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We present the Quantum Section Method as a quantization technique to compute the eigenvalues
and the eigenfunctions of quantum systems. As an instructive example we apply this procedure
to quantize the annular billiard. The method uses the symmetry of the system to determine an
auxiliary section separating the system into partial regions and computes the Green's functions for
Schroedinger's equation, obeying the same boundary conditions imposed on the eigenfunctions of the
system. The eigenvalues are obtained as zeroes of a �nite real determinant and the eigenfunctions
are also determined. The present analytical and numerical results are in total agreement with those
obtained by other procedures, which shows the eÆciency of the method.

I Introduction

The Green's function method applied to the
Schroedinger's equation associated to the Poincar�e's
section technique used to study classical dynamics, have
originated a method to compute the eigenvalues and the
eigenfunctions of quantum systems. This method is de-
noted by Quantum Section Method (QSM). It was �rst
introduced by Bogolmony as an essential ingredient to
the resummation theory of classical periodic orbits con-
tributing to the quantum energy spectrum of chaotic
systems [1, 2].

The connection between classical periodic or-
bits and quantum energy spectrum comes from the fact
that the semiclassical limit of stationary states should
be connected with classical invariant manifolds and for
a chaotic Hamiltonian system the latter are the periodic
orbits, besides the total energy. For systems which are
not fully chaotic but mixed by chaos and regular mo-
tion, the quantum energy spectrum carries also in
u-
ences of invariant tori.

A class of models which nicely describe regu-
lar, mixed or chaotic dynamics are the billiards. These
correspond to geometrical boundaries where a particle
moves freely inside them and re
ects specularly at the
boundaries. For these type of systems the motion is
strongly dependent on the shape of the boundaries thus
allowing the simulation of any desired dynamics.

In this work we consider the annular billiard

(annulus) probing the applicability of the QSM. This
billiard consists of two eccentric circles where only the
annular region constitutes the accessible space to the
motion. Changing the eccentricity we can control the
sea of chaos and also the regularity of the system. We
consider classical and quantum mechanical aspects of
the annular billiard in section II. In section III we de-
velop the QSM. Finally in section IV we present the
numerical calculations and a discussion of these results.

II The Model

As depicted in Fig. (1a-1b) the billiard is de�ned
by two eccentric circles on the XY -plane, where the
outer circle has radius �R ' and the inner circle radius
�r'. The centre of the outer circle is considered as the
origin of the system and the inner circle can dislocate
horizontally in relation to it. The distance between the
centres of the circles is called by eccentricity and we
denote it by 'Æ' . As 'r' as 'Æ' are constrained by the in-
equality (r + Æ) � R . The trajectories on the billiard
are polygonal lines among collisions with the bound-
aries. There are two di�erent types of motion identi-
�ed by the letters 'A' and 'B' and when composed can
describe any possible behavior of the system [3]. The
A-type motion corresponds to those trajectories which
collide with the outer circle before a collision with itself,
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while the B-type motion reports to the trajectories col-
liding with the inner circle between two collisions with
the outer one. There is also a particular case of A-
trajectories, called Whispering Gallery Orbits (WGO),
which never attain the inner circle, what means they
never cross the caustic - an auxiliary circle with radius
(r + Æ). The caustic helps us to separate both kind of
motions and later we will associate to it an algebraic
tangency condition to distinguish the A-motion from
the B-motion.

Figure 1. a) The annular billiard scheme exhibiting the
outer circle of radius R; the inner circle of radius r, the ec-
centricity Æ; both angle coordinates � and �; and a typical
trajectory of A-motion; b) a typical trajectory of B-motion;
c) an auxiliary circular section of radius �, concentric with
the inner circle, de�ning two partial regions.

The dynamics on phase space is naturally de-
scribed by Birkho�'s coordinates, these are de�ned on
the outer boundary at the positions where the colli-
sions have occurred. Because of the circular geome-

try, two angle coordinates suÆce to de�ne the collision
points: � � ' associated with the arc-length counted
from the positive abscissa axis and ��', the re
ected
angle formed between the trajectory and the normal
at the collision point, see Fig. (1a-1b). Hence we de-
�ne the phase space coordinates as S = sin(�) and
L = �=(2�), so that phase space reduces to the rectan-
gle : �1 � S � 1, �1=2 � L � 1=2. Thus the motion
can be described by a discrete dynamics, or merely a
map, involving only kicks with the external circle. The
map can be easily obtained through pure geometrical
considerations. Hereafter we consider R = 1 and for a
trajectory starting at any initial condition (�0; �0) we
require the tangency condition

j sin(�) + Æ sin(� � �)j > r (1)

which means that at the next collision with the outer
circle the trajectory had not previously hit the inner
circle. This de�nes the A-motion (Fig. 1a) given by
the map equations

�1 = �0
�1 = �0 + (� � 2�0) :

(2)

If the tangency condition is not satis�ed, which means
that at the next collision with the outer circle the tra-
jectory has previously reached the inner circle once, the
B-motion (Fig. 1b) is de�ned via the map equations

sin(�) = (sin(�0) + Æ sin(�0 � �0)) =r ;
(�1 + �1) = 2� � (�0 � �0) ;
sin(�1) = r sin(�)� Æ sin(�1 + �1) ;

(3)

where � is the angle of the re
ection at the inner cir-
cle (see Fig. 1b). It is easy to verify from the �rst
formula above as the tangency condition emerges. To
generate the dynamics of a trajectory on phase space,
the tangency condition should be checked at each iter-
ation to select what map has to be used. The set of
Figs. (2a-2d) exhibits the dynamic richness of the an-
nular billiard depending on the relationship between r
and Æ. From these plots we can observe some general
results [3], the origin of the phase space (L; S) = (0; 0)
corresponds to an elliptic �xed point (stable equilib-
rium) while r > Æ and it becomes a hyperbolic �xed
point (unstable equilibrium) if r < Æ passing through
a neutral stability when r = Æ. Looking at the Fig.
1b the trajectory (L; S) = (0; 0) corresponds to a line
over the positive abscissa starting at the outer circle
and kicking toward the inner circle. On the other hand
we note that the point (L; S) = (�1=2; 0) always corre-
sponds to a hyperbolic �xed point (except when Æ = 0).
From Fig. 1b, the corresponding trajectory starts on
the negative abscissa at the outer circle and kicks to-
ward the inner circle. Numerical observations indicates
that the accessible phase space becomes almost fully
chaotic at Æ � 3r [3]. In that context it is important to
establish one more identi�cation of the WGO: on phase
space they are the straight lines which have ordinates
jSj > (r + Æ); consequently only in the region between
the WGO�s may occur chaos and resonance structures.
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Figure 2. The phase space (L; S) for r = 0:2 and four values of Æ: (a) Æ = 0:02, there is a thin layer of chaos and the WGO
are located at jSj > 0:22 ; (b) Æ = 0:15, the origin still corresponds to a stable �xed point but the chaotic sea has increased,
the WGO are located at jSj > 0:35 ; (c) Æ = 0:30, the origin is a hyperbolic �xed point and chaos continues increasing,
the WGO are located at jSj > 0:5; (d) Æ = 3r = 0:60, the accessible phase space is almost fully chaotic, and the WGO are
located at jSj > 0:8.

Regarding these main classical aspects of the
annulus, the corresponding quantum problem consists
on solving the Helmholtz equation�r2 + �2

	
	(�; �) = 0; (4)

obeying Dirichlet's boundary conditions, where � =p
2E=~ (m = 1) with � and � the radial and angular

polar variables respectively. It is analogous to the eigen-
mode problem for an annular vibrating membrane, also

with an in�nite number of discrete vibrational frequen-
cies. For the case Æ = 0 the eigenvalues �nm associated
with the Helmholtz�s equation are obtained as zeroes
of the equation

�
Jn(�nmR)� Jn(�nmr)

Yn(�nmr)
Yn(�nmR)

�
= 0 (5)

and the corresponding eigenfunctions are given by

c

	nm(�; �) = Anm

�
Jn(�nm�)� Jn(�nmr)

Yn(�nmr)
Yn(�nm�)

�
�
�

cos(n�) ; n = 0; 1; 2; ::::::even states ;
sin(n�) ; n = 1; 2; 3; ::::::odd states ;

(6)
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where Jn and Yn are the Bessel's functions of �rst and
second kind respectively and An;m is a normalization
constant. Except for n = 0 which is a single state, the
remaining states are degenerate doublets. For the case
Æ 6= 0 the angular momentum is not conserved, however
the system still possesses a discrete symmetry under re-

ection with respect to the line joining the centres of
both circles. Consequently the eigenstates of eq.(4) con-
tinue to be separated into even and odd states, but not
longer degenerate due to an e�ect of �dynamical tun-
nelling' which splits them. This phenomena, in
uenced
by chaos, is attributed to classical transport connecting
WGO regions [3, 4]. These quantum billiard has been
considered by di�erent theoretical methods in the lit-
erature [5, 6, 7, 8] and also experimentally [9], paving
the directions for us to apply the QSM.

III The Quantum Section

Method

This method considers the possibility to separate
any system into partial regions through one auxiliary
section in order to explore certain local symmetries, as
for example billiard boundaries or potential symmetries
(in the case of open systems) [10].

The uncertainty principle precludes the simul-
taneous knowledge of momenta and position of a quan-
tum particle, hence the quantum section is developed
only on position space. We construct partial Green's
functions, G1(q; q

0;E) and G2(q; q
0;E), in both partial

regions with the following properties: a) they satisfy the
non-homogeneous Schroedinger's equation inside each
partial region�r2 + �2

	
Gj(qjq

0

j ;�) = Æ(qj � q0j) ; j = 1; 2 ; (7)

b)on the boundaries these Green's functions should sat-
isfy the same boundary conditions as the eigenfunctions

of the original system, c) these Green's functions may
be arbitrary on the section, but they should match con-
tinuously. We write down the ansatz for solutions in the
form of a single layer potential

	j;E(q) =

Z
Gj(q;Q

0;E)�j(Q
0)dQ0 ; (8)

where Q0 is de�ned on the section and �j is the single
layer density which is initially an unknown function.
The idea now is to take a solution in one partial region
and extend it to the other region, imposing continuity
for the partial functions 	j;E(q) and their derivatives on
the section. Then the quantization condition emerges
and the eigenvalues are obtained as zeroes of a matrix
determinant de�ned on the section. This allows the sin-
gle layer density to be obtained and further to calculate
the eigenfunctions of the original system.

For the annular billiard the additional par-
tial separability of the Schroedinger's equation in po-
lar coordinates makes possible to construct exact par-
tial Green's functions in eigenmodes representation and
from there the construction of precise partial functions
in each side of the section as depicted in Fig.1c. We
de�ne the section as an auxiliary circle of radius �,
concentric with the outer circle, which separates both
partial regions: the region (1) outer to the �� circle
�and the region (2) inner to it.

The Green's functions are constructed satis-
fying the non-homogeneous Helmholtz's equation (7),
where q1 = (�; �) and q2 = (�; �) are the positions in re-
lation to the �R-circle' and the�r-circle', respectively. As
for the eigenfunctions, we require G1 to satisfy Dirich-
let's boundary conditions on the outer circle. In the
same fashion G2 cancels on the inner circle, with both
Green's functions arbitrary over the section.

Due to partial separability in polar coordi-
nates in relation to the �R ( r) circle', we may write

c

G1(��
0; ��0;�) =

P
m g1;m(��

0;�) h�jmi hmj�0i ; �0 < � < R ;
G2(�

0�; �0�;�) =
P

n g2;n(�
0�; �) h�jni hnj�0i ; r < � < � 0 ;

(9)

where hmj�i = h�jmi / cos[sin](m�) for the Green's function G1 and for the Green's function G2 one exchanges
m! n and � ! � to obtain hnj�i = h�jni / cos[sin](n�). For integersm or n the angular functions 0 cos0 and 0 sin0

will yield solutions possessing even and odd symmetries, respectively. Now it is chosen a particular one-dimensional
Green's function gj in radial coordinates, excluding any possibility for G1 and G2 to cancel over the section

g1;m(��
0 ;�) = H

(1)
m (�R)H

(2)
m (��0) fYm(�R)Jm(��)� Jm(�R)Ym(��)g ;

g2;n(�
0� ;�) = H

(1)
n (�� 0)H

(2)
n (� r) fYn(� r)Jn(��)� Jn(� r)Yn(��)g ;

(10)

d
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where J; Y; H(1;2) are the Bessel functions of the �rst,
second and third kind respectively. These Green's func-
tions are given, in Appendix A, by applying the image
method for a source in �0 (� 0) with respect to � = R
(� = r) in such a way that the quantum dynamics cor-
responds to two quantum paths between �0 and � (� 0

and �). One path is direct while the other re
ects in
R ( r). There is no possibility for the particle to come
back since it leaves the section. In this sense there is
an analogy with the scattering formalism[11].

Both Green's functions are diagonal in each

eigenmodes representation. We write down any given
partial wave function in each partial region in the form
of a single layer density

	1(�; �;�) =
R 2�
0

d�0�(�0)G1(��
0; ��0;�) ;

	2(�; �;�) =
R 2�
0

d�0 �(�0)G2(�
0�; �0�;�) :

(11)

These functions satisfy Schroedinger's equation with
appropriated boundary conditions in each partial re-
gion. The condition for these functions and their nor-
mal derivatives to match over the section is the exis-
tence of only one density. This condition imposes

c

Z 2�

0

d�0 �(�0) ~G(q02 q
0

1;�) =

Z 2�

0

~G(q02q
0

1;�)�(�
0)d�0 = 0 ; (12)

where

~G(q02q
0

1;�) =

Z 2�

0

d� fG2(�
0�; �0�;�)@�G1(��

0; ��0;�)�G1(��
0; ��0;�)@�G2(�

0�; �0�;�)g : (13)

This equation may be rewritten as

~G(q02q
0

1;�) =
P

mn < �0jn >< nj ~Gjm >< mj�0 > ; (14)

where ,

< nj ~Gjm > =
R 2�
0

d� fG1(�; �;�)@�G2(�(�; Æ; �) ; �(�; Æ; �);�)+
�G2(�(�; Æ; �); �(�; Æ; �);�) @�G1(�; �;�)g ; (15)

and the condition given in eq.(12) becomes

X
m

h�jmi
D
mj ~Gjn

E
=
X
n

D
mj ~Gjn

E
hnj�i = 0 : (16)

The eigenvalues are computed as the zeroes of det j < nj ~Gjm > j, where the integrals are evaluated over
the section. Before computing the integrals it is necessary to drive �0 onto R as well as � 0 onto r and to expand
G2(�; �) in terms of (�; �). This expansion uses the addition theorem for Bessel's functions

Jn(��)

�
cos(n�)
sin(n�)

�
= cos(n�)

P
l Jl+n(��)Jl(�Æ)

�
cos(l�)
sin(l�)

�
� sin(n�)

P
l Jl+n(��)Jl(�Æ)

�
sin(l�)
cos(l�)

�
;

(17)
and

Yn(��)

�
cos(n�)
sin(n�)

�
= cos(n�)

X
l

Yl+n(��)Jl(�Æ)

�
cos(l�)
sin(l�)

�
� sin(n�)

X
l

Yl+n(��)Jl(�Æ)

�
sin(l�)
cos(l�)

�

(18)
Finally the integrals are computed on the section considering

R 2�
0

cos(n�) cos(m�) cos(l�) =
�
Æl;�(m�n) + Æl;(m+n) + Æl;(m�n) + Æl;�(m+n)

�
=4R 2�

0
sin(n�) cos(m�) sin(l�) =

�
Æl;(m+n) + Æl;�(m�n) � Æl;(m�n) � Æl;�(m+n)

�
=4R 2�

0 cos(n�) sin(m�) sin(l�) =
�
Æl;(m+n) + Æl;(m�n) � Æl;�(m�n) � Æl;�(m+n)

�
=4R 2�

0
sin(n�) sin(m�) cos(l�) =

�
Æl;�(m�n) + Æl;(m�n) � Æl;(m+n) � Æl;�(m+n)

�
=4

(19)

yielding the goal

< nj ~Gjm > = 1
2 f[Yn(� r)Jm(��)� Jn(� r)Ym(��)] @� [Ym(�R)Jm(��)� Jm(�R)Ym(��)]

� [Ym(�R)Jm(��)� Jm(�R)Ym(��)] @� [Yn(� r)Jm(��)� Jn(� r)Ym(��)]g j�=�
�fJm�n(�Æ)� (�1)nJm+n(�Æ)g :

(20)
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In this form the eigenvalues are obtained as
zeroes of the determinant of the real matrix given in
eq.(20), where the � refers to the even and odd solu-
tions, respectively.

IV Results and Discussion

Without loss of generality by taking the section
over to the outer circle, what reads � = R; the match-
ing condition leads to the known Nagaya & Sing &
Kothary's eigenvalues expression[5]. The case Æ = 0
implies that the single possibility providing non-trivial
solutions for eq.(20) holds when m = n. In this case
the matrices become diagonal for both parities and the
eigenvalues are exactly degenerate (except when m and
n are null). When �Æ > jm � nj; for a �xed �, the
Bessel's functions become non-oscillating and they de-
crease exponentially as jm� nj increases. So it is nec-
essary to be careful when enlarging the determinant
dimension because it will become numerically unsta-
ble. Hence as a nice and interesting consequence, the
dimension of detf< nj ~Gjm >g is always �nite. With
the eigenvalues in hand the eigenfunctions are readily
determined going back to eq.(16) and computing the
density �.

The operator given in eq.(14) is called quan-
tum transfer operator and in the semiclassical limit it
can be expressed in term of classical paths providing
a way to interpret the quantum dynamical tunnelling
phenomena in terms of classical transport.

We have computed the eigenvalues with 14 dig-
its of precision for any given energy scale. Figs. (3)
and (4) concern to an energy spectrum with the fol-
lowing set of parameters: ~ � 0:4583; r = 0:40 and
Æ = 0:19. In Fig.(3) it is plotted the numerical cumula-
tive density of states for the �rst 2500 eigenvalues and
in Fig.(4) its deviation in relation to the soft cumula-
tive density of states for billiards, given by the formula:
N(�) = 1

4�~2 fA �2 � L �g [12], where for the annular
billiard, A is the net area (= �(R + r)(R � r)) and L
the net perimeter (= 2�(R+ r)) . From both plots it is
inferred that no level is missing from the energy spec-
trum and that there is no lack of convergence. A se-
quence of eigenvalues of both parities together is shown
in Fig.(5) for di�erent values of the eccentricity, with
�xed ~ � 0:2731; and r = 0:20 . This plot presents the
levels dynamics as a function of Æ exhibiting �avoided
crossing' as it is expected in chaotic/mixed systems.
Note also the degeneracies breakdown for some levels
as chaos increases (remember the chaotic sea enlarges
with the increasing of Æ; see Fig.(2a-2d)). These en-
ergy splittings relating levels of uncoupled parities are
attributed to a kind of tunneling denoted as dynamical
tunneling. Finally some scarred eigenfunctions are pre-
sented in Fig.(6) for some selected eigenvalues obtained
with the same parameters of Fig.(3). They carry infor-
mation of the classical dynamics and they correspond to

trajectories lying in di�erent positions on phase space.

Figure 3. The numerical cumulative density of states for
the �rst 2500 eigenvalues using the set of parameters: ~ �
0:4583; r = 0:40 and Æ = 0:19. The insert picture shows the
numerical cumulative density of states and the soft cumu-
lative density of states for billiards.

Figure 4. The deviation (�N = (N)numerical � (N)soft)
between the numerical cumulative density of states and the
soft cumulative density of states using the same set of pa-
rameters of Fig.(3). Both cumulative densities di�er around
one unity in module what means a very good agreement be-
tween them.
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Figure 5. The levels quantum dynamics. A sequence of
eigenvalues is shown for di�erent values of the eccentricity
using the following set of parameters ~ � 0:2731; r = 0:20
and Æ = [0:0; 0:75].

Finally these quantum analytical and numer-
ical results �t completely with the known results con-
cerning this billiard as established in the literature and
essentially they assert that the QSM is an eÆcient
quantization method.
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Appendix - The Radial Green Functions

Here it is considered the partial region 2 where
the partial radial Green's function is constructed with
the following boundary conditions: it is null at � = r
and it is arbitrary at � = � 0. These conditions lead to
the de�nitions

c

g2(��
0;�) = AfYn(� r)Jn(��) � Jn(� r)Yn(��)g ; r < � < �0

~g2(��
0;�) = B fJn(��) + i Yn(��)g ; � 0 < � ;

(21)

where A and B are constants to be determined from the additional restrictions at � = � 0

g2(��
0;�)� ~g2(��

0;�)j�=�0 = 0 ;
1
�

d
d�
fg2(�� 0;�)� ~g2(��

0;�)g j�=�0 = �1 : (22)

Solving eq.(A-2) yelds,

g2(��
0;�) = H

(1)
n (�� 0)H

(2)
n (� r) fYn(� r)Jn(��)� Jn(� r)Yn(��)g ; r < � < �0 : (23)

By similar arguments the Green's function in the partial region (1) is given by

g1(��
0;�) = H

(1)
n (�R)H

(2)
n (��0) fYn(�R)Jn(��)� Jn(�R)Yn(��)g ; �0 < R < R : (24)

d
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