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Abstract

Failure theory is the investigation of predicting circumstances under which solid materials
under the processing of external loads. The theories of failure are known as different failure
criteria such as von Mises and Tresca which are the most famous of these for certain
materials. Additionally, this master dissertation intends to show a comparison between
Tresca and von Mises failure criterions, taking into account the underlying uncertainties in
the constitutive equations and stress analysis. In order to exemplify the comparison, some
numerical simulations are performed using a simple plate, simple deflection problem and a
frame of the formula car. Due to the complexity of frame of the formula car, different kind
of probabilistic steps are used as a response surface method and parameters correlation.
Results show that several random input variables effect the random output variables in
various ways, and there is no such a big difference between the von Mises and Tresca
failure criterions when uncertainties are assumed in the formulation for stress analysis.
Keywords: Failure criterions. Stress analysis. Uncertainty quantification. Parametric
probabilistic approach. Monte-Carlo method.



Resumo

Critérios de falhas realizam a predição de circunstâncias nas quais materiais sólidos es-
tão sobre ação de carregamentos externos. As teorias de falhas são conhecidas como
diferentes critérios de falhas, como von Mises e Tresca, os quais são os mais famosos
para determinados materiais. Além disso, esta dissertação de mestrado pretende mostrar
a comparação entre os critérios de falha de Tresca e von Mises, levando em conta in-
certezas subjacentes nas equações constitutivas e na análise de tensão. Para exemplificar
a comparação, algumas simulações são realizadas usando uma placa simples, um problema
de deflexão simples,e a estrutura de um carro do formula SAE. Devido à complexidade
deste sistema, diferentes tipos de etapas probabilísticas são utilizadas, como o método de
superfície de resposta e a correlação de parâmetros. Os resultados mostram que várias
variáveis aleatórias de entrada afetam em maneiras diferentes as variáveis aleatórias de
saída e que não há uma diferença grande entre os critérios de falha de von Mises e Tresca
quando incertezas são assumidas na formulação para a análise de tensão.
Palavras-chave: Critérios de falha. Análise de tensão. Quantificação de incerteza.
Probabilística paramétrica. Método de Monte-Carlo.
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1 Introduction

This chapter regards the introduction of this dissertation. Section 1.1 demonstrates
the general informations about failure criteria as a von Mises, Tresca and Coulomb-Mohr
and their safety factors. Section 1.2 gives the information about failure criteria in struc-
tural analysis, also this section indicates historical perspective and using of failure theory
in engineering. Section 1.3 describes the problem of interest applied in various stress anal-
ysis considering the presence of uncertainties. Section 1.4 presents the main objectives
and contributions of the dissertation. Finally, section 1.5 presents the outline of the rest
of the text.

1.1 Failure criteria and safety factors

Well-designed failure theories differentiate safe states of stress in materials from states
of certain failure, depend on calibration by a minimal number of failure-type properties
(YU; YU; YU, 2004). In the work to follow and the historical reason, the expression of
"failure" or "failure characterization" will be utilized in included as implementing to either
or both of the conditions of yielding or actual failure. All thoughts about failure criterions
are generally with homogeneous and isotropic materials, where the historical aim was to
discover a general failure criterion that would cover the full range from ductile to brittle
types of materials (CHRISTENSEN, 2013).
Presumably, the most misinterpreted but definitely the most significant of all failure con-
cepts is that of the Coulomb-Mohr type. This failure theory was application for isotropic
materials under three dimensional stress conditions. A failure plane was postulated to
be activated by shear stress but with a possible linear dependence of the critical shear
stress level upon the transverse normal stress component acting upon the failure plane
(MOHR, 1900). Its history go back to nearly the beginning of all of mechanics, and its
popular reception continues up to the present day. For brittle materials, the Coulomb-
Mohr foretells that uniaxial and equibiaxial tensile failure are at the same levels, but
that equitriaxial tensile failure is much stronger (COULOMB, 1773). Also, in testing
geological materials, von Karman (KÁRMÁN, 1910), and also Böker (BOKER, 1915)
indicated Coulomb-Mohr criterion is only in part successful when the stress are some-
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what compressive, and not at all successful otherwise, either in the very compressive or
slightly compressive region. Furthermore, another two-parameter failure criterion was
given much later by Drucker and Prager. The Mises criterion is considered as cylindrical
surface in principal stress space. The Drucker-Prager form generalized the Mises criterion
to take the form of a cone in principal stress space. Although both the Coulomb-Mohr
and Drucker-Prager concepts widely utilized in soil mechanics, both failed to gain use for
general engineering materials (DRUCKER; PRAGER, 1952).
After the many tries to cast the Coulomb-Mohr hypothesis into a generally realistic, ac-
cessible concept never gave good results, and the quest for a general energy criterion
necessarily came to an unsuccessful outcome, a degree of pessimism impacted the further
efforts to discover a general criterion. The consideration of the Coulomb-Mohr criterion
had expanded over more than a hundred years and still had not gave the desired outcome
(MOHR, 1900). In spite of the long, difficult history, there stays the possibility that the
extending knowledge base of the modern period may supply the advantage for a more
successful formulation of failure theory (CHRISTENSEN, 2013).
There have been presented such famous failure criteria as the Tresca, von Mises and
Coulomb-Mohr. The Tresca and von Mises criteria usually accepted as failure criteria for
metals, and the Coulomb-Mohr adopted as a criterion for granular materials such as soils
(MATSUOKA; NAKAI, 1985). A physical explanation of von Mises criterion proposing
that yielding begins when the elastic energy of distortion gets into a critical value. Be-
cause of this reason, the von Mises criterion also acknowledged as the maximum distortion
strain energy criterion (FORD; ALEXANDER, 1963). Moreover, the von Mises stress is
used to forecast the yielding of materials under any loading condition from results of sim-
ple uniaxial tensile strength tests. The von Mises stress satisfies the property that two
stress states with equal distortion energy have equal von Mises stress (HILL, 1998).
The study of yielding was influenced by the wish to foresee mechanical failure of materials.
Yielding is taken into account as the beginning of a process which will finally guide to
fracture, characterized by the breaking of the bonds between atoms and separation of the
material. It is important to highlight that the stress required to break the atom bonds
is roughly one third of the material’s Young’s modulus. However, ductile materials fail
with stress values far smaller than this estimate (HOULSBY, 1986). This phenomenon is
connected to defects and the way they move inside the materials. Consequently, failure
in ductile materials is effected by shear deformations. Thus, it is logical to establish a
yield criterion in terms of the amount of shear stress a material is able to sustain, this
highlights the principle of the Tresca theory (LANCE; ROBINSON, 1971). In generally,
the literature on this subject says that the Tresca theory is more conservative than the
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von Mises theory and the essential and striking differences between the von Mises and
Tresca failure criteria are the corners that occur in the Tresca form and their complete
absence in the Mises form (CHRISTENSEN, 2013). It foresees a narrower elastic region.
The Tresca criterion can be safer from the design point of view, but it could lead the
engineer to consider unnecessary measures to prevent an unlikely failure. The criterion
choice depends on the type of design and personal taste of the designer (LIN; ITO, 1966).
Coulomb-Mohr failure theory is required to relate the available strength of a soil as a
function of measurable properties and the imposed stress conditions. Coulomb-Mohr
main hypothesis is based on the premise that a combination of normal and shear stresses
creates a more critical limiting state than would be found if only the major principal stress
or maximum shear stress were to be considered individually (LABUZ; ZANG, 2012).

1.2 Failure criteria in the structural analysis

The aim behind the failure criteria is to predict or estimate the yield and failure of ma-
chine parts and basic individuals. However, the most part of the common failure criteria,
as von Mises and Tresca, are demonstrated together with little proposal or discrimination
between them in all mechanics of materials books. Furthermore, the primary explanation
of the Mises criterion is that it shows a critical value of the distortion energy kept in
the isotropic material while the Tresca criterion is that of a crucial value of the maxi-
mum shear stress in the isotropic material (BURNS, 2015). Verifiable, the Tresca form
is thought to be more fundamental comparing to von Mises criterion, however the Mises
form is viewed as an appealing, scientifically helpful estimation to it. Currently, both are
normally expressed one next to the other with almost no inclination (ERASLAN, 2002).
The conditions allow the uniform definition of various groups of materials for which quite
various forms of the failure criteria have been utilized to date (PODGÓRSKI, 1985).

1.3 Problem of interest and contributions

In general, literature say that Tresca failure criterion is more conservative compared
to von Mises failure criterion. Nevertheless, this is not always true in the scenario with
different kind of variabilities. Furthermore, there are some situations that von Mises
failure criterion has a same characteristic as Tresca failure criterion considering common
possible uncertainty parameters (CHRISTENSEN, 2013).
In this dissertation, the quantification of security factor uncertainties is addressed through



16

a parametric probabilistic approach, using Monte Carlo simulation as a stochastic solver.
The goal is to verify the effect of the parametric uncertainties in the safety factor obtained
with basis on the failure criteria von Mises and Tresca.
Furthermore, to the best of my knowledge, it is the first time that the uncertainties are
assumed to compute the safety factors using both classical criterions. This dissertation
indicates the effects of different type of probabilistic analyses and random input variable
on random output variables.

1.4 Objectives

The main goal of this dissertation is that to show a critical comparison between
the Tresca and von Mises failure criterion assuming uncertainties in the constitutive
equations and stress analysis. Furthermore, this dissertation compares the different kind
of probabilistic results in various stress analysis, and examines the effect of different types
of probabilistic analysis and indicates the effect of random input variables which are force
components, shear and normal stresses and Young’s modulus, on random output variables
as a safety factor for von Mises and Tresca failure criterions.

1.5 Outline

This dissertation is organized in the following chapters:

• Chapter 1 - Introduction: This chapter indicates the introduction of the disser-
tation and gives the information about failure criterions as a von Mises, Tresca and
Coulomb-Mohr. The main objectives and contributions of research

• Chapter 2 - Literature Review: This chapter gives the informations about un-
certainty quantification, probabilistic model of uncertainties and stochastic solvers
as a crude Monte-Carlo simulation, Latin Hypercube sampling method, response
surface method and their advantages and drawbacks.

• Chapter 3 - Criterions of Failure Assuming Uncertainty Quantification:
This chapter shows the explanation of equilibrium of an elastic body for isotropic,
linear and elastic materials. Also, the chapter gives information about the state of
tension in a material point, von Mises and Tresca failure criterions. Furthermore,
this chapter indicates explanation of uncertainty quantification, maximum entropy
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principle and mean-square convergence method. Moreover, the chapter gives infor-
mation about Monte-Carlo simulation.

• Chapter 4 - Experiments with Simple Structural Systems: This chapter
shows the probabilistic results of simple plate, simple deflection problem considering
uncertainty quantification and discussion about probabilistic results.

• Chapter 5 - Experiments with a Complex Structural System: This chap-
ter demonstrates the different kind of probabilistic finite element analyzes as a
response surface method, parameters correlation, optimization process, Six-Sigma
analysis and probabilistic analysis on the examination of frame of the formula car.
Additionally, this chapter shows interpretation about results and graphics of the
comparison between failure criterions with a complex structural system.

• Chapter 6 - Final Remarks: This chapter presents the the main results about
the present dissertation and discussion about contributions, the future works and
the continuity of the research.
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2 Literature Review

The chapter of dissertation is organized as follows. Section 2.1 reviews the basic
notions on uncertainty quantification. Section 2.2 indicates the fundamental aspects of
probabilistic modeling of uncertainties. Finally, section 2.3, section 2.4 and section 2.5
present three methodologies that are crude Monte-Carlo simulation, Latin Hypercube
sampling method and response surface method as a stochastic solver, respectively. Also,
section 2.6 demonstrates the conclusions.

2.1 Basic notions on uncertainty quantification

Most of the predictions that are essential for decision making in engineering, and
sciences are made in with aid of computer models. These models depend on assumptions
that could be not in accordance with reality. Therefore, a model can have uncertainties
on its forecasts, because of conceivable wrong hypothesis made during its originations
(SOIZE, 2017; CUNHA, 2017). If the input variables affecting the attitude of a design
are uncertain, after the fundamental mission of an uncertainty analysis is to quantify how
much the outcome parameters describing the product behavior are influenced by those
uncertainties (REH et al., 2006). Additionally, these arbitrary variabilities may rise from
an diversity of sources including the geometry of the issue, material characteristics, limit
conditions, starting conditions, or excitations forced on the framework (BAE; GRANDHI;
CANFIELD, 2004).

2.2 Probabilistic modeling of uncertainties

The parametric probabilistic approach comprises in modeling the uncertain param-
eters of the computational model by random variables, in order to construct a stochas-
tic model to deal with the underlying variabilities. This kind of approach is highly fit
and extremely effective to consider the uncertainties on the computational model param-
eters (GHANEM; DOOSTAN; RED-HORSE, 2008). Two primary type of uncertain-
ties are encountered. The first type is known as data uncertainty, due to variabilities
in parameters of the model (SOIZE, 2013a). This type of uncertainty can not be re-
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duced, only better characterized. The second type of uncertainty is epistemic (model)
uncertainty, due to lack of knowledge about the phenomena of interest. This can be
reduce increasing the knowledge about the phenomena of interest (SOIZE, 2009; SOIZE;
GHANEM, 2009; LANGLEY, 2000; MACE; WORDEN; MANSON, 2005; SCHUËLLER,
2001; SCHUELLER, 2007; SCHUËLLER, 2006; SCHUELLER, 2007; SCHUËLLER;
JENSEN, 2008; SCHUËLLER; PRADLWARTER, 2009; SCHUELLER; PRADLWARTER,
2009).
The stochastic models assume a critical function in clarifying numerous regions of engi-
neering sciences. Stochastic procedures which are methods for measuring the dynamic
relationships of series of aleatory circumstances. They can be utilized to examine the ver-
satility natural in medical and biological procedures, to manage uncertainties influencing
administrative choices and, to ensure new points of view, strategy, and to help in other
mathematical and scientific investigations (TAYLOR; KARLIN, 2014).
Firstly, the modeling mistakes and the estimations faults are at the same time consid-
ered and can not be truly be independently defined. Take note of that if there is no
useful experimental information,such a technique can not be utilized. Because, there are
no data for building the stochastic model of such a noise (SOIZE, 2012). The second
one depends on the non parametric probabilistic approximation of modeling uncertainties
(modeling errors) which has been suggested in as an another technique to the output
expectation error strategy owing to consider modeling errors (BECK; KATAFYGIOTIS,
1998; SOIZE, 2000; SOIZE, 2001; SOIZE, 2005). A stochastic model forecasts a group of
potential consequences considered by their probabilities or chances (TAYLOR; KARLIN,
2014). Different kind of processes exist for assessing uncertainties in a model. These
processes are deterministic or probabilistic processes. Nowadays, it is well known that
the probabilistic approach of uncertainties need to be utilized once the probability theory
can be implemented (LANGLEY, 2000; SCHUELLER, 2007).
In case of model-parameter uncertainties, the primary process is attributed on the utility
of the parametric probabilistic approach which has largely been improved in the last years.
Furthermore, the parametric probabilistic which is still in improvement and which allows
the uncertain model parameters of the mean model to be considered through the introduc-
tion of a main probability model of parameters (GHANEM; SPANOS, 1991; BABUŠKA;
TEMPONE; ZOURARIS, 2005; SCHUËLLER; JENSEN, 2008; SOIZE, 2006; BABUŠKA;
NOBILE; TEMPONE, 2007; NOUY et al., 2008).
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2.3 Monte Carlo method

Once a computational model is constructed, it is necessary investigate how the un-
certainties propagate from model parameters to the response. This process can be done
via Monte Carlo method (METROPOLIS; ULAM, 1949). The Monte Carlo strategy is
the most widely recognized technique for stochastic calculation, because of its simpleness
and great factual outcomes. Nevertheless, its computational expense is to a exceedingly,
and, inhibitive. Luckily the Monte Carlo calculation is effectively parallelizable, which
permits its utilization in simulations where the calculation of a individual realization ex-
pensive (CUNHA et al., 2014). This technique generates several realizations (samples) of
the random parameters according to their distributions (stochastic model). Each of these
realizations defines a deterministic problem, which is solved (processing) using a deter-
ministic technique, generating an amount of data. Then, all of these data are combined
through statistics to access the response of the random system under analysis (CUNHA et
al., 2014). The Monte Carlo technique does not necessitate that one applies another com-
puter program to reproduce a stochastic model. Whether a deterministic code to simulate
a same deterministic model is accessible, the stochastic simulate can be implemented by
running the deterministic program a few times, modifying just the parameters that are
indiscriminately created. In principle, this technique is an algorithm in which a few real-
izations of the haphazard parameters of the stochastic model are produced considering the
possibility distribution that is different to them a priority. Each one of these realizations
describes a deterministic issue, which is resolved utilizing a deterministic method, creating
an number of information. At that point, these information are associated through statis-
tics to get to the response of the random system under examination (KROESE; TAIMRE;
BOTEV, 2013).
Concerning the computational usage, the Monte Carlo method has a non-intrusive char-
acteristic, it does not necessitate a another code to simulate a stochastic model. Whether
a deterministic code to simulate a same deterministic model is existing, the stochastic
simulation can be directed by running the deterministic program a several times, chang-
ing just the value of the parameters that are haphazardly created (KROESE; TAIMRE;
BOTEV, 2013). Unluckily, Monte Carlo is a very time-consuming technique,which makes
impossible its utilization for complicated computer simulations, when the operation time
of a only realization is big scale or the number of realizations to an correct result is enor-
mous. Luckily the algorithm is effectively parallelizable, permitting overcome this deficit
(CUNHA et al., 2014). Furthermore, if the Monte Carlo simulation is implemented for
a extensive number of examples, it totally defines the statistical conduct of the random
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system (CAFLISCH, 1998).
From the way of thinking of one’s approach to the values taken into consideration, struc-
tural reliability analyses can be categorized in two categories that are deterministic anal-
yses and stochastic analyses (JANAS; KREJSA, 2002; KRÁLIK; JR, 2006; MAREK,
2001). Different forms of analyses (probabilistic analysis, statistical analysis, sensitivity
analysis) can be applied considering the stochastic approach. Most of these methods are
based on the integration of Monte Carlo (MC) simulations. Three categories of method
are presented in this chapter.
The advantages of the Monte-Carlo simulations are that easily apprehensible and trans-
parent. The Monte-Carlo simulation converges to the true and accurate probabilistic
outcomes due to increasing number of samples. The Monte-Carlo simulation is hence ex-
tensively used a the benchmark to confirm the correctness of other probabilistic methods.
Another advantage of the Monte-Carlo simulation is the fact that the required number
of simulations is not a function of the number of input variables (LOW; TANG, 1997).
Also, the drawbacks of the Monte-Carlo simulation are slow calculation system of com-
plex design and its computational cost. Thus, if design of the system of failure probability
has low values, after the required number of samples may be large number of simulations
(REH et al., 2006).

2.4 Latin Hypercube Sampling Method

A significant part of the analysis of engineering structure is to figure out the probabil-
ities of failure or unacceptable structural performance. Latin hypercube sampling process
which is very effective for predicting mean values and standard deviations in stochastic
structural analysis (OLSSON; SANDBERG, 2002; OLSSON, 1999; SANDBERG; OLS-
SON, 1999). Furthermore, Latin hypercube sampling process is only little more effective
than the Monte-Carlo simulation processing for predicting small probabilities (PEBESMA;
HEUVELINK, 1999). According to different numerical samples, it is indicated that more
than 50 percent of the computer working process can be saved by using Latin hypercube
sampling instead of simple Monte Carlo simulation in importance sampling. Nevertheless
the precise savings are connected on details in the use of Latin hypercube sampling pro-
cess on the form of the failure surface problems. The decrease of number of simulations
expresses a valuable advantage from this method compared to the crude Monte Carlo
simulation (OLSSON; SANDBERG; DAHLBLOM, 2003).
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2.5 Response Surface Method

Response surface methods prevent from the drawbacks of Monte-Carlo simulations by
changing the true input–output relationship by an approximation function. The number
of experiments is also described by the number of unknown coefficients in the response
surface function (KAYMAZ; MCMAHON, 2005).
The advantages of the response surface method are that it can be simulated considerably
less number of simulations comparing with the crude Monte Carlo method. Particular
simulations in response surface method are independent from each other, also parallel
calculations can be utilized in this method (KIM; NA, 1997).
Furthermore, the disadvantages of response surface method are that the number of sim-
ulations are contingent on the number of variable input parameters. The method is
inefficient considering large number of input parameters (LIU; MOSES, 1994).
In this master dissertation, the quantification of security factor uncertainties is addressed
through a parametric probabilistic approach, using Monte Carlo simulation as stochastic
solver. The goal is to verify the effect of the parametric uncertainties in the safety factor
obtained with basis on the failure criteria of von Mises and Tresca.

2.6 Conclusions

This chapter is presented as a literature review and gives brief description of uncer-
tainty quantification, probabilistic model of uncertainties and stochastic solvers as a crude
Monte-Carlo simulation, Latin Hypercube sampling method, response surface method and
their advantages and disadvantages. In the next sections, these stochastic solvers and
methods will be used in experiments with simple and complex structural systems as a
plane stress, simple deflection problem and model of the frame of formula car.
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3 Uncertainty Quantification in
Structural Failure Theory

This chapter of dissertation is formed as follows. Section 3.1 shows the information
about theory of elasticity which includes equations of equilibrium, constitutive equations
and superposition principle for isotropic, linear and elastic materials. Section 3.2 gives the
information about the state of tension in a material point according to solid mechanical
system. Also, section 3.2 presents the general information about von Mises and Tresca fail-
ure criterions. Section 3.3 gives the general information about uncertainty quantification,
and section 3.4 presents the conclusions.

3.1 Equilibrium of an elastic body

A generic isotropic, linear and elastic body is illustrated in Figure 1. This generic
elastic body which is subjected to action with external forces. The external force compo-
nents are indicated as a F (LEKSZYCKI et al., 2018).
Equations of equilibrium for isotropic, linear and elastic materials are given by (JOHN-
SON; KENDALL; ROBERTS, 1971; LEKHNITSKIJ, 1977).

∂σxx
∂x
+ ∂τxy
∂y
+ ∂τxz
∂z

= 0, (1)

∂τxy
∂x
+ ∂σyy

∂y
+ ∂τyz
∂z

= 0, (2)

∂τxz
∂x
+ ∂τyz
∂y
+ ∂σzz

∂z
= 0, (3)

where σxx, σyy, σzz are the normal stresses and τxy, τxz and τyz are shear stresses in
different axis.
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Figure 1 – Body subject to action with external forces

Source: Prepared by the author

Furthermore, relationships between displacements and deformations are indicated by

εxz =
∂ux
∂x

εxy =
1
2γxy =

1
2 (∂ux

∂y
+ ∂uy
∂x

) , (4)

εyy =
∂uy
∂y

εxz =
1
2γxz =

1
2 (∂ux

∂z
+ ∂uz
∂x

) , (5)

εzz =
∂uz
∂z

εyz =
1
2γyz =

1
2 (∂uy

∂z
+ ∂uz
∂y

) , (6)

where ux, uy and uz are displacements. Also, εxx, εyy, εzz and εxy, εyz, εxz are the strains.
Constitutive equations which relate stress and strains quantities are described by

εxx =
σxx
E
− ν σyy

E
− ν σzz

E
εxy =

1
2γxy =

τxy
2G, (7)

εyy = ν
σxx
E
+ σyy
E
− ν σzz

E
εxz =

1
2γxz =

τxz
2G, (8)
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εzz = −ν
σxx
E
− ν σyy

E
+ σzz
E

εyz =
1
2γyz =

τyz
2G. (9)

Moreover, γxy, γyz and γxz are the shear strains. G and E are shear modulus and elas-
tic modulus, respectively. Finally, the equations of elasticity are given and there is a
symmetry between shear stress components.

3.2 Main stresses and their planes of action

The state of tension in a material point of a solid mechanical system is defined by the
stress tensor

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

From the stress tensor in a point, principal stresses are obtained through the solution of
a eigenvalue problem

(σ − λI )υ = 0, (11)

where I is the identity tensor and (λ, υ) is an eigenpair for σ. The obtained eigenvalues
which are equal to the principal stress values σ1, σ2 and σ3.

3.2.1 Von Mises failure criterion

Moreover, the von Mises stress is determined as (XIE; STEVEN, 1993; KARAOGLU;
KURALAY, 2002).

σvm =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2 . (12)

The relationship between SY and σvm is determined shown below

σvm < SY , (13)

where SY is the yield stress of the material. Thus, the safety factor for von Mises failure
criterion is defined as

Fs
vm = SY

σvm
. (14)
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3.2.2 Tresca failure criterion

Furthermore, the Tresca stress is given by (MATSUOKA; HOSHIKAWA; UENO,
1990).

τmax =
σtr
2 = ∣σ3 − σ1∣

2 , (15)

where τmax is maximum shear stress. The relationship between SY and σtr is determined
shown below

σtr <
SY
2 , (16)

while the safety factor for Tresca failure criterion is given by

Fs
tr = SY

σtr
. (17)

3.3 Uncertainty quantification

This section indicates probabilistic framework and the sampling approach to uncer-
tainty quantification. Furthermore, this section presents the maximum entropy principal
and the mean-square convergence analysis and gives the information about Monte Carlo
simulation, respectively.

3.3.1 Probabilistic framework

In this dissertation, a stochastic version of failure criterions are defined through a
parametric probabilistic approach (SOIZE, 2012; SOIZE, 2005). The parameters of model
oriented to uncertainties are defined as a random processes or variables, which utilizes on
the probability space (Θ, Σ, P ), where Θ is a sample space, Σ is a σ-algebra over Θ, also
P which is a probability measure.
Here in Figure 2, the uncertain variables are generated according to a user-prescribed
specification and subsequently propagated through the model, h, yielding a set of samples
of output(s), U as displayed in Figure 2 for a given stochastic input, X (SOIZE, 2017).
In this probabilistic setting, it is presumed that any random variable X is described in
(Θ, Σ, P ), with a probability distribution on PX(dx) on R. The mean value of random
variable X : Θ ↦ R is defined by

E(X) = ∫
R

xpX(x)dx, (18)
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where pX(x) is the probability density function of X.

Figure 2 – Generic system subjected to an uncertainty input

input

X

model

h

output

U = h(X)

Source: Prepared by the author

3.3.2 Probabilistic model

The probability density function associated with the random variables corresponding
to the chosen uncertain parameters will be constructed using by maximum entropy prin-
ciple (JAYNES, 1957).
The maximum entropy principle constructs the probability density functions consist in
maximizing the entropy. The Shannon entropy of random variable X is described as

S(pX) = ∫
a

b
pX(x) ln pX(x)dx. (19)

The main object is to maximize the entropy considering constraints defined by the follow-
ing equations

∫
a

b
pX(x)dx = 1, (20)

and

∫
a

b
pX(x)gi(x)dx = ai, i = 1, ...,m, (21)

where the functions gi and the real numbers ai are given respectively.
The parameters can be modeled as a random variable with values in R and the mean
value µx and the variance value σx are known. Typically, these parameters represent
statistical moments. Then, the support of the probability density function which is [a,b],
the mean value which is such that E[X] = µx. The second-order moment is σ2

x +µ2
x where

σx is the standard deviation. The probability density function pX have then to verify the
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following constraint

∫
a

b
pX(x)dx = 1, (22)

∫
a

b
xpX(x)dx = µx, (23)

∫
a

b
x2pX(x)dx = µ2

x + σ2
x. (24)

This probability density function of X is given by

pX(x) = e−λ0e−λ1x−λ2x2
, (25)

where λ0, λ1 and λ2 are the parameters of this distribution.

3.3.3 Propagation of uncertainties

Monte Carlo (MC) simulation is utilized to evaluate the propagation of uncertain-
ties of the random parameters through the computational model (KROESE; TAIMRE;
BOTEV, 2013).
The uncertain parameter x is indicated by the random variable X, map of given given
inputs can be described as h for the estimation of distribution.
In this stochastic process, Figure 3 (CUNHA; SAMPAIO, 2012) indicates that the steps of
Monte Carlo simulation are defined, M independent samples of X are defined according
to the distribution pX(x)dx, where independent observations of X is given by

X1, X2, ..., XM . (26)

Each of these scenarios for x is indicated as input to the map of given input x z→ U =
h(x), where set of possible realizations is determined shown below

h(X1), h(X2), ..., h(XM). (27)
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Figure 3 – Monte Carlo simulation schematic
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Furthermore, the mean-square convergence analysis (CATALDO et al., 2009) with
respect to independent realizations U1, U2..., Um of the random variables are carried out
studying the function mz→ conv(m) defined by

conv(m) = 1
m

m

∑
j=1
Uj

2. (28)

3.4 Conclusions

This chapter demonstrates the equations of equilibrium, constitutive equations and
superposition principle for isotropic, linear and elastic materials. Also, the chapter clar-
ifies the information about von Mises and Tresca failure criterions. After giving these
informations, this chapter explains how uncertainty quantification samples and Monte
Carlo simulation work and how to construct probabilistic model with using maximum
entropy principle. In the next chapters, these stochastic models and methods will be used
in experiments with simple and complex structural systems as a plane stress, simple de-
flection problem and model of the frame of formula car to compare von Mises and Tresca
failure criterions and prove that there is no big differences between them.
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4 Analysis of Uncertainty Propagation in
Simple Structural Systems

This chapter presents some numerical simulations with simple structural systems to
explain the comparison between von Mises and Tresca failure criterions. First of all, sec-
tion 4.1 shows the explanation of simple plate problem considering one uncertainty and
the results. Section 4.2 demonstrates the definition of simple plate problem considering
two uncertainty and the results. Moreover, section 4.3 indicates the simple deflection
problem considering uncertainty quantification and results. Section 4.4 presents the con-
clusions of each problem, respectively.

4.1 Example in plane stress problem considering one uncertainty

In this part of section, model parameters subjected to uncertainties are described as
random variables and the system response also becomes a random variable. A simple
plate applying with normal and shear stresses is described in Figure 4, where the values
of normal stresses σy and σx are chosen for illustration as 100 MPa and 90 MPa in the
Eq. 10, respectively. Also, the value of Sy yield stress of material is determined as
250 MPa. After giving this value, random values are utilized by applying uncertainty
quantification method considering shear stress τxy. Thus, these parameters are examined
in the uniform and truncated-exponential obtained from maximum entropy principle,
respectively (PAVON; FERRANTE, 2013).
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Figure 4 – Illustration of simple plate problem applying with normal and shear stresses
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Figure 5 – Illustration of shear stress distribution with given by a truncated exponential
with 3 parameters
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According to Figure 5, it shows that statistical results of input variable when the
random variable is considered as a shear stress applying with truncated exponential dis-
tribution. Minimum support and maximum support of the distribution are considered
as 50 MPa and 130 MPa, respectively. Also, the mean value of input variable is given
as 85 MPa. Coefficient of variation is considered as 0.2 and shear stress distribution is
constructed.
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Figure 6 – Comparison between safety factor samples when applied shear stress distribu-
tion is an uniform: a)von Mises; b)Tresca
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Figure 7 – Comparison between safety factor samples when applied shear stress distribu-
tion is a truncated exponential with 3 parameters: a)von Mises; b)Tresca
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The results in Figures 6 and 7 indicate that the comparison between safety factor sam-
ples of von Mises and Tresca failure criterions when the random variable is considered as
a shear stress applying with uniform and truncated exponential distribution, respectively.
Also, the cross shape figure signifies each sample that is used for force distribution, and
the red line, pink dashed line, green dashed line point out the mean, mean plus and minus
standard deviation, 95 percent probability boundary lines, respectively in Figures 6 and 7.
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Figure 8 – Convergence study of simple plate problem for the safety factor, standard
deviation as a function of the number of statistical samples considering an uniform distri-
bution
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Figure 9 – Convergence study of simple plate problem for the safety factor, standard
deviation as a function of the number of statistical samples considering a truncated expo-
nential
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Figures 8 and 9 demonstrate that the convergence plots of simple plate problem
for Tresca and von Mises failure criterions which begin to converge after at a value of
200 number of samples nearly. At a value of 512 number of samples, these graphs are
approximately stable and converged. The purpose of these convergence plots is that how
close to this exact balance is acceptable. Also, converged standard deviation value varies
from uniform distribution to truncated exponential distribution.
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Figure 10 – Statistical results of probability density function when applied shear stress
distribution is an uniform: a)von Mises; b)Tresca
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Figure 11 – Statistical results of probability density function when applied shear stress
distribution is a truncated exponential with 3 parameters: a)von Mises; b)Tresca

0 1 2 3 4

 safety factor (von Mises)

0

0.5

1

1.5

2

2.5

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n  
PDF
mean
mean ± std

 95% prob.

0 1 2 3 4

 safety factor (Tresca)

0

0.5

1

1.5

2

2.5

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n  
PDF
mean
mean ± std

 95% prob.

Source: Prepared by the author

Moreover, while obtaining random parameters in this problem, 512 number of samples
are utilized by considering different distributions. Figures 10 and 11 show that statistical
results of probability density function and distribution when implemented shear stress
distributions are uniform and truncated exponential for von Mises and Tresca failure cri-
terions. Moreover, the blue line, red line, pink dashed line and green dashed line represent
probability density function (PDF), mean value, mean plus and minus standard deviation
value and 95 percent probability boundary lines, respectively in Figures 10 and 11.
The comparison between von Mises and Tresca failure criterions when the shear stress
distributions are implemented with uniform and truncated exponential, is indicated in
Figure 12. The black line and blue line point out von Mises and Tresca failure criteri-
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Figure 12 – Comparison of failure criterions when the shear stress distributions are applied
with: a)uniform ; b)truncated exponential
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ons, respectively in Figure 12. Furthermore, the closest match between von Mises and
Tresca failure criterions which is in the range of 1.35 Fs (Safety Factor), approximately.
Furthermore, there is no common intersection area between von Mises and Tresca failure
criterion in the range of 0.7-1.0 Fs (Safety Factor) and 1.45-2.5 Fs (Safety Factor). As
a result, von Mises and Tresca failure criterion have many common intersection area in
the range of 1.0-1.45 Fs (Safety Factor) and the superposition intervals are the same in
both distributions in Figure 12.

4.2 Example in plane stress problem considering two uncertain-
ties

In this part of section, a simple plate applying with normal and shear stresses is
described in Figure 4, where the value σy is chosen for illustration as 100 MPa in the Eq.
10. After giving this value, random values are used by applying uncertainty quantification
method considering τxy and σx. Thus, these parameters are uncorrelated and examined
in the uniform and truncated-exponential distributions, respectively.
Figure 13 represents that statistical results of input variable when the random variable
is considered as a shear stress and normal stress applying with truncated exponential
distribution. Minimum support and maximum support of the distribution for shear stress
are considered as 50 MPa and 130 MPa, respectively. Also, the mean value of input
variable is given as 85 MPa. Furthermore, minimum support and maximum support of
the distribution for normal stress are considered as 55 MPa and 125 MPa, respectively.
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Figure 13 – Illustration of shear stress and normal stress distribution with given by trun-
cated exponential with 3 parameters: a)normal stress; b)shear stress
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Also, the mean value of input variable is given as 90 MPa. Coefficient of variation for
both random variable is considered as 0.2 and shear stress and normal stress distributions
are constructed.

Figure 14 – Comparison between safety factor samples when applied shear stress and
normal stress distribution are an uniform: a)von Mises; b)Tresca
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Figures 14 and 15 represent that the comparison between safety factor samples of
von Mises and Tresca failure criterions when the random variable is considered as a shear
stress and normal stress applying with uniform and truncated exponential distributions,
respectively.
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Figure 15 – Comparison between safety factor samples when applied shear stress and
normal stress distribution are a truncated exponential with 3 parameters: a)von Mises;
b)Tresca
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Figure 16 – Convergence study of simple plate problem with two uncertainties, stan-
dard deviation as a function of the number of statistical samples considering an uniform
distribution
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Figures 16 and 17 indicate that the convergence plots of simple plate problem for
Tresca and von Mises failure criterions considering the random variables as shear and
normal stress. The convergence plots of Tresca and von Mises failure criterions are
shown in Figures 16 and 17 and we can see that they start to converge after at a value
of 175 number of samples nearly. At a value of 512 number of samples, these graphs are
approximately stable and converged.
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Figure 17 – Convergence study of simple plate problem with two uncertainties, stan-
dard deviation as a function of the number of statistical samples considering a truncated
exponential
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Figure 18 – Statistical results of probability density function when applied shear stress
and normal stress distribution are an uniform with: a)von Mises; b)Tresca
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Figure 19 – Statistical results of probability density function when applied shear stress
and normal stress distribution are a truncated exponential with 3 parameters: a)von
Mises; b)Tresca
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Figure 20 – Comparison of failure criterions when the shear stress and normal stress
distributions are applied with: a)uniform ; b)truncated exponential
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The random parameters τxy and σx are independent in each other. Figures 18 and
19 demonstrate that statistical results of probability density function when utilized shear
stress distribution and normal stress distributions are uniform and truncated exponential
for von Mises and Tresca failure criterions. The comparison between von Mises and Tresca
failure criterions when the shear stress distribution and normal stress distributions are
implemented with uniform and truncated exponential, is indicated in Figure 20. The
closest match between von Mises and Tresca failure criterions is in the range of 1.35 Fs
(Safety Factor), approximately. Besides, there is no common intersection area between
von Mises and Tresca failure criterion in the range of 0.7-1.0 Fs (Safety Factor) and 1.45-
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2.5 Fs (Safety Factor). As a result of Figure 20, von Mises and Tresca failure criterion
have many common intersection area in the range of 1.0-1.45 Fs (Safety Factor).
The main interpretation of the comparison of these results considering one uncertainty
and two uncertainties in a plane stress state is that the effect of the σx random variable
is too less to compare in both situation and the superposition intervals are the same in
both distributions in Figure 20.

4.3 The simple deflection problem considering uncertainty quan-
tification

In this part of the section, failure criterions are examined in the design of a cantilever
beam with cross-section rectangular shape (CARRERA et al., 2010; GRUTTMANN;
WAGNER, 2001). Figure 21 illustrates the simple deflection problem of cross-section
cantilever beam subject to a vertical load F at the end of the beam. truncated expo-
nential, uniform, distributions are utilized. The load F which is considered as a random
variable. Afterwards, random variables τxy and σx are considered for stress matrix. The

Figure 21 – Deflection beam

l

Source: Prepared by the author

parameters of simple deflection problem are the cantilever beam’s elastic modulus E, in-
ertia moment of area I, vertical load F and cantilever beam’s width b, height h, length
` and also poisson’s ratio ν, yield strength Sy of material, respectively. According to
slope function, the value of E and Sy are given as 210 GPa and 250 MPa for solving the
equation in a deterministic way, respectively.
The equation of the elastic curve and the deflection and slope at A are determined as
shown below

d2v

dx2 = M(x)
EI

. (29)
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Using the free-body diagram of the portion AB of the beam according to Figure 21, if the
equation is determined as shown below

M(x) = F (` − x). (30)

Substituting for M into Eq. 29 and multiplying both members by the constant EI, if the
equation is determined as shown below

EI
d2v

dx2 = (F` − Fx). (31)

If the equation integrate considering variable x, the equation will be obtained as shown
below

EI
dv

dx
= F`x − 1

2Fx
2 +C1. (32)

It is observed that at the fixed end of B, v(0) = 0 and θ = dv/dx = 0. Substituting these
values into Eq. 32 and solving for C1, then C1 is determined as shown below

C1 = 0. (33)

Then which we carry back into Eq. 32, then the slope function is determined as shown
below

EI
dv

dx
= F`x − 1

2Fx
2. (34)

Integrating both members of Eq. 34, then the equation is determined as shown below

EIv = 1
2F`x

2 − 1
6Fx

3 +C2. (35)

But, at B we have x = ` , y = 0. Substituting into Eq. 35, then the equation is determined
as shown below

1
2F`x

2 − 1
6Fx

3 +C2 = 0, (36)

C2 = 0. (37)

Carrying the value of C2 back into Eq. 35, then the equation of the deflection function
is determined as shown below

v(x) = 1
EI

(1
2F`x

2 − 1
6Fx

3) . (38)
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The boundary conditions are that the displacement and slope are both zero at clamped
and from which the two constant of integration can be obtained. Then, the slope function
will be maximum at x = `, the equation of slope function is determined as shown below

dv

dx
= 1
EI

(F`x − 1
2Fx

2) , (39)

dv

dx
= εx =

1
EI

(1
2F`

2) . (40)

In the Hooke-Lamé’s Law in Cartesian Coordinates, shear (G) and lambda (λ) modulus
are determined as shown below for explain to σx normal stress

λ = νE

(1 + ν)(1 − 2ν) , (41)

G = E

2(1 + ν) , (42)

where the parameter σx normal stress in the state of tension for simple deflection problem
is described as

σx = (λ + 2G) εx, (43)

σx =
1
2

(1 − ν)F`2

(1 + ν)(1 − 2ν)I . (44)

Furthermore, the parameter τxy shear stress in the state of tension for simple deflection
problem is determined as

τxy =
1

2bh (F`
3

EI
) . (45)

Also, moment of inertia of cantilever beam is described as shown below

I = ∫ y2dA = ∫
+h/2

−h/2
y2dy = bh

3

12 . (46)

Table 1 – The parameters used in simple deflection problem.

E [GPa] ν h [mm] b [mm] ` [mm] Sy [MPa]
210 0.3 200 100 2300 250

Source: Prepared by the author

it is indicated that statistical results of input variable when the random variable is
considered as a force applying with truncated exponential distribution in Figure 22. Also,
minimum support and maximum support of the distribution graph are considered as 1500
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Figure 22 – Illustration of force distribution with given by truncated exponential with 3
parameters
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N and 4000 N, respectively. Also, the mean value of input variable is given as 2500 N.
Coefficient of variation is considered as 0.2 and force distribution is constructed in Figure
22. Figures 23 and 24 indicate that the comparison between safety factor samples of

Figure 23 – Comparison between safety factor samples when applied force distribution is
an uniform: a)von Mises; b)Tresca
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von Mises and Tresca failure criterions when the random variable is considered as a force
applying with uniform and truncated exponential distribution, respectively.

Figures 25 and 26 indicate that the convergence plots of simple plate problem for
Tresca and von Mises failure criterions considering the random variables as a force. The
convergence plots of Tresca and von Mises failure criterions are demonstrated in Figures
25 and 26 and they begin to converge after 400 number of samples nearly. At a value of



44

Figure 24 – Comparison between safety factor samples when applied force distribution is
a truncated exponential with 3 parameters: a)von Mises; b)Tresca
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Figure 25 – Convergence study for the safety factor, standard deviation as a function of
the number of statistical samples considering an uniform distribution
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Figure 26 – Convergence study for the safety factor, standard deviation as a function of
the number of statistical samples considering a truncated exponential
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2000 number of samples, these graphs are approximately stable and converged.

Figure 27 – Statistical results of probability density function when applied force distribu-
tion is an uniform: a)von Mises; b)Tresca
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In addition, Figures 27 and 28 indicate that statistical results of probability density
function when utilized force distribution is uniform and truncated exponential for von
Mises and Tresca failure criterions. Moreover, Figure 29 indicates that the comparison
between von Mises and Tresca failure criterions when the force distribution is imple-
mented with uniform and truncated exponential. These plots show the statistical results
of comparison between von Mises and Tresca failure criterions considering different distri-
butions. Besides, the closest match between von Mises and Tresca failure criterion is in
the range of 1.6 Fs (Safety Factor). Also, there is no common intersection area between
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Figure 28 – Statistical results of probability density function when applied force distribu-
tion is a truncated exponential with 3 parameters: a)von Mises; b)Tresca

0 1 2 3 4

 safety factor (von Mises)

0

0.5

1

1.5

2

2.5

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n  

PDF
mean
mean ± std

 95% prob.

0 1 2 3 4

 safety factor (Tresca)

0

0.5

1

1.5

2

2.5

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n  
PDF
mean
mean ± std

 95% prob.

Source: Prepared by the author

von Mises and Tresca failure criterion in the range of 0.8-1.2 Fs (Safety Factor) and 2.2-
3.1 Fs (Safety Factor). As a result, von Mises and Tresca failure criterion have many
common intersection area in the range of 1.2-2.2 Fs (Safety Factor) and it is seen that
von Mises and Tresca failure criterions are not different from each other in superposition
area according to Figure 29, when the force is considered as a random variable.

Figure 29 – Comparison of failure criterions when the force distributions are applied with:
a)uniform ; b)truncated exponential
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Furthermore, the main interpretation of the difference between the comparison of these
results is that the superposition area is different in each distribution because of different
probability values. Nevertheless, the superposition interval in each distribution remains
the same.
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4.4 Conclusions

Based on the results shown, two different kind of models were analyzed by taking into
the consideration with Monte Carlo simulations and maximum entropy principle. These
examinations are simple deflection problem and simple plate problem. The aim of this
dissertation is to demonstrate that there are some cases that von Mises and Tresca failure
criterions have the same characteristic qualification considering with various kind of vari-
abilities. When the results of the comparison of failure criterions obtained by uniform and
truncated exponential distributions are examined, It is important to highlight that the
distribution graphs have the different kind of behavior considering the superposition area.
The uniform distribution generally have greater area comparing to truncated exponen-
tial distribution. Nevertheless, these distribution graph does not affect the superposition
interval. The superposition interval remains the same in each examination. Also, it is
possible to see that the total number of uncertainties affect the behavior of distribution
graph in the last examination.
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5 Analysis of Uncertainty Propagation in
a Complex Structural System

This chapter describes application of the response surface method on the examina-
tion of the frame of formula car, optimization process on this examination, definition of
the parameters correlation, probabilistic analysis and Six Sigma analysis assuming data
uncertainties with Latin Hypercube simulations in the DesignXplorer section in ANSYS.
In examination of the frame of formula car design, truncated-Gaussian and log-normal
distribution are utilized for solving examination of frame of formula car design. Most of
simulations are based on the integration of Monte Carlo (MC) simulations. Two kind of
probabilistic methods have been utilized in this chapter for probabilistic examination of
frame of the formula car. These two methodologies that are Latin Hypercube sampling
method and response surface method. Furthermore, the results of these two methods are
interpreted in each other considering their advantages and drawbacks.
This chapter is organized as follows. Section 5.1 indicates the definition about determin-
istic model of the frame of formula car. Section 5.2 gives a information about response
surface method on the examination of the frame of formula car. Section 5.2.1 presents
the definition of the parameters correlation on the examination of the frame of formula
car. Besides, section 5.2.2 indicates the optimization process considering the examination
of the frame of formula car. Finally, section 5.2.3 presents the results about probabilistic
analysis on the examination of the frame of formula car.
Hence, the general informations about interpretation of probabilistic results are explained.
Also, the main purpose of this chapter is to compare the von Mises and Tresca failure cri-
terions on complex designs with using probabilistic response analysis. Consequently, this
chapter introduces probabilistic design outcomes of complex design in the DesignXplorer
section in ANSYS. A summary on the data is provided by different kind of graphics in
the next sections.
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5.1 Description of the deterministic model of the frame of formula
car

The geometry of the frame of formula car is built, designed and totally meshed in AN-
SYS. Also, all material properties as well as static boundary conditions are real numbers.
In this part of work, one type of finite element analysis is performed, namely the frame of
formula car is quantified with a static analysis using the maximum deflection, von Mises
stress, minimum principal stress, maximum principal stress and maximum shear stress.
The frame of formula car are shown in Figure 30. The boundary conditions are demon-
strated on point A where the tires of formula car locate and the force components are also
indicated on point B and C in Figure 30. Furthermore, there are four design variables to
optimize the frame of formula car frame, namely the forces, Young’s modulus, minimum
principal stress, maximum principal stress and von Mises stress.

Figure 30 – The probabilistic result of Matlab

Source: Prepared by the author

Also, a table 3 summarizes parameters used to the frame of formula car design in
ANSYS.
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Table 2 – Parameters used for the frame of formula car in deterministic way

Parameter List
Parameter type Parameter Baseline input
Material Young’s modulus 210 × 109 [Pa]

Bulk modulus 166 × 109 [Pa]
Poisson’s ratio 0.3
Tensile yield strength 25 × 107 [Pa]
Tensile ultimate
strength

46 × 107 [Pa]

Density 7850 [kg/m3]
Geometry Length X 0.87421 [m]

Length Y 1.3916 [m]
Length Z 1.9476 [m]

Force Force 1 1000 N Y axis
Force 2 −1000 N Y axis

Source: Prepared by the author

5.2 Description of the response surface method on the examina-
tion of the frame of formula car

Response surface method is an efficient way to get the variation of a given performance
with respect to input parameters as mentioned before.
Besides, local sensitivity chart and the generated response surface considering the term
of the force and Young’s modulus are shown in Figure 31. Local sensitivity chart is
plotted to notice the effect of the input parameters as the force and Young’s modulus
on output parameters. This process calculates change of the output parameters based
on change of input parameters severally at the available value of each input parameter.
The bigger change of the output parameters, the more important is the role of the input
parameters that are varied. Moreover, negative sensitivity means that if the output
parameter increases, while input parameter decreases. If output parameter increases,
while input parameter increases, the sign is positive. It can be noticed that the different
two component of the forces (input parameter) have maximum influence on maximum
principal stress output parameters comparing to Young’s modulus.
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Figure 31 – The comparison between local sensitivity chart and the generated response
surface considering the term of the force and Young’s modulus
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Furthermore, Young’s modulus has a maximum impact on maximum deformation and
minimum deformation comparing to other output parameters. These sensitive parameters
can be treated considering to reduce critical influence of individual input parameters. It
also calls attention to local sensitivity curve indicates important influence on the frame
of formula car and output parameters (min principal stress, maximum principal stress,
von Mises stress, minimum and maximum deformation). Consequently, it is critical to
carefully design each section of the frame of formula car for better structural performance
and for structural robustness.

5.2.1 Definition of the parameters correlation on the examination of the
frame of formula car

The parameters correlation is based on frame component of formula car. The correla-
tion sorts input and output parameters by importance. This section defines the selected
input parameters and their variation range, the selected correlation type, and the gen-
erated correlation matrix and charts. The parameters correlation process is performed
simulations based on a random sampling of the design space for using (Latin Hyper-
cube sampling). Also, there are two correlation calculation methods (Pearson’s linear
correlation and Spearman’s rank correlation) that are provided. Between two of these
parameters correlation, Pearson’s linear correlation is utilized because this method pro-
vides linear connection between two variables as it is a measure of the linear dependence
between two variables. Furthermore, there are two major input parameters (force 1, force
2) considered as a correlation parameters. When the parameters correlation method is
performed, 120 number of sample is selected. Also, mean value accuracy and standard
deviation accuracy are chosen as 0.01 and 0.02 respectively.

Table 3 – Parameters used for correlation processing

Correlation Parameters
Parameter Type Lower Bound Upper Bound
Force 1 800 N 1200 N
Force 2 −1200 N −800 N

Source: Prepared by the author

As a results of the linear correlation matrix are essentially relationship between chang-
ing in the input parameters and changing in the output parameters in the system. The
different kind of colors significant the relationship between output and input parameters
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according to type of the color. Dark red and dark blue colors represent the strong correla-
tion between parameters, the gray color significant the zero or weak correlation between
parameters considering the linear correlation matrix.
Furthermore, the linear correlation matrix for the probabilistic design is shown in Figure
32

Figure 32 – The linear correlation matrix

Source: Prepared by the author

The closer the R-square is to 100 percent, the better data will fit to linear/quadratic
curves. If R-square value is small, then the variation in the output parameter is not
well defined by the input parameter variation. Also, R1 and R2 are 54 and 55 percent
respectively, according to Figure 33
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Figure 33 – The correlation scatter chart

Source: Prepared by the author

5.2.2 Optimization process on the examination of the frame of formula
Car

The design optimization process is solved and generated by response surface method.
Based on the created responses, 1000 number of samples and 3 design candidates are
generated within the minimum and maximum values for variable parameters. Moreover,
the screening optimization method that uses a simple approach based on sampling and
sorting, is utilized in the optimization. It supports multiple objectives and constraints as
well as all types of input parameters.

Table 4 – Candidate points that are utilized for the optimization process.

Young’s modulus Force 1 Force 2
Candidate point 1 16 × 1010 [Pa] 821.74 N -800 N
Candidate point 2 17.52 × 1010 [Pa] 839.26 N -817.91 N
Candidate point 3 18.96 × 1010 [Pa] 832.23 N -809.13 N

Source: Prepared by the author

These candidate points are utilized in optimization process in order to maximize the
force component and minimize the stress values on the frame of formula car. Usually
it is used for preliminary design, which may lead you to apply other methods for more



55

Figure 34 – History chart of minimum principal stress and maximum equivalent stress
maximum

Source: Prepared by the author

Figure 35 – History chart of maximum deformation in Y axis and maximum pricipal stress
maximum

Source: Prepared by the author
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refined optimization results. This situation provides an improved response quality and
fits higher order variations of the output parameters. Furthermore, all design candidates
are analyzed. Figures 34 and 35 show the values of objective parameters at each design
point. Figure 36 shows trade-off chart for two objectives, these are von Mises stress and
force 1 component. It can be observed that von Mises stress and force 1 component of
the frame of formula car are depend on each other. It also demonstrates the feasible and
infeasible points on the trade-off chart.
Furthermore, the trade-off chart for the optimization process is shown in Figure 36 ac-
cording to comparison between von Mises stress and force 1 component.

Figure 36 – The trade-off chart considering the term of the force 1 component and von
Mises stress

Source: Prepared by the author

5.2.3 Description of the probabilistic analysis on the examination of the
frame of formula car

Probabilistic design can be utilized to define the outcome of one or more variables
on the effect of the analysis. The frame of formula car is designed and analyzed in the
section of DesignXplorer in ANSYS. Firstly, design of experiment process is utilized and
different kind of design points are chosen according to Latin Hypercube sampling design.
Also, totally 120 number of design points are utilized for each random input variables.
Afterwards, response surface method is used for probabilistic design. Some characteristic
material properties as a Young’s modulus, force 1 and force 2 component of the frame of
formula car are considered as random variables as well, leading to a total of 3 random
input variables for frame of the formula car.
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Additionally, tables 5 and 6 summarize the random input variables and their distributions.

Table 5 – Random input parameters used for the examination of the frame of formula
car.

Parameter type Input variable Distribution type
Material Young’s modulus [Pa] Log-normal distribution
Force Force 1 [N] Truncated-Gaussian distribution
Force Force 2 [N] Truncated-Gaussian distribution

Source: Prepared by the author

The reliability of the frame of formula car is calculated with two different probabilistic
methods implemented in the DesignXplorer section in ANSYS, namely the Latin Hyper-
cube sampling design and the response surface method. Also, 180,000 Latin Hypercube
sampling runs on the response surfaces took only about 30 seconds to complete, which
illustrates the computational advantage of the response surface method. From Figure
37 to Figure 44 indicate the cumulative distribution function and distribution graphs for
each random input variable and random output variable, respectively.

Table 6 – Attributes of the random input variables

Random input variables
Input variable Lower

bound
Upper bound Mean

value
Standard deviation

Young’s modulus [Pa] 0 +Infinite 26.02 × 109 0.0499 × 109

Force 1 [N] 800 1200 1000 50
Force 2 [N] −1200 −800 −1000 50

Source: Prepared by the author

From Figure 37 to Figure 44, these graphics are implemented and constructed consid-
ering the data from analysis on the examination of the frame of formula car in ANSYS.
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Figure 37 – Log-normal distribution graph for Young’s Modulus

1.6 1.8 2 2.2 2.4

Young modulus [Pa] ×1011

0

1

2

3

4

5
pr

ob
ab

ili
ty

 d
en

si
ty

 fu
nc

tio
n

×10-11

0

20

40

60

80

100

pr
ob

ab
ili

ty
 [%

]

pdf
cumulative dist.

Source: Prepared by the author

Figure 38 – Truncated-Gaussian distribution graph for force 1
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Figure 39 – Truncated-Gaussian distribution graph for force 2
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Figure 40 – Distribution graph for minimum principal stress

Source: Prepared by the author



60

Figure 41 – Distribution graph for von Mises stress

Source: Prepared by the author

Figure 42 – Distribution graph for maximum deformation in Y axis
Source: Prepared by the author
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Figure 43 – Distribution graph for minimum deformation in Y axis

Source: Prepared by the author

Figure 44 – Distribution graph for maximum principal stress

Source: Prepared by the author

After obtaining the results from the section DesignXplorer in ANSYS, the maximum
principal stress, minimum stress and von Mises stress values are utilized for the equations
for von Mises and Tresca failure criterion. According to the probability density function
graph in Figure 45, the Fs values are obtained and von Mises and Tresca failure criterion
methods are compared. In this case, while obtaining random input variables, 120 number
of samples for each random input variable are described by using Latin Hypercube sam-
pling method in order to compare both probabilistic results.
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In addition, Figure 45 shows the closest match between von Mises and Tresca failure
criterion is in the range of 1.37 Fs (Safety Factor). Furthermore, there is no common
intersection area between von Mises and Tresca failure criterion in the range of 0.84-1.28
Fs (Safety Factor) and 1.53-1.79 Fs (Safety Factor). As a result, von Mises and Tresca
failure criterion have many common intersection areas in the range of 1.28-1.53 Fs (Safety
Factor).
On the example of frame of formula car, response surface method, parameters correlation,
optimization process and probabilistic analysis are examined according to random input
variables. From these analyses results, the response surface method is the most effective
method in the case of limited input variable parameters. In the case of the random input
variable data, Latin Hypercube analysis is the most efficient method for solution of the
structural reliability. In summary, the probabilistic methods implemented on the exam-
ination of frame of the formula car are discussed and the advantages and disadvantages
are compared.

Figure 45 – The probabilistic result of ANSYS
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5.2.4 Conclusions

This chapter has shown probabilistic design of the examination of frame of the formula
car, estimated based on Latin Hypercube sampling design and response surface method, to
describe the critical comparison between failure criteria considering uncertainties. There
are two probabilistic methods (Latin Hypercube sampling method and response surface
method) are analyzed from the point of the accuracy and effectiveness in comparison
with the probabilistic methods. Also, it can be seen that von Mises criterion has the same
characteristic as Tresca failure criterion in the superposition interval. The effect of the



63

random input variables has shown adequate to allow identifying the critical comparison
between failure criteria in an uncertainty scenario.
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6 Final Remarks

This final chapter presents in the section 6.1 the main results about the approach and
the outcomes showed in this work. Additionally, section 6.2 and 6.3 indicate contributions
and the suggestion for future works and applications in the research, respectively.

6.1 Conclusions

Considering the results obtained and presented in this work, methodologies were pre-
sented for the comparison of structural criteria of failure by taking into the consideration
uncertainty quantification. The description about failure analysis in structural mechanics
and general explanation of uncertainty quantification are presented in chapter 3, respec-
tively. The probabilistic results of simple structural systems that are simple plate and
simple deflection problem, illustrated in chapter 4. Moreover, the probabilistic outcomes
and optimization process of complex structural system is presented in chapter 5, some
remarks can be shown:

• The using of von Mises and Tresca failure criteria can help the investigation of
predicting the circumstances under which solid materials under the processing of
external loads. Moreover, simple plate and simple deflection problem are analyzed
in deterministic way and probabilistic way. Based on the results indicated, when
the results of the comparison of failure criterions obtained by uniform and trun-
cated exponential distributions are interpreted, it is important to emphasize that
the distribution graphs have different kind of behaviour on the superposition area.
The uniform distribution generally have greater area comparing to truncated expo-
nential distribution in all examinations. However, these distribution graph does not
affect the superposition interval. The superposition interval remains the same in
each examination with different distributions. Also, it can be seen that the total
number of uncertainties influences the behaviour of distributions on the probabilistic
examination. Based on the results of simple structural system, it can be seen that
von Mises and Tresca failure criterions have the same behavior in the superposition
area with using uncertainties.
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• Based on the outcomes of a complex structural design, the effect of random input
variables varies from one to the other. Young’s modulus almost does not have any
effect on random input variables comparing to force components. The dissertation
also summarizes different kind of probabilistic methods (crude Monte-Carlo method,
Latin Hypercube sampling method, response surface method) affect just the param-
eters as a computational cost, number of simulations on the same examination.

• Considering the results obtained from a complex structural design, the response
surface method is the most useful method with limited random input variables.
Also, Latin Hypercube analysis is the most efficient method for solution of the
structural reliability, it makes to possible to do same examination with less number
of simulations comparing to crude Monte-Carlo simulations. According to results, it
can be seen that different kind of random input variables influence random output
variables in different way. Unlike Tresca failure criterion, von Mises criterion can
have the conservative characterization in the case of uncertainties. In summary,
it is important to emphasize that von Mises and Tresca failure criterions have the
same characteristic on the complex structural design in case of some areas with
various kind of random input variables.

6.2 Contributions

A few examples and applications performed during the master study with the subject
of this thesis were published in the following papers for conference and journal:

• Yanik et al.(2018): ’Uncertainty quantification in the comparison of structural cri-
terions of failure’ here is the article mentioned (YANIK; SILVA; CUNHA, 2018);

• Also, the following paper was sent for publication: "On the influence of parametric
uncertainties in the performance of structural failure criteria" submitted to the In-
ternational Latin American Journal of Solids and Structures in a partnership with
Prof. Dr. Samuel da Silva and Prof. Dr. Americo Barbosa da Cunha Jr.

6.3 Suggestions for future works

Analyzing this work it is possible to define a few future research topics in order to
improve the current results and also explore new applications:
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• Application of the experimental setup of complex problem to examine the and com-
pare von Mises and Tresca failure criteria.

• Using the more complex structure and adding different kind of random input vari-
ables in order to do probabilistic examination.
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