected via the Coulombic repulsion, which, as discussed
below, will open a gap in the spectrum of charge excitations.

C. Charge correlations at several densities

To investigate the charge excitations, it is useful to mea-
sure the charge gap, defined as A=E(N,+2)+E(N,-2)
—2E(N,), where E(N,) denotes the lowest energy in the sub-
space with the total number of electrons N,. In Fig. 4(a), the
charge gap is shown as a function of 1/L at densities n=4
and 5, for particular values of Uy and J. Clearly, at these
densities the charge gap extrapolates to a nonzero value in
the thermodynamic limit, indicating that the system is an
insulator. On the other hand, as shown in Fig. 4(b), for non-
integer electron densities, the charge gaps seem to extrapo-
late to zero in the thermodynamic limit, suggesting a metallic
behavior. These results indicate that a transition from an in-
sulating phase to a metallic regime is obtained by changing
the density away from n=S5.

In Fig. 4(c), the charge gap for the density n=>5 and L
=12 is presented. It appears that U’ is the main driver of the
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FIG. 4. (Color online) (a) The charge gap A vs 1/L at particular
values of Uy and J, and densities n=4 and n=35. (b) Same as (a)
but for noninteger densities, and U,z=10 and J=1. (c) and (d)
denote the charge gap for density n=5 and L=12. (c) contains A vs
U’ at J=1, while (d) shows A as a function of J at U’'=11.

system into an insulating phase. On the other hand, the
Hund’s coupling J has the opposite effect, as observed in
Fig. 4(d). Namely, the charge gap decreases with increasing
J. Note that U’ plays a role similar to that of the nearest-
neighbor Coulomb repulsion V in the two-leg ladder ex-
tended Hubbard model (with the two legs playing the role of
the two orbitals in our model). In the ladder case, it is known
that V drives the system to an insulator at quarter-filling.

We have also investigated the charge structure factor, de-
fined as

! 1 . . ’ !
N ()= 3 N () + N GRLL ()
J.k

where N7 (j,k)=(n,(j) dn, (k)) and n.(j)=n.(j)—(n,(j)).
In a periodic system, NV’VI(j,k)zNV”“/(j ,k). However, with
open boundary conditions, as used in our investigation, this
is no longer valid because of the presence of Friedel oscilla-
tions. Using the definition discussed above, NW’(q:O) is

always zero. In our calculations, we obtained N“’,(q:O)
<107, indicating that we have retained enough states in the
truncation process to satisfy this constraint.

The best indication of a true long-range order (LRO) can
be obtained by the system-size dependence of N*Y (g). If

N*(¢%)/L— constant as L— %, at some particular ¢°, a true
LRO characterized by ¢ is present. Carrying out this analy-
sis, we have found no evidence of LRO in the charge sector
of n=5. In Figs. 5(a), 5(c), and 5(e), typical examples of the
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FIG. 5. (Color online) The charge structure factor N () and
the charge-charge correlation function C(j), at density n=5. (a) and
(b) are for U.4=10, J=10, and L=64. This corresponds to the FM
regime of Fig. 1. The dashed curve is a fit using the function
a cos(mj)/j with an appropriate fitting parameter a. (c) and (d) are
for Uy=10, J=1, and L=32. This is in the PM regime of Fig. 1. (e)
and (f) are the same as (c) and (d), respectively, but for J=5.

charge structure factor for the FM and PM phases at density
n=>5 are presented. In the FM phase, we are able to explore
very large system sizes, since we can measure the correla-
tions in the sector of Sf,,;=max, with a much smaller Hilbert
space than for the PM phase. Although we did not find LRO,
the behavior of the structure factor suggests that in the FM
phase the charge-charge correlation presents a quasi LRO
due to the presence of a robust peak at g=m. In fact, in the
charge-charge correlation function, defined as
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FIG. 6. (Color online) The charge structure factor N*%(q) for
several densities and using Ug=10, J=1, and L=16. The arrows
indicate the cusp positions.
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we observe a slow power-law decay, as shown in Fig. 5(b).
This correlation oscillates as cos(7rj)/j, as indicated by the
dotted curve in Fig. 5(b). The DMRG data agree very nicely
with a fit using this function.

Note also that the negative values of N**%(g=1r) suggest
an alternation of charge occupation between the zx and xy
orbitals, as in the schematic representation in Fig. 1 (FM
phase). Indeed, as discussed later in more detail, there is
quasi-long-range AFO order. A similar result has already
been found in the FM phase for the density n=4."

On the other hand, in the PM phase, N“/’“/(q) does not
present a peak as sharp as for the FM phase, as shown in Fig.
5(c). In fact, the magnitude of the charge correlations is dras-
tically different between the PM and FM phases, as can be
seen from the absolute values of these correlations in the
vertical axes of Figs. 5(b) and 5(d). Note that the appearance
of the cusp at g=7/2 is related to the four-site periodicity of
the correlation C(/), as shown in Fig. 5(d).

Our results also suggest that the charges behave differ-
ently in two distinct regimes in the PM phase. At small J, the
correlation C(I) presents a four-sites periodicity, while for
larger J, only a two-site periodicity is found, as observed in
Fig. 5(f). In addition, the cusp of N*“*(g) present in the
small-J regime disappears at larger J [Fig. 5(e)], apparently
continuously. We have also observed that at small J, the po-
sition of the cusp changes with the electron density in a
similar way as S(g), as shown in Fig. 6.

D. Orbital correlations at n=5

Consider now the possibility of orbital order. In the PM
phase at n=5, we have found that the xy and zx orbitals are
those of relevance, since the yz orbitals are fully occupied.
Note that in the PM phase at n=4, the orbital degree of
freedom becomes inactive due to the ferro-orbital order.'
Then, here we take the pseudospin representation for the xy
and zx orbitals, and measure the orbital correlations to deter-
mine the orbital structure. For this purpose, we introduce an
angle 6; to characterize the orbital shape at each site. Using
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the angle ¢, we define the phase-dressed operators as

_ o2 .
{fj,a,rr = €' [cos(0//2)d; y 5+ sin(6,/2)d; .. ], ©)

fino=e"[=sin(0/2)d; ., ,+cos(6/2)d; . ..

The optimal orbitals, a and b, are determined so as to maxi-
mize the orbital structure factor, defined as

7(q) = %Ek‘, (TG T()), (10)
J»

where T()=2,(f} o of 00— F 1o 0.0 2-

Let us first focus on the case 6;=6=0. In Figs. 7(a) and
7(c), typical examples of the orbital structure factor in the
FM and PM phases at density n=35 are presented. Note that
these results are similar to those of the charge structure factor
shown in Figs. 5(a) and 5(c), as previously anticipated. Also,
as shown in Figs. 7(b) and 7(d), concerning the orbital cor-
relation function defined as

ComalD =~ 5 (FOT), (1)

i=jl=t

we find the same form as C([), as observed in Figs. 5(b) and
5(d). In the FM phase, as shown in Fig. 7(b), Couia(l) de-
cays as cos(j)/j, which is the signature of quasi-long-range
AFO. On the other hand, in the PM phase, we observe a
four-site periodicity of Coita(/) as well as that of Cgpy,(f),
while the peak position of T(q) is at g= for U.;=10 and
J=1. Note that the spin-spin correlation function shows the
four-site periodicity and S(g) has the peak at g=m/2 for
U.=10 and J=1, as shown in Fig. 3(a).

To clarify the similarity between the two-orbital model
composed of the xy and zx orbitals and the SU(4) spin-
orbital model, we investigate Cgyiy({) and Copigy(l) for the
present f,, model, at Uy=10 and J=0. As shown in Figs.
7(e) and 7(f), it is clearly observed that Coyuy(/) and Cgyiy (1)
present exactly the same behavior with a four-site periodic-
ity, due to the presence of the SU(4) symmetry at J=0. When
we include the effect of J, the spin and orbital degrees of
freedom are no longer equivalent, but we can observe the
four-site periodicity in both Cuiyi(/) and Cypyin(1) due to the
influence of the SU(4) symmetry at J=0. Thus, the short-
range orbital correlation for small J originates in the SU(4)
singlet at J=0.

It should be mentioned that there is no indication of or-
bital LRO in the PM phase, since T(7) converges to a finite
value in the thermodynamic limit, as shown in Fig. 8(a). On
the other hand, although we have found no signature of or-
bital order between the xy and zx orbitals through the orbital
structure factor T(g) for 6,=#=0, a more complex combina-
tion between these orbitals could exist, but we cannot ob-
serve it directly from T(g) with #=0. In order to consider
other combinations, we set §;=6 and change the value of 6.
However, even in this case, we do not observe any changes
in T(q), as observed in Fig. 8(b). Namely, the orbital corre-
lation does not change because of the rotation in the orbital
space, and we cannot determine the optimal orbitals. Note
that even if we optimize 6; at each site, T(7r) is always maxi-
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FIG. 7. (Color online) (a) The orbital structure factor T(g) ver-
sus momentum for Ugy=10, J=10, and L=64 with 6;=60=0. (b)
The orbital correlation Cgp;(j) for the same parameters as used in
(a). The dashed curve is a fit using the function a cos(7rj)/j. (c) and
(d) are the same as (a) and (b), but for U.;=10, J=1, and L=32. (e)
and (f) contain the correlations Cyyin(j) and Copica(j) for Ueg=10,
J=0, and L=32. All the results are for the density n=>5.

mum. Thus, we conclude that the states considered in our
investigations do not have long-range orbital order in the PM
phase.

IV. CONCLUSIONS

In this paper, we have investigated the properties of the
one-dimensional Hubbard model with three active orbitals,
with emphasis on electron densities of relevance for Co ox-
ides. We envision this work as a step toward a numerically
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FIG. 8. (Color online) (a) The size dependence of the orbital
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vs @ for particular values of g.

accurate study of many-body Hamiltonians for Co oxides,
including the Coulombic repulsion. Our main result is the
identification of two dominant ground-state tendencies: PM
with robust short-range correlations and FM states. We be-
lieve that the ferromagnetic tendencies experimentally iden-
tified in the quasi-one-dimensional material BaCoQs, as dis-
cussed in the introduction, could be explained by the FM
state found in our investigation. Other quasi-one-dimensional
Co oxides could exist with Coulomb repulsion parameters
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favoring the PM state, and experimental efforts trying to find
this state would be extremely interesting.

To the extent that our results can be qualitatively extended
to higher dimensions, the main competition in Co-oxide
models should originate from these FM and PM states. In the
FM phase, there exists strong charge oscillations. Then, it is
naively expected that true long-range charge order would
develop in higher dimensions. However, it is necessary to
consider that the hopping term depends on the dimensional-
ity and the lattice structure. Namely, the yz orbital is local-
ized for the present case, but this will not occur in higher-
dimensional systems, in general. Thus, due care should be
paid to extend the present discussions to higher dimensions.
On the other hand, the PM state has short-range correlations
in all channels, and in some limits it has an extra SU(4)
symmetry as in previously studied two-orbital models. Al-
though this exact symmetry may appear only in one dimen-
sion and for J=0, it would be interesting to investigate
whether remnants survive under more realistic conditions.

Of course, the effect of geometrical frustration could be
also an important ingredient to influence on the complex
spin-charge-orbital structure of the triangular-lattice systems.
In fact, two of the authors have revealed that the spin frus-
tration is suppressed because of the orbital ordering in the
e -orbital model on a zigzag chain.’' In addition, in the
present work we have identified metal-insulator transitions
with doping away from n=5, while the main properties in
the spin and charge sectors remain similar as for the integer
density n=5. The next challenge is to increase the dimen-
sionality of the 7,, system toward two dimensions by study-
ing ladders and/or zigzag chains. Work is in progress in this
direction.
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