UNIVERSIDADE ESTADUAL PAULISTA —UNESP

CAMPUS DE JABOTICABAL

MODELOS AGROMETEOROLOGICOS PARA PREVISAO DE
PRAGAS E DOENCAS EM Coffea arabica L. EM MINAS
GERAIS

Lucas Eduardo de Oliveira Aparecido

Engenheiro Agrdbnomo

2019



UNIVERSIDADE ESTADUAL PAULISTA — UNESP

CAMPUS DE JABOTICABAL

MODELOS AGROMETEOROLOGICOS PARA PREVISAO DE
PRAGAS E DOENCAS EM Coffea arabica L. EM MINAS
GERAIS

Lucas Eduardo de Oliveira Aparecido

Orientador: Prof. Dr. Glauco de Souza Rolim

Tese apresentada a Faculdade de Ciéncias
Agrarias e Veterinarias — Unesp, Campus de
Jaboticabal, como parte das exigéncias para a
obtencdo do titulo de Doutor em Agronomia
(Producao Vegetal)

2019



Aparecido, Lucas Eduardo de Oliveira
A639m Modelos agrometeoroldgicos para previsdo de pragas e
doencas em Coffea arabica L. em Minas Gerais / Lucas
Eduardo de Oliveira Aparecido. -- Jaboticabal, 2019
157 p. : il tabs., fotos, mapas

Tese (doutorado) - Universidade Estadual Paulista
(Unesp), Faculdade de Ciéncias Agrarias ¢ Veterinarias,
Jaboticabal

Orientador: Glauco de Souza Rolim

1. Climatologia agricola. 2. Big data. 3. Algoritmos. 4.
Cafeerro. L. Titulo.

Sistema de geragdo automatica de fichas catalograficas da Unesp. Biblioteca da
Faculdade de Ciéncias Agrarias e Veterinarias, Jaboticabal. Dados fornecidos
pelo autor(a).

Essa ficha ndo pode ser modificada.



AVAVAV UNIVERSIDADE ESTADUAL PAULISTA

unesp™ 73

CERTIFICADO DE APROVAGAO

TITULO DA TESE: MODELOS AGROMETEOROLOGICOS PARA PREVISAO DE PRAGAS E DOENGAS
EM Coffea ardbica L. EM MINAS GERAIS

AUTOR: LUCAS EDUARDO DE OLIVEIRA APARECIDO
ORIENTADOR: GLAUCO DE SOUZA ROLIM

Aprovado como parte das exigéncias para obtengao do Titulo de Doutor em AGRONOMIA
(PRODUGCAO VEGETAL), pela Comiss@ao Examinadora:

7
Prof. ,§ERGIO DE SOUZA
IFSuIdeMmas / Muzambinho/MG
L
Prof. Df. ALAN-RODRIGO PANOSSO
Departamento de C%é[‘;aZEas / FCAV / UNESP - Jaboticabal
Prof. Dr. CICER® TETXEIRA SILVA COSTA
Laboratério de Irrigagao-IFMS-Campus de Naviral / Navirai/MS
—~ e~ J"\/.’._\

Prof. Dr. NEWTON LA SCALA JUNIOR
Departamento de Ciéncias Exatas / FCAV / UNESP - Jaboticabal

Jaboticabal, 30 de agosto de 2019

Faculdade de Clénclas Agrérlas e Velerindrias - Clmpu: do anou:cbal
Vll du Auno Prof. Paulo Donato Caslell sin, 1 « Séo Paulo
http:/iwww.fcay unesp L po/eg la-prod gelal JCNPJ: 48.031.918/0012-87.




DADOS CURRICULARES DO AUTOR

LucAs EDUARDO DE OLIVEIRA APARECIDO — Nascido em 08 de junho de 1992,

no municipio de Nova Resende, Estado de Minas Gerais, Brasil. Ingressou no curso
Técnico em Agropecudria no Instituto Federal de Educacao Ciéncia e Tecnologia do
Sul de Minas — Campus Muzambinho, em fevereiro de 2007. No mesmo Campus, em
fevereiro de 2010, ingressou no curso de Engenharia Agronémica. Durante a
graduacédo participou do Grupo de Pesquisa em Fruticultura, no periodo de 2010 a
2013. Foi bolsista da Fundagcdo de Amparo a Pesquisa do Estado de Minas Gerais
(FAPEMIG), na modalidade de iniciagcdo cientifica no periodo de 2011 a 2012. No
ano de 2012, estagiou na Empresa de Pesquisa Agropecuaria de Minas Gerais
(EPAMIG) — Campo Experimental de Caldas e na Universidade Estadual Paulista
Julio Mesquita Filho, no Campus de Jaboticabal, no ano de 2013. Em fevereiro de
2014, obteve o titulo de Engenheiro Agrénomo. Iniciou o curso de pés-graduacdo
Stricto sensu na modalidade Mestrado em Agronomia (Producédo Vegetal) em margo
de 2014, na Universidade Estadual Paulista “Julio Mesquita Filho”, no Campus de
Jaboticabal, no Departamento de Ciéncias Exatas sob a orientagdo do Prof. Dr.
Glauco de Souza Rolim (GRouP OF AGROMETEOROLOGICAL STUDIES “GAS”), atuando
em pesquisas na area de Agrometeorologia e Modelagem. Em fevereiro de 2016,
obteve o titulo de Mestre em Agronomia (Producéo Vegetal). Iniciou o curso de pés-
graduacdo Stricto sensu na modalidade Doutorado em Agronomia (Producédo
Vegetal) em mar¢co de 2016 também sob a orientacdo do Prof. Dr. Rolim. Em junho
de 2017, ingressou no servigco publico federal no cargo de professor EBTT no
Instituto Federal de Mato Grosso do Sul (IFMS-CamMPus NAVIRAI), ha area de

Engenharia Agricola, onde leciona até o momento.



“O importante é nao parar de questionar. A curiosidade tem a sua propria razao para

existir.”

Einstein, Albert



DEDICO

A Deus, o grande doutor da vida.
A minha querida esposa, Adriana Ferreira de Moraes Oliveira, companheira para

todos 0os momentos.



AGRADECIMENTOS

A Universidade Estadual Paulista (UNESP) — Faculdade de Ciéncias Agrarias e
Veterinarias, Campus de Jaboticabal, pela oportunidade concedida para a realizacéo

do Mestrado e Doutorado em Agronomia (Producgao Vegetal).

Ao Programa de Agronomia (Producdo Vegetal) e a todos os professores que, ao
longo da minha formacéo, tive o privilégio de conviver e que foram decisivos para

que eu chegasse até este momento.

Ao professor Dr. Glauco de Souza Rolim, pela orientacdo, confianca, incentivo e
parceria ao longo dos anos de pos-graduacdo. Sua orientagcdo durante esta

caminhada e todas as demais, sem duvida, foi determinante para minha formacao.

Ao professor Dr. Paulo Sergio de Souza, pela orientacdo e parceria desde a época
do curso Técnico em Agropecudria. Sua orientacdo inicial foi determinante para

minha formacé&o de hoje.

A Fundacio de Amparo a Pesquisa do Estado de S&o Paulo (FAPESP) pela
concessao de recurso financeiro e bolsa para a realizagdo desta pesquisa, Processo
n° 2015/17797-4.

Ao Instituto Federal de Educacao, Ciéncia e Tecnologia de Mato Grosso do Sul
(IFMS), Campus de Navirai, na qual iniciei e desempenho minhas atividades de

docéncia.

A minha esposa Adriana Ferreira de Moraes Oliveira, acima de tudo uma grande

companheira.

Aos grandes amigos, prof. Dr. Paulo Sergio de Souza e Gentil Luiz Miguel Filho, por
todo apoio e ensinamento durante a realizagcdo do curso técnico em agropecuaria,

graduacéo e pés-graduacao.



Aos meus pais, José Antbnio Aparecido e Maria Regina de Oliveira Aparecido, e
irméo, Renan Gabriel de Oliveira Aparecido pelo apoio, confianca investidos em

minha formacao.

Aos pais de minha esposa, Lourenco Afonso de Moraes e Tereza Galdina de
Moraes, que sempre me ajudaram e apoiaram na minha formacdo pessoal e

profissional.

Aos amigos de Navirai-MS, José Reinaldo da Silva Cabral de Moraes, Guilherme
Botega Torsoni, Cicero Teixeira Silva Costa, Alisson Gaspar Chiquitto, grandes

amigos, que me apoiaram durante todos esses anos de docéncia.

Aos amigos de Jaboticabal-SP, Alexson Filgueiras Dutra, Victor Brunini Moreto,
Kamila Cunha de Meneses, Taynara Valeriano, grandes amigos, que me apoiaram

durante os anos de pés-graduacao.

Ao Departamento de Ciéncias Exatas, principalmente a Zezé, Shirley e Adriana, aos
professores e colegas que de alguma forma ajudaram a enxergar de forma diferente

algum problema no decorrer do curso.

Aos meus queridos discentes, do curso Técnico em Agricultura e também da
Engenharia Agrondémica do IFMS, que sempre dedico e busco melhorar a forma e a

maneira de ensina-los.
Enfim, agradeco a todos, professores, amigos e conhecidos que em algum momento
da vida contribui para minha formacao, tanto no curso técnico, como na graduacao e

na elaboracao deste trabalho.

Muito Obrigado!



SUMARIO
RESUMIO <. et e e e et e e e e e e e eaaa s I
Y o 1 4 = T SR ii
CAPITULO 1 -Consideracbes Gerais
1 INTRODUGAO. ..., 1

CAPITULO 2 — Models for simulating the frequency of pests and diseases of
Coffea arabica L.

T (oo 18 o 1o o PR 15
Material and MethodS ..., 17
Results and DISCUSSION ......ccoeeeeeieeeeeeeeeeeeeeeeeeeeeee e 24
[©0] o Tod 1] [0} o 50

CAPITULO 3 — Machine learning algorithms for forecasting the incidence of
Coffea arabica pests and diseases

Introduction

....................................................................................... 53
Material and MethodsS .........coooeiiiii i, 57
ReSUlts and DISCUSSION .......ccoeeeeeeeeeeeeeeeeeeeeee e 64
[©0] o o3 11 [0 o S 93

CAPITULO 4 - Validation of ERA-Interim (ECMWF) surface climatic data and
implications for modelling water balance

INEFOAUCTION . .o e, 95
Material and MethOOS ........o.vvi i 97
ReSUItS and DISCUSSION .. ..ceeeeeee e 102
CONCIUSION .. e e 128
CAPITULO 5 -Considerages FiNaiS.......c.ccccveveeueeveeeeeeeeeeeeeeeeee e 130

R B I BN S . . et 131



MODELOS AGROMETEOROLOGICOS PARA PREVISAO DE PRAGAS E
DOENCAS EM Coffea arabica L. EM MINAS GERAIS

Resumo: O café é a bebida mais consumida no mundo e uma das principais causas
para a reducdo da produtividade e qualidade sdo os problemas fitossanitarios. A
estratégia mais comum de controle dessas doencas e pragas é a aplicacdo de
fungicidas e inseticidas foliares, dependendo da intensidade dos mesmos na regiao.
Esse método tradicional pode ser melhorado utilizando de sistemas de alertas por
meio de modelos de estimativas dos indices de doencas e pragas. Este trabalho tem
como OBJETIVOS: A) Calibrar as variaveis meteorologicas: temperatura do ar e
precipitacdo pluviométrica do sistema ECMWF em relacdo aos dados de reais de
superficie mensurados pelo sistema nacional de meteorologia (INMET) para o
estado de Minas Gerais; B) Avaliar quais 0os elementos meteoroldgicos exercem
maior influéncia nas principais pragas (broca e bicho-mineiro) e doencas (ferrugem e
cercosporiose) do cafeeiro ardbica nas principais localidades cafeeiras do Sul de
Minas Gerais e do Cerrado Mineiro; c) Desenvolver modelos agrometeoroldgicos
para previsdo de pragas e doencas em funcdo das variaveis meteoroldgicas usando
algoritmos de machine learning e procurando uma antecipagéo temporal suficiente
para tomada de decisdes. MATERIAL E METODOS: Para o objetivo “A” foram utilizados
dados climaticos mensais de temperatura do ar (T, °C) e precipitacdo pluviométrica
(P, mm) provenientes do ECMWF e do INMET no periodo de 1979 a 2017. A
evapotranspiracéo potencial foi estimada por Thornthwaite (1948) e balango hidrico
por Thornthwaite e Mather (1955). As comparacdes entre 0 ECMWF e INMET foram
realizadas pelos indices: acuracia (mean absolute percentage error, MAPE, e root
mean squared error, RMSE) e precisdo (coeficiente de determinacdo ajustado,
R?adj). Para o objetivo “B” foram utilizados dados climéticos e fitossanitarios de Boa
Esperanca, Carmo de Minas, Muzambinho e Varginha, situadas na regidao Sul de
Minas (SOwg) € as localidades de Araxa, Araguari e Patrocinio situadas na regiao do
Cerrado Mineiro (CEmg). Foram simulados a tendéncia de progresso das doencgas e
pragas ao longo de tempo usando modelos néo lineares em func¢éo do indice térmico
acumulado. Também foi estimada dos niveis de infestacdo de pragas e severidade
de doencas usando regressao linear multipla. A variavel dependente foi os niveis de
doencas e pragas e as variaveis independentes: graus dias (DD) acumulado,
enfolhamento do café estimado por DD e numero de nés estimado por DD. Para o
objetivo “c” foram utilizados dados climaticos e fitossanitarios da SOyg € CEng. Os
algoritmos calibrados e testados para a previsdo das doencas e pragas do café
foram 1) Regresséo linear multipla, 2) K-Neighbors, 3) Random Forest e 4) Redes
Neurais. RESULTADOS E DiscussAo: Os maiores desvios entre Pinver € Pecwwr foram
de 75 mm mo™ e ocorreram no verdo. O cafeeiro implantado no CEyc tem maiores
indices de doencas e pragas em relacdo ao café do SOpyg. O algoritmo random
forest foi mais acurado na previsao da ferrugem, cercospora, bicho-mineiro e broca-
do-cafeeiro em ambas as regides. CONCLUSAO: As variaveis climaticas oriundas do
ECMWF sdo acuradas e podem modelar o balango hidrico climatolégico. E possivel
simular a tendéncia e ainda prever os indices de pragas e doencas do café usando
como variaveis regressoras os dados climaticos e metodologia o machine learning.

PALAVRAS-CHAVE: fitopatologia, modelagem, aprendizado maquina, bigdata.



AGROMETEOROLOGICAL MODELS FOR FORECASTING PESTS AND
DISEASES IN Coffea arabica L. IN THE STATE OF MINAS GERAIS

ABSTRACT: Coffee is the most consumed beverage in the world, but phytosanitary
problems are amongst the main causes of reduced productivity and quality. The
application of foliar fungicides and insecticides is the most common strategy for
controlling these diseases and pests, depending on their intensity in a region. This
traditional method can be improved by using alert systems with models of disease
and pest indices. This work has as OBJECTIVES: A) To calibrate the meteorological
variables: air temperature and rainfall of the European Center for Medium Range
Weather Forecast (ECMWF) in relation to the real surface data measured by the
national meteorological system (INMET) for the state of Minas Gerais; B) To evaluate
which meteorological elements, and at what time, have a greater influence on the
main pests (coffee borer and coffee miner) and diseases (coffee rust and
cercosporiosis) of Coffee arabica in the main coffee regions of the South of Minas
Gerais and Cerrado Mineiro; c) To develop agrometeorological models for pest and
disease prediction in function of the meteorological variables of the South of Minas
Gerais and Cerrado Mineiro using algorithms of machine learning with sufficient
temporal anticipation for decision making. MATERIAL AND METHODS: To achieve goal
"A" we used monthly climatic data (T, °C) and rainfall (P, mm) from the ECMWF and
INMET from 1979 to 2015. Potential evapotranspiration was estimated by
Thornthwaite (1948) and water balance by Thornthwaite and Mather (1955). The
comparisons between the ECMWF and INMET were performed by the indexes:
mean absolute percentage error (MAPE) and precision mean (R2adj). To achieve the
goal "B" we use climatic and phytosanitary data of Boa esperanc¢a, Carmo de Minas,
Muzambinho and Varginha, located in the South of Mines (SOyg) and the Araxa,
Araguari and Patrocinio located in the Cerrado Mineiro region (CEyg). We simulate
the trend of disease and pest progression over time using nonlinear models as a
function of the accumulated thermal index. And we estimated levels of pest
infestation and disease severity using multiple linear regression. The dependent
variable was the levels of diseases and pests and the independent variables:
cumulative days (DD), coffee leafage estimated by DD and number of nodes
estimated by DD. To achieve the "c" objective we use the climatic and phytosanitary
data of SOye and CEye. The algorithms calibrated and tested for the prediction of
coffee pests and diseases were: 1) Multiple linear regression, 2) K-Neighbors
Regressor, 3) Random Forest Regressor and 4) Artificial Neural Networks. The best
models were selected using the MAPE, Willmott's 'd', RMSE and R2 adj. RESULTS AND
DiscussION: The largest deviations between Pwver and Pecwwe were 75 mm mo™
and occurred in the summer. The coffee plant implanted in CEyc has higher rates of
diseases and pests in relation to SOy coffee. The random forest algorithm was
more accurate in the prediction of coffee rust, cercospora, coffee miner and coffee
borer in both regions. CoNcLUSION: The climatic variables from the ECMWF are
accurate and can be used in modeling the climatological water balance. It is possible
to simulate the trend and to predict coffee pests and diseases using as regressive
variables the climatic data and machine learning methodology.

KEY- WORDS: plant pathology, modelling, machine learning, bigdata.



CAPITULO 1 - Considerag8es gerais

1 INTRODUCAO

1.1 O cultivo do Café no Brasil

O cafeeiro é uma planta perene, pertencente a familia Rubiaceae (CUBRY et
al., 2013). As duas espécies economicamente mais importantes do café sdo o
Coffea arabica L. e Coffea canefora Pierre (BRAVO-MONROQOY et al., 2016),
representando 74,92% e 25,08% da producdo mundial, respectivamente (CONAB,
2019).

O café é a bebida mais consumida no mundo, apresentando Vvarias
propriedades funcionais, como por exemplo, a cafeina, aminoacidos, acucares e
compostos fendlicos (BUTT; SULTAN, 2011; KITZBERGER et al.,, 2013). Na
atividade agricola brasileira a cafeicultura tem grande importancia (RESENDE et al.,
2009; RODRIGUES et al., 2013). As areas de producéo brasileira do Café arabica se
distribuem na regido centro-sul (Figura 1), principalmente nos estados de Minas
Gerais, Sao Paulo, Parana e Espirito Santo (ANDRADE et al., 2012; CUBRY et al.,
2013). Minas Gerais apresenta em torno de 6,9% da é&rea total do Brasil e se
destaca como maior produtor de café do pais (BARBOSA et al., 2012; RONCHI et
al., 2015).



Legend

:] Ocean

|:] South America
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. Coffea arabica

Figura 1. Principais regides produtoras de café do Brasil (adaptado de
ROSSIGNOLLI, 2019; CONAB, 2019.
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O cafeeiro arabica é fortemente afetado nos seus diversos estadios
fenolégicos pelas condicdes meteoroldgicas (PICINI et al., 1999) e também pelas
doencas e pragas. O cafeeiro arabico € um cultivo que necessita de dois anos para
completar todo o seu ciclo fenolégico (Figura 2). O periodo vegetativo ocorre no
primeiro ano e o processo de reprodugdo no segundo ano. No desenvolvimento
vegetativo ocorre a formacgao e o crescimento dos ramos vegetativos, esse processo
ocorre em fotoperiodo de dias longos. Com a reducdo do fotoperiodo as gemas
vegetativas axilares sédo induzidas por fotoperiodismo em gemas reprodutivas. O
periodo produtivo inicia-se com a florada que precede a formagéo dos chumbinhos.
Em agosto inicia-se a expansdo e a formacao dos grdos que ocorre até atingir o
tamanho normal, posteriormente ocorre a granacdo e a maturacdo dos frutos
(CAMARGO; CAMARGO, 2001).

1° Ano Fenoldgico 2° Ano Fenoldgico

Crescimento Vegetativo ‘ Periodo Reprodutivo
= Chumbi
Formacao e
de gemas
Indugdo, = = = —
Crescimento Expansao Granagao Maturacao Senescéncia
de gemas Frutos Frutos Frutos ramos

Periodo Vegetativo Dormécia

Set Out Nov Dez Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez Jan Fev Mar Abr Mai Jun Jul Ago

Figure 2. Fenologia do Coffea arabica L.

1.2 O clima e as enfermidades do café

A variabilidade climatica causa forte impacto nas atividades agricolas (SA
JUNIOR et al.,, 2012), sendo um dos fatores responsaveis pelas flutuacbes e
oscilacbes das doencas do cultivo, principalmente as doencas de origem fangicas.
Hoogenboom (2000) salienta que os elementos meteorolégicos criticos para a
producdo agricola sdo a radiagdo solar e a precipitacdo, sendo que, para o café,
Camargo (2010) relata que a chuva é o0 elemento que proporciona maior
interferéncia na fenologia do cafeeiro, e consequentemente, condiciona a

intensidade e a severidade das doencas e pragas. Segundo Sentelhas et al., (2007)



a temperatura do ar e o molhamento foliar sdo pardmetros microcliméticos
importantissimos que influenciam a maioria das doencas fungicas de plantas. A
irradiancia solar, além de fornecer a energia para a fotossintese e particdo de
carboidratos (OLIVEIRA et al., 2012), pode estimular ou inibir o desenvolvimento das
doencas do cafeeiro.

Temperaturas do ar entre 5 °C e 30 °C com altos niveis de umidade relativa
do ar e vapor de agua alta na superficie das plantas produzem um molhamento foliar
de 42 a 72 horas, o que favorece o desenvolvimento de doencas fangicas
(SENTELHAS et al., 2008; BERUSKI et al., 2015). A duracdo do molhamento foliar é
um parametro-chave que influencia a epidemiologia das plantas, pois fornece a 4gua
livre exigido por patdégenos para infectar o tecido foliar das culturas agricolas
(SENTELHAS et al., 2007).

A temperatura do ar regula a taxa de desenvolvimento dos cultivos e também
o nivel de esporulacdo de diversos fungos. Microclimas com temperaturas do ar
elevadas juntamente com altos niveis de precipitacdo durante a floracdo do cafeeiro
proporciona o desenvolvimento de fungos, que levam ao abortamento das flores e
consequentemente queda na producdo (CAMARGO; PEREIRA, 1994; PEREIRA et
al., 2008).

A umidade relativa, a temperatura do ponto de orvalho e o déficit de presséo
de vapor interferem na presenca e atividade de pragas e doencas (SENTELHAS et
al.,, 2005). A velocidade do vento afeta a taxa transpiratéria das plantas e
disseminacgéo de insetos e doencas (HOOGENBOOM, 2000). Por isso, monitorar as

informacdes climéticas é tdo importante.

1.3 Modelos climéticos globais

O territério brasileiro ndo tem uma rede de estagbes meteorologicas de
superficie que atenda todas as necessidades agricolas. Assim, na falta de dados
meteorolégicos é recomendado a utilizacdo de “Global Circulation Models”. Sao
exemplos desses modelos os dados do European Centre for Medium Range
Weather Forecasts (ECMWF) e do Prediction of Worldwide Energy Resources



(NASA POWER).

Os modelos que fazem previsbes das condicdes de tempo e clima sao
ferramentas importantes para auxiliar nas modelagens de cultivos, como no caso de
previsao de produtividade ou monitoramento do cultivo (BECHTOLD et al., 2008). Os
dados do ECMWEF, principalmente o ERA-interim, s&o muito utilizado para previsoes
de tempo e clima no mundo, sendo disponibilizado dados de previsdo em um grid de
0,25 ° (aproximadamente 25 x 25 km) para o mundo todo, tornando-se assim
interessante para obtencdo de dados em regibes com escassez de estacdes
meteoroldgicas de superficie (MORAES et al., 2012). Com o ERA-interim € possivel
contemplar todo territério brasileiro com uma malha de 11.358 estac¢des virtuais
(Figura 3).
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Figura 3. Estacdes virtuais dos dados ERA-interim (ECMWF) para o Brasil.



Guarnieri et al. (2007) utilizaram de GCM associado a redes neurais artificiais
para realizar previsdes de radiagao solar. Para previséo de intensidade e volume de
chuva, Vasconcellos et al. (2010), simularam razoavelmente bem as caracteristicas
da atmosfera assim como a precipitacdo maxima nas proximidades da Serra do Mar,
na regido Sudeste utilizando os GCM em alta resolugcao (espagamentos horizontais
de grade de 5 a 10 km). Nao foram feitos ainda estudos de comparagao de previsao
de tempo e dados reais para areas cafeeiras.

Os dados do ECMWF séo largamente utilizados no mundo por apresentarem
grandes vantagens em relacdo aos provenientes de estacdes meteoroldgicas de
superficie, como rapidez na obtencdo e auséncia de valores faltantes (MORAES;
ARRAES, 2012). O ECMWF tem o objetivo de auxiliar pesquisas cientificas e
melhorar a habilidade de realizar previsées, além de manter um arquivo de dados
meteoroldgicos disponivel gratuitamente na internet. Jung et al. (2012)
demonstraram que as integracdes de clima com os dados do ECMWEF utilizando as
resolucdes horizontais, normalmente usado em previsdes numeéricas de tempo,
levam a melhorias moderadas quando comparadas com a baixa resolucéo, pelo
menos em aspectos de macroescala.

Na literatura sdo encontrados diversos trabalhos que demostram alta
correlacdo entre os dados do ECMWF e os dados de superficie (DEPPE et al.,
2006). Dentre esses trabalhos, podemos destacar Moraes e Arraes (2012) que
utilizaram os dados do sistema ECMWF no estado do Parana e observaram uma
precisdo de R?=0,9 com os dados de superficie e o trabalho de Moraes et al. (2012)
que calibraram os dados do ECMWF com dados de temperatura minima e maxima
do ar e precipitacdo de superficie no estado de Sdo Paulo e observaram alta
correlagéo.

A variabilidade dos elementos climéaticos impacta consideravelmente na
incidéncia das pragas e doencas da cultura do café. As pragas e doencas do
cafeeiro atacam desde folhas, flores, frutos e até sementes, influenciando o
desenvolvimento das plantas, proporcionando perdas na producdo e na qualidade
de bebida do café (MATIELLO et al., 2010). E poucos trabalhos tem buscado avaliar
a influéncia das condicfes climaticas na incidéncia e severidades destas pragas e

doencas.



1.4 Principais doencgas e pragas do cafeeiro

As principais doencas do cafeeiro sdo a ferrugem do cafeeiro (Hemileia
vastatrix) e a cercosporiose (Cercospora coffeicola), que podem causar elevados
prejuizos na lavoura cafeeira. A ferrugem é uma doenca fangica que acarreta uma
grande desfolha da planta (Figura 3). Nas regides cafeeiras brasileiras onde as
condicBes climaticas sao favoraveis, elevados niveis de ferrugem causam perdas de
35% na producéo (TEIXEIRA et al, 2007). A ferrugem é favorecida pelas condi¢cbes
climéticas de temperaturas do ar variando de 20 e 25°C e precipitacdo total maior
que 30 mm. Temperaturas do ar acima de 30°C e abaixo de 15°C sdo desfavoraveis
a doenca, no entanto, a epidemia da ferrugem aumenta rapidamente em
temperaturas entre 15 e 18 °C (PEREIRA et al.,, 2008). Diversos trabalhos
demonstram que o grau de infeccdo da ferrugem do cafeeiro esta diretamente
relacionado com as condig¢6es climéticas (TALAMINI et al., 2003).
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FIGURA 3. Infeccao da doenca de ferrugem do cafeeiro (Hemileia vastatrix). A) face

adaxial (parte superior); B) face abaxial (parte inferior).



A cercosporiose infecta folhas (Figura 4) e frutos ocasionando desfolha e nos
frutos provoca uma maturacdo precoce e queda prematura, aumentando o namero
de grédos chochos (CARVALHO et al., 2008). Os sintomas da cercosporiose no fruto
ocorrem quatro meses apos a floracao, causando lesGes deprimidas de cor castanho
escuras, dispostas na direcdo do pedunculo a coroa do fruto (POZZA et al., 2010;
SANTOS et al., 2014). A utilizagéo da irrigacéo no cultivo adensado proporciona um
microclima favoravel, favorecendo a cercosporiose do cafeeiro (PAIVA et al., 2013).
Segundo Salgado et al., (2007) o déficit hidrico € uma das principais causas do

aparecimento da cercosporiose.
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FIGURA 4. Infeccao da cercosporiose (Cercospora coffeicola). A) face adaxial (parte

superior); B) face abaxial (parte inferior).

As pragas contribuem para a queda da produtividade das lavouras e da
qualidade do café produzido. A broca-do-café, Hypothenemus hampei (Coleoptera:
Curculionidae, Scolytinae), e o bicho-mineiro, Leucoptera coffeella (Lepidoptera:
Lyonetiidae), sdo as mais importantes pelos grandes prejuizos econdmicos que

causam ao reduzir a produtividade das lavouras e afetar a qualidade do café



produzido (SOUZA et al., 2013).

O bicho-mineiro é considerado a principal praga-chave na atualidade (Figura
5), ocorrendo principalmente nas regifes de temperaturas do ar mais elevadas e
com maior déficit hidrico (TEIXEIRA et al, 2007). O bicho-mineiro ocasiona grandes
perdas ao cafeeiro, em virtude da derrubada das folhas o que promove a reducao da
capacidade fotossintética, chegando a proporcionar perdas de até 80% na producao
(MENDONCGCA et al., 2006).
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FIGURA 5. Infeccdo do bicho-mineiro (Leucoptera coffeella). A) face adaxial (parte

superior); B) face abaxial (parte inferior).

A broca-do-café tem se dispersado por todas as regides produtoras, atacando
os paises da Américas do Sul, Central e do Norte, Africa e Asia (CANTOR et al.,
2000). O ataque da broca-do-café causa prejuizo quantitativo (Figura 4), com a
reducdo do peso dos grdos e queda de frutos, e prejuizo qualitativo, com a reducéo
da qualidade do café através da alteracéo no tipo e bebida. Segundo Fernandes et
al., (2014) os frutos sdo atacados em todos os estadios de crescimento
comprometendo a produtividade e a qualidade da bebida.
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FIGURA 4. A) Inseto broca-do-café, Hypothenemus hampei (Coleoptera:

Curculionidae, Scolytinae) e B) grdo com orificio causado pela broca-do-café.

1.5 Algoritmos de machine learning

A estratégia mais comum de controle dessas doencas e pragas € a aplicacédo
de agroquimicos, principalmente fungicidas e inseticidas foliares, dependendo da
intensidade dos mesmos na regido. Esse método tradicional deve ser melhorado
uma vez que as questdes ambientais esta cada vez mais em pauta, principalmente
com o aumento das certificagBes. A utilizacdo de sistemas de alertas fitossanitarios
por meio de modelos de previsao dos indices de doencas e pragas.

Todas as relacdes existentes entre os elementos climéticas e a variabilidade
das pragas e doencas do cafeeiro podem ser simulados com acuracia por meio de
modelos agrometeoroldgicos (ROLIM et al., 2008) usando algoritmos de machine
learning (SAHOO et al.,, 2017). Machine learning também conhecido como
“aprendizagem de maquina” € um método que trabalha com analise de dados e
busca automatizar a construgédo de modelos analiticos (SHEKOOFA et al.,, 2014; LI
et al., 2016). E um campo da ciéncia da computacdo que trabalha com o

reconhecimento de padrbes utilizando da teoria do aprendizado computacional em
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inteligéncia artificial (SAHOO et al., 2017). Huber e Gillespie (1992) relatam que o0s
algoritmos de machine learning podem automatizar os sistemas de alerta das
doencas e pragas, pautando as tomadas de decisdes dos produtores de quando é
realmente necessario utilizar do controle quimico nas lavouras.

As técnicas de machine learning sdo muitas promissoras para analises de
bigdata mais rapidas, mais eficientes e acuradas (REHMAN et al.,, 2019). Os
algoritmos machine learning utilizam de conceitos da teoria da probabilidade,
estatistica, teoria da decisdo, otimizacdo e técnicas de visualizacdo, e por isso tem
se tornado a vanguarda na area de modelling (SINGH et al., 2016; GUMUSCU et al.,
2019).

Modelagem e o processo de desenvolvimento de um modelo. E modelo é a
representacdo matematica simplificada de um sistema (JONES et al., 1987). Os
modelos integralizam conhecimentos das areas de agrometeorologia, fitossanidade,
sensoriamento remoto, fisiologia vegetal, fitotecnia, ciéncia do solo e economia de
forma interdisciplinar, podendo realizar estima¢fes (JAME; CUTFORTH, 1996) e
previsdbes (GOURANGA; ASHWANI, 2014) de variaveis. Com o uso de machine
learning os computadores véo utilizar dos modelos e tomar as decisbes com
acuracia para os produtores.

Para Jame e Cutforth (1996) a modelagem auxilia na estratégia e tomadas de
decisfes nas cadeias produtivas, além de realizar simula¢cdes acuradas da dinamica
do crescimento de cultivos. A estimacao é a quantificacdo de um fenémeno atual a
partir de dados atuais (ROLIM et al., 2008). Nesta situacdo, ocorre a estimativa de
uma variavel sem ser antecipacao, por exemplo, estimar a evapotranspiracdo do dia
de hoje usando dados de temperatura do ar também de hoje.

Alguns exemplos de modelos de estimativa de doencas foram encontrados na
literatura, como um modelo para Kushalappa et al. (1983) que propuseram explicar
0 curso de acdo biologica de H. vastatrix, e com o0s resultados obtidos foram
desenvolvimento de equacdes de regressédo para avaliar a taxa de progresso da
ferrugem-do-cafeeiro. Madden et al., (2000) que utilizaram de modelos para estimar
as lesbes da Plasmopara viticola na videira em Ohio e assim melhorar o sistema de
alerta e reduzir o numero de aplicagao de fungicidas. Yang et al., (2007) realizaram

uma modelagem agrometeoroldgica para controle fitossanitario do pepino estimando
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a intensidade do mildio em ambiente protegido, ao final os autores observaram que
as condicdes ideias para infecgdo foram uma amplitude térmica diaria de 5°C, com
temperatura média diaria entre 15-25°C no outono e 80% de umidade relativa. E
finalmente, Meira et al., (2009) que buscaram desenvolver arvores de decisdo como
modelos de alerta da ferrugem-do-cafeeiro em lavouras de café (Coffea arabica L.)
com alta carga pendente de frutos, na localidade de Varginha, MG, observaram que
a acuracia do modelo foi de 81% por validacdo cruzada, chegando a 89% segundo
estimativa otimista, demonstrando ser uma alternativa viavel as técnicas
convencionais de aviso fitossanitario.

Na literatura sdo poucos os trabalhos de modelagem agrometeorolégica que
lidam com o processo de previsdo, uma vez que a maioria dos trabalhos fazem
estimacdes. A previsdo € o0 processo de quantificacdo de um evento futuro a partir
de dados disponiveis atuais (ROLIM et al., 2008). Neste caso, ocorre a previsdo de
uma variavel com um determinado tempo de antecipacgédo, por exemplo, 7 dias antes
do fendmeno advir.

Alguns trabalhos que utilizam modelos para fins de previsdo em sistemas
agrometeorolégicos de alerta fitossanitario, também conhecido como “disease early
warning systems” foram encontrados na literatura. S&o exemplos desses: Kim et al.,
(2006) que utilizaram do processo de modelagem, com base na analise de arvore de
regressdo e logica fuzzy, para prever a duragcdo do molhamento (DPM) em
cucurbitaceas, e ao final observaram uma simulacdo de 70% do DPM, melhorando
assim o sistema de monitoramento. E, Baker et al., (2012) que buscaram
desenvolver um modelo de previsdo realizando previsdo da requeima Batata na
regido de Great Lakes (EUA), conseguiram uma previsdo acurada utilizando a
metodologia de redes neurais artificiais. Entretanto, poucos trabalhos na literatura
tem ousadia de prever a incidéncia de pragas e doencas do cafeeiro com dados

climaticos usando algoritmos de machine learning.
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Objetivo Geral

Este trabalho tem como objetivo prever a frequéncia de pragas e doencas do café e
avaliar a influéncia do clima nessas enfermidades nas principais regiées produtoras

de Minas Gerais.

Objetivos especificos

1. Avaliar quais os elementos meteorologicos, e em qual momento, exercem
maior influéncia nas pragas: broca-do-cafeeiro e bicho-mineiro e doencgas
(ferrugem-do-cafeeiro e cercosporiose) do cafeeiro arabica nas principais
localidades cafeeiras do Sul de Minas Gerais e do Cerrado Mineiro.

2. Desenvolver modelos agrometeorolégicos para previsdo de pragas e doencas
em funcdo das variaveis meteorologicas do Sul de Minas Gerais e Cerrado
Mineiro usando algoritmos de machine learning com uma antecipacao
temporal suficiente para tomada de decisdes.

3. Calibrar as varidveis meteoroldgicas: temperatura do ar e precipitacdo
pluviométrica dos dados do ERA-Interim do centro ECMWF em relagdo aos
dados de reais de superficie mensurados pelo sistema nacional de

meteorologia (INMET) para o estado de Minas Gerais.
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CAPITULO 2 - Models for simulating the frequency of pests and diseases of
Coffea arabica L.

ABSTRACT - Coffee is the most consumed beverage in the world, but phytosanitary
problems are among the main causes of reduced productivity and quality. The
application of foliar fungicides and insecticides is the most common strategy for
controlling these diseases and pests, depending on their intensity in a region. This
traditional method can be improved by using alert systems with models of disease
and pest indices. We developed models for simulating trends over time as functions
of the thermal index and models for estimating the levels of infestation of the coffee
leaf miner and coffee berry borer and the severity of disease for coffee leaf rust and
cercospora, the main phytosanitary problems in coffee crops around the world. We
used historical series of climatic data and levels of pest infestation and disease
severity in Coffea arabica for high and low yields for seven locations in the two main
coffee-producing regions in the state of Minas Gerais in Brazil, Sul de Minas Gerais
(Boa Esperanga, Carmo de Minas, Muzambinho, and Varginha locations) and
Cerrado Mineiro (Araxa, Araguari and Patrocinio locations), totalling 874 900 ha. We
conducted two analyses. a) We simulated the trends of the progress of diseases and
pests over time using non-linear models. Nonlinear logistic and Lorenz models were
calibrated in function of the thermal index. We only used the thermal index because
air temperature is commonly measured by farmers in the regions. b) We estimated
the levels of pest infestation and disease severity using multiple linear regression,
with the levels of diseases and pests as dependent variables and accumulated
degree days (DD), coffee foliage (LF) estimated by DD and the number of nodes
(NN) estimated by DD as independent variables. The best models (a) and estimates
(b) were selected for accuracy using the mean absolute percentage error (MAPE),
root mean square error, and an adjusted coefficient of determination (R2adj). Cerrado
Mineiro had the highest levels of pests and diseases, e.g. high-yielding coffee
plantations in Araguari had intensities as high as 30.9% for rust, 36.1% for
cercospora, 18.82% for the leaf miner and 4.5% for the berry borer, likely because
Cerrado Mineiro averages 1 °C warmer than Sul de Minas Gerais. The difference
between the dependent loads (high or low) of the coffee trees promoted different
intensities only for rust, because the trees with high yields had higher intensities of
the disease. The trend models for rust (FI) as a function of DD for Muzambinho
(FIMUZ = f(DD)) for low yields and the models for the berry borer (BC) as a function
of DD for Boa Esperanga (BCBOE = f(DD)) for high yields were most accurate for Sul
de Minas Gerais. The trend models for rust as a function of DD for Araxa (FIARX =
f(DD)) for low yields and the models for cercospora (Cl) as a function of DD for
Patrocinio (CIPAT = f (DD)) for low yields were most accurate for Cerrado Mineiro.
We used DD and LF = f(DD) and NN = f(DD) to predict diseases and pests with
accuracy. MAPEs were 19.6, 5.7, 9.5, and 15.8% for rust, cercospora, leaf miner and
berry borer, respectively, for Sul de Minas Gerais. Establishing phytosanitary alerts
using only air temperature was possible with these models.

KEY-WORDS: crop model; early prevision; phytosanitary alerts; forecasting
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Introduction

Brazil is the largest producer and exporter of coffee in the world (Meinhart et
al., 2017), with a total of 2 million ha planted (CONAB, 2019). Production areas in
Brazil are distributed in the south-central region, in the states of Minas Gerais, Sao
Paulo, and Espirito Santo (Andrade et al., 2012; Cubry et al., 2013). Minas Gerais
represents about 50% of the total production of Brazil and is the largest producer of
coffee in the country (Barbosa et al., 2012, Ronchi et al., 2015).

Coffee leaf rust (Hemileia vastatrix) and cercospora (Cercospora coffeicola)
are the most common phytosanitary problems in coffee-producing regions on all
continents (Haddad et al., 2009; Ghini et al., 2015, Castro et al., 2018), which can
cause high losses in coffee plantations. Coffee leaf rust is one of the main diseases
affecting coffee plantations worldwide, having an important economic impact in the
coffee industry in countries where coffee is an important part of the economy
(Esquivel, Sanchez, Barbosa, 2017). Rust is a fungal disease that causes severe
defoliation of plants. High levels of rust cause production losses of 35% in the
Brazilian coffee regions where climatic conditions are favourable (Teixeira et al.,
2007).

Rust has also been reported in Peru (Castro et al., 2018), Colombia, and
Central America (Esquivel, Sanchez, Barbosa, 2017), and cercospora has also been
reported in Thailand (Sirinunta and Akarapisan, 2015) and Latin America (Ghini et al.,
2015), where both cause heavy losses. These diseases cause worldwide economic
losses of approximately 1 billion $US, due to high mitigation costs, and decreases in
productivity of up to 50% (Haddad et al., 2009; Jackson et al., 2012).

Cercospora infects leaves and fruits, causing defoliation, early fruit maturation,
and premature fruit fall, increasing the number of pimples (Carvalho et al., 2008). The
symptoms of cercosporiosis in the fruit occur four months after flowering, causing
dark-brown depressions from the peduncle to the crown of the fruit (Santos et al.,
2010). Irrigating dense crops provides a microclimate favouring cercosporiosis in
coffee (Paiva et al., 2013). Water deficits are one of the main causes of the
appearance of cercosporiosis (Salgado et al., 2007).

Pests also contribute to losses of productivity and the quality of coffee. The
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main pests are the coffee berry borer (Hypothenemus hampei) (Coleoptera:
Curculionidae, Scolytinae) and the coffee leaf miner (Leucoptera coffeella)
(Lepidoptera: Lyonetiidae) due to the large economic losses they cause (Souza et
al., 2013). The berry borer is dispersed throughout the coffee-producing regions of
the world, attacking countries in Africa, Asia, and South, Central, and North America
(Cantor et al., 2000). The attack of the berry borer causes quantitative damage,
reducing grain weight and increasing fruit drop. The fruits are attacked at all stages of
growth, compromising the productivity and quality of the beverage (Fernandes et al.,
2014). The leaf miner is currently considered the main pest in regions with high air
temperatures and water deficits (Teixeira et al., 2007). The leaf miner causes large
losses to coffee trees, by reducing the photosynthetic area, and leaching losses of up
to 80% of production (Mendonca et al.,, 2006). Leaf miners have been reported in
several other countries, such as Costa Rica (Allinne et al., 2016) and Ethiopia
(Abedeta et al., 2015).

Models are simplified mathematical representations of a system, and their
development is called modelling (Jones et al., 1987). Models integrate information
from areas such as agrometeorology, phytosanitation, remote sensing, plant
physiology, plant science, soil science, and economics for estimating (Jame and
Cutforth, 1996) and predicting (Gouranga and Ashwani, 2014) a variety of
parameters, assisting in the formation of strategies and decisions in production
chains, and accurately simulating the dynamics of crop growth (Jame and Cutforth,
1996).

We used non-linear models because the adjusted parameters we used were
physically and/or biologically relevant to the system under study (Gujarati and Porter,
2001). Nonlinear models have been used in other studies. For example, Kin et al.
(2001) estimated the developmental times of Carposina sasakii (Lepidoptera:
Carposinidae) as a function of the average air temperature in the Suwon region of
Korea. The authors observed that the models were accurate and that the times
decreased with increasing temperature up to 32 °C in the eggs, 28 °C in the larvae,
and 30 °C in the pupae. And, Rowley et al. (2017) who predicted the development of
Haplodiplosis marginata (Diptera: Cecidomyiidae) in the United Kingdom using non-

linear models (a binomial generalised linear model and Weibull and Probit models),
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the pest had a sigmoidal tendency of growth up to 1550 accumulated degree days
(DD), and the growth curve stabilised at an accumulation of 980 DD.

Diseases and pests decrease coffee quality and productivity (Spongoski et al.,
2005). Rates of disease and pest infestation in coffee plants have been reported for
Brazil and all countries where the plant is cultivated. The application of foliar
fungicides and insecticides is the most common strategy to control these diseases
and pests, depending on their regional intensity. This traditional method can be
improved using alert systems with models of disease and pest indices. We thus
sought to develop models for simulating of the growth curve of pests and diseases
over time as a function of the thermal index and estimating pest infestation and
disease severity of Coffea arabica L. for use in phytosanitary risk-alert systems.

Material and methods

We used a historical series of climatic data and levels of pest infestation and
disease severity of arabica coffee for the state of Minas Gerais, Brazil.
Representative sites of coffee production were Boa Esperanca (BOE), Carmo de
Minas (CDM), Muzambinho (MUZ), and Varginha (VAR) in Sul de Minas Gerais
(SOwme) and Araxa (ARX), Araguari (ARG) and Patrocinio (PAT) in Cerrado Mineiro
(CEwmg) (Table 1 and Fig. 1).
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TABLE 1. Geographic characteristics of the main coffee-growing areas of the state of

Minas Gerais.
Locations Latitude (°) Longitude (°) Altitude (m) Period Area (km,)
Sul de Minas Gerais
Boa Esperanca 21°03'59"S 45°34'37"W 830 2010 to 2018 860,7
Carmo de Minas  22°10'31"S  45°09 03"W 1080 2006 to 2018 323,3
Muzambinho 21°20'47"S  46° 32' 04" W 1033 2010 to 2018 409
Varginha 21°34'00"S  45°24'22"W 940 1998 to 2018 395,6
Cerrado Mineiro (Alto Paranaiba)
Araguari 18°59'35"S  46°59'01"W 961 2010 to 2018 2.731
Araxa 19°33'21"S  46°58' 08"W 960 2010 to 2018 1.165
Patrocinio 18°33'21"S  48°12'25"W 933 2010 to 2018 2 866
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FIGURE 1. Coffee regions in the state of Minas Gerais, Brazil, analysed in this study.

Daily meteorological data were obtained from automatic meteorological

stations installed near the coffee plantations evaluated: air temperature (Tagr) and

precipitation (P). Data were collected using a Meteorological Station Vantage Pro2

Davis-K6162 (Davis Instruments,

system. The Tar and P data were used to estimate

Hayward, Californian-USA) data acquisition

reference potential
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evapotranspiration (PET) following the method of Camargo (1971) (Eg. 1). The
availability of data was the criterion for choosing this model.

PET =0.01 - () Tair - ND 1)

where Qo is the solar irradiance at the top of the atmosphere (MJ m? d?), Tar is the

mean air temperature (°C), and ND is the number of days in the period.

We estimated the components of the water balance (WB) proposed by
Thornthwaite and Mather (1955) using an available water capacity (CAD) of 100 mm,
because this value represents the majority of soils in the main coffee regions
(Meireles et al., 2009). The WB components were: soil-water storage, water deficit
(DEF), and surplus water (EXC) of the soil-plant-atmosphere system.

The data for disease severity and pest infestation were provided by the
Procafé Foundation (http://fundacaoprocafe.com.br/) from field evaluations with no
phytosanitary treatment at the sites (Table 1). The data were for the diseases coffee
rust (H. vastatrix) and cercospora (C. coffeicola) and the pests coffee leaf miner (L.
coffeella) and coffee berry borer (H. hampei). These data had been collected from
fields with steep and gentle slopes, also for 1995-2018.

Incidences were measured non-destructively. The plants were randomly
chosen in a zigzag walking pattern in the area, as recommended by (Chalfoun 1997).
Incidence scores were determined for leaves from the third or fourth knot of branches

at the middle third of the plants. Detailed methodology is presented in Table 2.
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TABLE 2. Methodology for evaluating coffee development, diseases, and pests used
by the Procafé Foundation of Brazil.

Phytosanitary problem Methodology

Phenology

- Sample 20 plants per plot (random)
- Select four branches per plant in the middle third

Number of nodes (one on each side)
- Quantify the number of nodes developed from

September in each chosen branch

- Sample 20 plants per plot (random)

- Select four branches per plant in the middle third
(one on each side)

Leafiness of coffee plant - Quantify the amount of foliar development in the
chosen branches

- Quantify the soil-foliage percentages in the

samples

Diseases

- Sample 20 plants per field
- Collect the leaves in the middle third of the
chosen plant

Coffee rust (Hemileia vastatrix) and | - Choose five lateral branches at random on each
side of the plant

Cercospora index (Cercospora - Remove a completely developed leaf, of the 3rd
or 4th pair of leaves, from each branch
coffeicola) - Total of 10 leaves/plant (five on each side)

- Total of 200 leaves/field
- Quantify the percentage of disease in the

samples

Pests

- Sample 20 plants per field

- Collect the leaves in the middle third of the
chosen plant

- Choose five lateral branches at random on each

Coffee leaf miner (Leucoptera side of the plant
- Remove a completely developed leaf, of the 3rd
COffee”a) or 4th pair of leaves, from each branch

- Total of 10 leaves/plant (five on each side)

- Total of 200 leaves/field

- Quantify the percentage of the pests in the
samples

- Sample average of 50 plants per plot
- Choose four branches per plant (one on each

Coffee berry borer (Hypothenemus | side) _
- Collect 25 fruits/branch for a total of 100

hampei) fruits/plant

- 50 plants/field for a total of 5000 fruits/field

- Quantify the percentage of the pest in the
samples




21

Each node normally develops from the plagiotropic branch of the coffee tree
to have two leaves (one on each side of the node). Leafiness and the percentages of

diseases and pests were quantified by:

Leaf number

(reafmumber,

Number of nodes

Leafiness (%) = |

]1- 100 )

CLM (%) = [ ol )+ 100 ©
CBB (%) = [ i carar 1+ 100 @
PO = e rarstorar ] * 100 ©)

CI (%) = [(Vumber of leaves with Cercospora) 1 10 )

Number of leafs total
where Ci is the cercospora index (%), Fl is coffee rust (%), CBB is the coffee berry
borer (%), and CLM is the leaf miner (%).

The diseases and pests of the coffee plantations were evaluated for high and
low productivity, which occur due to the natural bienniality of coffee plants. High
productivity represents >30 bags (60 kg each) ha™, and low productivity represents
<10 bags ha™. The discontinuous range of this classification is due to the field
differences for subsequently high and low yields. The cultivars were Catuai and
Mundo Novo, both susceptible to the diseases and pests.

Pest infestation, disease severity, and the time of each assessment were
used to construct trend curves for describing the development of pest infestation and
disease severity over time (Nutter, 1997; Bergamin Filho, 2011). We analysed the
trend of development of the diseases and pests of coffee trees as the DDs for high
and low vyields for all sites. Total DD was calculated using a base temperature
(Tbase) of 10.2 °C, as proposed by Carvalho et al. (2014) (Eg. 7) for the
development of coffee crops.

>DD = [Tmaxzﬂ] — Thase (7)

where 2DD is total DD after the beginning of vegetative growth standardised from
September, Tmax is the absolute maximum daily air temperature (°C), and Tmin is

the absolute minimum daily air temperature (°C).
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The development of disease over time was simulated using non-linear models.
Growth models were adjusted by a regression analysis using sigmoid models with
four parameters (logistic) and the Lorentz model with four parameters (Egs. 8 and 9,
respectively). The normal distribution of the deviations was verified using the

Kolmogorov-Smirnov adhesion test at P<0.05.

Y —Ymi

Y = Ymax T mff(%);nm (8)
2-A

Y = Ymin t — - (9)

T 4 (x—x¢)%2+w?2
where Ymax is maximum development, Ymin is minimum development, X, is the
number of degree days for maximum disease development, p is the maximum growth
rate at Xo, W is the midpoint standard deviation, and x is DD after the beginning of

vegetative growth, always from 01 September, as suggested by Hinnah et al. (2018).

The parameters of all nonlinear models were estimated by the least-squares
method, which consists of minimising the sum of the squares of the model errors and
iteratively using linear programming with the generalised reduced gradient model, as
proposed by Lasdon and Waren (1982). We generated the confidence interval (IC) of
the estimate (at 5% significance) for all models for estimating trends, as proposed by
Neyman (1937) (Eg. 10). Confidence intervals are indicators of precision and the
stability of an estimate, which is an evaluation of how close a measurement is to the

original estimate:

A\ 2
IC =Y, +TableT,,,, » * Sy ¥ 1+(X°bs—x)2 (10)
’ n  (n—-1)xSg

where Y iS a value estimated by the model, Syest is the standard deviation of the
values estimated by the model, Xqps iSs an observed value of disease severity or pest
infestation, X is the mean of these observed values, s? is the variance of the data, n
is the number of datapoints, and TableT (a/2,n-2) is value found from the table of the

normal distribution (a = 0.05).

The models for estimating levels of disease severity and pest infestation were
based on multiple linear regressions. The dependent variable was the levels pests

and diseases and the independent variables were the NN and tree foliage
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accumulated in DD (Eqg. 11). One model for each disease and pest was calibrated for
the entire region using BOE, CDM, MUZ, and VAR data for SOyc and ARG, ARX,
and PAT data for CEys. Only models with P<0.05 were selected:
Y=01"X1+B-Xo+ B3 Xs+ -+, (11)

where Y is the level of pest infestation or disease severity, By is the adjusted weight,

Xy is an independent variable, and Bo is an linear coefficient.

The actual observed field data and the results of all models were compared
using several statistical indices: accuracy, precision, and level of significance (Table
3). Accuracy indicates the closeness of an estimate to the observed value and was
evaluated using the mean absolute percentage error (MAPE) and the root mean
square error (RMSE). Precision is the ability of a model to repeat an estimate and
was evaluated using the coefficient of determination (R?) adjusted (R?adj) following
Cornell and Berger (1987).

TABLE 3. Accuracy and precision of statistical indices used for evaluating the non-
linear adjustments of rates of disease severity and pest infestation. Yest, estimated
value of y; Yobs, observed value of y; Xobs, observed value of x; n, number of
datapoints. Overlined variables are means.

Statistical Index Equation
Accuracy
MAPE n _
MAPE = lz[ Yest —Yobs,| 100)
Y Yobs,
RMSE 2
N (Yogs. — Yesr.
RMSE = \/211( OBS; ESTl)
N
Precision
R® n

(Yest, —Yobs)
R?=1-— = g
" (Vest; — Yobs) — " (Yest, — Yobs, }

i=1 i=1
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Results and discussion

Coffee production in SOy and CEyg is characterised by the presence of
diseases and pests, which is strongly influenced by climatic conditions. SOy and
CEwmg had similar climatic trends (Figure 2), e.g. higher Tar and P of 300DD-2800DD
and lower Tar and smaller P after the accumulation of 2800 DD. DEF was highest in
two periods, from 0 DD to 1000 DD and from 2900 DD to 4000 DD in both regions
(Figure 2AB).

The accumulation of P, PET, EXC, and DEF was higher for CEyg, at 1446.84,
871.64, 771.84, and -180.61 mm, respectively. The accumulation of P, PET, EXC,
and DEF in SOyc was 1380.21, 859.49, 614.15, and -105.60 mm, respectively
(Figure 2C, D). The lower DEF in SOy has previously been reported (e.g. Barbosa
et al., 2010), who found that DEF was usually higher in CEyg.
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FIGURE 2. Seasonal variation of climatic parameters (A and B) and accumulation of
climatic parameters after the resumption of vegetative growth (C and D) in Sul de

Minas Gerais and Cerrado Mineiro.
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The average rust severity for high and low yields was 33.5 and 15.8% in
SOwe (Figure 3A) and 27.1 and 24.9% in CEyg (Figure 3B), respectively. Coffee
trees in SOy with low yields tended to have less rust than trees with high yields,
because coffee plants with high vyields allocate photoassimilates for production
(Aparecido et al., 2018), so the plants are more vulnerable to rust.

Disease rates were higher in CEys than SOys (Figure 3). Carvalho et al.
(2017) also reported a higher incidence of rust and cercospora in CEyg than SOyg.
Levels were highest for ARG; 30.9% of high-yield trees had rust, 36.1% had
cercospora, 18.82% had leaf miners, and 4.5% had berry borers (Figure 3B, D, F, H).
In contrast, levels were lowest for VAR; 20.9% of low-yield trees had rust, 2.7% had
cercospora, 1.38% had leaf miners, and 0.18% had berry borers (Figure 3A, C, E, G).
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The analysis of the growth trends based on DD identified several relationships.
The growth of NN per plagiotropic branch due to the accumulation of DD
demonstrated a hyperbolic adjustment (Figure 4). The maximum value of NN was
eight nodes per branch, at 3850 DD in SOyg and 10 nodes per branch at 4000 DD in
CEwmg, for BOA and ARG, respectively. NN per plagiotropic branch was positively
correlated with coffee productivity (Assis et al., 2014), because these nodes

produced coffee fruits.
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Leafiness based on DD was similar in SOye and CEug. The reduction of
foliage in SOyg occurred from 2400 DD but was after 2500 DD in CEyg (Figure 5).
This early defoliation was attributed to the pests and foliar diseases, which reduce
the photosynthetic area of plants and may even promote the death of plagiotropic
branches (Custodio et al., 2010; Lépez-Duque, Fernandez-Borrero, 1969; Gree,
1993).

Leafiness was lowest in SOy at 18.37% and in CEyg at 17.1%, in CDM and
ARX, respectively (Figure 5C, D). Foliar density is directly linked to crop production,
because leaves are one of the main organs that contain chloroplasts, the organelle

entirely responsible for photosynthesis (Taiz and Zeiger, 2009).
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FIGURE 5. Leafiness based on total degree days (DD, °C d?). A) Boa Esperanca,

B) Araguari, C) Carmo de Minas, D) Arax4, E) Muzambinho, F) Patrocinio, and G)

Varginha. Points are observed values, solid lines are estimated values, and dashed

lines indicate 95% confidence intervals.
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Coffee rust based on DD had a sigmoidal adjustment (Figures 6 and 7). The
rust index in SOyg was higher for high than low yields (Figure 6). The rust index was
more similar in CEyg for both yields (Figure 7). Meira et al. (2009) reported that trees
were more predisposed to rust in years of high than low yields, because the trees
allocate more photoassimilates for the production of high yields (Aparecido et al.,
2018). Carvalho et al. (2001) evaluated the rust indices as a function of the level of
coffee production and found that increasing levels of production were correlated with
an increase in the susceptibility of the plants to rust.

The adjusted models were all significant (P<0.001), with low MAPEs and
RMSEs and with R?adj 1.0, indicating that the rust index could be estimated as a
function of DD. For example, the logistic model estimating the rust index for BOE
(FIBoE) for high yields had a MAPE of 9.91%, RMSE of 2.80, and R?adj of 0.98
(Figure 6A). An error of 9.91% is low, because a rate of maximum disease severity of
72.27% at the end of the cycle has a variation of only £7.14%, which is low for a
disease. The models with the highest accuracy in SOyg for estimating rust for the
high yields were XFlgoe = F(ZDD) and XFlcpm = F(EDD), with MAPEs of 9.91 and
15.01%, respectively. For the crop adjustments for low yields, ~Flyyz = F(ZDD) and
YFlgoe = F(EDD) were the best models, with MAPEs of 8.94 and 12.05%,
respectively.

The parameter p adjusted in the sigmoid models indicates the maximum
rates of growth of the diseases. The rust index for BOE, CDM, MUZ, and VAR had
maximum rates of 5.60, 4.36, 3.25, and 6.08% for high yields and 6.75, 3.54, 3.82,
and 3.41% for low vyields, respectively (Figure 6). The highest rate of rust growth in
SOwe Was 6.75% °C™ d™*. This rate was for a tree with a low yield in BOE at 2484.5
°C d* (Figure 6B). The lowest of the highest growth rates was 3.25% °C™* d* in MUZ
at 2792 °C d* in a high-yield coffee tree (Figure 6E). The highest rates of coffee
development in SOy for high yields occurred at 2541.7, 2418, 2792, and 2215.3 °C
d* for BOE, CDM, MUZ, and VAR, respectively. The highest growth rates for low
yields were earlier, at 2484.5, 2263.6, 2210.8, and 2246 °C d* for BOE, CDM, MUZ,
and VAR, respectively (Figure 6).
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FIGURE 6. Coffee rust index (Fl) based on total degree days (£DD, °C d*) after the

beginning of vegetative growth (September) in Sul de Minas Gerais. A and B, Boa

Esperanca; C and D, Carmo de Minas; E and F, Muzambinho; and G and H,

Varginha. Points are observed values, solid lines are estimated values, and dashed

lines indicate 95% confidence intervals.
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The models for CEue with the highest accuracy for estimating rust for high
yields were XFlarc = F(EDD) and XFlarx = F(ZDD), with MAPEs of 12.4 and 15.2%,
respectively (Figure 7A, C). The best models for the crop adjustments for low yields
were, in ascending order, XFlarx = F(ZDD) and XFlarc = F(ZDD), with MAPEs of 11.8
and 14.4%, respectively (Figure 7B, D). The rust index for CEyg plants had maximum
rates of 10.1, 6.09, and 16.4% (high yields) and 9.87, 6.61, and 8.46% (low yields) in
ARG, ARX, and PAT, respectively (Figure 7). These rates were higher than those for
rust in SOwc (Figure 6).

The highest growth rate was 16.4% 1 °C™ d™* for rust, much higher than for
SOwmg (6.75% °C™* d™). The growth rate of 16.4% °C™ d™ occurred in a tree with a
high yield in PAT, at 2705.6 °C d* (Figure 7E). The highest rates of coffee
development in CEyg for high yields occurred at 2625.7, 2548.1, and 2705.6 °C d™
for ARG, ARX, and PAT, respectively. The highest growth rates for low yields
occurred at 2768.5, 2312.4, and 2754.3 °C d™ for ARG, ARX, and PAT, respectively
(Figure 7).
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FIGURE 7. Coffee rust index (FI) based on total degree days (DD, °C d™) after the

beginning of vegetative growth (September) in Cerrado Mineiro. A and B, Araguari; C

and D, Araxa; and E and F, Patrocinio. Points are observed values, solid lines are

estimated values, and dashed lines indicate 95% confidence intervals.
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The cercospora index also tended to have a sigmoidal distribution. The
models indicated that the cercospora index could be estimated as a function of DD,
because the adjustments were all significant (P<0.001), with low MAPEs and RMSEs
and R?adj ~1.0. For example, the logistic model for CDM at low yields had a MAPE of
7.74%, RMSE of 0.40%, and Rzadj = 0.79 (Figure 8D). A MAPE of 7.74% is low,
because the highest cercospora index of 3.97% at the end of the cycle had a
variation of only +0.28%.

The most accurately fitted models for estimating cercospora in SOyg for high
yields were XCIVAR = F(2DD) and X£CImuz = F(£DD), with MAPEs of 3.61 and 7.69%,
respectively. The most accurate models for low yields were £Clcbm = F(ZDD) and
>ClImuz = F(ZDD), with MAPEs of 7.74 and 7.69%, respectively.

Ymax of the adjusted model indicates the maximum disease intensity. The
highest cercospora intensities for high yields were 6.29, 6.48, 6.18, and 8.07% in
BOE, CDM, MUZ, and VAR, respectively (Figure 7). The highest cercospora
intensities for low yields were 4.54, 3.97, 6.21, and 3.38% in BOE, CDM, MUZ, and
VAR, respectively (Figure 8). Cercospora intensity in SOyg occurred at an
accumulation of 3654.45 °C d™. Custodio et al. (2010) reported maximum cercospora
intensity in SOy of 20%.

The cercospora index for SOyg indicated high maximum cercospora growth
rates of 70.8, 2.70, 64.75, and 3.26% for high yields and 65.2, 48.3, 64.7, and 4.19%
for low yields in BOE, CDM, MUZ, and VAR, respectively (Figure 8). The highest
cercospora growth rate was 70.8%. This development rate occurred in a high-yield
tree in BOE where the plant accumulated 1001.9 °C d* (Figure 8B). The highest
rates of cercospora development in SOy for high yields occurred at 1001.9, 1391.2,
999.3, and 2227.3 °C d* for BOE, CDM, MUZ, and VAR, respectively (Figure 8A, C,
E, G). The highest development rates of the disease for low yields occurred at 977.4,
1365.5, 1004.6, and 1426.2 °C d* for BOE, CDM, MUZ, and VAR, respectively
(Figure 8B, D, F, H).
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FIGURE 8. Cercospora index (Cl) based on total degree days (£DD, °C d*) after the
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The most accurate model for estimating cercospora for high yields in CEye
was XCIARG = F(ZDD), with a MAPE of 12.7% (Figure 9A). The most accurate model
for low yields was XCIPAT = F(2DD), with a MAPE of 9.05% (Figure 9F). Ymax of the
adjusted model indicates the highest disease intensity. The highest cercospora
intensities in ARG, ARX, and PAT were 67.9, 13.1, and 12.09% for high vyields
(Figure 9A, C, E) and 73.6, 12.5, and 6.76% for low yields, respectively (Figure 9B,
D, F). These maximum cercospora intensities in CEyg occurred at an accumulation
of 3994.16 °C d™.

The cercospora index in ARG, ARX, and PAT in CEyg had maximum growth
rates of 9.97, 60.2, and 2.01% for high yields and 5.75, 48.7, and 13.5% for low
yields, respectively (Figure 9). The highest cercospora growth rate was 60.2%. This
growth rate occurred in a high-yield tree in ARX where the plant accumulated 1485.2
°C d* (Figure 9B). The highest cercospora growth rates at ARG, ARX and PAT in
CEwmg occurred at 2581.3, 1485.2 and 1553.6 °C d™ for high yields (Figure 9A, C, E)
and 2888.1, 1444.4 and 1161.5 °C d™ for low yields (Figure 9B, D, F), respectively.
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FIGURE 9. Cercospora index (Cl) based on total degree days (£DD, °C d*) after the

beginning of vegetative growth (September) in Cerrado Mineiro. A and B, Araguari; C

and D, Araxa; and E and F, Patrocinio. Points are observed values, solid lines are

estimated values, and dashed lines indicate 95% confidence intervals.

The severity of infestation with the berry borer tended to have a Gaussian

distribution. The adjustments of the models indicated that the severity of infestation

could be estimated as a function of the climatic conditions, because the adjustments
were all significant (P<0.001), with a low MAPE and RMSE and R?adj ~1.0. The

Lorentz model estimated the severity of infestation for high yields in BOE with high
accuracy, with a MAPE of 8.99%, RMSE of 0.11%, and R?adj of 0.98 (Figure 10A). A
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MAPE of 8.99% was relatively low, because the average infestation was 2.5% and
the maximum peak intensity had a variation of only £0.22%.

The most accurately fitted models for estimating the severity of infestation
with the berry borer for high yields in SOy were ZBCBOE = F(£DD) and *BCcbMm =
F(ZDD), with MAPEs of 8.99 and 18.10%, respectively. The most accurately fitted
models with crop adjustments for low yields were XBCmuz = F(XDD) and EBCVAR =
F(ZDD), with MAPEs of 18.2 and 18.6%, respectively.

The maximum intensities of infestation with the berry borer in BOE, CDM,
MUZ, and VAR were 2.6, 1.9, 2.2, and 2.01% for high yields and 1.1, 1.8, 2.3, and
0.7% for low yields, respectively (Figure 10). These maximum intensities in SOyg
occurred at distinct accumulations for each site. For example, the pest peaks in BOE,
CDM, MUZ, and VAR occurred at 2007.9, 2346.8, 2298.4, and 1995.2 °C d™ for high
yields (Figure 10A, C, E, G) and 2011.1, 2309, 2317.8, and 2019.3 °C d™ for low
yields (Figure 10B, D, F, H), respectively. A more complex analysis of the severity of
infestation with the berry borer in BOE indicated an increase in severity up to 1520
°C d™. The severity then stabilised slightly and decreased after the accumulation of
2010 °C d™ (Figure 10A).
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FIGURE 10. Coffee berry borer infestation based on total degree days (DD, °C d™)
after the beginning of vegetative growth (September) in Sul de Minas Gerais. A and
B, Boa Esperanga; C and D, Carmo de Minas; E and F, Muzambinho; and G and H,
Varginha. Points are observed values, solid lines are estimated values, and dashed

lines indicate 95% confidence intervals.

The most accurate model for estimating the severity of infestation in CEyg for
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high yields was =BCARG = F(£DD), with a MAPE of 20.4%, RMSE of 2.36, and R?adj
= 0.81 (Figure 11A). The most accurate model for low yields was ZBCARX = F(XDD),
with a MAPE of 10.4%, RMSE of 0.29%, and RZadj of 0.99 (Figure 11D). The
maximum intensities of infestation in ARG, ARX, and PAT in CEys were 16.2, 3.1,
and 6.6% for high yields (Figure 11A, C, E) and 13.5, 11.9, and 7.1% for low yields
(Figure 11B, D, F), respectively.

Pest infestation in ARG, ARX, and PAT peaked at 2716.2, 2373.2, and
2576.3 °C d™* for high yields (Figure 11A, C, E, G) and 2528.1, 2408.3 and 2532.7 °C
d* for low yields (Figure 11B, D, F, H), respectively.
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FIGURE 11. Coffee berry borer infestation based on total degree days (DD, °C d™)
after the beginning of vegetative growth (September) in Cerrado Mineiro. A and B,

Araguari; C and D, Araxa; E and F, Patrocinio. Points are observed values, solid

lines are estimated values, and dashed lines indicate 95% confidence intervals.
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The severity of infestation with the leaf miner tended to have an inverted
peak for all SOue sites. The adjustments of the models indicated that the severity of
infestation could be estimated as a function of the climatic conditions, because the
adjustments were all significant (P<0.001), with low MAPE and RMSE and RZadj
~1.0. The Lorentz model accurately estimated the severity of infestation with leaf
miner for high yields in MUZ, with a MAPE of 5.80%, RMSE of 0.40%, and R*adj of
0.74 (Figure 12E). An error of 5.80% is low, because a severity of 2.2% has a
variation of only £0.12%. The most accurate models for estimating the severity of
infestation were XBMmMuz = F(XDD) and BMvVAR = F(£DD), with MAPEs of 5.80 and
5.97%, for high yields and ¥BMmuz = F(£DD) and BMcDM = F(2DD), with MAPESs of
5.22 and 10.1%, for low yields, respectively.

The level of infestation was assessed after the coffee harvest and when new
shoots appeared. Infestation with the leaf miner was already high at the beginning of
the evaluations, represented by Ymin of the equation of Lorentz. Infestations at the
beginning of the evaluations in BOE, CDM, MUZ, and VAR were 2.74, 2.06, 2.60,
and 1.48% for high yields and 3.04, 2.08, 2.66 and 1.70% for low yields, respectively
(Figure 12). The lower intensities of the leaf miner in SOyg occurred at 1000-2400 °C
d. High rainfall during this period may account for the low intensities (Figure 2).
Infestation was higher in other periods when rainfall was lower. Several studies such
as Villacorta (1980) and Custddio et al. (2009) verified that the population density of

the leaf miner was highest after periods of P.
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FIGURE 12. Coffee leaf miner infestation based on total degree days (ZDD, °C d™)

after the beginning of vegetative growth (September) in Sul de Minas Gerais. A and

B, Boa Esperanca; C and D, Carmo de Minas; E and F, Muzambinho; and G and H,

Varginha. Points are observed values, solid lines are estimated values, and dashed

lines indicate 95% confidence intervals.

The severity of infestation with the leaf miner had distinct trends amongst the
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CEwgc sites. For example, infestation in ARX tended to have an inverted peak (vale

curve), but the other sites had sigmoid curves. Regardless of the trend, adjustments

of the models indicated that the severity of infestation could be estimated as a

function of the climatic conditions, because the adjustments were all significant
(P<0.001), with a low MAPE and RMSE and Rzadj ~1.0. Infestation of leaf miner was
high in ARG and PAT. The highest rates in ARG and PAT were 42.3 and 20.2% for
high yields and 40.5 and 21.9% for low yields, respectively (Figure 13).
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FIGURE 13. Coffee leaf miner infestation based on total degree days (ZDD, °C d™)

after the beginning of vegetative growth (September) in Cerrado Mineiro. A and B,

Araguari; C and D, Araxa; and E and F, Patrocinio. Points are observed values, solid

lines are estimated values, and dashed lines indicate 95% confidence intervals.
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Summaries of the adjusted parameters in the trend models for all sites are
presented in Tables 4-6.

TABLE 4. Parameters adjusted in the models for the number of nodes and leafiness

as functions of total Degree Days.

REGION City Ymax Ymin Xo p Ymax Ymin Xo p
Number of nodes Leafiness

South BOE 10.09 1.22 1744.6 1.87 98.69 43.26 3041 12.34
CDM 8.47 1.22 1533.5 2.16 99.1 18.37 3234.8 7.05

MUZ 11.9 1.18 2250.7 1.66 95.98 51.5 2829.7 13.1
VAR 8.16 1.24 1498.7 2.23 99.02 34.44 3009.8 13.14

Cerrado ARG 27.1 0.45 6406.3 1.11 96.37 0 3557.8 6.58
ARX 11.15 2.21 2351.4 2.3 96.44 17.19 3250.4 6.48

PAT 10.6 1.71 2136.7 2.07 97.49 22.29 3509.7 9.85

9.66 1.22 1756.88 1.98 98.2 36.89 3028.83 11.41
Average South (+1.719) (+0.025) (£346.682) (£0.264) (+1.489)  (+14.178)  (+165.918)  (+2.928)
+Standard 16.28 1.46 3631.47 1.83 96.77 13.16 3439.3 7.64
(x anaar Cerrado  (x9.372) (£0.907)  (+2405.473)  (+0.631) (#0.627)  (x11.679)  (+165.351)  (+1.917)
deviation) 12.5 1.32 2560.27 1.91 97.58 26.72 3204.74 9.79

Total (+6.581) (+0.54) (+1729.996) (+0.418) (£1.351)  (+17.518)  (£266.492)  (+3.094)
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TABLE 5. Parameters adjusted in the models for the coffee leaf rust and cercospora

indices as functions of total Degree Days.

REGION YIELD City Ymax Ymin Xo p Ymax Ymin Xo p
Rust index Cercospora index

South HIGH BOE 72.3 3.05 2542 5.6 6.29 2.05 1002 70.8
HIGH CDM 81.4 3.32 2418 4.36 6.48 1.31 1391 2.7

HIGH MUZ 84.9 0.74 2792 3.25 6.18 1.55 999 64.8

HIGH VAR 81 4.01 2215 6.08 8.07 1.5 2227 3.26

LOW BOE 18.5 1.97 2485 6.75 4.54 1.58 977 65.2

LOW CDM 35.3 2.09 2264 3.54 3.97 2.09 1366 48.3

LOW MUZ 34.4 1.87 2211 3.82 6.21 1.33 1005 64.7

LOW VAR 45.2 2.07 2246 3.41 3.38 1 1426 4.19

Cerrado HIGH ARG 69.2 2.81 2626 10.1 67.9 7.21 2581 9.97
HIGH ARX 67.6 3.66 2548 6.09 13.1 1.37 1485 60.2

HIGH PAT 49.3 3.06 2706 16.4 12.1 0 1554 2.01

LOW ARG 62.4 2.83 2769 9.87 73.6 5.43 2888 5.75

LOW ARX 47.3 2.13 2312 6.61 12.5 2.26 1444 48.7

LOW PAT 449 2.17 2754 8.46 6.76 0.82 1162 13.5

] 79.89 2.78 2491.75 4.82 6.76 1.6 1404.93 35.38
South-High (#5.373)  (¥1.419)  (+241.184) (+1.274)  (+0.885)  (+0.316) (+578.345) (+37.492)

33.35 2 2301.23 4.38 453 15 1193.43 45.6

South-Low (+11.031) (+0.101)  (¢124.14) (+1.589)  (#1.219)  (+0.459) (+235.312)  (+28.7)

Average . 62.03 3.18 2626.47 10.86 31.04 2.86 1873.37 24.06
+Standard Cerrado-High (#11.056) (+0.437) (+78.753) (#5.197)  (£31.923) (+3.829) (+614.041)  (+31.55)
(+Standar 51.53 2.38 2611.73 8.31 30.95 2.84 1831.33 22.65
deviation) Cerrado-Low (£9.487)  (#0.393)  (¥259.327) (£1.635)  (£37.044) (¥2.358) (£926.053)  (£22.89)
56.62 2.39 2396.49 4.6 5.64 1.55 1299.18 40.49
South (£26.14)  (¥1.02)  (+204.709) (+1.354)  (£1.547)  (+0.369) (+424.101) (+31.389)

56.78 2.78 2619.1 9.59 31 2.85 1852.35 23.36
Cerrado (+10.862) (+0.575)  (+171.599) (£3.718)  (+30.928)  (+2.844) (£703.121) (+24.665)
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TABLE 6. Parameters adjusted in the models for infestations with the coffee leaf

miner and coffee berry borer as functions of total Degree Days.

REGION YIELD City Ymin A Xo W Ymin A Xo W
Leaf miner Berry Borer

South HIGH BOE 2.74 -3919 1614 956 0 3095 2008 503
HIGH CDM 2.06 -2999 1925 893 0 4648 2347 1540

HIGH MUZ 2.6 -4299 1922 156 0 3636 2298 1058

HIGH VAR 1.48 -2519 1932 987 0 9991 1995 36.1

LOW BOE 3.04 -3919 1618 652 0 11041 2011 19.3

LOW CDM 2.08 -2999 1922 954 0 3459 2309 1253

LOW MUZ 2.66 -4299 1589 181 0 4116 2318 1153

LOW VAR 1.7 -2919 1650 12426 0 3837 2019 40

Cerrado HIGH ARX 2.3 -1299 1299 590

Ymax Ymin Xo p Ymin A Xo W

HIGH ARG 423 551 3011 11.8 0 22020.6 2716 829

HIGH ARX - - - . 0 3798 2373 888

HIGH PAT 20.2 10.1 2762 11.7 0 7087 2576 809

LOW ARG 40.5 5.85 2999 17.1 0 21918.9 2528 1098

LOW ARX 24 1.19 1463  3.28 0 11101.7 2408 300

LOW PAT 21.9 11.9 2598 16.4 0 8684 2533 857

_ 2.22 34339  1848.13 748.13 5342.4 2162.08 784.17
South-High  (+0.574) (+818.515) (+156.336) (+396.684) 0 (x0) (£3165.28) (+186.481) (+654.431)

2.37 -3533.9  1694.55 3553.18 5613.3 2164.3 616.35
South-Low  (+0.596) (+682.618) (+153.568) (+5923.749) 0 (+0) (£3628.476) (+172.236) (+678.729)

Average _ 31.25 7.79 2886.4 11.75 10968.6 2555.23 842.27
+Standard Cerrado-High (+15.627) (+2.535) (+140.274) (+3.089) 0 (0) (+9711.611) (+172.468) (+41.234)
(+Standar 21.6 6.31 235327 1225 13901.67  2489.7 751.4
deviation)  Cerrado-Low (+19.052) (+7.573) (¢802.142) (+9.263) 0 (+0) (£7047.543) (£70.532) (+409.317)
2.3 34839  1771.34 2150.65 5477.85 2163.19 700.26
South (£0.548) (+699.775) (+165.289) (+4165.86) 0 (+0) (£3155.523) (+166.189) (+623.72)

25.46 6.9 2566.52 12.05 1243513  2522.47 796.83
Cerrado (£16.446)  (+4.202)  (+640.482) (+5.508) 0 (0) (£7757.201) (+123.192) (+264.902)

The most accurate trend models were for estimating leaf miner infestation, and

the least accurate models were for estimating berry borer infestation, with MAPEs

averaging 8.90, 19.13%, respectively (Table 7). The accuracy of the models was
similar for both high and low yields, with MAPEs of 12.44 and 13.00% for SOy and
15.31 and 13.04% for CEwg, respectively.
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TABLE 7. Synthesis of the statistical indices (MAPE, R?adj, and RMSE) by region
used for comparing the observed data and the adjusted nonlinear models for the

diseases and severity of the pest infestations for Sul de Minas Gerais and Cerrado

Mineiro.
South of Minas Cerrado Mineiro
High yield Lowyield Highyield Low yield Total
Diseases and pests MAPE
Coffee leaf miner 9,775 10,405 6,941 7,708 8,905
Coffee berry borer 16,946 19,660 22,494 17,995 19,135
Cercospora index 7,640 8,368 17,189 12,345 10,902
Rust index 15,403 13,585 14,633 14,133 14,446
Average 12,441 13,004 15,314 13,045 13,347
standard deviation 4,443 4,929 6,471 4,268 4,488
R
Coffee leaf miner 0,891 0,908 0,854
Coffee berry borer 0,856 0,881 0,843
Cercospora index 0,898 0,846 0,905 0,946 0,895
Rust index 0,981 0,974 0,983 0,975 0,978
Average 0,883 0,863 0,909 0,928 0,893
standard deviation 0,074 0,075 0,053 0,041 0,061
RMSE

Coffee leaf miner 0,297 0,360 0,868 1,009 0,590
Coffee berry borer 0,294 0,238 1,141 1,225 0,659
Cercospora index 0,563 0,468 2,752 2,177 1,351
Rust index | 3425 1604 | 3362 @ 3175 = 2838
Average 1,145 0,667 2,031 1,897 1,359
Standard deviation 1,525 0,632 1,216 0,992 1,044

We applied all possible combinations for estimating pest infestation and
disease severity in SOye and CEys. The estimation models were calibrated as a
function of the coffee leafiness estimated by DD (LF = F(ZDD)), the growth of nodes
of plagiotropic branches estimated by DD (NN = F(£DD)), and accumulated by ZDD.
We could thus estimate LF and NN with the trend models using only DD, and the
results of these models could then be used to estimate the rates of pest infestation
and disease severity. For example, %CER = f[ZDD, LF = f(ZDD), and NN = f(ZDD)].
All models were accurate, with MAPESs ranging from 5.6567% (coffee rust in SOyg)
to 19.587% (cercospora in SOyg) and all R%*adj were >0.4229 (Table 8). The

performance of all estimation models is shown in Figure 14.
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TABLE 8. Regional models for simulating coffee diseases and pests as functions of
leafiness, number of nodes, and degree days accumulated from the beginning of
vegetative growth (September 01). CL, linear coefficient; NN, number of nodes
estimated by =DD; LE, leafiness estimated by =DD; and DD, degree days

accumulated from 1 September.

. Coefficients Indexes
Diseases .
and pests Regions
CL NN LEA >DD p-valor MAPE RMSE RZadj
Rust index South 22.72 7.98 -0.358 -0.00568 0.0001 19.58 4.425 0.933
Cerrado 22.72 7.98 -0.358 -0.00568 0.0001 17.64 4.200 0.965
Cercospora South 4.322 1.36 -0.031 -0.00213 0.0001 5.656 0.431 0.726
Cerrado 28.47 5.76 -0.341 -0.00919 0.0001 7.690 1.300 0.983
Coffee leaf South 3.854 -0.459 -0.017 0.00091 0.0001 9.472 0.687 0.422
miner Cerrado 27.21 -0.073 -0.213 0.00035 0.0001 6.056 1.433 0.927
Coffee berry  South -4.06 0.245 0.034 0.00026 0.0001 15.82 0.252 0.814
borer Cerrado -26.56 2.801 0.202 -0.00138 0.0001 14.81 1.685 0.714
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FIGURE 14. Relationships between model estimates and observed incidences of
coffee rust, cercospora, coffee leaf miner (CLM), and coffee berry borer (CBB) in Sul
de Minas (SOwg) and Cerrado Mineiro (CEwg). The dashed lines are trend lines and

the solid lines are 1:1 lines.
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The model for estimating the severity of cercospora in SOy was accurate
(Eq. 12), with a MAPE, RMSE, and R?adj of 5.656%, 0.431%, and 0.726,
respectively, and was significant at P<99% (Table 8). A MAPE of 5.656% is
considered low in studies modelling crops (Martins et al., 2015; Moreto et al., 2015),
e.g. in MUZ where rust severity was 34.4% for low yields, with an error of only
+1.943%.
%CERgy = —0.00213 -DD — 0.0314 - LFf(3; DD) + 1.369 - NNf(3 DD) + 4.322 (12)

NN was the most sensitive variable calibrated in the models and was positively
correlated with cercospora severity. The result of the model indicated that the
severity of disease increased with plant density. Every 10 units of NN in this equation
represent an increase of 13.69% in the severity of cercospora in the coffee crop.

Conclusions

Coffee planted in CEyg had higher rates of diseases and pest infestation than
the coffee planted in SOyg, due to higher air temperatures. The levels of pest
infestation and disease severity were highest in ARG in CEyg. Trees at this site with
high yields had rust, cercospora, leaf miner, and berry borer intensities of 30.9, 36.1,
18.82, and 4.5%, respectively.

The intensities of the rust index varied on the yields of the coffee trees.
Cercospora and pest intensities were independent of yield. The trends of pest
infestation and disease severity over time could be estimated as functions of the
thermal index. Rust and cercospora severity tended to have sigmoidal distributions
over time, whereas leaf miner and berry borer infestations tended to have Gaussian
distributions. The trend models of pest infestation and disease severity as functions
of degree days were accurate, with low error (MAPE) and high accuracy (R%adj »
1.0). Flyuz = f(DD) for low yields and BCgoe = f(DD) for high yields were the most
accurate models for SOy, and Flarx = f(DD) for low yields and Clpar = f(DD) for low
yields were the most accurate models for CEy.

The models for estimating pest infestation and disease severity as functions of
leafiness, NN, and DD were accurate, with MAPEs ranging from 5.656% (rust for
SOwg) to 19.587% (cercospora for SOyg). Leafiness (LF = F(XDD)) and the of nodes
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(NN = F(ZDD)) were estimated by the trend models using DDs (using only air
temperature), indicating that a phytosanitary warning system could be established
and that the levels of pest infestation and disease severity of coffee could be

estimated.
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CAPITULO 3 - Machine learning algorithms for forecasting the incidence of

Coffea arabica pests and diseases

ABSTRACT - The production and quality of coffee in Brazil are affected by
phytosanitary problems: coffee rust (Hemileia vastatrix), cercospora (Cercospora
coffeicola), coffee miner (Leucoptera coffeella) and coffee borer (Hypothenemus
hampei). The intensity of these phytosanitary problems is controlled by climatic
variability, and few studies address the problem due to their complexity. Disease and
pest alert models are able to generate information for agrochemical applications only
when needed, reducing costs and environmental impacts. With machine learning
algorithms it is possible to develop models to be used in disease and pest warning
systems as a function of the climate in order to improve the efficiency of chemical
control of pests of the coffee tree. Thus, we evaluated progress curves of the
incidence of pests and diseases, correlated the infection rates with the
meteorological variables, and also calibrated and tested machine learning algorithms
to predict the incidence of coffee rust, cercospora, coffee miner and, coffee borer. We
used climatic and field data obtained from coffee plantations in production in the
southern regions of the State of Minas Gerais and from the region of the Cerrado
Mineiro; these crops did not receive phytosanitary treatments. As dependent
variables, we considered the monthly rates of coffee rust, cercospora, coffee miner
and coffee tree borer, and the climatic elements were considered as independent
(predictor) variables. All analyses were performed considering three different time
periods: 1-10d (from 1 to 10 days before the incidence evaluation); 11-20d (from 11
to 20 days before the incidence assessment); and 21-30d (from 21 to 30 days before
the incidence assessment). The Pearson coefficient was used to evaluate the unit
correlations between the meteorological variables and infection rates of coffee
diseases and pests. The algorithms calibrated and tested for prediction were: a)
Multiple linear regression (RLM); b) K Neighbors Regressor (KNN); c) Random
Forest Regressor (RFT) and d) Artificial Neural Networks (MLP). The models were
calibrated in years of high and low-yields, because the biannual variation of harvest
yield of coffee beans influences the severity of the diseases. The models were
compared by the Willmott's 'd’, RMSE (root mean square error) and coefficient of
determination (R2) indices. The result of the more accurate algorithm was specialized
for the south of Minas Gerais and Cerrado Mineiro regions using the kriging method.
The climatic variables that showed significant correlations with coffee rust disease
were maximum air temperature, number of days with relative humidity above 80%
and relative humidity. Random Forest was more accurate in the prediction of coffee
rust, cercospora, coffee miner and coffee borer using climatic conditions. In the
southern region of Minas Gerais, Random Forest showed a greater accuracy in the
predictions for the Cerrado Mineiro in years of high and low-yields and for all
diseases.

KEY-WORDS: crop modeling; big data; artificial intelligence; phytosanitary maps
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Introduction

Coffee is the second most important agricultural commodity in the world, with
annual revenues of around $ 24 billion (FAO, 2015, Kouadio et al.,, 2018). The
harvest of 2018/2019 was about 168 million bags of 60 kg (ICO, 2019). World coffee
production is dominated by Coffea arabica, with a 64.5% share, being produced in
more than 60 countries (ICO, 2017a, ICO, 2017b, Geeraert et al., 2019). Developing
countries are the main coffee producers (Hinnah et al.,, 2018). Brazil led world
production with 61 million bags in the 2018 harvest (ICO, 2019), with the State of
Minas Gerais accounting for approximately 50% of Brazilian coffee production
(CONAB, 2019).

One of the main constraints to coffee production is the damage caused by
insect pests and plant diseases (Alba-Alejandre et al., 2018). The plant is very
susceptible to many diseases and pests and can be affected by several of these
simultaneously; however, studies have focused on studies of diseases and pests in
coffee individually (Avelino et al., 2018). Leaf pests and diseases can be severe in
perennial crops (Barbosa et al., 2007, Cerda et al., 2017), and coffee productivity
losses reported in Brazil of 13% to 45% in 2017 (Cerda et al., 2017).

The production and quality of coffee are heavily influenced by diseases and
pests, and these are dependent on climatic conditions (Verhage et al., 2017; Harvey
et al., 2018). Thus, there is a need for the development of predictive models for the
incidence of pests and diseases that can improve the interpretation of the crop cycle
according to the climate, incorporating climate-soil-plant factors (Malau et al., 2018;
Badnakhe et al., 2018).

Rust is a devastating disease in coffee production in Brazil and other
countries, and regions such as Colombia, Central America, Mexico, Peru and
Ecuador (Avelino et al., 2015). The climatic conditions of the producing regions
present excellent conditions of temperature and humidity of the air for germination
and invasion of coffee rust (Hinnah et al., 2018). The main symptom of this disease is
the defoliation of the plant, which consequently reduces its flowering and fruiting.
Coffee production can be reduced from 30% to 90% due to the presence of rust
(Santana et al., 2018).
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Rust is favored by air temperatures ranging from 20 and 25 °C and total
precipitation greater than 30 mm. However, the rust epidemic increases rapidly in
temperatures between 15 and 18 °C (Pereira et al., 2008). Several studies have
shown that the degree of infection of coffee rust is directly related to climatic
conditions (Talamini et al., 2003).

Cercospora is one of the main diseases of the coffee tree in Brazil, decreasing
the productivity of the crop and the quality of the beverage (Botelho et al., 2017; Silva
et al., 2019; Chaves et al., 2018), and is caused by the fungus Cercospora coffeicola
(Berkeley and Cooke). Environmental factors such as water stress and nutritional
deficiency of the plant may lead to the occurrence of cercosporiosis (Chaves et al.,
2018).

Hypothenemus hampei Ferrari (Coleoptera: Curculionidae), commonly known
as 'coffee borer', is the most damaging coffee pest worldwide (Plata-Rueda et al.,
2019). The females of this insect perforate and oviposit inside the coffee fruit where
the larvae feed (Reyes et al.,, 2019). The damage causes significant losses in
productivity and alters the flavor profile of the coffee beans (Veja et al., 2009; Walker
et al., 2019). The coffee borer population increased 8.8% with the temperature
increase of 1 °C in Uganda (Gichimu, 2013).

The coffee miner (Leucoptera coffeella) is one of the main pests in Brazil
(Sabino et al., 2018). Their larvae penetrate the mesophyll, causing the destruction of
the parenchyma. The main symptoms are leaf blade necrosis, photosynthesis
reduction, and premature leaf fall (Androcioli et al., 2018). The occurrence of this pest
in the plant is directly related to the physiological state and the growth characteristics
of the coffee trees, and in turn, is related to management practices and mainly to the
predominant climatic conditions, especially with high rainfall events (Sabino et al.,
2018, Caramori et al., 2004; Morais et al., 2007).

All the relationships between the variability of pests and diseases of the coffee
tree and climatic elements can be simulated with agrometeorological models (Rolim
et al., 2008) using machine learning algorithms (Sahoo et al., 2017). Machine
learning is a method that works with data analysis and seeks to automate the
construction of analytical models (Shekoofa et al., 2014; Li et al., 2016). It is a field of

computer science that works with the recognition of patterns using the computational
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learning theory in artificial intelligence (Sahoo et al., 2017). Huber and Gillespie
(1992) report that machine learning algorithms can automate disease and pest alert
systems, guiding farmers' decision-making when it is necessary to use chemical
control in crops.

The modelling of pests and diseases using different techniques of Machine
learning is one of the important guidelines to reduce impacts on crop productivity
(Donatelli et al., 2017; Badnakhe et al., 2018). The use of Machine Learning to detect
plant diseases, weeds, water stress, prediction and estimation of crop productivity,
among other agricultural operations will be routine in agriculture in the near future
(Rehman et al., 2019); however, there are problems in selecting the calibration model
with the best predictability (Das et al., 2018).

Machine learning algorithms are very promising for faster, more efficient and
accurate large-scale analyses. Some examples of machine learning algorithms are k-
Nearest Neighbor, Linear Regression, Artificial Neural Networks and Random Forest
(Badnakhe et al., 2018).

The k-Nearest Neighbor (KNN) is a simple and easy-to-implement classifier,
obtained by the detection of the nearest neighbours, which are used to determine the
classes. These neighbours should be chosen carefully to obtain good results (Lu et
al., 2017), and the KNN method has shown satisfactory accuracies for estimated
planting date (GUmuscu et al., 2019), water stress (Ravindranath et al., 2018) and
disease detection (Lu et al., 2017; Cao et al., 2018).

Artificial neural networks (ANNSs) are dynamic systems and their structure is
inspired by the human brain (Krishna et al.,, 2019). However, the main problem in
implementation of ANNs is to find the ideal number of neurons or hidden nodes (Das
et al., 2018). ANNs are useful when data diversity is very large and the relationships
and interactions are nonlinear (Pourmohammadali et al., 2019), as well as in
agroclimatic zoning (Aparecido et al., 2018; 2019), prediction and estimation of
productivity (Pourmohammadali et al., 2019; Ma et al., 2019), pest prediction (Cai et
al., 2019), water deficit (Krishna et al., 2019) and disease prediction (Wheeler et al.,
2019; Kim et al., 2018).

The Random Forest algorithm (RFR) is a widely used set learning method that
is based on the merge of decision trees as the base learner (Breiman, 2001; Xu et
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al., 2019). The final forecast is the mean of the predicted values of all trees (Ji et al.,
2019). This method has high classification accuracy and has powerful measurement
capability of the most important variable (Xu et al., 2019).

Multiple linear regression (RLM) is one of the simplest methods and a
standard approach for model development and is widely used in agriculture (Correia
et al., 2015, Carvalho Junior et al.,, 2016). However, when the data set of
independent variables presents a greater quantity of samples and/or has
multicollinearity, the method is not successful and presents deviations (Das et al.,
2018).

Diseases and pests have been causing a reduction in coffee quality and yield
in Brazil (Spongoski et al., 2005). There are few studies on pest and disease indices
in coffee trees, not only in Brazil, but in all countries where the plant is cultivated. The
most common strategy to control these diseases and pests is the application of foliar
fungicides and insecticides, depending on their intensity in the region. Unfortunately,
this traditional method does not consider the influence of climatic conditions on the
development of diseases and pests. With the use of these algorithms of machine
learning, computers can make accurate decisions of the best moments of application
of agrochemicals for the control of pests and diseases.

The hypothesis of this study is that one of the prediction algorithms calibrated
for field conditions will be simple to understand, easy to use, and accurate, so that it
can be used to develop a disease and pest warning system to improve the efficiency
of chemical control of pests of coffee plants.

Thus, the objective of this study was: a) To evaluate progress curves of the
incidence of pests and diseases for different regions and the load of fruit present on
plants; b) Correlate infection rates of pest and disease incidence with meteorological
variables considering different time periods for each condition; c) Calibrate different
algorithms to predict the incidence of pests and diseases based on climate, using
machine learning algorithms including the most conventional methods (RLM and
kKNN) and the most flexible ones (RFR and RNA); d) Test the algorithms with
independent data to assess their suitability for use in a disease and pest alert
system, and, e) spatialize the accuracy of the best prediction algorithm for the

incidence of pests and diseases for the Minas Gerais state.
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Material and methods

We used a historical series of climatic data and levels of pest infestation and
disease severity of Coffee arabica L. for the state of Minas Gerais, Brazil. We use
representative localities of the State for coffee production: Boa Esperanca (BOE),
Carmo de Minas (CDM), Muzambinho (MUZ) and Varginha (VAR), located in the
southern region of Minas Gerais (SOyvg) and Araxa (ARX), Araguari (ARG) and
Patrocinio (PAT) located in the Cerrado Mineiro region (CEyg) (Table 1). The area

selected for the work corresponds to 875,060 ha.

TABLE 1. Geographic characteristics of the main coffee growing areas of the State of

Minas Gerais.

Cerrado Mineiro (Mineiro Triangle and Upper

Southern Minas Gerais Paranaiba)
Places E Boa Carr_no de Muzambinho  Varginha Araguari Araxa Patrocinio
speranca Minas
Latitude (°) 21°03'59"S 22°10'31"S 21°20'47"S 21°34'0"S 18°59'35"S 19°33'21"S  18°33'21"S
Longitude (°) 45°34'3"W  45°09'0"W  46°32'0"W 45°242" W 46°59'0"W 46°58'0"W  48°12'25"W
Altitude (m) 830 1080 1033 940 961 960 933
Period 2010-2018 2006-2018 2010-2018  1998-2018 2010-2018  2010-2018 2010-2018

Area (km?) 860,7 3233 409 395,6 2731 1165 2 866
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FIGURE 1. Coffee regions utilized in the study in the state of Minas Gerais, Brazil.
BOE is Boa Esperanca, CAR is Carmo de Minas, MUZ is Muzambinho, VAR is
Varginha, ARG is Araguari, ARX is Araxa and, PAT is Patrocinio.

The meteorological data were obtained from automatic meteorological stations
on a daily scale: minimum air temperature (Tar, °C), maximum air temperature (Tar,
°C), precipitation (P, mm) and relative humidity (%).The weather stations were of type
Vantage Pro2 Davis (K6162) and were installed near the coffee plantations that were
evaluated.

With the meteorological elements measured by the automatic meteorological
stations, other specific variables that influence the diseases and pests of the coffee
tree were also selected (Table 2). The meteorological data were organized in matrix
form (types of variables x time) to be compatible with the rate of infection of diseases

and pests.
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TABLE 2. Weather variables used in evaluations levels of pest infestation and

disease severity of Coffee arabica.

Climatic acronyms Definition
Tmin Minimum temperature average (°C)
Tmax Maximum temperature average (°C)
Rainfall Total rainfall (mm)
NDR=1mm Number of days with rainfall 2 1 mm and <9 mm
NDR=10mm Number of days with rainfall = 10 mm
RH Average relative humidity (%)
NdRHa0% Number of days with relative humidity = 90%
NdRHso% Number of days with relative humidity = 80%

The analyses were performed considering three different time periods: 1-10d
(from 1 to 10 days before the incidence evaluation); 11-20d (from 11 to 20 days
before the incidence assessment); and 21-30d (from 21 to 30 days before the
incidence assessment). These periods were selected by analyzing the latency period
(time between infection of the pathogen in the plant and the manifestation of disease
symptoms). For example, the latency period of Cercosporiose is 9 to 15 days and
that for rust varies from 25 to 40 days (Kushalappa et al., 1983).

Data on disease severity and pest infestation were provided by the Procafé
Foundation (http://fundacaoprocafe.com.br/) from evaluations in fields with no
phytosanitary treatment in the localities of Table 1. The disease data were: coffee
rust (Hemileia vastatrix) and cercospora (Cercospora coffeicola) and pest data:
coffee miner (Leucoptera coffeella) and coffee borer (Hypothenemus hampei). These
data were collected from high and low slope crops.

Incidences were measured in a non-destructive procedure. The plants were
randomly chosen in a zigzag walking pattern in the area, as recommended by
Chalfoun (1997). Incidence scores were determined on leaves from the third or fourth
knot of branches at the middle third of the plants. The site of collection of the
pest/disease in the plant was according to Figure 2 and the methodology for

evaluating coffee development, diseases, and pests used was according to Table 3.
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TABLE 3. Methodology for evaluating coffee development, diseases, and pests used
by the Procafé Foundation of Brazil.

Phytosanitary problem Methodology

Phenology

- Sample 20 plants per plot (random)
- Select four branches per plant in the middle third

Number of nodes (one on each side)
- Quantify the number of nodes developed from

September in each chosen branch

- Sample 20 plants per plot (random)

- Select four branches per plant in the middle third
(one on each side)

Leafiness of coffee plant - Quantify the amount of foliar development in the
chosen branches

- Quantify the soil-foliage percentages in the

samples

Diseases

- Sample 20 plants per field
- Collect the leaves in the middle third of the
chosen plant

Coffee rust (Hemileia vastatrix) and | - Choose five lateral branches at random on each
side of the plant

Cercospora index (Cercospora - Remove a completely developed leaf, of the 3rd
or 4th pair of leaves, from each branch
coffeicola) - Total of 10 leaves/plant (five on each side)

- Total of 200 leaves/field
- Quantify the percentage of disease in the

samples

Pests

- Sample 20 plants per field

- Collect the leaves in the middle third of the
chosen plant

- Choose five lateral branches at random on each

Coffee leaf miner (Leucoptera side of the plant
- Remove a completely developed leaf, of the 3rd
COffee”a) or 4th pair of leaves, from each branch

- Total of 10 leaves/plant (five on each side)

- Total of 200 leaves/field

- Quantify the percentage of the pests in the
samples

- Sample average of 50 plants per plot
- Choose four branches per plant (one on each

Coffee berry borer (Hypothenemus | side) _
- Collect 25 fruits/branch for a total of 100

hampei) fruits/plant

- 50 plants/field for a total of 5000 fruits/field

- Quantify the percentage of the pest in the
samples
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To quantify coffee leafage (%), equation 2 was used. It is normal for each
node developed from the plagiotropic branch of the coffee tree to present 2 leaves (1
leaf on each side of the node). To quantify the % of diseases and pests, equations 3-

6 were used.

LEAF NUMBER

(LEAETTMEER,

Number of nodes

Leafiness (%) = |

] - 100 @)

LM () = e S ewves it 1100 @
CBB ) = a1 100 @
FLO) = e et 1+ 100 ®
CI (%) = [(Number of leaves with Cercospora)] . 100 ©)

Number of leaves total
where, Ci is Cercospora index (%), Fl is Coffee rust index (%), CBB is Coffee berry
borer (%) and CLM is Coffee leaf miner (%).

The diseases and pests of the coffee plantations were evaluated in two
situations of "high" and "low" productivity, which occur due to the natural biennial
nature of the coffee plant. “High” represents more than 30 bags of 60 kg ha™, while
“low” is lower than 10 bags of 60 kg ha™. The disconnected range between these
classifications is due to the difference observed in the field during subsequent high
and low production seasons. Catuai and Mundo Novo were the plants used, and both
are susceptible to diseases and pests.

Pest infestation and severity of coffee diseases were evaluated seasonally
from vegetative growth (September) and were represented by boxplot graphs, which
allow for the description of the evolution and variability of pest diseases over time
(Nutter, 1997; Bergamin Filho, 2011).

We sought to detail the relationship between coffee diseases and pests and
the meteorological elements using univariate correlations (Pearson) of each element
with the diseases for the south of Minas Gerais and Cerrado in both pending loads.
Correlations were made considering three different time periods: 1-10d (from 1 to 10
days before the incidence evaluation); 11-20d (from 11 to 20 days before the

incidence evaluation); and 21-30d (from 21 to 30 days before the incidence
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evaluation).

We used different methodologies to predict coffee disease and pest indices.
The infection rate of diseases and pests was the dependent variable and the
meteorological elements (Table 2) the independent variables of the models. In all
methodologies, 40% of the data for the training and 60% for the calibration of the
models were separated using python's library
(sklearn.model_selection.train_test_split).

The forecasting methods were as follows: 1) Multiple Linear Regression
(RLM); 2) K Neighbors Regressor (KNN); 3) Random Forest Regressor (RFT) and
Artificial Neural Networks - Multi-layer Perceptron (MLP).

We use the ridge method in RLM. This method avoids poor conditioning of the
matrix of the regressors variables, controlling the inflation and the general instability
found in least squares estimators. Briefly, it avoids the multicollinearity problem
without having to exclude regressor variables, so it has no information loss. The KNN
algorithm is a simple and easily implemented technigue and is very flexible. In the
KNN the 3 closest neighbors were identified, and the metric used to calculate the
distances was the Euclidean distance. In the RFT, a forest was randomly created
with an ensemble of 100 decision trees to predict pests and diseases as a function of
the climate. The artificial neural network used was the Multi-layer Perceptron (MLP),
with 3 layers of neurons. In each of these layers 10 neurons were used
(hidden_layer_sizes = 10, 10, 10). MLP training was done using back propagation.

The actual observed field data and the results of all models were compared
using several statistical indices: accuracy, precision, and level of significance (Table
4). Accuracy indicates the closeness of an estimate to the observed value and was
evaluated using the Willmott's ‘d’ and the root mean square error (RMSE). Precision
is the ability of a model to repeat an estimate and was evaluated using the coefficient
of determination (R?) adjusted (R?adj) following Cornell and Berger (1987).
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TABLE 4. Accuracy and precision of statistical indices that were used in the
evaluation of models forecasting. YEST is estimated value of y; YOBS is observed

value of y; XoBs is observed value of x; N is number of data.

Statistical Index Equation

Accuracy

Willmott’s ‘d’ B ZiNzl(YObSi —Yest, )?
> l(]Yesti Y|+ [Yobs, —ﬂ)z

RMSE N 5
RMSE = \/Zi:l(YOBSi - YEST,:)
B N

Precision

=}

R2
(Yest, —Yobs)
R?=1-— = :
(Vest, — Yobs) — > (Yest, - Yobs,

i=1 i=1

With all the algorithms calibrated for the prediction of pests and diseases, the
RMSE index of the most accurate algorithm for the south of Minas and Cerrado
Mineiro regions was mapped in both pending production loads. Maps were generated
using kriging interpolation (Krige, 1951) with 1 neighbour and a resolution of 0.25° in

the spherical model.

Results and discussion

The southern region of Minas Gerais (SOyg) showed an average annual air
temperature (Tar) 1.39°C lower than the values measured in the Cerrado Mineiro
(CEwmg). The rainfall (P) was more similar, since the annual mean values were 116.5
and 120.5 mm mo™ for SOyc and CEwg, respectively (Figure 3.A.B). The seasonal
distributions of Tar and P in the SOys and CEyg regions were similar. In May to
August, the lowest Tar and P occurred in both regions, with mean values of 17.08 °C
and 30.01 mm in the SOys and 18.8 °C and 23.9 °C in the CEyc. Results were
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similar to those observed by Aparecido et al., (2018).

The lowest water storage in the soil occurs in August in the SOye and in
September in the CEuc (Figure 3.G.H). The water deficit (DEF) occurs in both
regions from April to November, however, the DEF is more intense in the CEuc
region, reaching -35.8 mm in August (Figure 3.1.J). The annual cumulative DEF was -
65.7 and -103.6 mm y™* for the SOy and CEyg, respectively. DEF is one of the
variables that most influences the development of agricultural crops, as well as that
of coffee (DaMatta, 2004; Carvalho et al.,, 2011; Syvertsen and Garcia-Sanchez,
2014).
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Coffee rust showed a trend of sigmoidal progression in both slopes and in all
studied regions (Figure 4 and 5). SOyc showed a mean overall incidence of coffee
rust of 23.77% (x 24.13) and CEyc an average incidence of 24.46% (+ 28.40) of
infected leaves. The lowest values of rust occurred between September and
December (4%). After April there was a stabilization of growth in SOyc and CEyg.
This tendency of growth of coffee rust curves was also shown by Hinnah (2019). In
the SOy, the coffee with high yield had higher rust indices (31.46%, £ 30.92) in
relation to coffee with low yield (16.08%, + 17.35). In the period from May to July, the
coffee in the SOye with high yield had 73.5% rust incidence, while the low-yield
coffee had average values of 24.8% of infected leaves (Figure 4). In the CEwc there
were no differences between the high and low coffee loads. For high yield the values
of rust were 24.87% (+ 29.55) and for low yield the values were 24.05% (+ 27.25) of
infected leaves.

The locality with the lowest incidence of coffee rust in the SOys was Boa
Esperanca, with annual mean values of 28.05% (x 30.47) and 10.74% (+ 12.52) for
high and low vyields, respectively. Varginha was the locality with the highest
incidence, with 34.41% (+ 33.24) for high yield and 17.76% (+ 19.11) for low yield.
Patrocinio was the locality of CEyc with the lowest average incidence of coffee rust at
high yield (19.72%, + 25.57) and with the highest incidence at low yield (24.63%, +
25.61). Araxa had the highest incidence of rust at high yield (28.20%, + 31.93) and
lower incidence at low yield (23.01%, + 28.60) of infected leaves.

The control of rust in coffee can be made with a protective fungicide (copper
base) when the incidence levels reach a maximum of 5%. If the incidence level
exceeds 5% and reaches up to 12%, it is necessary to apply systemic fungicides.
Thus, it is necessary to engage in control of the disease in both regions and crop
loads until November using protective fungicides and from December using systemic
fungicides, so that the diseases do not reach uncontrollable levels. Rust, if not
controlled correctly, causes early leaf fall and subsequent drying of the productive
branches of the crop, which negatively reflects on the development of flower buds
and fruit growth, and causes a drastic reduction of the productivity of the next
agricultural year. Another way to control rust is the use of resistant cultivars such as
'‘Obata IAC 4739', 'Catucai Amarelo 24/137' or 'Obatd IAC 1669-20' (Carvalho et al.,



2012; Avelino et al., 2015; Fazuoli et al., 2018).
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The cercospora of the coffee had a tendency of sigmoidal progress in both
regions and crop loads (Figure 6 and 7). SOy showed a mean overall incidence of
cercospora of only 4.26% (x 4.63), while in CEyc the mean incidence was higher,
with values of 17.32% (+ 18.68) of infected leaves. The highest incidences started
from December with stabilization after February, for both SOy and CEyg.

In the SOwg, the high-yield coffee had cercospora rates similar to the low-
yield, with values of 4.68% (x 5.09) and 3.84% (x 4.29) of infected leaves,
respectively. At CEyc there were no differences between production loads. The high-
yield coffee had an incidence of cercospora of 18.22% (+ 20.18) and in low-yield it
was 16.41% (+ 17.1) of infected leaves.

The locality with the lowest incidence of cercospora of the coffee tree in the
SOwe Was Varginha, with annual mean values of 3.74% (+ 4.03) and 2.18% (z 2.47)
for high and low-yield coffee, respectively. And the locality with the highest average
incidence was Muzambinho, with 5.84% (+ 6.0) for high-yield and 6.02% (z+ 6.72) for
low-yield.

Patrocinio was the locality of CEng with the lowest mean incidences of
cercospora in high and low-yields, with values of 8.25% (+ 9.82) and 5.15% (+ 5.01),
respectively (Figure 7.E.F), and Araguari presented the highest incidence of
cercospora in high and low-yields, with values of 32.91% (+ 32.74) and 30.90% (£
31.38), respectively.

The control of the cercospora of the coffee should be made with protective
fungicides, mainly copper based, as well as of systemic fungicides, but both have a
greater effectiveness if they are applied as preventative measures, and in this case

the forecast models can facilitate decision-making by farmers.
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FIGURE 6. Cercospora incidence progress in two different field conditions (high and

low yields) in Boa Esperanca (A-B); Carmo de Minas (C-D); Muzambinho (E-F), and
Varginha (G-H).
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low yield) in Araguari (A-B); Araxa (C-D) and Patrocinio (E-F).

The coffee miner showed progress curves with a sigmoidal tendency for both

regions and crop loads (Figure 8 and 9). The SOys showed a general average

incidence of coffee miner of only 1.55% (+ 3.34), while in the CEyc the average

incidence was higher, with values of 12.83% (+ 16.83) of infected leaves.

The lowest incidences of the coffee miner were from October to January in

both loads and for all regions, and this occurs due to the onset of rainfall. This result

was also highlighted by Conceicéo et al. (2005) who observed a reduction in the

population of the miner in the period with high rainfall rates.

The high-yield coffee in the SOys had rates of coffee miner similar to the
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coffee with low yields, with values of 1.55% (x 3.98) and 1.56% (£ 2.70) of infected
leaves, respectively. In the CEyg the pest severity was higher in both coffee loads,
with values of 12.66% (+ 16.72) and 13.00% (+ 16.94) of infected leaves for the high
and low-yields, respectively.

The locality with the lowest incidence of Coffee miner in SOy was Varginha,
with annual average values of 0.84% (x 1.45) and 1.06% (+ 1.61) for high and low-
yields, respectively (Figure 8.G.H), and the locality with the highest average
incidence was Muzambinho, with 2.61% (£ 10.25) for high and 2.07% (x 4.03) for
low-yields.

Araxa was the locality of the CEyg with the lowest average incidence of coffee
miner in high and low yields, with values of 3.43% (x 7.43) and 4.88% (+ 10.42),
respectively (Figure 9.C.D). The location with the highest indexes was Araguari with
values of 20.55% (+ 27.85) and 20.69% (x 28.01), respectively (Figure 9.A.B). These
higher levels of coffee miner occur due to higher air temperatures in CEyg, thus
shortening the miner's cycle. Thus, the shorter the duration of the cycle, more
generations occur in a short time, resulting in extremely high populations of larvae
and adults.

The control of the coffee miner can be done with insecticides and should be
initiated when the infestation reaches the control level (20 to 30%), or more, of mined
leaves in the upper third of the coffee trees. Thus, it is necessary to engage in pest
control in all CEyg locations, especially during the period of December-January
(Figure 9). In SOyg the control of the pest is shown to be sporadic and varies by
location. Control is necessary because the Coffee miner promotes drastic defoliation

that influences flowering and fruit formation (Guerreiro-Filho, 2006).
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FIGURE 8. Coffee leaf miner incidence progress in two different field conditions (high

and low yield) in Boa Esperanca (A-B); Carmo de Minas (C-D); Muzambinho (E-F)

and Varginha
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The coffee borer showed Gaussian trend curves in both regions and
productive loads (Figure 10 and 11). SOy showed a mean average incidence of the
coffee borer of only 0.50% (£ 1.33), while in CEyc the mean incidence was higher,
with values of 2.57% (+ 6.03) of infected leaves. The peak incidence of the pest
occurred between December and May, for both regions.

In the SOy the high-yield coffee showed similar coffee borer indices to those
for the low-yield coffee, with values of 0.57% (£ 1.49) and 0.43% (x 1.16) of infected
leaves, respectively. In CEy the coffee borer rates were higher in both coffee loads,
with 2.34% (x 5.39) and 2.80% (x+ 6.65) of infected leaves at high and low-yields,
respectively.

The locality with the lowest incidence of coffee borer in the SOy was
Varginha, with annual average values of 0.38% (+ 0.80) and 0.18% (+ 0.44) for high
and low-yields, respectively (Figure 10.G.H), and the locality with the highest average
incidence was Carmo de Minas, with 0.77% (£ 2.18) for high-yields and 0.56% (+
1.52) for low-yields.

Araxa was the locality of the CEyg with the lowest average incidence of coffee
borer in high and low-yields, with values of 0.67% (x 2.71) and 2.19% (x 6.91),
respectively (Figure 11.C.D). Araguari had the highest incidence of coffee borer in
high and low-yields, with values of 4.86% (+ 10.13) and 4.52% (+ 9.50), respectively.

The control of the coffee borer should be done with insecticides and should
be started when the infestation reaches the control level (3% to 5%), spraying the
most attacked parts of the crop (Souza et al., 2013b). Thus, it is necessary to engage
in control of the pest in all the localities of CEyg, mainly in the period of January-April
(Figure 11). In the SOy the control of the coffee borer is shown to be sporadic and

varies by location.
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FIGURE 10. Coffee berry borer incidence progress in two different field conditions
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FIGURE 11. Coffee berry borer incidence progress in two different field conditions
(high and low yield) in Araguari (A-B); Araxa (C-D) and Patrocinio (E-F).

The maximum air temperature (Twuax), the number of days with relative
humidity above 80% (NdRH> 80%) and relative humidity (RH) were the climatic
variables that showed significant correlations with coffee rust disease (Table 4). Tuax,
NdRH> 80% and HR showed positive correlations and in all the periods 1-10d, 11-
20d and 21-30d in SOyg. For example, for the high-yield coffee in the south region
the correlations were 0.541* 0.48* and, 0.437* for periods 1-10d, 11-20d and 21-
30d, respectively. These correlations demonstrate that an increase in the severity of
rust occurs when the levels of Tyax, NDRH> 80% and RH increase. Campbell and
Madden (1990) and, Salgado et al., (2007) report that Tar and RH are the variables
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that most influence the biological components of a pathosystem in the development
of an epidemic.

TABLE 4. Pearson’s correlation between monthly coffee rust infection rate and
weather variables. Number of days before assessment of incidence of leaf
symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from
21 to 30 days. Minas Gerais, Brazil.

Period assessed before symptoms

\\/’;’ﬁztbr}z; 110d  11-20d  2130d  1-1od  11-20d  21-30d
Southern Minas -High Southern Minas - Low
Tmax 0541% 0.48* 0437  0403*  0.326* 0.246*
Tmin -0.197 -0.139  -0.005 -0.094 -0.025  0.09
NDR>1mm -0.18 0012 0.103 -0.044 0.044  0.156
NDR>10mm  -0.154 0,023 0.061 -0.082 0.013  0.065
NdRH>80% | 0.333* 0.377* 0.393*  0.233* 0.257* 0.265*
NdRH>90% 0.2 0272 0.304* 0.122 0195 0.212
Rainfall -0.162 -0.061  0.033 -0.044 -0.02  0.065
RH (%) 0.396*  0437* 0484*  0325%  0352% 0357%
Cerrado - High Cerrado - Low
Tmax T 0491*  -0431* -0439*  -0.478%  -0.409* -0.406*
Tmin -0.361* 023 -007 | -0.389% 0.277  -0.102
NDR>Imm  -0.162 0.046 0058  -0.212% -0.073  0.012
NDR>10mm  -0.173 0.075 -0.018 -0.205 -0.098  -0.08
NdRH>80% | 0.185 0.253* 0.298* 0.115 0.157*  0.244*
NdRH>90%  0.124 0134  0.132 0.074 0.052  0.034
Rainfall -0.223 011 -0.006 -0.267 -0.143  -0.048
RH (%) 0.259 0.214*

(*) Asterisk indicates that the correlations are significant at p<0.05.

The maximum air temperature (Tuax) Showed positive and significant
correlations (p <0.05) with the incidence of cercospora in both productive loads and
in both regions (Table 5). For example, in the SOy for high-yield coffee, the values
were r = 0.281* 0.308* and 0.246* for periods 1-10d, 11-20d and 21-30d,
respectively. The correlation shows that the higher the Tyax, the higher the incidence
of cercospora in coffee cultivation. This result has also been shown by several
authors such as Echandi (1959), Zambolim et al., (1997), Salgado et al. (2007) and
Souza et al. (2013a) who reported that cercospora requires an excess of insolation

and higher temperatures for the germination of fungi spores, occurring at 30°C. As a
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result of the increase in the severity of the cercospora, early defoliation occurs in the
coffee plants, mainly due to the production of ethylene in the leaves that were
injured, which promotes a reduction in their production (Zambolim et al., 1997,
Salgado et al., 2007).

TABLE 5. Pearson’s correlation between monthly cercospora infection rate and
weather variables. Number of days before assessment of incidence of leaf
symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from
21 to 30 days. Minas Gerais, Brazil.

Period assessed before symptoms

\\,’;’ﬁgtbr]zrs 1100 11-200  21-30d  110d  11-20d  21-30d
Southern Minas - High Southern Minas - Low
Tmax 0.281* L0085 0.246* 0.119 0.208*  0.131
Tmin -0.032 -0.046  0.051 0.005 -0.043  0.039
NDR>Imm  -0.005 0.104 0.152 0.032 0.108  0.119
NDR>10mm  -0.006 01 0.167 0.048 0.063  0.103
NdRH>80% | 0.288* 0.291*  0.339* 0.128 0.147  0.183
NdRH>90%  0.157 0.148  0.26 0.091 0098  0.134
Rainfall -0.083 0.098 0.123 -0.05 0.096  0.086
RH (%) 0.266 0.319% 0313* 013[  0211* 0182
Cerrado - High Cerrado - Low
Tmax 0.343% 0.286* 0261 [0:822% 0199  0.212
Tmin -0.183 -0.106  0.025 -0.099 -0.025  0.08
NDR>1mm  -0.051 0.023 0.113 0.032 0.087  0.165
NDR>10mm  -0.062 -0.03 0.024 0.029 0016  0.08
NdRH>80%  0.118 0.134  0.199 0.12 0112  0.183
NdRH>90%  0.042 0.035 0.047 0.043 0011  0.031
Rainfall -0.041 -0.042  0.026 0.056 0.017  0.065
RH (%) 0.221 0.233

(*) Asterisk indicates that the correlations are significant at p<0.05.

Precipitation (P) showed negative and significant correlations (p <0.05) with
the incidence of coffee miner in the period 1-10d in both loads and in the two regions
(Table 6), clearly demonstrating the decrease in the severity of the coffee miner with
the increase of P. This demonstrates that the insect needs prolonged periods of
drought to promote high infestation levels in coffee. This result is confirmed by
Machado et al., (2014) and Costa et al., (2015).

The Twn had positive correlations with the incidence of coffee miner in the
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period 11-20d, however, only in the SOyg. Thus, the higher the Tun values, the
greater the severity of the coffee miner. This positive correlation between Tar and
the severity of the coffee miner was also confirmed by other authors such as
Fernandes et al. (2009). The CEyg did not have this relationship, since it is already a
region with higher Tar. Higher levels of coffee miner are undesirable, because the
mined leaves fall before leaves that have not been attacked, which causes a
reduction of the active photosynthetic area and consequent drop in coffee production
(Caixeta et al., 2004).

TABLE 6. Pearson’s correlation between monthly coffee miner infection rate and
weather variables. Number of days before assessment of incidence of leaf
symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from
21 to 30 days. Minas Gerais, Brazil.

Period assessed before symptoms

\\,’;’:‘;Zmrs 1-10d  11-20d 21-30d 110  11-20d  21-30d
Southern Minas - High Southern Minas - Low
Tmax 0.023 0.107  0.093 0.123 0.206 0.193
Tmin 0.16 0.228* 0.183 0.162 0.218* 0.172
NDR>1mm -0.245* -0.198* -0.139 -0.241* -0.146  -0.076
NDR>10mm -0.183 -0.149 -0.059 -0.173 -0.102 0.012
NdRH>80% -0.059 -0.025 0.033 0.049 0.073
NdRH>90% | -0.004 -0.019 0.056  0.094 0.061
Rainfall -0.234* -0.154 -0.148 -0.251* -0.119 -0.104
RH (%) -0.119 -0.082 -0.064 -0.024 0.036 0.054
Cerrado - High Cerrado - Low
Tmax -0.095 -0.019 -0.006 -0.09 -0.029 -0.021
Tmin -0.126 -0.079 -0.043 -0.084 -0.057  -0.027
NDR>1mm -0.107 -0.10 -0.075 -0.075 -0.093 -0.011
NDR>10mm -0.076 -0.132* | -0.093 -0.072 -0.106*| -0.044
NdRH>80% -0.084 -0.124 -0.026 -0.018 -0.088 0.015
NdRH>90% -0.023 -0.055 -0.051 -0.024 -0.042  -0.022
Rainfall -0.122* -0.107 -0.114 -0.117* -0.084  -0.083
RH (%) 0.007 0.026

(*) Asterisk indicates that the correlations are significant at p<0.05.

The Ty of the period 11-20d had positive and significant correlations (p
<0.05) with coffee borer incidence in both loads and regions (Table 7). For example,
in the SOmc for high-yield coffee the value was r=0.296. This correlation occurs
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because with higher Ty there is a reduction in the insect cycle and a consequent
increase in the population of the coffee borer (Laurentino and Costa, 2004). Other
climatic variables also show significant correlations with the level of pest infestation in
both regions, such as RH in the periods 1-10d and 11-20d and NdRH> 80% in the
period of 1-10d (Table 7).

TABLE 7. Pearson’s correlation between monthly coffee berry borer infection rate
and weather variables. Number of days before assessment of incidence of leaf
symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from
21 to 30 days. Minas Gerais, Brazil.

Period assessed before symptoms

\\/’;’relzmrs 110d  11-20d 2130d  1-10d  11-20d  21-30d
Southern Minas - High Southern Minas - Low
Tmax | 0033 005 0068 | 0027  -0.033 0046
Tmin 0.249 0.298* 0.253 0.237 0.293*  0.246
NDR>1mm 0.306* 0.265 0.282*  0.252
NDR>10mm 0289 0.154 0.267 0.2
NdRH>80% | 0.316* 0267 0129 | 0312* 0248  0.142
NdRH>90%  0.232 015 0.119 0.257 0195  0.201
Rainfall 0.301 0335 0.235 026 0.324* 0.207
RH (%) 0.26* 0.28* 0196  0.254* 0.263*  0.194
Cerrado - High Cerrado - Low
Tmax 015 0213 -0.123 01  -0.144 -0.096
Tmin 0.212 0.295* 0.243 0.135 0.314* 0.8
NDR>Imm  0.329* 0313  0.289 0.202 0213  0.195
NDR>10mm  0.224 0332 0.205 0.175 0.246  0.091
NdRH>80% [N0463% 0333 0271 [0S 0.247  0.169
NdRH>90%  0.202 0.197 0.155 0.054 0.126  0.033
Rainfall 0.134 0316  0.296 0.092 0199  0.198
RH (%) 0.334* 0.361* 0303  0.228* 0.233*  0.222

(*) Asterisk indicates that the correlations are significant at p<0.05.
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In predicting the incidence of rust the RFT algorithm demonstrated the highest
accuracy (RMSE) and the highest precision (R2adj) in both fruit loads and in all
locations (Table 8).

The average RMSE for the prediction of coffee rust in high-yielding crops was
19.59, 24.15, 8.51 and 15.48% for KNN, MLP, RFT and RLM, respectively. For low-
yield coffee the RMSE values were 14.05, 15.90, 5.87 and 12.10%, for KNN, MLP,
RFT and RLM, respectively. The superiority of RFT was also shown by the R2adj and
Willmott's 'd'.

For example, the average R2adj for high and low-yield coffee was 0.866 and
0.868, respectively, being higher than that for the other tested algorithms. These
results are similar to other authors, such as Meira, Rodrigues and Moraes (2008),
who reached a precision of 73% in the prediction of infection rates of coffee rust at
high-yields in the region of SOyg.

The Willmott's 'd' indexes for high-yield coffee predicting with RFT were 0.966,
0.969, 0.969, 0.979, 0.970, 0.968, 0.973 for the ARG, ARX, BOE, CDM, MUZ, PAT,
and VAR locations, respectively. For MLP, the Willmott's 'd' indexes for high-yield
plants were 0.847, 0.715, 0.736, 0.392, 0.535, 0.797 and 0.687 for the ARG, ARX,
BOE, CDM, MUZ, PAT and VAR locations, respectively. Pinto et al. (2002) also
compared RLM and MLP in predicting coffee rust using as independent data the
climatic variables in the SOyc and observed that the smallest errors occurred with
the use of MLP algorithms.

The prediction of coffee rust has already been studied by Pinto et al. (2002)
using artificial neural networks, and by Meira, Rodrigues and Moraes (2008) using
decision trees. Another technique was used by Girolamo Neto et al. (2014) using
data mining techniques to develop coffee rust prediction models for the SOy, and
they observed that for years of high and low-yields the best accuracies were 85.3%

and 88.9%, respectively.



84

TABLE 8. Statistical indices of the algorithms in the prediction of coffee rust in high
and low-yield coffee for the State of Minas Gerais, Brazil. Legend: BOE is Boa
Esperanca; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxa;, MUZ is
Muzambinho; PAT is Patrocinio, VAR is Varginha, KNN is KNeighbors Regressor,
MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple

Linear Regression (Ridge).

. . KNN MLP RFT RLM KNN MLP RFT RLM KNN MLP RFT RLM
Locations  Yield C -
R<adj RMSE Willmott’s ‘d’
ARG 0.719 0.634 0.864 0.833 19.837 21.213 8.807 14.091 0.821 0.847 0.966 0.932
ARX 0.727 0.504 0.868 0.790 19.994 22.865 8.906 14.932 0.823 0.715 0.969 0.916
BOE High 0.705 0.619 0.860 0.755 19.670 21.779 8.353 16.399 0.800 0.736 0.969 0.867
CDM yield 0.763 0.688 0.874 0.823 19.723 32.473 8.198 16.106 0.849 0.392 0.979 0.915
MUZ 0.670 0.377 0.866 0.739 21.235 27.375 8.733 17.692 0.776 0.535 0.970 0.864
PAT 0.768 0.644 0.859 0.849 14970 16.872 7.369 11.232 0.836 0.797 0.968 0.935
VAR 0.736 0.615 0.871 0.798 21.709 26.497 9.270 17.937 0.838 0.687 0.973 0.897
Average 0.727 0.583 | 0.866 0.798 19.591 24.153 8.519 15.484 0.820 0.673 | 0.971 0.904
ARG 0.754 0.647 0.867 0.854 17.457 19.454 7.818 12.029 0.854 0.833 0.971 0.942
ARX 0.703 0.477 0.871 0.800 18.540 21.978 8.265 13.785 0.803 0.656 0.966 0.921
BOE 0.684 0.441 0.871 0.737 7.117 8918 2557 b5.654 0.782 0.555 0.975 0.859
CDM )I/_ig\llé 0.688 0.502 0.858 0.823 8.783 10.489 3.806 16.106 0.785 0.650 0.965 0.915
MuUZ 0.481 0.334 0.870 0.612 19.341 21.121 7.418 15.963 0.609 0.495 0.960 0.773
PAT 0.743 0.657 0.865 0.844 15.126 15.897 6.786 10.601 0.827 0.836 0.970 0.943
VAR 0.668 0.541 0.877 0.701 12.027 13.497 4.464 10.570 0.792 0.659 0.975 0.831
Average 0.674 0.514 [ 0.868 0.767 14.056 15.908 5.873 12.101 0.779 0.669 | 0.969 0.883

The RFT algorithm showed the highest accuracy (RMSE) and the MLP the

lowest performance for both fruit loads in the cercospora forecast (Table 9).

The Willmott's 'd' indexes for the high-yield coffee predicting with RFT were

0.939, 0.887, 0.928, 0.840, 0.654, 0.865 and 0.637 for the ARG, ARX, BOE, CDM,
MUZ, PAT and VAR locations, respectively. The Willmott's 'd' indexes for the MLP at
high-yields were 0.644, 0.487, 0.628, 0.640, 0.654, 0.565 and 0.637 for the ARG,
ARX, BOE, CDM, MUZ, PAT and VAR locations, respectively. The mean accuracy
difference between these algorithms was 0.259% (Table 9).

The average RZadj for the prediction of the cercospora in high-yield coffee
were of 0.667, 0.507, 0.736 and 0.655 for the algorithms KNN, MLP, RFT and RLM,
respectively. At low-yields the R2ad) values were 0.632, 0.525, 0.725 and 0.628 for
KNN, MLP, RFT and RLM, respectively. The authors Souza et al. (2013a), who used
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the decision tree methodology to evaluate cercosporiosis in conventional and organic
coffee plantations, observed that the calibrated models had a 60% accuracy in the
SOwe-.

TABLE 9. Statistical indices of the algorithms in the forecast of the cercospora in high
and low-yield for the State of Minas Gerais, Brazil. Legend: BOE is Boa Esperanca,
ARG is Araguari; CDM is Carmo de Minas; ARX is Araxa; MUZ is Muzambinho; PAT
is Patrocinio, VAR is Varginha, KNN is KNeighbors Regressor, MLP is Multi-layer
Perceptron, RFT is Random Forest Regressor and RLM is Multiple Linear
Regression (Ridge).

Locations vield KNN MLP RFT RLM KNN MLP RFT RLM KNN M!_P RFT RLM
R2adj RMSE Willmott’s ‘d’

ARG 0.726 0.495 0.895 0.763 20.337 27.003 7.298 16.019 0.823 0.644 0.939 0.913
ARX 0.665 0.386 0.786 0.573 12.387 16.741 6.089 13.178 0.763 0.487 0.887 0.710
BOE High 0.594 0.540 0.840 0.536 4.057 4249 4491 4.049 0.689 0.628 0.928 0.741
CDM yield 0.688 0.529 0.529 0.664 2.849 3316 3.158 2.606 0.774 0.640 0.840 0.817
MUz 0.587 0.611 0.611 0.718 6.304 6.295 3.295 5.025 0.698 0.654 0.654 0.845
PAT 0.716 0.421 0.921 0.621 5731 7.035 7.035 5.515 0.775 0.565 0.865 0.830
VAR 0.689 0.569 0.569 0.707 2.804 3.192 3192 2.330 0.792 0.637 0.637 0.843

Average | 0.666 0.507 [ 0.736 0.655 7.781 | 9.690 4.937 6.960 0.759 0.608 ' 0.821 0.814
ARG 0.725 0.500 0.500 0.753 19.291 26.608 4.847 16.061 0.824 0.651 0.651 0.909
ARX 0.561 0.433 0.733 0.503 9.678 13.133 7.196 9.709 0.706 0.478 0.978 0.673
BOE 0.668 0.536 0.936 0.597 3.106 3.518 3.518 3.095 0.724 0.553 0.853 0.766
CDM Lowyield 0.526 0.541 0.841 0.614 2.615 2591 2591 2.270 0.641 0.618 0.818 0.788
MUZ 0.560 0.516 0.516 0.632 5,597 5.832 5.832 5.049 0.673 0.561 0.961 0.792
PAT 0.788 0.621 0.621 0.743 2972 3270 6.971 2.325 0.846 0.724 0.773 0.913
VAR 0.598 0.533 0.933 0.554 1780 1905 1905 1.648 0.701 0.562 0.762 0.742

Average | 0.632 0.525 [ 0.725 0.628 6.434 | 8122 4.694 5.737 0.731 0.592 ' 0.828 0.798

In predicting the severity of the coffee bean miner using climate variables, the
RFT algorithm showed the highest accuracy (RMSE) and the highest precision
(R%adj) in both fruit loads and in all localities, while MLP had the lowest accuracy
(Table 10).

In the prediction of the coffee miner in high-yield plants, the Willmott's 'd' of the
RFT were 0.864, 0.834, 0.842, 0.848, 0.845, 0.829 and 0.849 for the ARG, ARX,
BOE, CDM, MUZ, PAT and VAR, respectively. The MLP for high-yield coffee showed
values of 0.439, 0.570, 0.598, 0.741, 0.806, 0.447 and 0.886 for the ARG, ARX,
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BOE, CDM, MUZ, PAT and VAR locations, respectively. The mean accuracy
difference between these algorithms was 0.240% (Table 10).

The average R?adj for the prediction of the coffee miner in high-yield plants
was 0.615, 0.486, 0.850 and 0.643 for the KNN, MLP, RFT and RLM algorithms,
respectively. At low-yields the values of R2adj were 0.629, 0.471, 0.857 and 0.589,
for KNN, MLP, RFT and RLM, respectively (Table 10). This demonstrates that the
algorithms do not present prediction differences for the coffee miner bug at high or

low-yields.

TABLE 10. Statistical indexes of the algorithms in the prediction of Coffee miner in
high and low-yield crops for the State of Minas Gerais, Brazil. Legend: BOE is Boa
Esperanca; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxa;, MUZ is
Muzambinho; PAT is Patrocinio, VAR is Varginha, KNN is KNeighbors Regressor,
MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple

Linear Regression (Ridge).

Locations  Yield KNN MLP RFT RLM KNN MLP RFT RLM KNN M.LP RFT RLM
R2adj RMSE Willmott’s ‘d’

ARG 0.688 0.197 0.858 0.656 14.367 22.430 6.645 15.483 0.789 0.439 0.864 0.832
ARX 0.426 0.537 0.839 0.602 4982 5438 1063 4.126 0.622 0.570 0.834 0.716
BOE High 0.426 0.516 0.840 0.530 4982 2147 1018 2.033 0.622 0.598 0.842 0.689
CDM yield 0.673 0.655 0.859 0.575 1339 1372 0.662 1.365 0.766 0.741 0.848 0.727
MUz 0.708 0.723 0.856 0.643 2167 2108 1.201 2261 0.780 0.806 0.845 0.779
PAT 0.674 0.049 0.842 0.643 11.282 14375 4.061 10.399 0.709 0.447 0.829 0.836
VAR 0.709 0.824 0.855 0.854 1.087 0.880 0.565 12.029 0.799 0.886 0.849 0.942

Average  0.615 0.486 | 0.850 0.643 5.744 | 6.964 2.174 | 6.814 0.727 0.641 [0.844 0.789
ARG 0.723 0.454 0.850 0.664 14505 19.605 7.433 14.776 0.801 0.675 0.858 0.844
ARX 0.478 0.535 0.861 0.554 8.148 8.225 3.716 7.591 0.627 0.573 0.842 0.668
BOE 0.622 0.403 0.848 0.467 2457 2871 0.953 2227 0.723 0.457 0.850 0.623
CDM Lowyield 0.659 0.545 0.863 0.625 1.655 1.854 0.775 1.601 0.749 0.619 0.854 0.762
MUz 0.681 0.537 0.852 0.621 2539 2946 1.225 2.292 0.776 0.590 0.842 0.751
PAT 0.599 0.140 0.868 0.628 9.537 11.117 4.416 8.387 0.690 0.642 0.851 0.881
VAR 0.638 0.684 0.859 0.564 1273 1224 0588 1.232 0.735 0.747 0.850 0.712

Average  0.629 0.471 [0.857 0.589 5731 6.835 | 2.729 5.444 0.729 0.615 [ 0.849 0.749

In the prediction of the coffee borer, the RFT algorithm showed the highest
accuracy in both productive loads and in all localities, whereas the KNN showed the
lowest accuracy in the predictions (Table 11).
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The indices of Willmott's 'd' of the RFT to predict the coffee borer at high-yields
were of 0.955, 0.933, 0.969, 0.930, 0.955, 0.954 and 0.963 for the localities of ARG,
ARX, BOE, CDM, MUZ, PAT and VAR, respectively. However, the Willmott's 'd’
indices for KNN were 0.721, 0.740, 0.813, 0.643, 0.823, 0.694 and 0.793 for the
ARG, ARX, BOE, CDM, MUZ, PAT and VAR, respectively. The mean accuracy
difference between these algorithms was 0.214% (Table 11).

The average Rjadj for the prediction of coffee borer in high-yield plants was
0.633, 0.672, 0.854 and 0.744 for the KNN, MLP, RFT and RLM algorithms,
respectively. At low-yields the R2adj were 0.633, 0.672, 0.854 and 0.744, for KNN,
MLP, RFT and RLM, respectively (Table 11). This demonstrates that the algorithms

do not present differences in prediction of coffee borer at high or low-yields.

TABLE 11. Statistical indices of the algorithms in the prediction of coffee borer in high
and low-yield coffee for the State of Minas Gerais, Brazil. Legend: BOE is Boa
Esperanca; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxa;, MUZ is
Muzambinho; PAT is Patrocinio, VAR is Varginha, KNN is KNeighbors Regressor,
MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple
Linear Regression (Ridge).

Locations vield KNN MLP RFT RLM KNN MLP RFT RLM KNN M!_P RFT RLM
R2adj RMSE Willmott’s ‘d’

ARG 0.621 0.501 0.855 0.778 4870 5369 2229 5.621 0.721 0.604 0.955 0.882
ARX 0.635 0.512 0.852 0.730 4.004 4.489 2223 4.307 0.740 0.549 0.933 0.841
BOE . 0.692 0.857 0.865 0.811 1295 0.936 0.550 1.019 0.813 0.901 0.969 0.889
CDM ;:Iegig 0.500 0.629 0.838 0.694 2197 2150 0.853 1.387 0.643 0.519 0.930 0.802
MUz 0.713 0.838 0.851 0.740 0.923 0.736 0.476 0.855 0.823 0.887 0.955 0.843
PAT 0.592 0.545 0.858 0.834 2155 2244 0919 1521 0.694 0.627 0.954 0.912
VAR 0.679 0.825 0.861 0.618 0.557 0.433 0.227 0.519 0.793 0.887 0.963 0.747

Average  0.633 0.672 | 0.854 0.744 2.386 2.337 1.068 @ 2.175 0.747 0.751 [0.951 0.845
ARG 0.654 0.641 0.862 0.770 4356 4.442 1.815 5.402 0.752 0.726 0.969 0.874
ARX 0.596 0.864 0.877 0.671 2.677 1873 1.075 2597 0.680 0.873 0.951 0.806
BOE 0.593 0.902 0.857 0.797 0.987 0.541 0.395 0.658 0.723 0.938 0.957 0.878
CDM Low yield 0.542 0.950 0.830 0.689 1376 0.532 0.827 1.025 0.661 0.969 0.937 0.799
MUZ 0.619 0.621 0.853 0.735 1339 1.338 0.444 0.861 0.738 0.720 0.963 0.839
PAT 0.715 0.859 0.835 0.752 1974 1485 1.159 1.906 0.805 0.903 0.939 0.867
VAR 0.531 0.872 0.862 0.574 0.410 0.238 0.147 0.385 0.695 0.916 0.971 0.704

Average  0.607 ' 0.815 1 0.854 0.712 1.874 1493 0.837 | 1.833 0.722 1 0.864 1 0.955 0.824
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The RMSE maps of the RFT for the SOys and CEwg regions for rust,
cercospora, coffee miner and coffee borer can be observed in Figures 12-15.

The spatial variability of the RMSE index for the RFT algorithm shows the
accuracy of this model in the prediction of rust in high-yield (Figure 12.A) and low-
yield (Figure 12.B) coffee, using the climatic elements as independent variables. The
RFT in the prediction of Rust in high-yield coffee demonstrated a more constant
variability of RMSE in the SOyg and CEyg regions. Patrocinio had an RMSE of only
7.3% (Figure 12.A). In the prediction of rust in low-yield coffee the SOyg region
showed the lowest RMSE value of 2.55% (BOE), while in the CEy region the values
reached 8.26% (ARX). RMSE of only 2.55% is considered very accurate in prediction
models using climatic data (Moreto and Rolim, 2015, Marca et al., 2015).

The RFT in predicting the severity indexes of cercospora showed greater
accuracy in the SOyg region in both crop loads. In SOy the RMSE values ranged
from 3.19 to 4.49 for high-yield coffee (Figure 13.A) and between 1.90 to 5.83 for low-
yield (Figure 13.B). The highest RMSE were found in the Araguari locality, reaching
values of 7.29% in high-yield plants.

In the prediction of the Coffee miner the RFT algorithm demonstrated low
RMSE values in both productive loads. In the SOy region the RMSE ranged from
0.56 to 1.20 for high-yield and between 0.587 and 1.22 for low-yield coffee (Figure
14). In Araguari the RFT demonstrated the highest values of RMSE in the prediction
of the Coffee miner, reaching 7.43% in low-yield coffee.

The RFT algorithm demonstrated greater accuracy in the SOyg region in both
the productive loads in the prediction of the coffee borer. In SOy values ranged from
0.227 to 0.853 for high-yield and 0.147 and 0.827 for low-yield coffee. In the CEyg
the RMSE values were elevated. For example, in the prediction of coffee borer in
Araguari the RMSE was of 2.229 and 1.815 in high and low-yield coffee, respectively
(Figure 15).
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FIGURE 12. Spatialization of the RMSE index (%) of the forecast of coffee rust at
high (A) and low-yields (B) by the Random Forest Regressor algorithm for the south
of Minas and Cerrado Mineiro regions, Brazil.
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FIGURE 13. Spatialization of the RMSE index (%) of the forecast of the Cercospora
at high (A) and low-yields (B) by the Random Forest Regressor algorithm for the
south of Minas and Cerrado Mineiro regions, Brazil.
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FIGURE 14. Spatialization of the RMSE index (%) of the forecast of the Coffee miner
at high (A) and low-yields (B) by the Random Forest Regressor algorithm for the

south of Minas and Cerrado Mineiro regions, Brazil.
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FIGURE 15. Spatialization of the RMSE index (%) of the forecast of the Coffee berry
borer at high (A) and low-yields (B) by the Random Forest Regressor algorithm for

the south of Minas and Cerrado Mineiro regions, Brazil.
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Conclusions

The rust, cercospora, and miner showed a sigmoid progression curve, while
the coffee borer showed a Gaussian trend in both crop fruit loads.

The maximum air temperature, the number of days with relative humidity
above 80% and the relative humidity were the climatic variables that showed
significant correlations with the coffee rust disease. Precipitation showed negative
correlations with the coffee miner in both loads, which causes a decrease in the
severity of the pest with increasing rainfall.

The predictive models of coffee diseases and pests developed in this work
provide better subsidies for the monitoring of diseases in years of high and low-yield
fruits.

The algorithms of machine learning do not present differences in the
predictions between high and low-yield harvests. The random forest model was more
accurate in the prediction of coffee rust, cercospora, coffee miner and coffee borer
using climatic conditions. In the prediction of coffee rust, cercospora, and coffee
miner, the neural networks presented the lowest performance, whereas for the coffee

borer the k-Nearest neighbor’s algorithm had the lowest performance.

Acknowledgements

This research was supported by the S&o Paulo Research Foundation
(FAPESP, 2015/17797-4).



94

CAPITULO 4 - Validation of ERA-Interim (ECMWF) surface climatic data and

implications for modelling water balance

ABSTRACT - Gridded meteorological systems greatly facilitate the analysis of the
impacts of climate on crop development and productivity. Comparisons of these data
with actual surface data validate this data source for various analyses in agricultural
areas. The impact of the use of these grid data is an important evaluation for the
temporal and spatial simulation of soil-water availability for crops. We thus sought to
determine the accuracy of climatic data from the European Centre for Medium Range
Weather Forecast (ECMWF) with the meteorological ground stations, and tested its
application for modelling climatic water balance. Monthly data for air temperature (T)
and precipitation (P) from ECMWF were compared with the data from 771 surface
stations (National Meteorological Institute, INMET) in the state of Minas Gerais in
southeastern Brazil for 1979-2017. Potential evapotranspiration was estimated by the
Thornthwaite method (1948), and water balance was estimated by the method
proposed by Thornthwaite and Mather (1955), with an available water capacity of 100
mm. We temporally and spatially compared the two data sources, and the
comparisons were evaluated for accuracy using mean absolute percentage error
(MAPE) root mean square error (RMSE) and for precision using the adjusted
coefficient of determination (Radj). ECMWF T and P tended to be temporally and
spatially similar to the INMET data, with R%adj = 0.95+0.0017, MAPE =
13.08+23.39%, and RMSE = 0.860.42 °C for T and R?adj = 0.95+0.003, MAPE =
14.10£17.01%, and RMSE = 1.64+0.58 mm for P. The largest deviation between
INMET T and ECMWEF T was 2.81 °C, mainly in the southwest of the state (the Minas
Gerais triangle) and part of the central region during winter and spring, and the
smallest deviation was -0.19 °C in the northeast. The largest deviation between
INMET P and ECMWF P was 75 mm mo™ in the summer, mainly between January
and February in the central region of Minas Gerais. ECMWF T and ECMWF P
allowed an accurate estimation of the components of the water balance. For
example, the lowest MAPEs were 1.21% for ECMWEF water-storage capacity
(southern Minas Gerais), 9.16% for ECMWF water deficiency (Vale do Jequitinhonha
e Mucuri), and 8.69% for ECMWF excess water (Vale do Jequitinhonha e Mucuri).
The average deviations were +10 mm mo™ between the INMET and ECMWF water-
storage capacities, *7.6 mm mo™ between the INMET and ECMWF water
deficiencies, and +23.6 mm mo™ between the INMET and ECMWF water excesses.
We concluded that the climatic variables from the ECMWF system were more
accurate and could be used to model the climatological water balance.

KEY-WORDS: Climatic zoning; forecast verification; water deficiency; climatic

variables; general circulation model.
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Introduction

Agricultural production is greatly affected by climatic variability and extreme
events (Ceglar et al., 2016), and the accuracy of models forecasting regional
productivity is strongly linked to the sources of meteorological and soil data (Orth et
al., 2016). Data sources may be limited by temporal data failures, calibrations,
possible sensor problems, and spatial scales. Countries and even regions with few
surface meteorological stations (Rodrigues, Moretto, Guilhoto, 2015) or with data
gaps (Pereira et al., 2002) may benefit from gridded global data (GGD) systems to
resolve problems where meteorological conditions are important. The European
Centre for Medium-Range Weather Forecast (ECMWF) is a GGD system that
provides free and relatively simple grid data.

ECMWE collects information from a variety of meteorological sources around
the world, such as meteorological and satellite radar systems (ECMWF, 2009; Couto
et al., 2015), and is an important source of data. ECMWF data are processed on a
10-day period scale at a spatial resolution of 27 x 27 km, freely available for
downloading from the Joint Research Centre meteorological database of the
European Commission (Grazziani, 2007; Moraes; Rocha; Lamparelli, 2014) that
processes information for rainfall, air temperature, global solar radiation, and
evapotranspiration using the Penman-Monteith equation.

The surface of the Earth is an essential component of the climatic system
(Orth et al., 2016), interacting with the atmosphere by the exchange of water and
energy, and can also accumulate and maintain anomalies induced by atmospheric
forcing (Aquila et al., 2016). Surface meteorological stations thus record
micrometeorological conditions, and GGD systems provide data for meso to
micrometeorological conditions.

The use of meteorological information from the ECMWF atmospheric system
is an alternative to the use of surface meteorological data. Few studies, however,
have compared the accuracies of the ECMWF and surface data. Some studies have
evaluated published global models. For example, Sodoudi et al. (2010) compared the
accuracy of ECMWEF precipitation data with surface-station data in Iran and

concluded that the ECMWEF system performed better for high mountainous regions
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than for flat terrain and deserts, with an error of 0.46 mm d™*. McDonnell et al. (2018)
verified and corrected the ECMWF prediction error for Irish meteorological stations
and found that the ECMWF system performed well, with a mean RMSE of 5.56 mm
d . These data from atmospheric models can also be used to quantify soil water, but
this application has not yet been tested.

Agriculture is one of the human activities most affected by climatic conditions
(S& Junior et al., 2012), and the availability of soil water is the main cause of variation
in crop yields (Martinez et al. 2013, Schrader et al., 2013). Cultivars can only use soll
water within the reach of their root systems (Moreira et al., 2014), and productivity is
substantially reduced due to the coincidence of periods with low rainfall during the
growing season (Faria and Bowen, 2003). For example, the timing of crop
establishment and flowering presents a high risk, because frequent water deficits in
short dry periods associated with high evapotranspiration strongly affect the
development and productivity of agricultural crops.

Quantifying reductions in productivity as a function of water deficits requires
simulating the components of the water balance (WB) of the soil (Negm et al., 2013).
Many conventional stations are required for precise simulations, and the data must
be accurate, but these conditions have not yet been met. Using grid data for
simulating WBs is one method to address errors and lack of data from surface
stations.

WB is an account of the amount of water in the soil (Brunel-Saldias et al.,
2018) from the application of the principle of mass storage, which states that water
storage (STO) is the result of inputs and outflows of water in a volume of soil (Moreira
et al., 2014; Abatzoglou et al., 2018). Soil STO variability is calculated as:

ASTO = (P + 1+ DE +RU + DLi+CA)—(ET + RO + DLo + DR) (1)

where ASTO is the variation in storage over time; precipitation (P), irrigation (I), dew
(DE), run in (RU), the input of lateral drainage (DLi), and capillary ascension (CA)
runoff are the water-input components in the soil profile; and evapotranspiration (ET),
runoff (RO), the outflow of lateral drainage (DLo), and drainage (DR) to the water
table are the water-outflow components. All components or flows are given in mm
time™, and the number and form of simulations of these components indicate whether

a WB model can be classified as empirical (functional) or mechanistic.
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WB models were first developed and applied for climatological purposes in the
1940s (Thornthwaite, 1948) and 1950s (Thornthwaite and Mather, 1955). These WB
models simulated the balance between inputs from rainwater and ice melt and
outflows from evapotranspiration, ice flow, and deep drainage. They have become
universal due to their simplicity and ease of use. The Thornthwaite and Mather
(1955) (WBTM) model was quickly adopted for irrigation and management purposes.

Several studies have applied the WBTM model in its original form (Alley,
1984). For example, Pereira (1986) successfully used the original WBTM model to
study the minimum and maximum water storage of a podzolic soil in the state of Sao
Paulo, Brazil. Other WB models such as BUD (Budyko, 1958), FAO (Doorenbos and
Pruitt, 1977), SWAP (Van-Dam, 1997), DSSAT-SWBM (Ritchie, 1998), and SWB
(Dripps et al., 2003) have been proposed, but the WBTM model is very interesting
due to its simplicity and high accuracy.

The use of ECMWF data instead of surface data to simulate regional WB
components has been hypothesised, but we have found no studies comparing WB
modelling with climatic data from surface stations and ECMWF data for Brazilian
conditions. We thus sought to determine the accuracy of the climatic data from the
ECMWEF with the meteorological ground stations and tested its application for
modelling climatic WBTM.

Material and methods

We used monthly meteorological data for mean air temperature (T) and rainfall
(P) for 1979-2017 in the state of Minas Gerais, southeastern Brazil. Minas Gerais has
an area of 586 528 km? and is located between 13.94 and 22.50°S and 41.73 and
52.87°W (Figure 1). The Koppen and Geiger (1928) climatic classification lists five
classes (Am, Aw, BSh, Cwa, and Cwb) but Aw is the predominant class in Minas

Gerais.
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FIGURE 1. Location of the state of Minas Gerais (MG) in Brazil.

Data from ECMWF and meteorological stations of the National Institute of
Meteorology (INMET) (Figure 2B) were used. Data were compiled from 771 INMET
stations (Figure 2A) and 1578 points corresponding to ECMWEF virtual stations
(Figure 2C).
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FIGURE 2. Regions of Minas Gerais (A) and locations of the INMET meteorological
stations (B) and the ECMWF virtual stations (C).

Monthly ECMWF data were obtained, with a spatial resolution of 1°, and then
pre-processed and transformed into 0.25° (£25 x 25 km) grids. Data from the
ECMWEF system were freely collected at http://www.ecmwif.int/. The data were

interpolated, and the meshes generated were overlapped to select the ECMWF
points that corresponded to the geographic coordinates of the INMET stations. The
coordinates and overlapping meshes allowed us to compare the two data sources.
The comparison between the T and P data was stratified relative to the seasons and
as a function of the regions of Minas Gerais. Summer, autumn, winter, and spring
were defined as January-March, April-June, July-September, and October-
December, respectively. This stratification was necessary to more accurately
represent the peculiarities of the ECMWF system in each region and season.


http://www.ecmwf.int/
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Modelling Water Balance

Potential evapotranspiration (PET) was calculated using the method of
Thornthwaite (1948):

PET = ETp - COR (2)
a

ETp=16 - (10. TT") ; when 0<Tn<26.5 °C @)

ETp= —415.85 + 32.24 -Tn—0.43 - Tn?; when Tn=26.5 °C
I= ¥32,(0.2- Tn)t>1* 4)
a =0.49239 +1.7912- 1072- [ —=7.71 - 107° - [2+6.75 - 1077 - ¥ (5)
COR = X . NbP (6)

12 30

where ETp is standard evapotranspiration, COR is a correction factor based on the
actual number of days and the photoperiod of the month, Tn is the mean temperature
of month n, | is an index for the heat level in the region, a is a regional thermal index,
NDP is the number of days of the period in question, and N is the average

photoperiod of the month in question.

PET data from INMET and ECMWF were used to generate the WB
components. The WBTM model with an available water capacity of 100 mm was
used:

NAC; = NAC;_1 + (P + PET);

if (P—PET);<0= { (NAC)) @)
STO; = WCe wc

STO; = (P — PET); + STO;_,
if (P—PET);>0= { (510 8)
NAC; = WCln wc
ALT; = STO; — STO;_, ©)
_ (P +|ALT;| ,when ALT <0
AET; = { PET;  ,when ALT =0 (0
DEF = PET — AET (11)
0 ,whenWC <0
EXC; = {(P — PET); — ALT;, ,whenW(C =0 (12)

where PET is potential evapotranspiration (mm), WC is available water capacity
(mm), STO is soil-water storage (mm), NAC is the difference between total rainfall
and PET, P is rainfall (mm), DEF is water deficiency in the soil-plant-atmosphere

system (mm), AET is actual evapotranspiration (mm), EXC is excess water in the
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soil-plant-atmosphere system (mm), ALT is the difference between STO of the

current and the preceding month (mm), and i is the month.

After completing the WB calculations, the ECMWF data (Tecmwr: Pecmwr:
STOecmwr: DEFecmwr: EXCecmwr) @and the data of the surface meteorological stations
(TinmeT: PinveT: STOnveT: DEFinveT: EXCinmver) Were compared by statistical indicators
(accuracy and precision). The accuracy or accuracy, that is, the estimate is close to
the observed value, was evaluated by MAPE (Mean Absolute Error) and RMSE (root
mean square error). Precision is the ability of the model to repeat the estimate and
was evaluated by the R? (coefficient of determination) adjusted according to Cornell

and Berger (1987) and the p-value of the regression (Table 1).

TABLE 1. Indices of statistical accuracy and precision used for evaluating the climatic
data from ECMWF and INMET. Yest, estimated value of y; Yobs, observed value of
y; Xobs, observed value of x; n, number of datapoints; and k, number of independent

variables in the regression. Overlined variables indicate averages.

Statistical indexes Equations
Accuracy
MAPE ?,:1< Yest;(;);/.obsﬂ _ 100)
— L
MAPE = N
RMSE 2
N (Yops.— Yest;
RMSE = le-l( b~ Yest)
N
Precision
2 n
R > (Vest, — Yobs)
R?=1- =L
" (Vest; — Yobs) — " (Yest, — Yobs, }
i=1 i=1
Radj (1-R?»-(N—-1)

R? adjusted = |1 — =
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Maps were generated using kriging interpolation (KRIGE, 1951) with 1
neighbour and a resolution of 0.25 ° in the spherical model (equation 13). The
meshes and semivariograms were adjusted for determining the values of the nugget
effect, structural variation (the difference between the level and the nugget effect),
range for all months in exponential, spherical, and Gaussian models. These settings
allowed a better comparison with the ECMWF grid data.

2(x) —m(x) = Y92 (0)[Z(x1) — m(xi)] (13)

where: Ai (x) is observation weights Z(x;); Z(x;) is interpreted as the realization of
VAZ (x); VAZ (x) is Semivariogram modeling m(x), is the expected value of Z (x) at

the point x; n(x), is the number of data inside a neighborhood x.

Results and discussion
Air temperature data

Tecwwr indicated a temporal trend similar to the Tyver data, with T highest
from September to April (summer) and lowest from April to August (winter) in each
region of Minas Gerais. This trend of variability was also reported by Alvares et al.
(2013). Mean R?adj, MAPE, and RMSE for the temporal variation in all periods and
regions were 0.95+0.0017, 13.08+23.39%, and 0.86+0.42 °C, respectively. The
details of R%dj, MAPE, and RMSE and between the temporal Tiwver and Tecwwre
data for each region are shown in Figure 3. The temporal accuracy of the ECMWF
system was highest for Zona da Mata (ZM) and Vale do Jequitinhonha e Mucuri
(VIM), where mean MAPE and RMSE were <12% and 1 °C, respectively, for the
entire year. For example, the average monthly T for ECMWF and INMET for VIM
(Figure 3F), where MAPE was lowest (5.1%), was 24.5 and 24.7 °C, respectively.



26

22

(e
oo

[y
H

N =
o O

N
N

-
[oe)

[y
H

10

Air temperature (°C)

26

22

18

14

10

103

A)

RMSE = 1.07%

1 RMSE = 0.46%

MAPE = 15.8% ol b MAPE = 12.8%
R?,4=0.90 EIF R?,,=0.98
T T T T T T T T T T T T T T T T T
RMSE = 2.06% RMSE = 0.59%
MAPE = 19.5% MAPE = 11.2%
R?,4=0.90 R?,4=0.97
T T T T T T T T T T T T T T T T T T
RMSE = 0.72% RMSE = 0.25%
MAPE = 14.1% MAPE = 5.1% —&—INMET
R?,4=0.98 R?,4=0.99 —e—ECMWF
T T T T T T T T T T T T T T T T T T
m e o > — a - [o o I« <« P a.
Zm<a<%3gwt.)c>)8 <Z(|.u<(o. %D MBBB

FIGURE 3. Temporal variation of the data for mean air temperature from INMET

surface stations and ECMWF for the main regions of Minas Gerais, 1979-2017. A)
Cerrado Mineiro, B) Norte de Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao

Metropolitana, and F) Vale do Jequitinhonha e Mucuri.

The spatialisation of Tiyver (Figure 4) and Tecuwe (Figure 5) demonstrated

that the ECMWF system could represent the spatial variability of T. T was lowest in

the south and highest in the northeast, with means of 18.5 and 25.5 °C, respectively.
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FIGURE 4. Spatial variation of the data for air temperature from INMET surface
stations in Minas Gerais, 1979-2017. A) January, B) February, C) March, D) April, E)
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December. Maps are from the spherical model with one neighbour and a resolution of
0.25°.
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The nugget, sill, and range for the Tyver data averaged 0.129+0.112,
1.1440.139, and 127.61+14.71, respectively (Table 2). The sill of semivariogram
adjustment is its limit (the sum of the nugget effect with the variation of the data) after
stabilisation from a particular distance. The distance at which the semivariogram
stabilises is known as the range. The sill of the semivariogram was lower in hot
months, varying between 0.93 and 1.14 °C. The level of sill increased as T
decreased, getting at 1.40 °C in June in the spherical model, indicating higher
variance in the data pairs in months with lower Ts.

The nugget did not vary as a function of T, e.g. the pips effect averaged 0.12
and 0.13 °C in months with high and low Ts, respectively. The nugget is the
semivariance for a distance of zero and represents the random variance that the
semivariogram measures. Interestingly, the nugget is low because it represents

measurement errors (Landim, 2003) or the general spatial dependence.
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TABLE 2. Models, parameters, and quality of the experimental semivariograms

adjusted for fitting INMET air temperature. VO, nugget; V, structural variation

(difference between the plateau and the nugget); (VO + V), sill; Ro, range (km); R?adj,

model adjustment determination coefficient; crossed validation correlation
coefficient.

Month Models VO V (VO+V) Ro V/(VO+V) r R* Cross validation

Exponential 0.01  1.06 1.07  149.8 99.5 0.95 0.900 y = 0,9971x + 0,0993

Jan spherical  0.12 092 1.04 1285 88.5 0.95 0.900 y = 0,9963x + 0,1226

Gaussian  0.26  0.81  1.07  113.9 75.7 0.95 0.895 y = 0,9945x + 0,1707

Exponential 0.01  1.13  1.14  149.6 99.6 0.95 0.897 y = 0,9945x + 0,1532

Feb spherical 0.12 098 1.10 1282 89.1 0.95 0.898 y = 0,9942x + 0,1671

Gaussian  0.28  0.86 114  113.9 75.4 0.94 0.893 y = 0,9925x + 0,2139

Exponential 0.00 1.15 115  149.1 99.8 0.95 0.910 y = 0,9915x + 0,2186

Mar spherical 012 1.00 1.12 1321 89.3 0.95 0.910 y = 0,9919x + 0,2155

Gaussian  0.28  0.87 115  113.9 75.7 0.95 0.906 y = 0,9907x + 0,253
Exponential 0.00 1.27 127 1486 100.0 0.96 0.924 0,9901x + 0,2375

Apr spherical 0.13 1.09 1.22 127.7 89.3 0.96 0.925 y =0,9904x + 0,2375

Gaussian  0.29  0.95 1.24  109.0 76.6 0.96 0.921 y = 0,9891x + 0,2751

Exponential 0.00 1.31  1.31  140.6 100.0 0.97 0.936 y = 0,9908x + 0,2036

May spherical 0.14 1.16 1.30 126.9 89.2 0.97 0.937 y = 0,9906x + 0,2137

Gaussian  0.30 1.01 131  108.3 77.1 0.97 0.937 y = 0,9906x + 0,2137

Exponential 0.00 1.41 141  140.6 100.0 0.97 0.936 y = 0,992x + 0,1702

Jun spherical  0.14 1.26 140 126.4 90.0 0.97 0.933 y =1,0217x + 0,0362
Gaussian  0.32 110 142  107.9 77.5 0.97 0.935 y = 0,99 + 0,2219

Exponential 0.00 1.27 127  140.6 100.0 0.97 0.936 y = 0,9949x + 0,1155

Jul spherical 012 113 125 126.6 90.4 0.97 0.937 y = 0,9926x + 0,1605

Gaussian  0.29  0.98  1.27  108.1 77.2 0.97 0.934 y = 0,9909x + 0,202

Exponential 0.00 1.16 116  141.0 100.0 0.97 0.940 y = 0,9959x + 0,1055

Aug spherical 012 1.04 116  126.9 89.7 0.97 0.941 y = 0,9922x + 0,1762

Gaussian  0.26  0.91 117  108.1 77.8 0.97 0.938 y = 0,9902x + 0,2244

Exponential 0.00 0.98 0.98 1415 100.0 0.97 0.946 y = 0,994x + 0,1479

Sep spherical 0.09 0.86 0.95 124.2 90.5 0.97 0.947 y =0,9914x + 0,2021

Gaussian  0.22 0.76  0.98  109.0 77.6 0.97 0.945 y = 0,9878x + 0,2821

Exponential 0.00 0.95 0.95 140.6 100.0 0.97 0.942 y = 0,993x + 0,1768

Oct spherical 0.09 0.84 093 1239 90.3 0.97 0.943 y = 0,9907x + 0,2297

Gaussian  0.22  0.74  0.96  108.3 77.1 0.97 0.94 y = 0,9878x + 0,3002

Exponential 0.00 1.00 1.00  149.0 99.9 0.96 0.931 y = 0,9943x + 0,1505

Nov spherical 011 0.87 098 1324 88.8 0.96 0.939 y = 0,9915x + 0,2158

Gaussian  0.24 0.76  1.00 1135 76.0 0.96 0.927 y = 0,9886x + 0,2881

Exponential 0.00 1.09 1.09 1485 100.0 0.95 0.911 y = 0,9964x + 0,1035

Dec spherical 0.12 0.95 1.07 127.7 88.8 0.95 0.911 y =0,9929x + 0,1834

Gaussian  0.26  0.83  1.09  109.2 76.1 0.95 0.907 y = 0,9909x + 0,2372
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FIGURE 5. Spatial variation of air temperature from the ECMWF data for Minas
Gerais, 1979-2017. A) January, B) February, C) March, D) April, E) May, F) June, G)
July, H) August, I) September, J) October, K) November, and L) December. Maps are

from the spherical model with one neighbour and a resolution of 0.25°.

The ECMWF system had the smallest deviations for the state, mainly in April
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(Figure 6D). The deviations between the T\ymer and Tecuwr data were largest (-2.31
°C) mainly in the Minas Gerais triangle and parts of Regiao Metropolitana, mostly in
July, August, and September (Figure 6G-l). Regions such as SM and ZM had
deviations <1.8 °C, but they were constant throughout the year.
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FIGURE 6. Spatialisation of the deviations between the air temperatures from the
INMET surface stations and ECMWF data for Minas Gerais, 1979-2017. A) January,
B) February, C) March, D) April, E) May, F) June, G) July, H) August, I) September,
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J) October, K) November, and L) December. Maps are from the spherical model with

one neighbour and a resolution of 0.25°.

The ECMWEF system underestimated T relative to the INMET data throughout
the year, especially when T was low (Figure 7). The underestimates were largest for
SM, as expected, because SM is a mountainous region and had the lowest T, varying
from 15 to 23 °C (Sa Junior et al., 2012). For example, T for April was
underestimated at values <24 °C (Figure 7D). The ECMWF system underestimated T
for September in all regions except Norte de Minas (NM) (Figure 71). The
underestimates were largest for SM for each month, with high MAPEs and low R?adj.
For example, MAPE and R?adj were 9.9% and 0.60 for January and 11.7% and 0.60
for June, respectively (Figure 8AB).
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Precipitation data

ECMWEF was able to monitor the temporal variability of P. The Pgcuwe and
Pinver data had similar temporal trends throughout Minas Gerais, with P highest from
October to May, with a mean of 200 mm mo™, and with P lowest from April to August.
Mean R?adj, MAPE, and RMSE for the temporal variation in all periods and regions
were 0.95+0.003, 14.10+17.0%, and 1.64+0.58 mm, respectively. The details of
MAPE, RMSE, and R?adj and between the temporal Pyyver and Pecwwr data for each
region are shown in Figure 9. The ECMWF system was most accurate for seasonal
data in the southern region of Minas Gerais (Figure 9C), with Radj, MAPE, and
RMSE of 0.97, 9.5%, and 0.67 mm, respectively. The MAPE of 9.5% was low,
because a P of 20 mm mo™ has an error of only #1.9 mm mo™. McDonnell et al.
(2018) found ECMWEF errors <10% between P data from surface stations and
ECMWEF data in Ireland and ensured that ECMWF data could be used to estimate

grass biomass.
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Mata, E) Regiao Metropolitana, and F) Vale do Jequitinhonha e Mucuri.

The ECMWF system was able to represent the spatial variability of P. P was
highest for December, with 315 mm in southern Minas Gerais and 175 mm in the
northeast (Figure 10L). R%adj, MAPE, and RMSE for the spatial relationship between
Pinver (Figure 10) and Pegcwwe (Figure 11) were 0.65, 10.46%, and 10.54 mm,
respectively, for all sites and periods. Moraes et al. (2012) reported that the ECMWF
system was moderately precise for P throughout most of the state of Sdo Paulo with
R2 between 0.50 and 0.70.
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The INMET P data in the semivariogram analysis had mean nugget, sill, and
range of of 3.16+8.19 mm, 100.85+142.18 mm, and 198.92+57.74, respectively
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(Table 3). The nugget adjusted in the spherical and exponential models did not vary
with the monthly seasonality of P, indicating that the data did not vary. The sill varied
as a function of the month. For example, P averaged 276 and 14.09 mm for the hot
rainy period (November-January) and the cold dry period (May-July), respectively. P
was lowest (9.95 mm) for June in the spherical model and highest (552.84 mm) for
December in the Gaussian model. The range averaged 261.78 and 187.43 for the
hot rainy and cold dry periods, respectively. The range was not strongly correlated

with P, because P did not vary with the range.
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Table 3 Models, parameters, and quality of the experimental semivariograms

adjusted for fitting the INMET rainfall data. VO, nugget; V, structural variation

(difference between the plateau and the nugget); (VO + V), sill; Ro, range (km); R?adj,

model adjustment determination coefficient; r, crossed validation correlation
coefficient.
Month Models VO V (VO+V) Ro V/(V0+V) r R* Cross validation

Exponential 0 108.6 10868 2282  100.0 1.00 0996 y=0,9961x + 0,8504
Jan spherical 0 1150 11502 1937  100.0 1.00 0997 y=0,9972x + 0,6696
Gaussian  12.42 1055  117.94  156.2 89.5 1.00  0.997 y=0,9968x + 0,7353
Exponential 0 1035 10352 320.7  100.0 1.00  0.998 y=0,9995x + 0,3468

Feb spherical 0 99.32 9932 3155  100.0 1.00  0.998 y=0,999x + 0,4104
Gaussian  7.07  99.05  106.12  254.6 93.3 1.00  0.997 y=0,9982x + 0,4826
Exponential 0 73.4 73.4 235.2 100.0 1.00 0.997 y=1,0001x + 0,1949
Mar spherical 0 7177 7177 1803  100.0 1.00  0.997 y=0,9978x + 0,5493
Gaussian  2.24  70.7 7294 1385 96.9 1.00  0.997  y=0,996x + 0,7051
Exponential 0 3283 3283 3187  100.0 0.99  0.985 y=0,9945x +0,4918
Apr spherical 0 34.43 3443 2269  100.0 099 0988 y=0,9895x +0,8453
Gaussian 157 3395 3552  177.1 95.6 099 0987 y=0,9848x + 1,203
Exponential 0 1518 1518 217.3  100.0 099  0.988 y=1,0009x - 0,0153

May spherical 0 1594 1594 1957  100.0 1.00 0991 y=1,0009x + 0,011
Gaussian  0.89 1564 1653  154.5 94.6 1.00  0.991 y=0,9994x +0,0768
Exponential 0 1154 1154 2156  100.0 099 0984 y=1,0143x-0,2374

Jun spherical 0 9.95 9.95 1241  100.0 099 0987 y=1,0068x - 0,0897
Gaussian  0.71  9.02 9.73 93.1 92.7 0.99  0.989 y=0,9982x +0,0418
Exponential 0 17.34  17.34  259.0  100.0 098  0.969 y=0,9907x +0,1285
Jul spherical 048 1551 1599  165.2 97.0 099 0978 y=0,9852x+0,2531
Gaussian 1.8 12.86 1466  113.9 87.7 098  0.969 y=0,9855x +0,2765
Exponential 0 1579 1579 196.6  100.0 099 0977 y=1,0033x-0,0579
Aug spherical 0 1657 16,57 1382  100.0 099 0985 y=0,9989x + 0,0495
Gaussian 071 17.02 1773  112.6 96.0 099 0982 y=0,9962x +0,1202
Exponential 0 37.74 3774 2368  100.0 1.00 0916 y=1,0004x - 0,0276

Sep spherical 0 39.89 39.89  207.3  100.0 1.00 0999 y=0,995x+0,3417
Gaussian 1.5 41.03 4253  166.8 96.5 1.00  0.993 y=0,996x +0,2827
Exponential 0 7137 7137 2850  100.0 099 0984 y=0,9958x +0,6844
Oct spherical 0 721 721 2156  100.0 099 0985 y=0,9913x +1,3327
Gaussian  5.84 6537 7121  163.8 91.8 099 0985 y=0,9859x + 2,0185
Exponential 0 176.6 176.64 2453  100.0 097 0945 y=1,0073x-1,6558

Nov spherical  10.06 169.7  179.79  221.2 94.4 097  0.947  y=1,006x-1,4311
Gaussian  36.21 145 18121  188.4 80.0 0.97  0.931 y=1,0028x - 0,8807
Exponential 0 5209 529.97 1942  100.0 099 0977 y=0,9852x +4,2496

Dec spherical 0 527.0 527.07 169.8  100.0 099 0979 y=0,9835x+4,772
Gaussian  32.29 5205 552.84  135.7 94.2 099 0978 y=0,9773x + 6,3897
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FIGURE 11. Spatial variation of precipitation from the ECMWF data for Minas Gerais,
1979-2017. A) January, B) February, C) March, D) April, E) May, F) June, G) July, H)
August, I) September, J) October, K) November, and L) December. Maps are from

the spherical model with one neighbour and a resolution of 0.25°.

The largest deviations between the P\yver and Pecuwr data averaged 75 mm

mo™ in spring (October-December) in the Minas Gerais triangle and central regions
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(Figure 12J, L) and in summer (January and February) in the central regions (Figure
12 A, B). This result was consistent with that by Ghosh et al. (2018), who reported
that the ECMWF system was problematic for simulating the characteristics of
summer Pecuwe. The deviations were lowest (5 mm mo™) for the winter (Figure 12G-

), mainly in the northeast, the Minas Triangle, and central regions.
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FIGURE 12. Spatialisation of deviations between precipitation data from the INMET
surface stations and ECMWF data for Minas Gerais, 1979-2017. A) January, B)
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February, C) March, D) April, E) May, F) June, G) July, H) August, I) September, J)
October, K) November, and L) December.

The ECMWEF system overestimated P for all months, especially when P
increased (Figure 13). The ECMWF system underestimated the INMET values when
P was low, e.g. P was underestimated for May when P was <30 mm mo™, mainly in
Cerrado Mineiro (CE). P was underestimated by 60, 185, and 155 mm mo™ for
October, November, and December, respectively (Figure 13J-L). The accuracy was
lowest when P was high, e.g. average MAPE for the summer was 20%. P was lowest
for the winter, when MAPE was 9.5% (Figure 14B). McDonnell et al. (2018) and
Ghosh et al. (2018) also reported inconsistent Pecwwr results for Ireland and

southern Asia, respectively.
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FIGURE 14. R?adj (precision), MAPE (accuracy), and RMSE (accuracy) of the spatial

relationship between the rainfall data from the INMET surface stations and the

ECMWEF system for Minas Gerais. MET, Regiao Metropolitana; VJM, Vale do

Jequitinhonha e Mucuri; ZM, Zona da Mata; CE, Cerrado Mineiro; SM, Sul de Minas;

NM, Norte de Minas, and MG, Minas Gerais state.
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ECMWEF data for modelling Water Balance

WB is the account of the amount of water in the soil, and soil-water storage
(STO) is one of its most important components, because STO is strongly correlated
with the development of agricultural crops. Conceptually, STO refers to the variation
in the amount of water stored within a volume of soil over time, representing the input
and outflow of water in the volume. STO decreased from March to October, with
different trends and intensities for each region. For example, STO decreased from
March to November in the north, by 15 mm mo™ in October. STO was largest in Sul
de Minas, decreasing only from May to September, mainly in august (85 mm mo™).

The comparison between STOnver and STOgcuwr indicated that monthly STO
was similar for the ECMWF and INMET data. STO estimates were the least accurate
for VIM, with R%adj, MAPE, and RMSE of 0.80, 21.24%, and 11.53 mm, respectively.
The ECMWEF data could be substituted for the INMET data for this region (Figure
15F). STOgcmwr Was more accurate than STOwver for southern Minas Gerais, with
R?adj, MAPE, and RMSE of 0.90, 2.35%, and 1.21 mm, respectively. A MAPE of
2.35% is considered very low, because a mean STO of 100 mm has a variation of
only £2.3 mm (Figure 15C). The deviations between STOuver and STOgcmwr
averaged +10 mm mo™ (Figure 16).
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Water deficiency (DEF) is the WB component that influences agricultural
crops the most, because DEF affects transpiration, growth, and development
(Sinclair and Ludlow, 1986). DEF is defined as the difference between PET and
actual evapotranspiration, i.e. the amount of water a crop loses to evapotranspiration
due to a low soil STO index. DEF varied amongst the regions of the state. DEF was
highest for CE and NM, with annual totals of -85.63 and -38.59 mm y*, respectively.
DEF was lowest for SM and ZM, with annual totals of -2.75 and -11.67 mm y*,
respectively (Figure 17).

The comparison between DEFver and DEFegcuwwr indicated that DEF was
similar for the ECMWF and INMET data. DEFgcuwr could replace DEFyver for CE,
SM, and MET but was overestimated for the other regions. The deviations between
DEFnver and DEFgcwwr are shown in Figure 18. The accuracy between the
DEFgcmwe and DEFnver data was lowest (MAPE = 19.6%) for CE (Figure 17A). A
model was calibrated to adjust the ECMWF data to the INMET data (DEFINMET =
0.574 x DEFECMWF + 0.6258) to increase the accuracy of the data from the ECMWF.



& ) 0
A) MAPE = 19.4%
-10 - R0, 1 -10
OINMET
20 4 mECMwWE P
1 -20
-30 DRF -85 et DEF = 0,574DEF, + 0,6258 30
DEF; =-41,66 mm™ 3 Z R
_40 30 20 10 0
0 - T 0
AMSE = 2.95%
MAPE = 13.3%
-10 A Rly=098 -10
-20 ® 1 -20
30 1 per = 138,50 mm % 0FF = LIOWDER,-0312]

DEF, =-156,83 mm™

-30 -20 -10 0

0 - ———— T < 0
AMSE = 3.01%
Q) MAPE = 11.4%
-10 A R%,,=0.64
- 1
o 20 1
£ .30 DEF = 0,419DEF, - 0,0097
E DEF, = -2,75 mm* -4
g g LOEFe=126 mm 4 2 0
b~
Q 0 - T » 0
&« D) v RMSE = 4,0%
Q MAPE = 12.6%
T -10 A R2,,=097
—
Q -5
= -20
g 20
301 oer=11,67 m DEF = 1,400EF, 00883 |
DEF=-17,41 mm ¥ 1 4
4 0 5 0
0 1 i 0
AMSE « 6.17%
MAPE = 16.4%
-10 4 R%,=088
1 -10
20
<
-30 A DEF = 0,796DEF, + 0,575
DEF, = -60,01 mm* 220
DEF; = -40,89 mm 4 F
% 20 10 0
0 1 . 0
AMSE = 5.73%
MAPE = 9.16%
-10 4 R y=0.77 4 ®
® -10
20 A 8
30 4 DEF = 1,370DEF, - 0,418
DEF, = -29,22 mms ECMWE 20
w0 DEF, = -45,07 mt QINMET 220 10 0
z@zcx >z 20ea > U
$B28532388¢3§%

125

FIGURE 17. Water deficiency (mm mo™) from the INMET surface stations and
ECMWEF for the main regions of Minas Gerais, 1979-2017. A) Cerrado Mineiro, B)
Norte de Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao Metropolitana, and F)

Vale do Jequitinhonha e Mucuri.
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Water surplus (EXC) is another component of WB and is defined as the
amount of residual water after the rainy season that is lost from a volume of soil by
percolation (deep drainage) or surface runoff. EXC varied amongst the regions of the
state. EXC was highest in SM from September to May, with an annual total of 793.3
mm y™. EXC was lowest in NM from October to April, with an annual total of 180.9
mm y™. The comparison between EXCiuer and EXCecmwr indicated that EXC was
similar for the ECMWF and INMET data. EXCecuwr Was overestimated relative to the
INMET data for all regions. EXCgcwwe Was most accurate for VIM (R%adj = 0.92,
MAPE = 8.69%, RMSE = 7.4 mm). EXC in this region occurs from October to April
but mostly in November and December, with an annual total of 199.1 mm y™* (Figure

19F). The deviations between EXCyvetr and EXCecuwr are shown in Figure 20.



200

150 43

100

50 4

200

EXC, = 530,8 mm™"
EXC; = 742,7 mm?”

200

EXC = 1,22EXC, + 7,83

*

RMSE = 4.01%
MAPE = 12.6%
R,,=093

0 50 100 150 200

150

100

50

B)

EXC = 180,9 mmY
EXC; = 276,9 mm?

=) e )

[T B T

150 A

100 +

50

EXC = 1,369EXC, + 2,43

®

{o RMSE = 11.01%
MAPE = 15.4%

R, =088

0 50 100 150 200

200 5

150 4

8

w
o

o

EXC =793,3 mm™
EXCe # 936,9 mm”

200

EXC = 1,06EXC; + 7,97
*

®

RMSE = 14.5%
MAPE = 11.6%
R,,=090

0 50 100 150 200

Water surplus (mm mo)
€ o 8 8 & 8

EXC =548,6 mmY
EXC; = 698,4 mm™

150 A

100 4

i
EXC = 1,17EXC; + 4,67

RMSE = 9.1%
MAPE = 9.4%
Y, %094

0 50 100 150 200

150

100

50

200

EXC = 419,3 mm™Y
EXC; = 696,1 mm™

200

EXC= 1,496XC; +
L 2

RMSE = 9.6%
MAPE = 13.6%
R, =094

0 50 100 150 200

150

100

50

JAN

F)

@
w
w

«
<
=

EXC =199,1 mmY
EXC; = 324,1 mm?

x > 2 =20
a = =
$£3=22

150
100
50
0

[exC = 1,50EXC, + 1,98

*

RMSE = 7.4%
MAPE = 8.69%
R%,4=092

*

0 50 100 150 200

127

FIGURE 19. Water surplus (mm mo™) from the INMET surface stations and ECMWF
for the main regions of Minas Gerais, 1979-2017. A) Cerrado Mineiro, B) Norte de

Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao Metropolitana, and F) Vale do

Jequitinhonha e Mucuri.
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FIGURE 20. Deviations between water-surplus data (mm mo™) from the INMET

surface stations and ECMWF.

Conclusions

The climatic variables from the ECMWF system were accurate and could
be used for modelling climatological WB. The monthly ECMWF T and P data were
more spatially and temporally accurate than the data from the INMET surface
stations. The average seasonal P data were most accurate in southern Minas Gerais,
with R?adj, MAPE, and RMSE of 0.97, 9.5%, and 0.67 mm, respectively.

The ECMWF system estimated T less accurately in the coldest season
(winter), with an average MAPE of 10.2%, and estimated P less accurately in the
rainy season (summer), with an average MAPE of 19.9%. The ECMWF system
efficiently estimated the STO, DEF, and EXC components of WB, despite the
differences for T and P between seasons and regions. The mean deviations were

+10 mm mo™* between STOnmer and STOgcuwe, £7.6 mm mo™” between DEFnvet
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and DEFgcuwr, and #23.6 mm mo™ between EXCinver and EXCecvuwre. MAPE was
lowest for STOgcuwr In southern Minas Gerais (1.21%), for DEFgcuwr I JIMV
(9.16%), and for EXCgcmwe also in IMV (8.69%).
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CAPITULO 5. Consideragbes finais

1. Atualmente existe uma preocupacdo mundial a respeito dos residuos de
agroquimicos nos alimentos o que tem influenciado diretamente na
comercializacdo mundial de determinados produtos agricolas. Com o
crescente aumento dos programas de certificagdo no cafeeiro a preocupacgao
com o meio ambiente tem aumentado. Acredita-se que com a utilizagdo dos
sistemas de alertas fitossanitarios havera uma reducdo da aplicacdo de
agroquimicos, como inseticidas, fungicidas, e mais empresas poderdo ser
certificadas.

2. As modelagens de doencas e pragas em funcdo do clima obtidas neste
trabalho (Capitulos 2 e 3) podem ser utilizadas para a elaboracao de sistemas
de alertas fitossanitarios, buscando minimizar os impactos econémicos e
ambientais causados pelas incidéncias dessas enfermidades no cafeeiro.

3. A falta de estacBes meteorologicas de superficie na area em campo para
afericdo dos dados climéticos, ndo impede de fazer as modelagens tratadas
neste trabalho, como observado no capitulo 4, pode ser utilizado os dados do
ERA-Interim do ECMWF, uma vez que sdo acurados e precisos.

4. Todas as analises desta Tese serdo implementadas no futuro no sistema
SISMET (http://sismet.cooxupe.com.br:9000/) da Cooxupé - Cooperativa
Regional de Cafeicultores em Guaxupé. Assim, pelo SISMET todos os
produtores da Cooxupé terdo acesso as informacdes elaboradas neste
trabalho.

5. Com os resultados alcangados neste trabalho podera ser utilizado como base
para novas pesquisas e ser trabalhado para prestagéo de servicos de alertas
visando uma cafeicultura economicamente e ambientalmente mais
sustentavel.


http://sismet.cooxupe.com.br:9000/
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