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MODELOS AGROMETEOROLÓGICOS PARA PREVISÃO DE PRAGAS E 

DOENÇAS EM Coffea arabica L. EM MINAS GERAIS 

 

RESUMO: O café é a bebida mais consumida no mundo e uma das principais causas 
para a redução da produtividade e qualidade são os problemas fitossanitários. A 
estratégia mais comum de controle dessas doenças e pragas é a aplicação de 
fungicidas e inseticidas foliares, dependendo da intensidade dos mesmos na região. 
Esse método tradicional pode ser melhorado utilizando de sistemas de alertas por 
meio de modelos de estimativas dos índices de doenças e pragas. Este trabalho tem 
como OBJETIVOS: A) Calibrar as variáveis meteorológicas: temperatura do ar e 
precipitação pluviométrica do sistema ECMWF em relação aos dados de reais de 
superfície mensurados pelo sistema nacional de meteorologia (INMET) para o 
estado de Minas Gerais; B) Avaliar quais os elementos meteorológicos exercem 
maior influência nas principais pragas (broca e bicho-mineiro) e doenças (ferrugem e 
cercosporiose) do cafeeiro arábica nas principais localidades cafeeiras do Sul de 
Minas Gerais e do Cerrado Mineiro; C) Desenvolver modelos agrometeorológicos 
para previsão de pragas e doenças em função das variáveis meteorológicas usando 
algoritmos de machine learning e procurando uma antecipação temporal suficiente 
para tomada de decisões. MATERIAL E MÉTODOS: Para o objetivo “A” foram utilizados 

dados climáticos mensais de temperatura do ar (T, ºC) e precipitação pluviométrica 
(P, mm) provenientes do ECMWF e do INMET no período de 1979 a 2017. A 
evapotranspiração potencial foi estimada por Thornthwaite (1948) e balanço hídrico 
por Thornthwaite e Mather (1955). As comparações entre o ECMWF e INMET foram 
realizadas pelos índices: acurácia (mean absolute percentage error, MAPE, e root 
mean squared error, RMSE) e precisão (coeficiente de determinação ajustado, 
R2adj). Para o objetivo “B” foram utilizados dados climáticos e fitossanitários de Boa 
Esperança, Carmo de Minas, Muzambinho e Varginha, situadas na região Sul de 
Minas (SOMG) e as localidades de Araxá, Araguari e Patrocínio situadas na região do 
Cerrado Mineiro (CEMG). Foram simulados a tendência de progresso das doenças e 
pragas ao longo de tempo usando modelos não lineares em função do índice térmico 
acumulado. Também foi estimada dos níveis de infestação de pragas e severidade 
de doenças usando regressão linear múltipla. A variável dependente foi os níveis de 
doenças e pragas e as variáveis independentes: graus dias (DD) acumulado, 
enfolhamento do café estimado por DD e número de nós estimado por DD. Para o 
objetivo “C” foram utilizados dados climáticos e fitossanitários da SOMG e CEMG. Os 
algoritmos calibrados e testados para a previsão das doenças e pragas do café 
foram 1) Regressão linear múltipla, 2) K-Neighbors, 3) Random Forest e 4) Redes 
Neurais. RESULTADOS E DISCUSSÃO: Os maiores desvios entre PINMET e PECMWF foram 
de 75 mm mo-1 e ocorreram no verão. O cafeeiro implantado no CEMG tem maiores 
índices de doenças e pragas em relação ao café do SOMG. O algoritmo random 
forest foi mais acurado na previsão da ferrugem, cercospora, bicho-mineiro e broca-
do-cafeeiro em ambas as regiões. CONCLUSÃO: As variáveis climáticas oriundas do 
ECMWF são acuradas e podem modelar o balanço hídrico climatológico. É possível 
simular a tendência e ainda prever os índices de pragas e doenças do café usando 
como variáveis regressoras os dados climáticos e metodologia o machine learning. 

PALAVRAS-CHAVE: fitopatologia, modelagem, aprendizado máquina, bigdata. 
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AGROMETEOROLOGICAL MODELS FOR FORECASTING PESTS AND 

DISEASES IN Coffea arabica L. IN THE STATE OF MINAS GERAIS 

 

ABSTRACT: Coffee is the most consumed beverage in the world, but phytosanitary 
problems are amongst the main causes of reduced productivity and quality. The 
application of foliar fungicides and insecticides is the most common strategy for 
controlling these diseases and pests, depending on their intensity in a region. This 
traditional method can be improved by using alert systems with models of disease 
and pest indices. This work has as OBJECTIVES: A) To calibrate the meteorological 
variables: air temperature and rainfall of the European Center for Medium Range 
Weather Forecast (ECMWF) in relation to the real surface data measured by the 
national meteorological system (INMET) for the state of Minas Gerais; B) To evaluate 
which meteorological elements, and at what time, have a greater influence on the 
main pests (coffee borer and coffee miner) and diseases (coffee rust and 
cercosporiosis) of Coffee arabica in the main coffee regions of the South of Minas 
Gerais and Cerrado Mineiro; C) To develop agrometeorological models for pest and 
disease prediction in function of the meteorological variables of the South of Minas 
Gerais and Cerrado Mineiro using algorithms of machine learning with sufficient 
temporal anticipation for decision making. MATERIAL AND METHODS: To achieve goal 
"A" we used monthly climatic data (T, ºC) and rainfall (P, mm) from the ECMWF and 
INMET from 1979 to 2015. Potential evapotranspiration was estimated by 
Thornthwaite (1948) and water balance by Thornthwaite and Mather (1955). The 
comparisons between the ECMWF and INMET were performed by the indexes: 
mean absolute percentage error (MAPE) and precision mean (R2adj). To achieve the 
goal "B" we use climatic and phytosanitary data of Boa esperança, Carmo de Minas, 
Muzambinho and Varginha, located in the South of Mines (SOMG) and the Araxá, 
Araguari and Patrocínio located in the Cerrado Mineiro region (CEMG). We simulate 
the trend of disease and pest progression over time using nonlinear models as a 
function of the accumulated thermal index. And we estimated levels of pest 
infestation and disease severity using multiple linear regression. The dependent 
variable was the levels of diseases and pests and the independent variables: 
cumulative days (DD), coffee leafage estimated by DD and number of nodes 
estimated by DD. To achieve the "C" objective we use the climatic and phytosanitary 
data of SOMG and CEMG. The algorithms calibrated and tested for the prediction of 
coffee pests and diseases were: 1) Multiple linear regression, 2) K-Neighbors 
Regressor, 3) Random Forest Regressor and 4) Artificial Neural Networks. The best 
models were selected using the MAPE, Willmott's 'd', RMSE and R² adj. RESULTS AND 

DISCUSSION: The largest deviations between PINMET and PECMWF were 75 mm mo-1 
and occurred in the summer. The coffee plant implanted in CEMG has higher rates of 
diseases and pests in relation to SOMG coffee. The random forest algorithm was 
more accurate in the prediction of coffee rust, cercospora, coffee miner and coffee 
borer in both regions. CONCLUSION: The climatic variables from the ECMWF are 
accurate and can be used in modeling the climatological water balance. It is possible 
to simulate the trend and to predict coffee pests and diseases using as regressive 
variables the climatic data and machine learning methodology. 
 
KEY- WORDS: plant pathology, modelling, machine learning, bigdata. 
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CAPÍTULO 1 - Considerações gerais  

1 INTRODUÇÃO  

 

1.1 O cultivo do Café no Brasil 

 

O cafeeiro é uma planta perene, pertencente à família Rubiaceae (CUBRY et 

al., 2013). As duas espécies economicamente mais importantes do café são o 

Coffea arabica L. e Coffea canefora Pierre (BRAVO-MONROY et al., 2016), 

representando 74,92% e 25,08% da produção mundial, respectivamente (CONAB, 

2019).  

O café é a bebida mais consumida no mundo, apresentando várias 

propriedades funcionais, como por exemplo, a cafeína, aminoácidos, açúcares e 

compostos fenólicos (BUTT; SULTAN, 2011; KITZBERGER et al., 2013). Na 

atividade agrícola brasileira a cafeicultura tem grande importância (RESENDE et al., 

2009; RODRIGUES et al., 2013). As áreas de produção brasileira do Café arábica se 

distribuem na região centro-sul (Figura 1), principalmente nos estados de Minas 

Gerais, São Paulo, Paraná e Espírito Santo (ANDRADE et al., 2012; CUBRY et al., 

2013). Minas Gerais apresenta em torno de 6,9% da área total do Brasil e se 

destaca como maior produtor de café do país (BARBOSA et al., 2012; RONCHI et 

al., 2015).  
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Figura 1. Principais regiões produtoras de café do Brasil (adaptado de 

ROSSIGNOLLI, 2019; CONAB, 2019. 
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O cafeeiro arábica é fortemente afetado nos seus diversos estádios 

fenológicos pelas condições meteorológicas (PICINI et al., 1999) e também pelas 

doenças e pragas. O cafeeiro arábico é um cultivo que necessita de dois anos para 

completar todo o seu ciclo fenológico (Figura 2). O período vegetativo ocorre no 

primeiro ano e o processo de reprodução no segundo ano. No desenvolvimento 

vegetativo ocorre à formação e o crescimento dos ramos vegetativos, esse processo 

ocorre em fotoperíodo de dias longos. Com a redução do fotoperíodo as gemas 

vegetativas axilares são induzidas por fotoperiodismo em gemas reprodutivas. O 

período produtivo inicia-se com a florada que precede a formação dos chumbinhos. 

Em agosto inicia-se a expansão e a formação dos grãos que ocorre até atingir o 

tamanho normal, posteriormente ocorre a granação e a maturação dos frutos 

(CAMARGO; CAMARGO, 2001). 

 

 

Figure 2. Fenologia do Coffea arabica L.  

 

 

1.2 O clima e as enfermidades do café 

 

A variabilidade climática causa forte impacto nas atividades agrícolas (SÁ 

JUNIOR et al., 2012), sendo um dos fatores responsáveis pelas flutuações e 

oscilações das doenças do cultivo, principalmente as doenças de origem fúngicas. 

Hoogenboom (2000) salienta que os elementos meteorológicos críticos para a 

produção agrícola são a radiação solar e a precipitação, sendo que, para o café, 

Camargo (2010) relata que a chuva é o elemento que proporciona maior 

interferência na fenologia do cafeeiro, e consequentemente, condiciona a 

intensidade e a severidade das doenças e pragas. Segundo Sentelhas et al., (2007) 
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a temperatura do ar e o molhamento foliar são parâmetros microclimáticos 

importantíssimos que influenciam a maioria das doenças fúngicas de plantas. A 

irradiância solar, além de fornecer a energia para a fotossíntese e partição de 

carboidratos (OLIVEIRA et al., 2012), pode estimular ou inibir o desenvolvimento das 

doenças do cafeeiro.  

Temperaturas do ar entre 5 ºC e 30 ºC com altos níveis de umidade relativa 

do ar e vapor de água alta na superfície das plantas produzem um molhamento foliar 

de 42 a 72 horas, o que favorece o desenvolvimento de doenças fúngicas 

(SENTELHAS et al., 2008; BERUSKI et al., 2015). A duração do molhamento foliar é 

um parâmetro-chave que influencia a epidemiologia das plantas, pois fornece a água 

livre exigido por patógenos para infectar o tecido foliar das culturas agrícolas 

(SENTELHAS et al., 2007).  

A temperatura do ar regula a taxa de desenvolvimento dos cultivos e também 

o nível de esporulação de diversos fungos. Microclimas com temperaturas do ar 

elevadas juntamente com altos níveis de precipitação durante a floração do cafeeiro 

proporciona o desenvolvimento de fungos, que levam ao abortamento das flores e 

consequentemente queda na produção (CAMARGO; PEREIRA, 1994; PEREIRA et 

al., 2008). 

A umidade relativa, a temperatura do ponto de orvalho e o déficit de pressão 

de vapor interferem na presença e atividade de pragas e doenças (SENTELHAS et 

al., 2005). A velocidade do vento afeta a taxa transpiratória das plantas e 

disseminação de insetos e doenças (HOOGENBOOM, 2000). Por isso, monitorar as 

informações climáticas é tão importante. 

 

 

1.3 Modelos climáticos globais 

 

O território brasileiro não tem uma rede de estações meteorológicas de 

superfície que atenda todas as necessidades agrícolas. Assim, na falta de dados 

meteorológicos é recomendado a utilização de “Global Circulation Models”. São 

exemplos desses modelos os dados do European Centre for Medium Range 

Weather Forecasts (ECMWF) e do Prediction of Worldwide Energy Resources 
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(NASA POWER). 

Os modelos que fazem previsões das condições de tempo e clima são 

ferramentas importantes para auxiliar nas modelagens de cultivos, como no caso de 

previsão de produtividade ou monitoramento do cultivo (BECHTOLD et al., 2008). Os 

dados do ECMWF, principalmente o ERA-interim, são muito utilizado para previsões 

de tempo e clima no mundo, sendo disponibilizado dados de previsão em um grid de 

0,25 ° (aproximadamente 25 x 25 km) para o mundo todo, tornando-se assim 

interessante para obtenção de dados em regiões com escassez de estações 

meteorológicas de superfície (MORAES et al., 2012). Com o ERA-interim é possível 

contemplar todo território brasileiro com uma malha de 11.358 estações virtuais 

(Figura 3). 

 

Figura 3. Estações virtuais dos dados ERA-interim (ECMWF) para o Brasil. 
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Guarnieri et al. (2007) utilizaram de GCM associado a redes neurais artificiais 

para realizar previsões de radiação solar. Para previsão de intensidade e volume de 

chuva, Vasconcellos et al. (2010), simularam razoavelmente bem as características 

da atmosfera assim como a precipitação máxima nas proximidades da Serra do Mar, 

na região Sudeste utilizando os GCM em alta resolução (espaçamentos horizontais 

de grade de 5 a 10 km). Não foram feitos ainda estudos de comparação de previsão 

de tempo e dados reais para áreas cafeeiras.  

Os dados do ECMWF são largamente utilizados no mundo por apresentarem 

grandes vantagens em relação aos provenientes de estações meteorológicas de 

superfície, como rapidez na obtenção e ausência de valores faltantes (MORAES; 

ARRAES, 2012). O ECMWF tem o objetivo de auxiliar pesquisas científicas e 

melhorar a habilidade de realizar previsões, além de manter um arquivo de dados 

meteorológicos disponível gratuitamente na internet. Jung et al. (2012) 

demonstraram que as integrações de clima com os dados do ECMWF utilizando as 

resoluções horizontais, normalmente usado em previsões numéricas de tempo, 

levam a melhorias moderadas quando comparadas com a baixa resolução, pelo 

menos em aspectos de macroescala.  

Na literatura são encontrados diversos trabalhos que demostram alta 

correlação entre os dados do ECMWF e os dados de superfície (DEPPE et al., 

2006). Dentre esses trabalhos, podemos destacar Moraes e Arraes (2012) que 

utilizaram os dados do sistema ECMWF no estado do Paraná e observaram uma 

precisão de R2=0,9 com os dados de superfície e o trabalho de Moraes et al. (2012) 

que calibraram os dados do ECMWF com dados de temperatura mínima e máxima 

do ar e precipitação de superfície no estado de São Paulo e observaram alta 

correlação. 

A variabilidade dos elementos climáticos impacta consideravelmente na 

incidência das pragas e doenças da cultura do café. As pragas e doenças do 

cafeeiro atacam desde folhas, flores, frutos e até sementes, influenciando o 

desenvolvimento das plantas, proporcionando perdas na produção e na qualidade 

de bebida do café (MATIELLO et al., 2010). E poucos trabalhos tem buscado avaliar 

a influência das condições climáticas na incidência e severidades destas pragas e 

doenças. 
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1.4 Principais doenças e pragas do cafeeiro 

 

As principais doenças do cafeeiro são a ferrugem do cafeeiro (Hemileia 

vastatrix) e a cercosporiose (Cercospora coffeicola), que podem causar elevados 

prejuízos na lavoura cafeeira. A ferrugem é uma doença fúngica que acarreta uma 

grande desfolha da planta (Figura 3). Nas regiões cafeeiras brasileiras onde as 

condições climáticas são favoráveis, elevados níveis de ferrugem causam perdas de 

35% na produção (TEIXEIRA et al, 2007). A ferrugem é favorecida pelas condições 

climáticas de temperaturas do ar variando de 20 e 25ºC e precipitação total maior 

que 30 mm. Temperaturas do ar acima de 30ºC e abaixo de 15ºC são desfavoráveis 

à doença, no entanto, a epidemia da ferrugem aumenta rapidamente em 

temperaturas entre 15 e 18 ºC (PEREIRA et al., 2008). Diversos trabalhos 

demonstram que o grau de infecção da ferrugem do cafeeiro está diretamente 

relacionado com as condições climáticas (TALAMINI et al., 2003). 

 

FIGURA 3. Infecção da doença de ferrugem do cafeeiro (Hemileia vastatrix). A) face 

adaxial (parte superior); B) face abaxial (parte inferior). 
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A cercosporiose infecta folhas (Figura 4) e frutos ocasionando desfolha e nos 

frutos provoca uma maturação precoce e queda prematura, aumentando o número 

de grãos chochos (CARVALHO et al., 2008). Os sintomas da cercosporiose no fruto 

ocorrem quatro meses após a floração, causando lesões deprimidas de cor castanho 

escuras, dispostas na direção do pedúnculo à coroa do fruto (POZZA et al., 2010; 

SANTOS et al., 2014). A utilização da irrigação no cultivo adensado proporciona um 

microclima favorável, favorecendo a cercosporiose do cafeeiro (PAIVA et al., 2013). 

Segundo Salgado et al., (2007) o déficit hídrico é uma das principais causas do 

aparecimento da cercosporiose. 

 

FIGURA 4. Infecção da cercosporiose (Cercospora coffeicola). A) face adaxial (parte 

superior); B) face abaxial (parte inferior).  

 

As pragas contribuem para a queda da produtividade das lavouras e da 

qualidade do café produzido. A broca-do-café, Hypothenemus hampei (Coleoptera: 

Curculionidae, Scolytinae), e o bicho-mineiro, Leucoptera coffeella (Lepidoptera: 

Lyonetiidae), são as mais importantes pelos grandes prejuízos econômicos que 

causam ao reduzir a produtividade das lavouras e afetar a qualidade do café 
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produzido (SOUZA et al., 2013). 

O bicho-mineiro é considerado a principal praga-chave na atualidade (Figura 

5), ocorrendo principalmente nas regiões de temperaturas do ar mais elevadas e 

com maior déficit hídrico (TEIXEIRA et al, 2007). O bicho-mineiro ocasiona grandes 

perdas ao cafeeiro, em virtude da derrubada das folhas o que promove a redução da 

capacidade fotossintética, chegando a proporcionar perdas de até 80% na produção 

(MENDONÇA et al., 2006). 

 

FIGURA 5. Infecção do bicho-mineiro (Leucoptera coffeella). A) face adaxial (parte 

superior); B) face abaxial (parte inferior).  

 

A broca-do-café tem se dispersado por todas as regiões produtoras, atacando 

os países da Américas do Sul, Central e do Norte, África e Ásia (CANTOR et al., 

2000). O ataque da broca-do-café causa prejuízo quantitativo (Figura 4), com a 

redução do peso dos grãos e queda de frutos, e prejuízo qualitativo, com a redução 

da qualidade do café através da alteração no tipo e bebida. Segundo Fernandes et 

al., (2014) os frutos são atacados em todos os estádios de crescimento 

comprometendo a produtividade e a qualidade da bebida. 
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FIGURA 4. A) Inseto broca-do-café, Hypothenemus hampei (Coleoptera: 

Curculionidae, Scolytinae) e B) grão com orifício causado pela broca-do-café.  

 

 

1.5 Algoritmos de machine learning 

 

A estratégia mais comum de controle dessas doenças e pragas é a aplicação 

de agroquímicos, principalmente fungicidas e inseticidas foliares, dependendo da 

intensidade dos mesmos na região. Esse método tradicional deve ser melhorado 

uma vez que as questões ambientais está cada vez mais em pauta, principalmente  

com o aumento das certificações. A utilização de sistemas de alertas fitossanitários 

por meio de modelos de previsão dos índices de doenças e pragas. 

Todas as relações existentes entre os elementos climáticas e a variabilidade 

das pragas e doenças do cafeeiro podem ser simulados com acurácia por meio de 

modelos agrometeorológicos (ROLIM et al., 2008) usando algoritmos de machine 

learning (SAHOO et al., 2017). Machine learning também conhecido como 

“aprendizagem de máquina” é um método que trabalha com análise de dados e 

busca automatizar a construção de modelos analíticos (SHEKOOFA et al.,, 2014; LI 

et al., 2016). É um campo da ciência da computação que trabalha com o 

reconhecimento de padrões utilizando da teoria do aprendizado computacional em 
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inteligência artificial (SAHOO et al., 2017). Huber e Gillespie (1992) relatam que os 

algoritmos de machine learning podem automatizar os sistemas de alerta das 

doenças e pragas, pautando as tomadas de decisões dos produtores de quando é 

realmente necessário utilizar do controle químico nas lavouras.  

As técnicas de machine learning são muitas promissoras para análises de 

bigdata mais rápidas, mais eficientes e acuradas (REHMAN et al., 2019). Os 

algoritmos machine learning utilizam de conceitos da teoria da probabilidade, 

estatística, teoria da decisão, otimização e técnicas de visualização, e por isso tem 

se tornado a vanguarda na área de modelling (SINGH et al., 2016; GÜMÜŞÇÜ et al., 

2019). 

Modelagem e o processo de desenvolvimento de um modelo. E modelo é a 

representação matemática simplificada de um sistema (JONES et al., 1987). Os 

modelos integralizam conhecimentos das áreas de agrometeorologia, fitossanidade, 

sensoriamento remoto, fisiologia vegetal, fitotecnia, ciência do solo e economia de 

forma interdisciplinar, podendo realizar estimações (JAME; CUTFORTH, 1996) e 

previsões (GOURANGA; ASHWANI, 2014) de variáveis. Com o uso de machine 

learning os computadores vão utilizar dos modelos e tomar as decisões com 

acurácia para os produtores. 

Para Jame e Cutforth (1996) a modelagem auxilia na estratégia e tomadas de 

decisões nas cadeias produtivas, além de realizar simulações acuradas da dinâmica 

do crescimento de cultivos. A estimação é a quantificação de um fenômeno atual a 

partir de dados atuais (ROLIM et al., 2008). Nesta situação, ocorre a estimativa de 

uma variável sem ser antecipação, por exemplo, estimar a evapotranspiração do dia 

de hoje usando dados de temperatura do ar também de hoje. 

Alguns exemplos de modelos de estimativa de doenças foram encontrados na 

literatura, como um modelo para Kushalappa et al. (1983) que  propuseram explicar 

o curso de ação biológica de H. vastatrix, e com os resultados obtidos foram 

desenvolvimento de equações de regressão para avaliar a taxa de progresso da 

ferrugem-do-cafeeiro. Madden et al., (2000)  que utilizaram  de modelos para estimar 

as lesões da Plasmopara vitícola na videira em Ohio e assim melhorar o sistema de 

alerta e reduzir o número de aplicação de fungicidas. Yang et al., (2007) realizaram 

uma modelagem agrometeorológica para controle fitossanitário do pepino estimando 
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a intensidade do míldio em ambiente protegido,  ao final os autores observaram que 

as condições ideias para infecção foram uma amplitude térmica diária de 5°C,  com 

temperatura média diária entre 15-25°C no outono e 80% de umidade relativa. E 

finalmente, Meira et al., (2009) que buscaram desenvolver árvores de decisão como 

modelos de alerta da ferrugem-do-cafeeiro em lavouras de café (Coffea arabica L.) 

com alta carga pendente de frutos, na localidade de Varginha, MG, observaram que 

a acurácia do modelo foi de 81% por validação cruzada, chegando a 89% segundo 

estimativa otimista, demonstrando ser uma alternativa viável às técnicas 

convencionais de aviso fitossanitário. 

Na literatura são poucos os trabalhos de modelagem agrometeorológica que 

lidam com o processo de previsão, uma vez que a maioria dos trabalhos fazem 

estimações. A previsão é o processo de quantificação de um evento futuro a partir 

de dados disponíveis atuais (ROLIM et al., 2008). Neste caso, ocorre a previsão de 

uma variável com um determinado tempo de antecipação, por exemplo, 7 dias antes 

do fenômeno advir. 

Alguns trabalhos que utilizam modelos para fins de previsão em sistemas 

agrometeorológicos de alerta fitossanitário, também conhecido como “disease early 

warning systems” foram encontrados na literatura. São exemplos desses: Kim et al., 

(2006) que utilizaram do processo de modelagem, com base na análise de árvore de 

regressão e lógica fuzzy, para prever a duração do molhamento (DPM) em 

cucurbitáceas, e ao final observaram uma simulação de 70% do DPM, melhorando 

assim o sistema de monitoramento. E, Baker et al., (2012) que buscaram 

desenvolver um modelo de previsão realizando previsão da requeima Batata na 

região de Great Lakes (EUA), conseguiram uma previsão acurada utilizando a 

metodologia de redes neurais artificiais. Entretanto, poucos trabalhos na literatura 

tem ousadia de prever a incidência de pragas e doenças do cafeeiro com dados 

climáticos usando algoritmos de machine learning. 
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Objetivo Geral 

 

Este trabalho tem como objetivo prever a frequência de pragas e doenças do café e 

avaliar a influência do clima nessas enfermidades nas principais regiões produtoras 

de Minas Gerais.  

 

Objetivos específicos  

 

1. Avaliar quais os elementos meteorológicos, e em qual momento, exercem 

maior influência nas pragas: broca-do-cafeeiro e bicho-mineiro e doenças 

(ferrugem-do-cafeeiro e cercosporiose) do cafeeiro arábica nas principais 

localidades cafeeiras do Sul de Minas Gerais e do Cerrado Mineiro. 

2. Desenvolver modelos agrometeorológicos para previsão de pragas e doenças 

em função das variáveis meteorológicas do Sul de Minas Gerais e Cerrado 

Mineiro usando algoritmos de machine learning com uma antecipação 

temporal suficiente para tomada de decisões.  

3. Calibrar as variáveis meteorológicas: temperatura do ar e precipitação 

pluviométrica dos dados do ERA-Interim do centro ECMWF em relação aos 

dados de reais de superfície mensurados pelo sistema nacional de 

meteorologia (INMET) para o estado de Minas Gerais.  
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CAPÍTULO 2 – Models for simulating the frequency of pests and diseases of 

Coffea arabica L.  

 

ABSTRACT – Coffee is the most consumed beverage in the world, but phytosanitary 
problems are among the main causes of reduced productivity and quality. The 
application of foliar fungicides and insecticides is the most common strategy for 
controlling these diseases and pests, depending on their intensity in a region. This 
traditional method can be improved by using alert systems with models of disease 
and pest indices. We developed models for simulating trends over time as functions 
of the thermal index and models for estimating the levels of infestation of the coffee 
leaf miner and coffee berry borer and the severity of disease for coffee leaf rust and 
cercospora, the main phytosanitary problems in coffee crops around the world. We 
used historical series of climatic data and levels of pest infestation and disease 
severity in Coffea arabica for high and low yields for seven locations in the two main 
coffee-producing regions in the state of Minas Gerais in Brazil, Sul de Minas Gerais 
(Boa Esperança, Carmo de Minas, Muzambinho, and Varginha locations) and 
Cerrado Mineiro (Araxá, Araguari and Patrocínio locations), totalling 874 900 ha. We 
conducted two analyses. a) We simulated the trends of the progress of diseases and 
pests over time using non-linear models. Nonlinear logistic and Lorenz models were 
calibrated in function of the thermal index. We only used the thermal index because 
air temperature is commonly measured by farmers in the regions. b) We estimated 
the levels of pest infestation and disease severity using multiple linear regression, 
with the levels of diseases and pests as dependent variables and accumulated 
degree days (DD), coffee foliage (LF) estimated by DD and the number of nodes 
(NN) estimated by DD as independent variables. The best models (a) and estimates 
(b) were selected for accuracy using the mean absolute percentage error (MAPE), 
root mean square error, and an adjusted coefficient of determination (R²adj). Cerrado 
Mineiro had the highest levels of pests and diseases, e.g. high-yielding coffee 
plantations in Araguari had intensities as high as 30.9% for rust, 36.1% for 
cercospora, 18.82% for the leaf miner and 4.5% for the berry borer, likely because 
Cerrado Mineiro averages 1 °C warmer than Sul de Minas Gerais. The difference 
between the dependent loads (high or low) of the coffee trees promoted different 
intensities only for rust, because the trees with high yields had higher intensities of 
the disease. The trend models for rust (FI) as a function of DD for Muzambinho 
(FIMUZ = f(DD)) for low yields and the models for the berry borer (BC) as a function 
of DD for Boa Esperança (BCBOE = f(DD)) for high yields were most accurate for Sul 
de Minas Gerais. The trend models for rust as a function of DD for Araxá (FIARX = 
f(DD)) for low yields and the models for cercospora (CI) as a function of DD for 
Patrocínio (CIPAT = f (DD)) for low yields were most accurate for Cerrado Mineiro. 
We used DD and LF = f(DD) and NN = f(DD) to predict diseases and pests with 
accuracy. MAPEs were 19.6, 5.7, 9.5, and 15.8% for rust, cercospora, leaf miner and 
berry borer, respectively, for Sul de Minas Gerais. Establishing phytosanitary alerts 
using only air temperature was possible with these models. 
 

KEY-WORDS: crop model; early prevision; phytosanitary alerts; forecasting    
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Introduction  

 

Brazil is the largest producer and exporter of coffee in the world (Meinhart et 

al., 2017), with a total of 2 million ha planted (CONAB, 2019). Production areas in 

Brazil are distributed in the south-central region, in the states of Minas Gerais, São 

Paulo, and Espírito Santo (Andrade et al., 2012; Cubry et al., 2013). Minas Gerais 

represents about 50% of the total production of Brazil and is the largest producer of 

coffee in the country (Barbosa et al., 2012, Ronchi et al., 2015). 

Coffee leaf rust (Hemileia vastatrix) and cercospora (Cercospora coffeicola) 

are the most common phytosanitary problems in coffee-producing regions on all 

continents (Haddad et al., 2009; Ghini et al., 2015, Castro et al., 2018), which can 

cause high losses in coffee plantations. Coffee leaf rust is one of the main diseases 

affecting coffee plantations worldwide, having an important economic impact in the 

coffee industry in countries where coffee is an important part of the economy 

(Esquivel, Sanchez, Barbosa, 2017). Rust is a fungal disease that causes severe 

defoliation of plants. High levels of rust cause production losses of 35% in the 

Brazilian coffee regions where climatic conditions are favourable (Teixeira et al., 

2007). 

Rust has also been reported in Peru (Castro et al., 2018), Colombia, and 

Central America (Esquivel, Sanchez, Barbosa, 2017), and cercospora has also been 

reported in Thailand (Sirinunta and Akarapisan, 2015) and Latin America (Ghini et al., 

2015), where both cause heavy losses. These diseases cause worldwide economic 

losses of approximately 1 billion $US, due to high mitigation costs, and decreases in 

productivity of up to 50% (Haddad et al., 2009; Jackson et al., 2012). 

Cercospora infects leaves and fruits, causing defoliation, early fruit maturation, 

and premature fruit fall, increasing the number of pimples (Carvalho et al., 2008). The 

symptoms of cercosporiosis in the fruit occur four months after flowering, causing 

dark-brown depressions from the peduncle to the crown of the fruit (Santos et al., 

2010). Irrigating dense crops provides a microclimate favouring cercosporiosis in 

coffee (Paiva et al., 2013). Water deficits are one of the main causes of the 

appearance of cercosporiosis (Salgado et al., 2007).  

Pests also contribute to losses of productivity and the quality of coffee. The 
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main pests are the coffee berry borer (Hypothenemus hampei) (Coleoptera: 

Curculionidae, Scolytinae) and the coffee leaf miner (Leucoptera coffeella) 

(Lepidoptera: Lyonetiidae) due to the large economic losses they cause (Souza et 

al., 2013). The berry borer is dispersed throughout the coffee-producing regions of 

the world, attacking countries in Africa, Asia, and South, Central, and North America 

(Cantor et al., 2000). The attack of the berry borer causes quantitative damage, 

reducing grain weight and increasing fruit drop. The fruits are attacked at all stages of 

growth, compromising the productivity and quality of the beverage (Fernandes et al., 

2014). The leaf miner is currently considered the main pest in regions with high air 

temperatures and water deficits (Teixeira et al., 2007). The leaf miner causes large 

losses to coffee trees, by reducing the photosynthetic area, and leaching losses of up 

to 80% of production (Mendonça et al., 2006). Leaf miners have been reported in 

several other countries, such as Costa Rica (Allinne et al., 2016) and Ethiopia 

(Abedeta et al., 2015). 

Models are simplified mathematical representations of a system, and their 

development is called modelling (Jones et al., 1987). Models integrate information 

from areas such as agrometeorology, phytosanitation, remote sensing, plant 

physiology, plant science, soil science, and economics for estimating (Jame and 

Cutforth, 1996) and predicting (Gouranga and Ashwani, 2014) a variety of 

parameters, assisting in the formation of strategies and decisions in production 

chains, and accurately simulating the dynamics of crop growth (Jame and Cutforth, 

1996). 

We used non-linear models because the adjusted parameters we used were 

physically and/or biologically relevant to the system under study (Gujarati and Porter, 

2001). Nonlinear models have been used in other studies. For example, Kin et al. 

(2001) estimated the developmental times of Carposina sasakii (Lepidoptera: 

Carposinidae) as a function of the average air temperature in the Suwon region of 

Korea. The authors observed that the models were accurate and that the times 

decreased with increasing temperature up to 32 °C in the eggs, 28 °C in the larvae, 

and 30 °C in the pupae. And, Rowley et al. (2017) who predicted the development of 

Haplodiplosis marginata (Diptera: Cecidomyiidae) in the United Kingdom using non-

linear models (a binomial generalised linear model and Weibull and Probit models), 
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the pest had a sigmoidal tendency of growth up to 1550 accumulated degree days 

(DD), and the growth curve stabilised at an accumulation of 980 DD. 

Diseases and pests decrease coffee quality and productivity (Spongoski et al., 

2005). Rates of disease and pest infestation in coffee plants have been reported for 

Brazil and all countries where the plant is cultivated. The application of foliar 

fungicides and insecticides is the most common strategy to control these diseases 

and pests, depending on their regional intensity. This traditional method can be 

improved using alert systems with models of disease and pest indices. We thus 

sought to develop models for simulating of the growth curve of pests and diseases 

over time as a function of the thermal index and estimating pest infestation and 

disease severity of Coffea arabica L. for use in phytosanitary risk-alert systems.  

 

Material and methods 

 

We used a historical series of climatic data and levels of pest infestation and 

disease severity of arabica coffee for the state of Minas Gerais, Brazil. 

Representative sites of coffee production were Boa Esperança (BOE), Carmo de 

Minas (CDM), Muzambinho (MUZ), and Varginha (VAR) in Sul de Minas Gerais 

(SOMG) and Araxá (ARX), Araguari (ARG) and Patrocínio (PAT) in Cerrado Mineiro 

(CEMG) (Table 1 and Fig. 1). 
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TABLE 1. Geographic characteristics of the main coffee-growing areas of the state of 

Minas Gerais. 

Locations Latitude (º) Longitude (º) Altitude (m) Period Area (km2) 
 

 
  Sul de Minas Gerais 

    
  

 
Boa Esperança  21º 03' 59" S 45º 34' 37" W 830 2010 to 2018 860,7 - 
Carmo de Minas  22º 10' 31" S 45º 09' 03" W 1080 2006 to 2018 323,3 - 
Muzambinho 21º 20' 47" S 46º 32' 04" W 1033 2010 to 2018 409 - 
Varginha  21º 34' 00" S 45º 24' 22" W 940 1998 to 2018 395,6 - 

    Cerrado Mineiro (Alto Paranaíba) 

    
  

 
Araguari  18º 59' 35" S 46º 59' 01" W 961 2010 to 2018 2.731 - 
Araxá 19º 33' 21" S 46º 58' 08" W 960 2010 to 2018 1.165 - 
Patrocínio 18º 33' 21" S 48º 12' 25" W 933 2010 to 2018 2 866 - 

 

 

FIGURE 1. Coffee regions in the state of Minas Gerais, Brazil, analysed in this study. 

 

Daily meteorological data were obtained from automatic meteorological 

stations installed near the coffee plantations evaluated: air temperature (TAIR) and 

precipitation (P). Data were collected using a Meteorological Station Vantage Pro2 

Davis-K6162 (Davis Instruments, Hayward, Californian-USA) data acquisition 

system. The TAIR and P data were used to estimate reference potential 
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evapotranspiration (PET) following the method of Camargo (1971) (Eq. 1). The 

availability of data was the criterion for choosing this model. 

           (
  

    
)                      (1) 

where Qo is the solar irradiance at the top of the atmosphere (MJ m-2 d-1), TAIR is the 

mean air temperature (°C), and ND is the number of days in the period.  

 

We estimated the components of the water balance (WB) proposed by 

Thornthwaite and Mather (1955) using an available water capacity (CAD) of 100 mm, 

because this value represents the majority of soils in the main coffee regions 

(Meireles et al., 2009). The WB components were: soil-water storage, water deficit 

(DEF), and surplus water (EXC) of the soil-plant-atmosphere system. 

The data for disease severity and pest infestation were provided by the 

Procafé Foundation (http://fundacaoprocafe.com.br/) from field evaluations with no 

phytosanitary treatment at the sites (Table 1). The data were for the diseases coffee 

rust (H. vastatrix) and cercospora (C. coffeicola) and the pests coffee leaf miner (L. 

coffeella) and coffee berry borer (H. hampei). These data had been collected from 

fields with steep and gentle slopes, also for 1995-2018. 

Incidences were measured non-destructively. The plants were randomly 

chosen in a zigzag walking pattern in the area, as recommended by (Chalfoun 1997). 

Incidence scores were determined for leaves from the third or fourth knot of branches 

at the middle third of the plants. Detailed methodology is presented in Table 2. 
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TABLE 2. Methodology for evaluating coffee development, diseases, and pests used 

by the Procafé Foundation of Brazil. 

Phytosanitary problem Methodology 

Phenology  

Number of nodes 

- Sample 20 plants per plot (random) 
- Select four branches per plant in the middle third 
(one on each side) 
- Quantify the number of nodes developed from 

September in each chosen branch 

Leafiness of coffee plant 

- Sample 20 plants per plot (random) 
- Select four branches per plant in the middle third 
(one on each side) 
- Quantify the amount of foliar development in the 
chosen branches 
- Quantify the soil-foliage percentages in the 

samples 

Diseases 

Coffee rust (Hemileia vastatrix) and 

Cercospora index (Cercospora 

coffeicola) 

- Sample 20 plants per field 
- Collect the leaves in the middle third of the 
chosen plant 
- Choose five lateral branches at random on each 
side of the plant 
- Remove a completely developed leaf, of the 3rd 
or 4th pair of leaves, from each branch 
- Total of 10 leaves/plant (five on each side) 
- Total of 200 leaves/field 
- Quantify the percentage of disease in the 

samples 

Pests 

Coffee leaf miner (Leucoptera 

coffeella) 

- Sample 20 plants per field 
- Collect the leaves in the middle third of the 
chosen plant 
- Choose five lateral branches at random on each 
side of the plant 
- Remove a completely developed leaf, of the 3rd 
or 4th pair of leaves, from each branch 
- Total of 10 leaves/plant (five on each side) 
- Total of 200 leaves/field 
- Quantify the percentage of the pests in the 
samples 

Coffee berry borer (Hypothenemus 

hampei) 

- Sample average of 50 plants per plot 
- Choose four branches per plant (one on each 
side) 
- Collect 25 fruits/branch for a total of 100 
fruits/plant 
- 50 plants/field for a total of 5000 fruits/field 
- Quantify the percentage of the pest in the 
samples 
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Each node normally develops from the plagiotropic branch of the coffee tree 

to have two leaves (one on each side of the node). Leafiness and the percentages of 

diseases and pests were quantified by: 

                  
 
           

 
 

               
              (2) 

            
                                   

                     
             (3) 

            
                                   

                      
             (4) 

           
                                

                     
             (5) 

           
                                  

                     
             (6) 

where Ci is the cercospora index (%), FI is coffee rust (%), CBB is the coffee berry 

borer (%), and CLM is the leaf miner (%). 

 

The diseases and pests of the coffee plantations were evaluated for high and 

low productivity, which occur due to the natural bienniality of coffee plants. High 

productivity represents >30 bags (60 kg each) ha-1, and low productivity represents 

<10 bags ha-1. The discontinuous range of this classification is due to the field 

differences for subsequently high and low yields. The cultivars were Catuaí and 

Mundo Novo, both susceptible to the diseases and pests. 

Pest infestation, disease severity, and the time of each assessment were 

used to construct trend curves for describing the development of pest infestation and 

disease severity over time (Nutter, 1997; Bergamin Filho, 2011). We analysed the 

trend of development of the diseases and pests of coffee trees as the DDs for high 

and low yields for all sites. Total DD was calculated using a base temperature 

(Tbase) of 10.2 °C, as proposed by Carvalho et al. (2014) (Eq. 7) for the 

development of coffee crops. 

  ∑   *
         

 
+               (7) 

where ΣDD is total DD after the beginning of vegetative growth standardised from 

September, Tmax is the absolute maximum daily air temperature (°C), and Tmin is 

the absolute minimum daily air temperature (°C).  
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The development of disease over time was simulated using non-linear models. 

Growth models were adjusted by a regression analysis using sigmoid models with 

four parameters (logistic) and the Lorentz model with four parameters (Eqs. 8 and 9, 

respectively). The normal distribution of the deviations was verified using the 

Kolmogorov-Smirnov adhesion test at P<0.05. 

       
           

   
 

  
  

             (8) 

       
     

 

 

                      (9) 

where Ymax is maximum development, Ymin is minimum development, X0 is the 

number of degree days for maximum disease development, p is the maximum growth 

rate at X0, W is the midpoint standard deviation, and x is DD after the beginning of 

vegetative growth, always from 01 September, as suggested by Hinnah et al. (2018). 

  

The parameters of all nonlinear models were estimated by the least-squares 

method, which consists of minimising the sum of the squares of the model errors and 

iteratively using linear programming with the generalised reduced gradient model, as 

proposed by Lasdon and Waren (1982). We generated the confidence interval (IC) of 

the estimate (at 5% significance) for all models for estimating trends, as proposed by 

Neyman (1937) (Eq. 10). Confidence intervals are indicators of precision and the 

stability of an estimate, which is an evaluation of how close a measurement is to the 

original estimate: 
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
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where Yest is a value estimated by the model, sYest is the standard deviation of the 

values estimated by the model, Xobs is an observed value of disease severity or pest 

infestation, x is the mean of these observed values, s2 is the variance of the data, n 

is the number of datapoints, and TableT (/2,n-2) is value found from the table of the 

normal distribution (α = 0.05). 

 

The models for estimating levels of disease severity and pest infestation were 

based on multiple linear regressions. The dependent variable was the levels pests 

and diseases and the independent variables were the NN and tree foliage 
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accumulated in DD (Eq. 11). One model for each disease and pest was calibrated for 

the entire region using BOE, CDM, MUZ, and VAR data for SOMG and ARG, ARX, 

and PAT data for CEMG. Only models with P<0.05 were selected: 

                              (11) 

where Y is the level of pest infestation or disease severity, N is the adjusted weight, 

XN is an independent variable, and O is an linear coefficient. 

 

The actual observed field data and the results of all models were compared 

using several statistical indices: accuracy, precision, and level of significance (Table 

3). Accuracy indicates the closeness of an estimate to the observed value and was 

evaluated using the mean absolute percentage error (MAPE) and the root mean 

square error (RMSE). Precision is the ability of a model to repeat an estimate and 

was evaluated using the coefficient of determination (R2) adjusted (R2adj) following 

Cornell and Berger (1987).  

 

TABLE 3. Accuracy and precision of statistical indices used for evaluating the non-

linear adjustments of rates of disease severity and pest infestation. Yest, estimated 

value of y; Yobs, observed value of y; Xobs, observed value of x; n, number of 

datapoints. Overlined variables are means. 
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Results and discussion 

 

Coffee production in SOMG and CEMG is characterised by the presence of 

diseases and pests, which is strongly influenced by climatic conditions. SOMG and 

CEMG had similar climatic trends (Figure 2), e.g. higher TAIR and P of 300DD-2800DD 

and lower TAIR and smaller P after the accumulation of 2800 DD. DEF was highest in 

two periods, from 0 DD to 1000 DD and from 2900 DD to 4000 DD in both regions 

(Figure 2AB). 

The accumulation of P, PET, EXC, and DEF was higher for CEMG, at 1446.84, 

871.64, 771.84, and -180.61 mm, respectively. The accumulation of P, PET, EXC, 

and DEF in SOMG was 1380.21, 859.49, 614.15, and -105.60 mm, respectively 

(Figure 2C, D). The lower DEF in SOMG has previously been reported (e.g. Barbosa 

et al., 2010), who found that DEF was usually higher in CEMG. 

 

FIGURE 2. Seasonal variation of climatic parameters (A and B) and accumulation of 

climatic parameters after the resumption of vegetative growth (C and D) in Sul de 

Minas Gerais and Cerrado Mineiro. 
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The average rust severity for high and low yields was 33.5 and 15.8% in 

SOMG (Figure 3A) and 27.1 and 24.9% in CEMG (Figure 3B), respectively. Coffee 

trees in SOMG with low yields tended to have less rust than trees with high yields, 

because coffee plants with high yields allocate photoassimilates for production 

(Aparecido et al., 2018), so the plants are more vulnerable to rust. 

Disease rates were higher in CEMG than SOMG (Figure 3). Carvalho et al. 

(2017) also reported a higher incidence of rust and cercospora in CEMG than SOMG. 

Levels were highest for ARG; 30.9% of high-yield trees had rust, 36.1% had 

cercospora, 18.82% had leaf miners, and 4.5% had berry borers (Figure 3B, D, F, H). 

In contrast, levels were lowest for VAR; 20.9% of low-yield trees had rust, 2.7% had 

cercospora, 1.38% had leaf miners, and 0.18% had berry borers (Figure 3A, C, E, G). 
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FIGURE 3. Box plot: A and B) Coffee leaf rust index, C and D) cercospora index, E 

and F) coffee berry borer, and G and H) coffee leaf miner for high and low yields for 

Sul de Minas Gerais (Boa Esperança, Carmo de Minas, Muzambinho and Varginha), 

and Cerrado Mineiro (Araguari, Araxá and Patrocínio) for 1995-2015. Legend: •, 

average; ─, median; , 50% of values; I, 99% of values; X, extreme values 

(outliers). 
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The analysis of the growth trends based on DD identified several relationships. 

The growth of NN per plagiotropic branch due to the accumulation of DD 

demonstrated a hyperbolic adjustment (Figure 4). The maximum value of NN was 

eight nodes per branch, at 3850 DD in SOMG and 10 nodes per branch at 4000 DD in 

CEMG, for BOA and ARG, respectively. NN per plagiotropic branch was positively 

correlated with coffee productivity (Assis et al., 2014), because these nodes 

produced coffee fruits.  

 

FIGURE 4. Growth of nodes (NN) based on the total degree days (DD, °C d-1) after 

the beginning of vegetative growth (September). A) Boa Esperança, B) Araguari, C) 

Carmo de Minas, D) Araxá, E) Muzambinho, F) Patrocínio, and G) Varginha.  
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Leafiness based on DD was similar in SOMG and CEMG. The reduction of 

foliage in SOMG occurred from 2400 DD but was after 2500 DD in CEMG (Figure 5). 

This early defoliation was attributed to the pests and foliar diseases, which reduce 

the photosynthetic area of plants and may even promote the death of plagiotropic 

branches (Custodio et al., 2010; López-Duque, Fernández-Borrero, 1969; Gree, 

1993). 

Leafiness was lowest in SOMG at 18.37% and in CEMG at 17.1%, in CDM and 

ARX, respectively (Figure 5C, D). Foliar density is directly linked to crop production, 

because leaves are one of the main organs that contain chloroplasts, the organelle 

entirely responsible for photosynthesis (Taiz and Zeiger, 2009). 
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FIGURE 5. Leafiness based on total degree days (DD, °C d-1). A) Boa Esperança, 

B) Araguari, C) Carmo de Minas, D) Araxá, E) Muzambinho, F) Patrocínio, and G) 

Varginha. Points are observed values, solid lines are estimated values, and dashed 

lines indicate 95% confidence intervals. 
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Coffee rust based on DD had a sigmoidal adjustment (Figures 6 and 7). The 

rust index in SOMG was higher for high than low yields (Figure 6). The rust index was 

more similar in CEMG for both yields (Figure 7). Meira et al. (2009) reported that trees 

were more predisposed to rust in years of high than low yields, because the trees 

allocate more photoassimilates for the production of high yields (Aparecido et al., 

2018). Carvalho et al. (2001) evaluated the rust indices as a function of the level of 

coffee production and found that increasing levels of production were correlated with 

an increase in the susceptibility of the plants to rust. 

The adjusted models were all significant (P<0.001), with low MAPEs and 

RMSEs and with R2adj 1.0, indicating that the rust index could be estimated as a 

function of DD. For example, the logistic model estimating the rust index for BOE 

(FIBOE) for high yields had a MAPE of 9.91%, RMSE of 2.80, and R2adj of 0.98 

(Figure 6A). An error of 9.91% is low, because a rate of maximum disease severity of 

72.27% at the end of the cycle has a variation of only ±7.14%, which is low for a 

disease. The models with the highest accuracy in SOMG for estimating rust for the 

high yields were FIBOE = F(DD) and FICDM = F(DD), with MAPEs of 9.91 and 

15.01%, respectively. For the crop adjustments for low yields, FIMUZ = F(DD) and 

FIBOE = F(DD) were the best models, with MAPEs of 8.94 and 12.05%, 

respectively. 

The parameter   adjusted in the sigmoid models indicates the maximum 

rates of growth of the diseases. The rust index for BOE, CDM, MUZ, and VAR had 

maximum rates of 5.60, 4.36, 3.25, and 6.08% for high yields and 6.75, 3.54, 3.82, 

and 3.41% for low yields, respectively (Figure 6). The highest rate of rust growth in 

SOMG was 6.75% °C-1 d-1. This rate was for a tree with a low yield in BOE at 2484.5 

°C d-1 (Figure 6B). The lowest of the highest growth rates was 3.25% °C-1 d-1 in MUZ 

at 2792 °C d-1 in a high-yield coffee tree (Figure 6E). The highest rates of coffee 

development in SOMG for high yields occurred at 2541.7, 2418, 2792, and 2215.3 °C 

d-1 for BOE, CDM, MUZ, and VAR, respectively. The highest growth rates for low 

yields were earlier, at 2484.5, 2263.6, 2210.8, and 2246 °C d-1 for BOE, CDM, MUZ, 

and VAR, respectively (Figure 6). 
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FIGURE 6. Coffee rust index (FI) based on total degree days (DD, °C d-1) after the 

beginning of vegetative growth (September) in Sul de Minas Gerais. A and B, Boa 

Esperança; C and D, Carmo de Minas; E and F, Muzambinho; and G and H, 

Varginha. Points are observed values, solid lines are estimated values, and dashed 

lines indicate 95% confidence intervals. 
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The models for CEMG with the highest accuracy for estimating rust for high 

yields were FIARG = F(DD) and FIARX = F(DD), with MAPEs of 12.4 and 15.2%, 

respectively (Figure 7A, C). The best models for the crop adjustments for low yields 

were, in ascending order, FIARX = F(DD) and FIARG = F(DD), with MAPEs of 11.8 

and 14.4%, respectively (Figure 7B, D). The rust index for CEMG plants had maximum 

rates of 10.1, 6.09, and 16.4% (high yields) and 9.87, 6.61, and 8.46% (low yields) in 

ARG, ARX, and PAT, respectively (Figure 7). These rates were higher than those for 

rust in SOMG (Figure 6). 

The highest growth rate was 16.4% 1 °C-1 d-1 for rust, much higher than for 

SOMG (6.75% °C-1 d-1). The growth rate of 16.4% °C-1 d-1 occurred in a tree with a 

high yield in PAT, at 2705.6 °C d-1 (Figure 7E). The highest rates of coffee 

development in CEMG for high yields occurred at 2625.7, 2548.1, and 2705.6 °C d-1 

for ARG, ARX, and PAT, respectively. The highest growth rates for low yields 

occurred at 2768.5, 2312.4, and 2754.3 °C d-1 for ARG, ARX, and PAT, respectively 

(Figure 7). 



33 
 

 

 
FIGURE 7. Coffee rust index (FI) based on total degree days (DD, °C d-1) after the 

beginning of vegetative growth (September) in Cerrado Mineiro. A and B, Araguari; C 

and D, Araxá; and E and F, Patrocínio. Points are observed values, solid lines are 

estimated values, and dashed lines indicate 95% confidence intervals. 
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The cercospora index also tended to have a sigmoidal distribution. The 

models indicated that the cercospora index could be estimated as a function of DD, 

because the adjustments were all significant (P<0.001), with low MAPEs and RMSEs 

and R2adj 1.0. For example, the logistic model for CDM at low yields had a MAPE of 

7.74%, RMSE of 0.40%, and R2adj = 0.79 (Figure 8D). A MAPE of 7.74% is low, 

because the highest cercospora index of 3.97% at the end of the cycle had a 

variation of only ±0.28%. 

The most accurately fitted models for estimating cercospora in SOMG for high 

yields were CIVAR = F(DD) and CIMUZ = F(DD), with MAPEs of 3.61 and 7.69%, 

respectively. The most accurate models for low yields were CICDM = F(DD) and 

CIMUZ = F(DD), with MAPEs of 7.74 and 7.69%, respectively. 

Ymax of the adjusted model indicates the maximum disease intensity. The 

highest cercospora intensities for high yields were 6.29, 6.48, 6.18, and 8.07% in 

BOE, CDM, MUZ, and VAR, respectively (Figure 7). The highest cercospora 

intensities for low yields were 4.54, 3.97, 6.21, and 3.38% in BOE, CDM, MUZ, and 

VAR, respectively (Figure 8). Cercospora intensity in SOMG occurred at an 

accumulation of 3654.45 °C d-1. Custodio et al. (2010) reported maximum cercospora 

intensity in SOMG of 20%. 

The cercospora index for SOMG indicated high maximum cercospora growth 

rates of 70.8, 2.70, 64.75, and 3.26% for high yields and 65.2, 48.3, 64.7, and 4.19% 

for low yields in BOE, CDM, MUZ, and VAR, respectively (Figure 8). The highest 

cercospora growth rate was 70.8%. This development rate occurred in a high-yield 

tree in BOE where the plant accumulated 1001.9 °C d-1 (Figure 8B). The highest 

rates of cercospora development in SOMG for high yields occurred at 1001.9, 1391.2, 

999.3, and 2227.3 °C d-1 for BOE, CDM, MUZ, and VAR, respectively (Figure 8A, C, 

E, G). The highest development rates of the disease for low yields occurred at 977.4, 

1365.5, 1004.6, and 1426.2 °C d-1 for BOE, CDM, MUZ, and VAR, respectively 

(Figure 8B, D, F, H). 
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FIGURE 8. Cercospora index (CI) based on total degree days (DD, °C d-1) after the 

beginning of vegetative growth (September) in Sul de Minas Gerais. A and B, Boa 

Esperança; C and D, Carmo de Minas; E and F Muzambinho; G and H Varginha. 

Points are observed values, solid lines are estimated values, and dashed lines 

indicate 95% confidence intervals. 
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The most accurate model for estimating cercospora for high yields in CEMG 

was CIARG = F(DD), with a MAPE of 12.7% (Figure 9A). The most accurate model 

for low yields was CIPAT = F(DD), with a MAPE of 9.05% (Figure 9F). Ymax of the 

adjusted model indicates the highest disease intensity. The highest cercospora 

intensities in ARG, ARX, and PAT were 67.9, 13.1, and 12.09% for high yields 

(Figure 9A, C, E) and 73.6, 12.5, and 6.76% for low yields, respectively (Figure 9B, 

D, F). These maximum cercospora intensities in CEMG occurred at an accumulation 

of 3994.16 °C d-1. 

The cercospora index in ARG, ARX, and PAT in CEMG had maximum growth 

rates of 9.97, 60.2, and 2.01% for high yields and 5.75, 48.7, and 13.5% for low 

yields, respectively (Figure 9). The highest cercospora growth rate was 60.2%. This 

growth rate occurred in a high-yield tree in ARX where the plant accumulated 1485.2 

°C d-1 (Figure 9B). The highest cercospora growth rates at ARG, ARX and PAT in 

CEMG occurred at 2581.3, 1485.2 and 1553.6 °C d-1 for high yields (Figure 9A, C, E) 

and 2888.1, 1444.4 and 1161.5 °C d-1 for low yields (Figure 9B, D, F), respectively. 
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FIGURE 9. Cercospora index (CI) based on total degree days (DD, °C d-1) after the 

beginning of vegetative growth (September) in Cerrado Mineiro. A and B, Araguari; C 

and D, Araxá; and E and F, Patrocínio. Points are observed values, solid lines are 

estimated values, and dashed lines indicate 95% confidence intervals. 

 

The severity of infestation with the berry borer tended to have a Gaussian 

distribution. The adjustments of the models indicated that the severity of infestation 

could be estimated as a function of the climatic conditions, because the adjustments 

were all significant (P<0.001), with a low MAPE and RMSE and R2adj 1.0. The 

Lorentz model estimated the severity of infestation for high yields in BOE with high 

accuracy, with a MAPE of 8.99%, RMSE of 0.11%, and R2adj of 0.98 (Figure 10A). A 
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MAPE of 8.99% was relatively low, because the average infestation was 2.5% and 

the maximum peak intensity had a variation of only ±0.22%. 

The most accurately fitted models for estimating the severity of infestation 

with the berry borer for high yields in SOMG were BCBOE = F(DD) and BCCDM = 

F(DD), with MAPEs of 8.99 and 18.10%, respectively. The most accurately fitted 

models with crop adjustments for low yields were BCMUZ = F(DD) and BCVAR = 

F(DD), with MAPEs of 18.2 and 18.6%, respectively. 

The maximum intensities of infestation with the berry borer in BOE, CDM, 

MUZ, and VAR were 2.6, 1.9, 2.2, and 2.01% for high yields and 1.1, 1.8, 2.3, and 

0.7% for low yields, respectively (Figure 10). These maximum intensities in SOMG 

occurred at distinct accumulations for each site. For example, the pest peaks in BOE, 

CDM, MUZ, and VAR occurred at 2007.9, 2346.8, 2298.4, and 1995.2 °C d-1 for high 

yields (Figure 10A, C, E, G) and 2011.1, 2309, 2317.8, and 2019.3 °C d-1 for low 

yields (Figure 10B, D, F, H), respectively. A more complex analysis of the severity of 

infestation with the berry borer in BOE indicated an increase in severity up to 1520 

°C d-1. The severity then stabilised slightly and decreased after the accumulation of 

2010 °C d-1 (Figure 10A). 
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FIGURE 10. Coffee berry borer infestation based on total degree days (DD, °C d-1) 

after the beginning of vegetative growth (September) in Sul de Minas Gerais. A and 

B, Boa Esperança; C and D, Carmo de Minas; E and F, Muzambinho; and G and H, 

Varginha. Points are observed values, solid lines are estimated values, and dashed 

lines indicate 95% confidence intervals. 

 

The most accurate model for estimating the severity of infestation in CEMG for 
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high yields was BCARG = F(DD), with a MAPE of 20.4%, RMSE of 2.36, and R2adj 

= 0.81 (Figure 11A). The most accurate model for low yields was BCARX = F(DD), 

with a MAPE of 10.4%, RMSE of 0.29%, and R2adj of 0.99 (Figure 11D). The 

maximum intensities of infestation in ARG, ARX, and PAT in CEMG were 16.2, 3.1, 

and 6.6% for high yields (Figure 11A, C, E) and 13.5, 11.9, and 7.1% for low yields 

(Figure 11B, D, F), respectively. 

Pest infestation in ARG, ARX, and PAT peaked at 2716.2, 2373.2, and 

2576.3 °C d-1 for high yields (Figure 11A, C, E, G) and 2528.1, 2408.3 and 2532.7 °C 

d-1 for low yields (Figure 11B, D, F, H), respectively.  

 

FIGURE 11. Coffee berry borer infestation based on total degree days (DD, °C d-1) 

after the beginning of vegetative growth (September) in Cerrado Mineiro. A and B, 

Araguari; C and D, Araxá; E and F, Patrocínio. Points are observed values, solid 

lines are estimated values, and dashed lines indicate 95% confidence intervals. 
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The severity of infestation with the leaf miner tended to have an inverted 

peak for all SOMG sites. The adjustments of the models indicated that the severity of 

infestation could be estimated as a function of the climatic conditions, because the 

adjustments were all significant (P<0.001), with low MAPE and RMSE and R2adj 

1.0. The Lorentz model accurately estimated the severity of infestation with leaf 

miner for high yields in MUZ, with a MAPE of 5.80%, RMSE of 0.40%, and R2adj of 

0.74 (Figure 12E). An error of 5.80% is low, because a severity of 2.2% has a 

variation of only ±0.12%. The most accurate models for estimating the severity of 

infestation were BMMUZ = F(DD) and BMVAR = F(DD), with MAPEs of 5.80 and 

5.97%, for high yields and BMMUZ = F(DD) and BMCDM = F(DD), with MAPEs of 

5.22 and 10.1%, for low yields, respectively. 

The level of infestation was assessed after the coffee harvest and when new 

shoots appeared. Infestation with the leaf miner was already high at the beginning of 

the evaluations, represented by Ymin of the equation of Lorentz. Infestations at the 

beginning of the evaluations in BOE, CDM, MUZ, and VAR were 2.74, 2.06, 2.60, 

and 1.48% for high yields and 3.04, 2.08, 2.66 and 1.70% for low yields, respectively 

(Figure 12). The lower intensities of the leaf miner in SOMG occurred at 1000-2400 °C 

d-1. High rainfall during this period may account for the low intensities (Figure 2). 

Infestation was higher in other periods when rainfall was lower. Several studies such 

as Villacorta (1980) and Custódio et al. (2009) verified that the population density of 

the leaf miner was highest after periods of P. 
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FIGURE 12. Coffee leaf miner infestation based on total degree days (DD, °C d-1) 

after the beginning of vegetative growth (September) in Sul de Minas Gerais. A and 

B, Boa Esperança; C and D, Carmo de Minas; E and F, Muzambinho; and G and H, 

Varginha. Points are observed values, solid lines are estimated values, and dashed 

lines indicate 95% confidence intervals. 

 

The severity of infestation with the leaf miner had distinct trends amongst the 
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CEMG sites. For example, infestation in ARX tended to have an inverted peak (vale 

curve), but the other sites had sigmoid curves. Regardless of the trend, adjustments 

of the models indicated that the severity of infestation could be estimated as a 

function of the climatic conditions, because the adjustments were all significant 

(P<0.001), with a low MAPE and RMSE and R2adj 1.0. Infestation of leaf miner was 

high in ARG and PAT. The highest rates in ARG and PAT were 42.3 and 20.2% for 

high yields and 40.5 and 21.9% for low yields, respectively (Figure 13). 

 

FIGURE 13. Coffee leaf miner infestation based on total degree days (DD, °C d-1) 

after the beginning of vegetative growth (September) in Cerrado Mineiro. A and B, 

Araguari; C and D, Araxá; and E and F, Patrocínio. Points are observed values, solid 

lines are estimated values, and dashed lines indicate 95% confidence intervals. 
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Summaries of the adjusted parameters in the trend models for all sites are 

presented in Tables 4-6. 

 

TABLE 4. Parameters adjusted in the models for the number of nodes and leafiness 

as functions of total Degree Days. 

REGION City Ymax Ymin X0 p Ymax Ymin X0 p 

 
  Number of nodes  Leafiness 

South BOE 10.09 1.22 1744.6 1.87 98.69 43.26 3041 12.34 

 
CDM 8.47 1.22 1533.5 2.16 99.1 18.37 3234.8 7.05 

 
MUZ 11.9 1.18 2250.7 1.66 95.98 51.5 2829.7 13.1 

 
VAR 8.16 1.24 1498.7 2.23 99.02 34.44 3009.8 13.14 

Cerrado ARG 27.1 0.45 6406.3 1.11 96.37 0 3557.8 6.58 

 
ARX 11.15 2.21 2351.4 2.3 96.44 17.19 3250.4 6.48 

 
PAT 10.6 1.71 2136.7 2.07 97.49 22.29 3509.7 9.85 

Average 
(±Standard 
deviation) 

South 
9.66 

(±1.719) 
1.22 

(±0.025) 
1756.88 

(±346.682) 
1.98 

(±0.264) 
98.2 

(±1.489) 
36.89 

(±14.178) 
3028.83 

(±165.918) 
11.41 

(±2.928) 

Cerrado 
16.28 

(±9.372) 
1.46 

(±0.907) 
3631.47 

(±2405.473) 
1.83 

(±0.631) 
96.77 

(±0.627) 
13.16 

(±11.679) 
3439.3 

(±165.351) 
7.64 

(±1.917) 

Total 
12.5 

(±6.581) 
1.32 

(±0.54) 
2560.27 

(±1729.996) 
1.91 

(±0.418) 
97.58 

(±1.351) 
26.72 

(±17.518) 
3204.74 

(±266.492) 
9.79 

(±3.094) 
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TABLE 5. Parameters adjusted in the models for the coffee leaf rust and cercospora 

indices as functions of total Degree Days. 

REGION YIELD City Ymax Ymin X0 p 
 

Ymax Ymin X0 p 

   
Rust index   Cercospora index 

South HIGH BOE 72.3 3.05 2542 5.6   6.29 2.05 1002 70.8 

 
HIGH CDM 81.4 3.32 2418 4.36 

 
6.48 1.31 1391 2.7 

 
HIGH MUZ 84.9 0.74 2792 3.25 

 
6.18 1.55 999 64.8 

 
HIGH VAR 81 4.01 2215 6.08 

 
8.07 1.5 2227 3.26 

 
LOW BOE 18.5 1.97 2485 6.75 

 
4.54 1.58 977 65.2 

 
LOW CDM 35.3 2.09 2264 3.54 

 
3.97 2.09 1366 48.3 

 
LOW MUZ 34.4 1.87 2211 3.82 

 
6.21 1.33 1005 64.7 

 
LOW VAR 45.2 2.07 2246 3.41 

 
3.38 1 1426 4.19 

Cerrado HIGH ARG 69.2 2.81 2626 10.1   67.9 7.21 2581 9.97 

 
HIGH ARX 67.6 3.66 2548 6.09 

 
13.1 1.37 1485 60.2 

 
HIGH PAT 49.3 3.06 2706 16.4 

 
12.1 0 1554 2.01 

 
LOW ARG 62.4 2.83 2769 9.87 

 
73.6 5.43 2888 5.75 

 
LOW ARX 47.3 2.13 2312 6.61 

 
12.5 2.26 1444 48.7 

 
LOW PAT 44.9 2.17 2754 8.46 

 
6.76 0.82 1162 13.5 

Average 
(±Standard 
deviation) 

South-High 
79.89 

(±5.373) 
2.78 

(±1.419) 
2491.75 

(±241.184) 
4.82 

(±1.274) 
6.76 

(±0.885) 
1.6 

(±0.316) 
1404.93 

(±578.345) 
35.38 

(±37.492) 

South-Low 
33.35 

(±11.031) 
2 

(±0.101) 
2301.23 

(±124.14) 
4.38 

(±1.589) 
4.53 

(±1.219) 
1.5 

(±0.459) 
1193.43 

(±235.312) 
45.6 

(±28.7) 

Cerrado-High 
62.03 

(±11.056) 
3.18 

(±0.437) 
2626.47 

(±78.753) 
10.86 

(±5.197) 
31.04 

(±31.923) 
2.86 

(±3.829) 
1873.37 

(±614.041) 
24.06 

(±31.55) 

Cerrado-Low 
51.53 

(±9.487) 
2.38 

(±0.393) 
2611.73 

(±259.327) 
8.31 

(±1.635) 
30.95 

(±37.044) 
2.84 

(±2.358) 
1831.33 

(±926.053) 
22.65 

(±22.89) 

South 
56.62 

(±26.14) 
2.39 

(±1.02) 
2396.49 

(±204.709) 
4.6 

(±1.354) 
5.64 

(±1.547) 
1.55 

(±0.369) 
1299.18 

(±424.101) 
40.49 

(±31.389) 

Cerrado 
56.78 

(±10.862) 
2.78 

(±0.575) 
2619.1 

(±171.599) 
9.59 

(±3.718) 
31 

(±30.928) 
2.85 

(±2.844) 
1852.35 

(±703.121) 
23.36 

(±24.665) 
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TABLE 6. Parameters adjusted in the models for infestations with the coffee leaf 

miner and coffee berry borer as functions of total Degree Days. 

REGION YIELD City Ymin A X0 W 
 

Ymin A X0 W 

    
 

Leaf miner 
 

Berry Borer 

South HIGH BOE 2.74 -3919 1614 956 
 

0 3095 2008 503 

 
HIGH CDM 2.06 -2999 1925 893 

 
0 4648 2347 1540 

 
HIGH MUZ 2.6 -4299 1922 156 

 
0 3636 2298 1058 

 
HIGH VAR 1.48 -2519 1932 987 

 
0 9991 1995 36.1 

 
LOW BOE 3.04 -3919 1618 652 

 
0 11041 2011 19.3 

 
LOW CDM 2.08 -2999 1922 954 

 
0 3459 2309 1253 

 
LOW MUZ 2.66 -4299 1589 181 

 
0 4116 2318 1153 

 
LOW VAR 1.7 -2919 1650 12426 

 
0 3837 2019 40 

Cerrado HIGH ARX 2.3 -1299 1299 590 
     

   
Ymax Ymin X0 p 

 
Ymin A X0 W 

 
HIGH ARG 42.3 5.51 3011 11.8 

 

0 22020.6 2716 829 

 
HIGH ARX - - - - 

 

0 3798 2373 888 

 
HIGH PAT 20.2 10.1 2762 11.7 

 

0 7087 2576 809 

 
LOW ARG 40.5 5.85 2999 17.1 

 

0 21918.9 2528 1098 

 
LOW ARX 2.4 1.19 1463 3.28 

 

0 11101.7 2408 300 

 
LOW PAT 21.9 11.9 2598 16.4 

 

0 8684 2533 857 

Average 
(±Standard 
deviation) 

South-High 
2.22 

(±0.574) 
-3433.9 

(±818.515) 
1848.13 

(±156.336) 
748.13 
(±396.684) 0 (±0) 

5342.4 
(±3165.28) 

2162.08 
(±186.481) 

784.17 
(±654.431) 

South-Low 
2.37 

(±0.596) 
-3533.9 

(±682.618) 
1694.55 

(±153.568) 
3553.18 
(±5923.749) 0 (±0) 

5613.3 
(±3628.476) 

2164.3 
(±172.236) 

616.35 
(±678.729) 

Cerrado-High 
31.25 

(±15.627) 
7.79 

(±2.535) 
2886.4 

(±140.274) 
11.75  
(±3.089) 0 (±0) 

10968.6 
(±9711.611) 

2555.23 
(±172.468) 

842.27 
(±41.234) 

Cerrado-Low 
21.6 

(±19.052) 
6.31 

(±7.573) 
2353.27 

(±802.142) 
12.25  
(±9.263) 0 (±0) 

13901.67 
(±7047.543) 

2489.7 
(±70.532) 

751.4 
(±409.317) 

South 
2.3 

(±0.548) 
-3483.9 

(±699.775) 
1771.34 

(±165.289) 
2150.65 
(±4165.86) 0 (±0) 

5477.85 
(±3155.523) 

2163.19 
(±166.189) 

700.26 
(±623.72) 

Cerrado 
25.46 

(±16.446) 
6.9 

(±4.202) 
2566.52 

(±640.482) 
12.05  
(±5.508) 0 (±0) 

12435.13 
(±7757.201) 

2522.47 
(±123.192) 

796.83 
(±264.902) 

 

 

 

The most accurate trend models were for estimating leaf miner infestation, and 

the least accurate models were for estimating berry borer infestation, with MAPEs 

averaging 8.90, 19.13%, respectively (Table 7). The accuracy of the models was 

similar for both high and low yields, with MAPEs of 12.44 and 13.00% for SOMG and 

15.31 and 13.04% for CEMG, respectively. 
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TABLE 7. Synthesis of the statistical indices (MAPE, R2adj, and RMSE) by region 

used for comparing the observed data and the adjusted nonlinear models for the 

diseases and severity of the pest infestations for Sul de Minas Gerais and Cerrado 

Mineiro. 

Diseases and pests 

South of Minas Cerrado Mineiro 

Total High yield Low yield High yield Low yield 

MAPE 

Coffee leaf miner 9,775 10,405 6,941 7,708 8,905 
Coffee berry borer 16,946 19,660 22,494 17,995 19,135 
Cercospora index 7,640 8,368 17,189 12,345 10,902 
Rust index 15,403 13,585 14,633 14,133 14,446 

Average 12,441 13,004 15,314 13,045 13,347 
standard deviation 4,443 4,929 6,471 4,268 4,488 

            

  R
2
adj 

Coffee leaf miner 0,818 0,820 0,891 0,908 0,854 
Coffee berry borer 0,836 0,813 0,856 0,881 0,843 
Cercospora index 0,898 0,846 0,905 0,946 0,895 
Rust index 0,981 0,974 0,983 0,975 0,978 

Average 0,883 0,863 0,909 0,928 0,893 
standard deviation 0,074 0,075 0,053 0,041 0,061 

            

  RMSE 

Coffee leaf miner 0,297 0,360 0,868 1,009 0,590 
Coffee berry borer 0,294 0,238 1,141 1,225 0,659 
Cercospora index 0,563 0,468 2,752 2,177 1,351 
Rust index 3,425 1,604 3,362 3,175 2,838 

Average 1,145 0,667 2,031 1,897 1,359 
Standard deviation 1,525 0,632 1,216 0,992 1,044 

 

We applied all possible combinations for estimating pest infestation and 

disease severity in SOMG and CEMG. The estimation models were calibrated as a 

function of the coffee leafiness estimated by DD (LF = F(DD)), the growth of nodes 

of plagiotropic branches estimated by DD (NN = F(DD)), and accumulated by DD. 

We could thus estimate LF and NN with the trend models using only DD, and the 

results of these models could then be used to estimate the rates of pest infestation 

and disease severity. For example, %CER = f[DD, LF = f(DD), and NN = f(DD)]. 

All models were accurate, with MAPEs ranging from 5.6567% (coffee rust in SOMG) 

to 19.587% (cercospora in SOMG) and all R2adj were >0.4229 (Table 8). The 

performance of all estimation models is shown in Figure 14. 
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TABLE 8. Regional models for simulating coffee diseases and pests as functions of 

leafiness, number of nodes, and degree days accumulated from the beginning of 

vegetative growth (September 01). CL, linear coefficient; NN, number of nodes 

estimated by DD; LE, leafiness estimated by DD; and DD, degree days 

accumulated from 1 September. 

Diseases 
and pests 

Regions 

Coefficients 
  

Indexes 

CL NN LEA DD 

 

p-valor MAPE RMSE R2adj 

Rust index 
South 22.72 7.98 -0.358 -0.00568 

 

0.0001 19.58 4.425 0.933 

Cerrado 22.72 7.98 -0.358 -0.00568 

 

0.0001 17.64 4.200 0.965 

Cercospora 
South 4.322 1.36 -0.031 -0.00213 

 

0.0001 5.656 0.431 0.726 

Cerrado 28.47 5.76 -0.341 -0.00919 

 

0.0001 7.690 1.300 0.983 

Coffee leaf 
miner 

South 3.854 -0.459 -0.017 0.00091 

 

0.0001 9.472 0.687 0.422 

Cerrado 27.21 -0.073 -0.213 0.00035 

 

0.0001 6.056 1.433 0.927 

Coffee berry 
borer 

South -4.06 0.245 0.034 0.00026 

 

0.0001 15.82 0.252 0.814 

Cerrado -26.56 2.801 0.202 -0.00138 

 

0.0001 14.81 1.685 0.714 
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FIGURE 14. Relationships between model estimates and observed incidences of 

coffee rust, cercospora, coffee leaf miner (CLM), and coffee berry borer (CBB) in Sul 

de Minas (SOMG) and Cerrado Mineiro (CEMG). The dashed lines are trend lines and 

the solid lines are 1:1 lines. 
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The model for estimating the severity of cercospora in SOMG was accurate 

(Eq. 12), with a MAPE, RMSE, and R2adj of 5.656%, 0.431%, and 0.726, 

respectively, and was significant at P<99% (Table 8). A MAPE of 5.656% is 

considered low in studies modelling crops (Martins et al., 2015; Moreto et al., 2015), 

e.g. in MUZ where rust severity was 34.4% for low yields, with an error of only 

±1.943%. 

                                      ∑                ∑               (12) 

 

NN was the most sensitive variable calibrated in the models and was positively 

correlated with cercospora severity. The result of the model indicated that the 

severity of disease increased with plant density. Every 10 units of NN in this equation 

represent an increase of 13.69% in the severity of cercospora in the coffee crop. 

 
 
Conclusions 

 

Coffee planted in CEMG had higher rates of diseases and pest infestation than 

the coffee planted in SOMG, due to higher air temperatures. The levels of pest 

infestation and disease severity were highest in ARG in CEMG. Trees at this site with 

high yields had rust, cercospora, leaf miner, and berry borer intensities of 30.9, 36.1, 

18.82, and 4.5%, respectively.  

The intensities of the rust index varied on the yields of the coffee trees. 

Cercospora and pest intensities were independent of yield. The trends of pest 

infestation and disease severity over time could be estimated as functions of the 

thermal index. Rust and cercospora severity tended to have sigmoidal distributions 

over time, whereas leaf miner and berry borer infestations tended to have Gaussian 

distributions. The trend models of pest infestation and disease severity as functions 

of degree days were accurate, with low error (MAPE) and high accuracy (R2adj » 

1.0). FIMUZ = f(DD) for low yields and BCBOE = f(DD) for high yields were the most 

accurate models for SOMG, and FIARX = f(DD) for low yields and CIPAT = f(DD) for low 

yields were the most accurate models for CEMG.  

The models for estimating pest infestation and disease severity as functions of 

leafiness, NN, and DD were accurate, with MAPEs ranging from 5.656% (rust for 

SOMG) to 19.587% (cercospora for SOMG). Leafiness (LF = F(DD)) and the of nodes 
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(NN = F(DD)) were estimated by the trend models using DDs (using only air 

temperature), indicating that a phytosanitary warning system could be established 

and that the levels of pest infestation and disease severity of coffee could be 

estimated. 
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CAPÍTULO 3 – Machine learning algorithms for forecasting the incidence of 

Coffea arabica pests and diseases  

 

ABSTRACT - The production and quality of coffee in Brazil are affected by 
phytosanitary problems: coffee rust (Hemileia vastatrix), cercospora (Cercospora 
coffeicola), coffee miner (Leucoptera coffeella) and coffee borer (Hypothenemus 
hampei). The intensity of these phytosanitary problems is controlled by climatic 
variability, and few studies address the problem due to their complexity. Disease and 
pest alert models are able to generate information for agrochemical applications only 
when needed, reducing costs and environmental impacts. With machine learning 
algorithms it is possible to develop models to be used in disease and pest warning 
systems as a function of the climate in order to improve the efficiency of chemical 
control of pests of the coffee tree. Thus, we evaluated progress curves of the 
incidence of pests and diseases, correlated the infection rates with the 
meteorological variables, and also calibrated and tested machine learning algorithms 
to predict the incidence of coffee rust, cercospora, coffee miner and, coffee borer. We 
used climatic and field data obtained from coffee plantations in production in the 
southern regions of the State of Minas Gerais and from the region of the Cerrado 
Mineiro; these crops did not receive phytosanitary treatments. As dependent 
variables, we considered the monthly rates of coffee rust, cercospora, coffee miner 
and coffee tree borer, and the climatic elements were considered as independent 
(predictor) variables. All analyses were performed considering three different time 
periods: 1-10d (from 1 to 10 days before the incidence evaluation); 11-20d (from 11 
to 20 days before the incidence assessment); and 21-30d (from 21 to 30 days before 
the incidence assessment). The Pearson coefficient was used to evaluate the unit 
correlations between the meteorological variables and infection rates of coffee 
diseases and pests. The algorithms calibrated and tested for prediction were: a) 
Multiple linear regression (RLM); b) K Neighbors Regressor (KNN); c) Random 
Forest Regressor (RFT) and d) Artificial Neural Networks (MLP). The models were 
calibrated in years of high and low-yields, because the biannual variation of harvest 
yield of coffee beans influences the severity of the diseases. The models were 
compared by the Willmott's 'd', RMSE (root mean square error) and coefficient of 
determination (R2) indices. The result of the more accurate algorithm was specialized 
for the south of Minas Gerais and Cerrado Mineiro regions using the kriging method. 
The climatic variables that showed significant correlations with coffee rust disease 
were maximum air temperature, number of days with relative humidity above 80% 
and relative humidity. Random Forest was more accurate in the prediction of coffee 
rust, cercospora, coffee miner and coffee borer using climatic conditions. In the 
southern region of Minas Gerais, Random Forest showed a greater accuracy in the 
predictions for the Cerrado Mineiro in years of high and low-yields and for all 
diseases. 
 

KEY-WORDS: crop modeling; big data; artificial intelligence; phytosanitary maps 
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Introduction 

 

Coffee is the second most important agricultural commodity in the world, with 

annual revenues of around $ 24 billion (FAO, 2015, Kouadio et al., 2018). The 

harvest of 2018/2019 was about 168 million bags of 60 kg (ICO, 2019). World coffee 

production is dominated by Coffea arabica, with a 64.5% share, being produced in 

more than 60 countries (ICO, 2017a, ICO, 2017b, Geeraert et al., 2019). Developing 

countries are the main coffee producers (Hinnah et al., 2018). Brazil led world 

production with 61 million bags in the 2018 harvest (ICO, 2019), with the State of 

Minas Gerais accounting for approximately 50% of Brazilian coffee production 

(CONAB, 2019). 

One of the main constraints to coffee production is the damage caused by 

insect pests and plant diseases (Alba-Alejandre et al., 2018). The plant is very 

susceptible to many diseases and pests and can be affected by several of these 

simultaneously; however, studies have focused on studies of diseases and pests in 

coffee individually (Avelino et al., 2018). Leaf pests and diseases can be severe in 

perennial crops (Barbosa et al., 2007, Cerda et al., 2017), and coffee productivity 

losses reported in Brazil of 13% to 45% in 2017 (Cerda et al., 2017). 

The production and quality of coffee are heavily influenced by diseases and 

pests, and these are dependent on climatic conditions (Verhage et al., 2017; Harvey 

et al., 2018). Thus, there is a need for the development of predictive models for the 

incidence of pests and diseases that can improve the interpretation of the crop cycle 

according to the climate, incorporating climate-soil-plant factors (Malau et al., 2018; 

Badnakhe et al., 2018). 

Rust is a devastating disease in coffee production in Brazil and other 

countries, and regions such as Colombia, Central America, Mexico, Peru and 

Ecuador (Avelino et al., 2015). The climatic conditions of the producing regions 

present excellent conditions of temperature and humidity of the air for germination 

and invasion of coffee rust (Hinnah et al., 2018). The main symptom of this disease is 

the defoliation of the plant, which consequently reduces its flowering and fruiting. 

Coffee production can be reduced from 30% to 90% due to the presence of rust 

(Santana et al., 2018). 
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Rust is favored by air temperatures ranging from 20 and 25 °C and total 

precipitation greater than 30 mm. However, the rust epidemic increases rapidly in 

temperatures between 15 and 18 °C (Pereira et al., 2008). Several studies have 

shown that the degree of infection of coffee rust is directly related to climatic 

conditions (Talamini et al., 2003). 

Cercospora is one of the main diseases of the coffee tree in Brazil, decreasing 

the productivity of the crop and the quality of the beverage (Botelho et al., 2017; Silva 

et al., 2019; Chaves et al., 2018), and is caused by the fungus Cercospora coffeicola 

(Berkeley and Cooke). Environmental factors such as water stress and nutritional 

deficiency of the plant may lead to the occurrence of cercosporiosis (Chaves et al., 

2018). 

Hypothenemus hampei Ferrari (Coleoptera: Curculionidae), commonly known 

as 'coffee borer', is the most damaging coffee pest worldwide (Plata-Rueda et al., 

2019). The females of this insect perforate and oviposit inside the coffee fruit where 

the larvae feed (Reyes et al., 2019). The damage causes significant losses in 

productivity and alters the flavor profile of the coffee beans (Veja et al., 2009; Walker 

et al., 2019). The coffee borer population increased 8.8% with the temperature 

increase of 1 °C in Uganda (Gichimu, 2013). 

The coffee miner (Leucoptera coffeella) is one of the main pests in Brazil 

(Sabino et al., 2018). Their larvae penetrate the mesophyll, causing the destruction of 

the parenchyma. The main symptoms are leaf blade necrosis, photosynthesis 

reduction, and premature leaf fall (Androcioli et al., 2018). The occurrence of this pest 

in the plant is directly related to the physiological state and the growth characteristics 

of the coffee trees, and in turn, is related to management practices and mainly to the 

predominant climatic conditions, especially with high rainfall events (Sabino et al., 

2018, Caramori et al., 2004; Morais et al., 2007). 

All the relationships between the variability of pests and diseases of the coffee 

tree and climatic elements can be simulated with agrometeorological models (Rolim 

et al., 2008) using machine learning algorithms (Sahoo et al., 2017). Machine 

learning is a method that works with data analysis and seeks to automate the 

construction of analytical models (Shekoofa et al., 2014; Li et al., 2016). It is a field of 

computer science that works with the recognition of patterns using the computational 
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learning theory in artificial intelligence (Sahoo et al., 2017). Huber and Gillespie 

(1992) report that machine learning algorithms can automate disease and pest alert 

systems, guiding farmers' decision-making when it is necessary to use chemical 

control in crops. 

The modelling of pests and diseases using different techniques of Machine 

learning is one of the important guidelines to reduce impacts on crop productivity 

(Donatelli et al., 2017; Badnakhe et al., 2018). The use of Machine Learning to detect 

plant diseases, weeds, water stress, prediction and estimation of crop productivity, 

among other agricultural operations will be routine in agriculture in the near future 

(Rehman et al., 2019); however, there are problems in selecting the calibration model 

with the best predictability (Das et al., 2018). 

Machine learning algorithms are very promising for faster, more efficient and 

accurate large-scale analyses. Some examples of machine learning algorithms are k-

Nearest Neighbor, Linear Regression, Artificial Neural Networks and Random Forest 

(Badnakhe et al., 2018). 

The k-Nearest Neighbor (kNN) is a simple and easy-to-implement classifier, 

obtained by the detection of the nearest neighbours, which are used to determine the 

classes. These neighbours should be chosen carefully to obtain good results (Lu et 

al., 2017), and the KNN method has shown satisfactory accuracies for estimated 

planting date (Gümüşçü et al., 2019), water stress (Ravindranath et al., 2018) and 

disease detection (Lu et al., 2017; Cao et al., 2018). 

Artificial neural networks (ANNs) are dynamic systems and their structure is 

inspired by the human brain (Krishna et al., 2019). However, the main problem in 

implementation of ANNs is to find the ideal number of neurons or hidden nodes (Das 

et al., 2018). ANNs are useful when data diversity is very large and the relationships 

and interactions are nonlinear (Pourmohammadali et al., 2019), as well as in 

agroclimatic zoning (Aparecido et al., 2018; 2019), prediction and estimation of 

productivity (Pourmohammadali et al., 2019; Ma et al., 2019), pest prediction (Cai et 

al., 2019), water deficit (Krishna et al., 2019) and disease prediction (Wheeler et al., 

2019; Kim et al., 2018). 

The Random Forest algorithm (RFR) is a widely used set learning method that 

is based on the merge of decision trees as the base learner (Breiman, 2001; Xu et 
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al., 2019). The final forecast is the mean of the predicted values of all trees (Ji et al., 

2019). This method has high classification accuracy and has powerful measurement 

capability of the most important variable (Xu et al., 2019). 

Multiple linear regression (RLM) is one of the simplest methods and a 

standard approach for model development and is widely used in agriculture (Correia 

et al., 2015, Carvalho Júnior et al., 2016). However, when the data set of 

independent variables presents a greater quantity of samples and/or has 

multicollinearity, the method is not successful and presents deviations (Das et al., 

2018). 

Diseases and pests have been causing a reduction in coffee quality and yield 

in Brazil (Spongoski et al., 2005). There are few studies on pest and disease indices 

in coffee trees, not only in Brazil, but in all countries where the plant is cultivated. The 

most common strategy to control these diseases and pests is the application of foliar 

fungicides and insecticides, depending on their intensity in the region. Unfortunately, 

this traditional method does not consider the influence of climatic conditions on the 

development of diseases and pests. With the use of these algorithms of machine 

learning, computers can make accurate decisions of the best moments of application 

of agrochemicals for the control of pests and diseases. 

The hypothesis of this study is that one of the prediction algorithms calibrated 

for field conditions will be simple to understand, easy to use, and accurate, so that it 

can be used to develop a disease and pest warning system to improve the efficiency 

of chemical control of pests of coffee plants. 

Thus, the objective of this study was: a) To evaluate progress curves of the 

incidence of pests and diseases for different regions and the load of fruit present on 

plants; b) Correlate infection rates of pest and disease incidence with meteorological 

variables considering different time periods for each condition; c) Calibrate different 

algorithms to predict the incidence of pests and diseases based on climate, using 

machine learning algorithms including the most conventional methods (RLM and 

kNN) and the most flexible ones (RFR and RNA); d) Test the algorithms with 

independent data to assess their suitability for use in a disease and pest alert 

system, and, e) spatialize the accuracy of the best prediction algorithm for the 

incidence of pests and diseases for the Minas Gerais state.  
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Material and methods 

 

We used a historical series of climatic data and levels of pest infestation and 

disease severity of Coffee arabica L. for the state of Minas Gerais, Brazil. We use 

representative localities of the State for coffee production: Boa Esperança (BOE), 

Carmo de Minas (CDM), Muzambinho (MUZ) and Varginha (VAR), located in the 

southern region of Minas Gerais (SOMG) and Araxá (ARX), Araguari (ARG) and 

Patrocínio (PAT) located in the Cerrado Mineiro region (CEMG) (Table 1). The area 

selected for the work corresponds to 875,060 ha. 

 

TABLE 1. Geographic characteristics of the main coffee growing areas of the State of 

Minas Gerais. 

  Southern Minas Gerais   

Cerrado Mineiro (Mineiro Triangle and Upper 

Paranaíba) 

Places 
Boa 

Esperança 

Carmo de 

Minas 
Muzambinho Varginha 

 
Araguari  Araxá Patrocínio 

Latitude (º) 21º 03' 59" S 22º 10' 31" S 21º 20' 47" S 21º 34' 0" S 
 

18º 59' 35" S 19º 33' 21" S 18º 33' 21" S 

Longitude (º) 45º 34' 3" W 45º 09' 0" W 46º 32' 0" W 45º24'2" W  46º 59' 0" W 46º 58' 0" W 48º 12' 25" W 
 

Altitude (m) 830 1080 1033 940 
 

961 960 933 

Period 2010-2018 2006-2018 2010-2018 1998-2018 
 

2010-2018 2010-2018 2010-2018 

Area (km2) 860,7 323,3 409 395,6 
 

2 731 1 165 2 866 
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FIGURE 1. Coffee regions utilized in the study in the state of Minas Gerais, Brazil. 

BOE is Boa Esperança, CAR is Carmo de Minas, MUZ is Muzambinho, VAR is 

Varginha, ARG is Araguari, ARX is Araxá and, PAT is Patrocínio. 

 

 

The meteorological data were obtained from automatic meteorological stations 

on a daily scale: minimum air temperature (TAIR, ºC), maximum air temperature (TAIR, 

ºC), precipitation (P, mm) and relative humidity (%).The weather stations were of type 

Vantage Pro2 Davis (K6162) and were installed near the coffee plantations that were 

evaluated. 

With the meteorological elements measured by the automatic meteorological 

stations, other specific variables that influence the diseases and pests of the coffee 

tree were also selected (Table 2). The meteorological data were organized in matrix 

form (types of variables x time) to be compatible with the rate of infection of diseases 

and pests. 
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TABLE 2. Weather variables used in evaluations levels of pest infestation and 

disease severity of Coffee arabica. 

Climatic acronyms Definition 
        Tmin Minimum temperature average (°C) 

      Tmax Maximum temperature average (°C) 
      Rainfall Total rainfall (mm) 

       NDR≥1mm Number of days with rainfall ≥ 1 mm and < 9 mm 
    NDR≥10mm Number of days with rainfall ≥ 10 mm  

     RH Average relative humidity (%) 
      NdRH90% Number of days with relative humidity ≥ 90% 

     NdRH80% Number of days with relative humidity ≥ 80% 
      

 

The analyses were performed considering three different time periods: 1-10d 

(from 1 to 10 days before the incidence evaluation); 11-20d (from 11 to 20 days 

before the incidence assessment); and 21-30d (from 21 to 30 days before the 

incidence assessment). These periods were selected by analyzing the latency period 

(time between infection of the pathogen in the plant and the manifestation of disease 

symptoms). For example, the latency period of Cercosporiose is 9 to 15 days and 

that for rust varies from 25 to 40 days (Kushalappa et al., 1983). 

Data on disease severity and pest infestation were provided by the Procafé 

Foundation (http://fundacaoprocafe.com.br/) from evaluations in fields with no 

phytosanitary treatment in the localities of Table 1. The disease data were: coffee 

rust (Hemileia vastatrix) and cercospora (Cercospora coffeicola) and pest data: 

coffee miner (Leucoptera coffeella) and coffee borer (Hypothenemus hampei). These 

data were collected from high and low slope crops. 

Incidences were measured in a non-destructive procedure. The plants were 

randomly chosen in a zigzag walking pattern in the area, as recommended by 

Chalfoun (1997). Incidence scores were determined on leaves from the third or fourth 

knot of branches at the middle third of the plants. The site of collection of the 

pest/disease in the plant was according to Figure 2 and the methodology for 

evaluating coffee development, diseases, and pests used was according to Table 3. 
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FIGURE 2. Place of greatest occurrence of pests and diseases in a coffee tree and 

lateral branches of coffee tree, with indication of the 3rd or 4th pair of leaves. 
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TABLE 3. Methodology for evaluating coffee development, diseases, and pests used 

by the Procafé Foundation of Brazil. 

Phytosanitary problem Methodology 

Phenology  

Number of nodes 

- Sample 20 plants per plot (random) 
- Select four branches per plant in the middle third 
(one on each side) 
- Quantify the number of nodes developed from 

September in each chosen branch 

Leafiness of coffee plant 

- Sample 20 plants per plot (random) 
- Select four branches per plant in the middle third 
(one on each side) 
- Quantify the amount of foliar development in the 
chosen branches 
- Quantify the soil-foliage percentages in the 

samples 

Diseases 

Coffee rust (Hemileia vastatrix) and 

Cercospora index (Cercospora 

coffeicola) 

- Sample 20 plants per field 
- Collect the leaves in the middle third of the 
chosen plant 
- Choose five lateral branches at random on each 
side of the plant 
- Remove a completely developed leaf, of the 3rd 
or 4th pair of leaves, from each branch 
- Total of 10 leaves/plant (five on each side) 
- Total of 200 leaves/field 
- Quantify the percentage of disease in the 

samples 

Pests 

Coffee leaf miner (Leucoptera 

coffeella) 

- Sample 20 plants per field 
- Collect the leaves in the middle third of the 
chosen plant 
- Choose five lateral branches at random on each 
side of the plant 
- Remove a completely developed leaf, of the 3rd 
or 4th pair of leaves, from each branch 
- Total of 10 leaves/plant (five on each side) 
- Total of 200 leaves/field 
- Quantify the percentage of the pests in the 
samples 

Coffee berry borer (Hypothenemus 

hampei) 

- Sample average of 50 plants per plot 
- Choose four branches per plant (one on each 
side) 
- Collect 25 fruits/branch for a total of 100 
fruits/plant 
- 50 plants/field for a total of 5000 fruits/field 
- Quantify the percentage of the pest in the 
samples 
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To quantify coffee leafage (%), equation 2 was used. It is normal for each 

node developed from the plagiotropic branch of the coffee tree to present 2 leaves (1 

leaf on each side of the node). To quantify the % of diseases and pests, equations 3-

6 were used. 
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where, Ci is Cercospora index (%), FI is Coffee rust index (%), CBB is Coffee berry 

borer (%) and CLM is Coffee leaf miner (%). 

 

The diseases and pests of the coffee plantations were evaluated in two 

situations of "high" and "low" productivity, which occur due to the natural biennial 

nature of the coffee plant. “High” represents more than 30 bags of 60 kg ha-1, while 

“low” is lower than 10 bags of 60 kg ha-1. The disconnected range between these 

classifications is due to the difference observed in the field during subsequent high 

and low production seasons. Catuaí and Mundo Novo were the plants used, and both 

are susceptible to diseases and pests. 

Pest infestation and severity of coffee diseases were evaluated seasonally 

from vegetative growth (September) and were represented by boxplot graphs, which 

allow for the description of the evolution and variability of pest diseases over time 

(Nutter, 1997; Bergamin Filho, 2011). 

We sought to detail the relationship between coffee diseases and pests and 

the meteorological elements using univariate correlations (Pearson) of each element 

with the diseases for the south of Minas Gerais and Cerrado in both pending loads. 

Correlations were made considering three different time periods: 1-10d (from 1 to 10 

days before the incidence evaluation); 11-20d (from 11 to 20 days before the 

incidence evaluation); and 21-30d (from 21 to 30 days before the incidence 
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evaluation). 

We used different methodologies to predict coffee disease and pest indices. 

The infection rate of diseases and pests was the dependent variable and the 

meteorological elements (Table 2) the independent variables of the models. In all 

methodologies, 40% of the data for the training and 60% for the calibration of the 

models were separated using python's library 

(sklearn.model_selection.train_test_split). 

The forecasting methods were as follows: 1) Multiple Linear Regression 

(RLM); 2) K Neighbors Regressor (KNN); 3) Random Forest Regressor (RFT) and 

Artificial Neural Networks - Multi-layer Perceptron (MLP). 

We use the ridge method in RLM. This method avoids poor conditioning of the 

matrix of the regressors variables, controlling the inflation and the general instability 

found in least squares estimators. Briefly, it avoids the multicollinearity problem 

without having to exclude regressor variables, so it has no information loss. The KNN 

algorithm is a simple and easily implemented technique and is very flexible. In the 

KNN the 3 closest neighbors were identified, and the metric used to calculate the 

distances was the Euclidean distance. In the RFT, a forest was randomly created 

with an ensemble of 100 decision trees to predict pests and diseases as a function of 

the climate. The artificial neural network used was the Multi-layer Perceptron (MLP), 

with 3 layers of neurons. In each of these layers 10 neurons were used 

(hidden_layer_sizes = 10, 10, 10). MLP training was done using back propagation. 

The actual observed field data and the results of all models were compared 

using several statistical indices: accuracy, precision, and level of significance (Table 

4). Accuracy indicates the closeness of an estimate to the observed value and was 

evaluated using the Willmott‟s „d‟ and the root mean square error (RMSE). Precision 

is the ability of a model to repeat an estimate and was evaluated using the coefficient 

of determination (R2) adjusted (R2adj) following Cornell and Berger (1987).  
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TABLE 4. Accuracy and precision of statistical indices that were used in the 

evaluation of models forecasting. YEST is estimated value of y; YOBS is observed 

value of y; XOBS is observed value of x; N is number of data. 

Statistical Index Equation 
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With all the algorithms calibrated for the prediction of pests and diseases, the 

RMSE index of the most accurate algorithm for the south of Minas and Cerrado 

Mineiro regions was mapped in both pending production loads. Maps were generated 

using kriging interpolation (Krige, 1951) with 1 neighbour and a resolution of 0.25° in 

the spherical model. 

 

Results and discussion 

 

The southern region of Minas Gerais (SOMG) showed an average annual air 

temperature (TAIR) 1.39ºC lower than the values measured in the Cerrado Mineiro 

(CEMG). The rainfall (P) was more similar, since the annual mean values were 116.5 

and 120.5 mm mo-1 for SOMG and CEMG, respectively (Figure 3.A.B). The seasonal 

distributions of TAIR and P in the SOMG and CEMG regions were similar. In May to 

August, the lowest TAIR and P occurred in both regions, with mean values of 17.08 ºC 

and 30.01 mm in the SOMG and 18.8 ºC and 23.9 ºC in the CEMG. Results were 
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similar to those observed by Aparecido et al., (2018). 

The lowest water storage in the soil occurs in August in the SOMG and in 

September in the CEMG (Figure 3.G.H). The water deficit (DEF) occurs in both 

regions from April to November, however, the DEF is more intense in the CEMG 

region, reaching -35.8 mm in August (Figure 3.I.J). The annual cumulative DEF was -

65.7 and -103.6 mm y-1 for the SOMG and CEMG, respectively. DEF is one of the 

variables that most influences the development of agricultural crops, as well as that 

of coffee (DaMatta, 2004; Carvalho et al., 2011; Syvertsen and Garcia-Sanchez, 

2014). 
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FIGURE 3. Air temperature (ºC), rainfall (mm), evapotranspiration (mm), water 

storage (mm) and water deficit or water surplus (mm) of the regions in South of 

Minas Gerais and Cerrado Mineiro from the period 1995 to 2018, Minas Gerais, 

Brasil. Legend:  ̿ is the annual mean of the variable and sd is the annual standard 

deviation of the climatic variable. 
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Coffee rust showed a trend of sigmoidal progression in both slopes and in all 

studied regions (Figure 4 and 5). SOMG showed a mean overall incidence of coffee 

rust of 23.77% (± 24.13) and CEMG an average incidence of 24.46% (± 28.40) of 

infected leaves. The lowest values of rust occurred between September and 

December (4%). After April there was a stabilization of growth in SOMG and CEMG. 

This tendency of growth of coffee rust curves was also shown by Hinnah (2019). In 

the SOMG, the coffee with high yield had higher rust indices (31.46%, ± 30.92) in 

relation to coffee with low yield (16.08%, ± 17.35). In the period from May to July, the 

coffee in the SOMG with high yield had 73.5% rust incidence, while the low-yield 

coffee had average values of 24.8% of infected leaves (Figure 4). In the CEMG there 

were no differences between the high and low coffee loads. For high yield the values 

of rust were 24.87% (± 29.55) and for low yield the values were 24.05% (± 27.25) of 

infected leaves. 

The locality with the lowest incidence of coffee rust in the SOMG was Boa 

Esperança, with annual mean values of 28.05% (± 30.47) and 10.74% (± 12.52) for 

high and low yields, respectively. Varginha was the locality with the highest 

incidence, with 34.41% (± 33.24) for high yield and 17.76% (± 19.11) for low yield. 

Patrocínio was the locality of CEMG with the lowest average incidence of coffee rust at 

high yield (19.72%, ± 25.57) and with the highest incidence at low yield (24.63%, ± 

25.61). Araxá had the highest incidence of rust at high yield (28.20%, ± 31.93) and 

lower incidence at low yield (23.01%, ± 28.60) of infected leaves. 

The control of rust in coffee can be made with a protective fungicide (copper 

base) when the incidence levels reach a maximum of 5%. If the incidence level 

exceeds 5% and reaches up to 12%, it is necessary to apply systemic fungicides. 

Thus, it is necessary to engage in control of the disease in both regions and crop 

loads until November using protective fungicides and from December using systemic 

fungicides, so that the diseases do not reach uncontrollable levels. Rust, if not 

controlled correctly, causes early leaf fall and subsequent drying of the productive 

branches of the crop, which negatively reflects on the development of flower buds 

and fruit growth, and causes a drastic reduction of the productivity of the next 

agricultural year. Another way to control rust is the use of resistant cultivars such as 

'Obatã IAC 4739', 'Catucaí Amarelo 24/137' or 'Obatã IAC 1669-20' (Carvalho et al., 
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2012; Avelino et al., 2015; Fazuoli et al., 2018). 

 

FIGURE 4. Coffee-rust incidence progress in two different field conditions (high and 

low yield) in Boa Esperança (A-B); Carmo de Minas (C-D); Muzambinho (E-F) and 

Varginha (G-H). 
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FIGURE 5. Coffee-rust incidence progress in two different field conditions (high and 

low yield) in Araguari (A-B); Araxá (C-D) and Patrocínio (E-F). 
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The cercospora of the coffee had a tendency of sigmoidal progress in both 

regions and crop loads (Figure 6 and 7). SOMG showed a mean overall incidence of 

cercospora of only 4.26% (± 4.63), while in CEMG the mean incidence was higher, 

with values of 17.32% (± 18.68) of infected leaves. The highest incidences started 

from December with stabilization after February, for both SOMG and CEMG. 

In the SOMG, the high-yield coffee had cercospora rates similar to the low-

yield, with values of 4.68% (± 5.09) and 3.84% (± 4.29) of infected leaves, 

respectively. At CEMG there were no differences between production loads. The high-

yield coffee had an incidence of cercospora of 18.22% (± 20.18) and in low-yield it 

was 16.41% (± 17.1) of infected leaves. 

The locality with the lowest incidence of cercospora of the coffee tree in the 

SOMG was Varginha, with annual mean values of 3.74% (± 4.03) and 2.18% (± 2.47) 

for high and low-yield coffee, respectively. And the locality with the highest average 

incidence was Muzambinho, with 5.84% (± 6.0) for high-yield and 6.02% (± 6.72) for 

low-yield. 

Patrocínio was the locality of CEMG with the lowest mean incidences of 

cercospora in high and low-yields, with values of 8.25% (± 9.82) and 5.15% (± 5.01), 

respectively (Figure 7.E.F), and Araguari presented the highest incidence of 

cercospora in high and low-yields, with values of 32.91% (± 32.74) and 30.90% (± 

31.38), respectively. 

The control of the cercospora of the coffee should be made with protective 

fungicides, mainly copper based, as well as of systemic fungicides, but both have a 

greater effectiveness if they are applied as preventative measures, and in this case 

the forecast models can facilitate decision-making by farmers. 
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FIGURE 6. Cercospora incidence progress in two different field conditions (high and 

low yields) in Boa Esperança (A-B); Carmo de Minas (C-D); Muzambinho (E-F), and 

Varginha (G-H). 
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FIGURE 7. Cercospora incidence progress in two different field conditions (high and 

low yield) in Araguari (A-B); Araxá (C-D) and Patrocínio (E-F). 

 
 

The coffee miner showed progress curves with a sigmoidal tendency for both 

regions and crop loads (Figure 8 and 9). The SOMG showed a general average 

incidence of coffee miner of only 1.55% (± 3.34), while in the CEMG the average 

incidence was higher, with values of 12.83% (± 16.83) of infected leaves. 

The lowest incidences of the coffee miner were from October to January in 

both loads and for all regions, and this occurs due to the onset of rainfall. This result 

was also highlighted by Conceição et al. (2005) who observed a reduction in the 

population of the miner in the period with high rainfall rates. 

The high-yield coffee in the SOMG had rates of coffee miner similar to the 
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coffee with low yields, with values of 1.55% (± 3.98) and 1.56% (± 2.70) of infected 

leaves, respectively. In the CEMG the pest severity was higher in both coffee loads, 

with values of 12.66% (± 16.72) and 13.00% (± 16.94) of infected leaves for the high 

and low-yields, respectively. 

The locality with the lowest incidence of Coffee miner in SOMG was Varginha, 

with annual average values of 0.84% (± 1.45) and 1.06% (± 1.61) for high and low-

yields, respectively (Figure 8.G.H), and the locality with the highest average 

incidence was Muzambinho, with 2.61% (± 10.25) for high and 2.07% (± 4.03) for 

low-yields. 

Araxá was the locality of the CEMG with the lowest average incidence of coffee 

miner in high and low yields, with values of 3.43% (± 7.43) and 4.88% (± 10.42), 

respectively (Figure 9.C.D). The location with the highest indexes was Araguari with 

values of 20.55% (± 27.85) and 20.69% (± 28.01), respectively (Figure 9.A.B). These 

higher levels of coffee miner occur due to higher air temperatures in CEMG, thus 

shortening the miner's cycle. Thus, the shorter the duration of the cycle, more 

generations occur in a short time, resulting in extremely high populations of larvae 

and adults. 

The control of the coffee miner can be done with insecticides and should be 

initiated when the infestation reaches the control level (20 to 30%), or more, of mined 

leaves in the upper third of the coffee trees. Thus, it is necessary to engage in pest 

control in all CEMG locations, especially during the period of December-January 

(Figure 9). In SOMG the control of the pest is shown to be sporadic and varies by 

location. Control is necessary because the Coffee miner promotes drastic defoliation 

that influences flowering and fruit formation (Guerreiro-Filho, 2006). 
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FIGURE 8. Coffee leaf miner incidence progress in two different field conditions (high 

and low yield) in Boa Esperança (A-B); Carmo de Minas (C-D); Muzambinho (E-F) 

and Varginha (G-H). 
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FIGURE 9. Coffee leaf miner incidence progress in two different field conditions (high 

and low yield) in Araguari (A-B), Araxá (C-D) and Patrocínio (E-F). 
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The coffee borer showed Gaussian trend curves in both regions and 

productive loads (Figure 10 and 11). SOMG showed a mean average incidence of the 

coffee borer of only 0.50% (± 1.33), while in CEMG the mean incidence was higher, 

with values of 2.57% (± 6.03) of infected leaves. The peak incidence of the pest 

occurred between December and May, for both regions. 

In the SOMG the high-yield coffee showed similar coffee borer indices to those 

for the low-yield coffee, with values of 0.57% (± 1.49) and 0.43% (± 1.16) of infected 

leaves, respectively. In CEMG the coffee borer rates were higher in both coffee loads, 

with 2.34% (± 5.39) and 2.80% (± 6.65) of infected leaves at high and low-yields, 

respectively. 

The locality with the lowest incidence of coffee borer in the SOMG was 

Varginha, with annual average values of 0.38% (± 0.80) and 0.18% (± 0.44) for high 

and low-yields, respectively (Figure 10.G.H), and the locality with the highest average 

incidence was Carmo de Minas, with 0.77% (± 2.18) for high-yields and 0.56% (± 

1.52) for low-yields. 

Araxá was the locality of the CEMG with the lowest average incidence of coffee 

borer in high and low-yields, with values of 0.67% (± 2.71) and 2.19% (± 6.91), 

respectively (Figure 11.C.D). Araguari had the highest incidence of coffee borer in 

high and low-yields, with values of 4.86% (± 10.13) and 4.52% (± 9.50), respectively. 

 The control of the coffee borer should be done with insecticides and should 

be started when the infestation reaches the control level (3% to 5%), spraying the 

most attacked parts of the crop (Souza et al., 2013b). Thus, it is necessary to engage 

in control of the pest in all the localities of CEMG, mainly in the period of January-April 

(Figure 11). In the SOMG the control of the coffee borer is shown to be sporadic and 

varies by location. 
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FIGURE 10. Coffee berry borer incidence progress in two different field conditions 

(high and low yield) in Boa Esperança (A-B); Carmo de Minas (C-D); Muzambinho 

(E-F) and Varginha (G-H). 
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FIGURE 11. Coffee berry borer incidence progress in two different field conditions 

(high and low yield) in Araguari (A-B); Araxá (C-D) and Patrocínio (E-F). 

 

The maximum air temperature (TMAX), the number of days with relative 

humidity above 80% (NdRH> 80%) and relative humidity (RH) were the climatic 

variables that showed significant correlations with coffee rust disease (Table 4). TMAX, 

NdRH> 80% and HR showed positive correlations and in all the periods 1-10d, 11-

20d and 21-30d in SOMG. For example, for the high-yield coffee in the south region 

the correlations were 0.541*, 0.48* and, 0.437* for periods 1-10d, 11-20d and 21-

30d, respectively. These correlations demonstrate that an increase in the severity of 

rust occurs when the levels of TMAX, NdRH> 80% and RH increase. Campbell and 

Madden (1990) and, Salgado et al., (2007) report that TAIR and RH are the variables 
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that most influence the biological components of a pathosystem in the development 

of an epidemic. 

 

TABLE 4. Pearson‟s correlation between monthly coffee rust infection rate and 

weather variables. Number of days before assessment of incidence of leaf 

symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from 

21 to 30 days. Minas Gerais, Brazil. 

Weather 

variables 

Period assessed before symptoms 

1-10d 11-20d 21-30d   1-10d 11-20d 21-30d 

Southern Minas -High     Southern Minas - Low   

Tmax 0.541* 0.48* 0.437*   0.403* 0.326* 0.246* 

Tmin -0.197 -0.139 -0.005   -0.094 -0.025 0.09 

NDR>1mm -0.18 -0.012 0.103   -0.044 0.044 0.156 

NDR>10mm -0.154 -0.023 0.061   -0.082 0.013 0.065 

NdRH>80% 0.333* 0.377* 0.393*   0.233* 0.257* 0.265* 

NdRH>90% 0.2 0.272 0.304*   0.122 0.195 0.212 

Rainfall -0.162 -0.061 0.033   -0.044 -0.02 0.065 

RH (%) 0.396* 0.437* 0.484*   0.325* 0.352* 0.357* 

                

  Cerrado - High     Cerrado - Low   

Tmax -0.491* -0.431* -0.439*   -0.478* -0.409* -0.406* 

Tmin -0.361* -0.23 -0.07   -0.389* -0.277 -0.102 

NDR>1mm -0.162 -0.046 0.058   -0.212* -0.073 0.012 

NDR>10mm -0.173 -0.075 -0.018   -0.205 -0.098 -0.08 

NdRH>80% 0.185 0.253* 0.298*   0.115 0.157* 0.244* 

NdRH>90% 0.124 0.134 0.132   0.074 0.052 0.034 

Rainfall -0.223 -0.11 -0.006   -0.267 -0.143 -0.048 

RH (%) 0.259 0.337* 0.383*   0.214* 0.291* 0.341* 
(*) Asterisk indicates that the correlations are significant at p≤0.05. 
 

 

The maximum air temperature (TMAX) showed positive and significant 

correlations (p <0.05) with the incidence of cercospora in both productive loads and 

in both regions (Table 5). For example, in the SOMG for high-yield coffee, the values 

were r = 0.281*, 0.308* and 0.246*, for periods 1-10d, 11-20d and 21-30d, 

respectively. The correlation shows that the higher the TMAX, the higher the incidence 

of cercospora in coffee cultivation. This result has also been shown by several 

authors such as Echandi (1959), Zambolim et al., (1997), Salgado et al. (2007) and 

Souza et al. (2013a) who reported that cercospora requires an excess of insolation 

and higher temperatures for the germination of fungi spores, occurring at 30°C. As a 



80 
 

 

result of the increase in the severity of the cercospora, early defoliation occurs in the 

coffee plants, mainly due to the production of ethylene in the leaves that were 

injured, which promotes a reduction in their production (Zambolim et al., 1997; 

Salgado et al., 2007). 

 

TABLE 5. Pearson‟s correlation between monthly cercospora infection rate and 

weather variables. Number of days before assessment of incidence of leaf 

symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from 

21 to 30 days.  Minas Gerais, Brazil. 

Weather 

variables 

Period assessed before symptoms 

1-10d 11-20d 21-30d   1-10d 11-20d 21-30d 

Southern Minas - High     Southern Minas - Low   

Tmax 0.281* 0.308* 0.246*   0.119 0.208* 0.131 

Tmin -0.032 -0.046 0.051   0.005 -0.043 0.039 

NDR>1mm -0.005 0.104 0.152   0.032 0.108 0.119 

NDR>10mm -0.006 0.1 0.167   0.048 0.063 0.103 

NdRH>80% 0.288* 0.291* 0.339*   0.128 0.147 0.183 

NdRH>90% 0.157 0.148 0.26   0.091 0.098 0.134 

Rainfall -0.083 0.098 0.123   -0.05 0.096 0.086 

RH (%) 0.266 0.319* 0.313*   0.13 0.211* 0.182 

                

  Cerrado - High     Cerrado - Low   

Tmax 0.343* 0.286* 0.261   0.322* 0.199 0.212 

Tmin -0.183 -0.106 0.025   -0.099 -0.025 0.08 

NDR>1mm -0.051 0.023 0.113   0.032 0.087 0.165 

NDR>10mm -0.062 -0.03 0.024   0.029 0.016 0.08 

NdRH>80% 0.118 0.134 0.199   0.12 0.112 0.183 

NdRH>90% 0.042 0.035 0.047   0.043 0.011 0.031 

Rainfall -0.041 -0.042 0.026   0.056 0.017 0.065 

RH (%) 0.221 0.262* 0.289*   0.249* 0.233 0.264* 
(*) Asterisk indicates that the correlations are significant at p≤0.05. 
 

 

Precipitation (P) showed negative and significant correlations (p <0.05) with 

the incidence of coffee miner in the period 1-10d in both loads and in the two regions 

(Table 6), clearly demonstrating the decrease in the severity of the coffee miner with 

the increase of P. This demonstrates that the insect needs prolonged periods of 

drought to promote high infestation levels in coffee. This result is confirmed by 

Machado et al., (2014) and Costa et al., (2015). 

The TMIN had positive correlations with the incidence of coffee miner in the 
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period 11-20d, however, only in the SOMG. Thus, the higher the TMIN values, the 

greater the severity of the coffee miner.  This positive correlation between TAIR and 

the severity of the coffee miner was also confirmed by other authors such as 

Fernandes et al. (2009). The CEMG did not have this relationship, since it is already a 

region with higher TAIR. Higher levels of coffee miner are undesirable, because the 

mined leaves fall before leaves that have not been attacked, which causes a 

reduction of the active photosynthetic area and consequent drop in coffee production 

(Caixeta et al., 2004). 

 

TABLE 6. Pearson‟s correlation between monthly coffee miner infection rate and 

weather variables. Number of days before assessment of incidence of leaf 

symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from 

21 to 30 days.  Minas Gerais, Brazil. 

Weather 

variables 

Period assessed before symptoms 

1-10d 11-20d 21-30d   1-10d 11-20d 21-30d 

Southern Minas - High     Southern Minas - Low   

Tmax 0.023 0.107 0.093   0.123 0.206 0.193 

Tmin 0.16 0.228* 0.183   0.162 0.218* 0.172 

NDR>1mm -0.245* -0.198* -0.139   -0.241* -0.146 -0.076 

NDR>10mm -0.183 -0.149 -0.059   -0.173 -0.102 0.012 

NdRH>80% -0.059 -0.025 0.033   0.049 0.073 0.169 

NdRH>90% -0.004 -0.019 0.056   0.094 0.061 0.181 

Rainfall -0.234* -0.154 -0.148   -0.251* -0.119 -0.104 

RH (%) -0.119 -0.082 -0.064   -0.024 0.036 0.054 

                

  Cerrado - High     Cerrado - Low   

Tmax -0.095 -0.019 -0.006   -0.09 -0.029 -0.021 

Tmin -0.126 -0.079 -0.043   -0.084 -0.057 -0.027 

NDR>1mm -0.107 -0.10 -0.075   -0.075 -0.093 -0.011 

NDR>10mm -0.076 -0.132* -0.093   -0.072 -0.106* -0.044 

NdRH>80% -0.084 -0.124 -0.026   -0.018 -0.088 0.015 

NdRH>90% -0.023 -0.055 -0.051   -0.024 -0.042 -0.022 

Rainfall -0.122* -0.107 -0.114   -0.117* -0.084 -0.083 

RH (%) 0.022 0.007 0.03   0.038 0.026 0.037 
(*) Asterisk indicates that the correlations are significant at p≤0.05. 

 

The TMIN of the period 11-20d had positive and significant correlations (p 

<0.05) with coffee borer incidence in both loads and regions (Table 7). For example, 

in the SOMG for high-yield coffee the value was r=0.296. This correlation occurs 
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because with higher TMIN there is a reduction in the insect cycle and a consequent 

increase in the population of the coffee borer (Laurentino and Costa, 2004).  Other 

climatic variables also show significant correlations with the level of pest infestation in 

both regions, such as RH in the periods 1-10d and 11-20d and NdRH> 80% in the 

period of 1-10d (Table 7). 

 

TABLE 7. Pearson‟s correlation between monthly coffee berry borer infection rate 

and weather variables. Number of days before assessment of incidence of leaf 

symptoms: 1-10d is from 1 to 10 days; 11-20d is from 11 to 20 days; 21-30d is from 

21 to 30 days. Minas Gerais, Brazil. 

Weather 

variables 

Period assessed before symptoms 

1-10d 11-20d 21-30d   1-10d 11-20d 21-30d 

Southern Minas - High     Southern Minas - Low   

Tmax -0.033 -0.05 0.068   -0.027 -0.033 0.046 

Tmin 0.249 0.298* 0.253   0.237 0.293* 0.246 

NDR>1mm 0.336* 0.306* 0.265   0.316* 0.282* 0.252 

NDR>10mm 0.321* 0.289 0.154   0.333* 0.267 0.2 

NdRH>80% 0.316* 0.267 0.129   0.312* 0.248 0.142 

NdRH>90% 0.232 0.15 0.119   0.257 0.195 0.201 

Rainfall 0.301 0.335* 0.235   0.26 0.324* 0.207 

RH (%) 0.26* 0.28* 0.196   0.254* 0.263* 0.194 

                

  Cerrado - High     Cerrado - Low   

Tmax -0.15 -0.213 -0.123   -0.1 -0.144 -0.096 

Tmin 0.212 0.295* 0.243   0.135 0.314* 0.18 

NDR>1mm 0.329* 0.313 0.289   0.202 0.213 0.195 

NDR>10mm 0.224 0.332 0.205   0.175 0.246 0.091 

NdRH>80% 0.463* 0.333 0.271   0.32* 0.247 0.169 

NdRH>90% 0.202 0.197 0.155   0.054 0.126 0.033 

Rainfall 0.134 0.316 0.296   0.092 0.199 0.198 

RH (%) 0.334* 0.361* 0.303   0.228* 0.233* 0.222 
(*) Asterisk indicates that the correlations are significant at p≤0.05.  
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In predicting the incidence of rust the RFT algorithm demonstrated the highest 

accuracy (RMSE) and the highest precision (R2adj) in both fruit loads and in all 

locations (Table 8). 

The average RMSE for the prediction of coffee rust in high-yielding crops was 

19.59, 24.15, 8.51 and 15.48% for KNN, MLP, RFT and RLM, respectively. For low-

yield coffee the RMSE values were 14.05, 15.90, 5.87 and 12.10%, for KNN, MLP, 

RFT and RLM, respectively. The superiority of RFT was also shown by the R2adj and 

Willmott's 'd'. 

For example, the average R2adj for high and low-yield coffee was 0.866 and 

0.868, respectively, being higher than that for the other tested algorithms. These 

results are similar to other authors, such as Meira, Rodrigues and Moraes (2008), 

who reached a precision of 73% in the prediction of infection rates of coffee rust at 

high-yields in the region of SOMG. 

The Willmott's 'd' indexes for high-yield coffee predicting with RFT were 0.966, 

0.969, 0.969, 0.979, 0.970, 0.968, 0.973 for the ARG, ARX, BOE, CDM, MUZ, PAT, 

and VAR locations, respectively. For MLP, the Willmott's 'd' indexes for high-yield 

plants were 0.847, 0.715, 0.736, 0.392, 0.535, 0.797 and 0.687 for the ARG, ARX, 

BOE, CDM, MUZ, PAT and VAR locations, respectively. Pinto et al. (2002) also 

compared RLM and MLP in predicting coffee rust using as independent data the 

climatic variables in the SOMG and observed that the smallest errors occurred with 

the use of MLP algorithms. 

The prediction of coffee rust has already been studied by Pinto et al. (2002) 

using artificial neural networks, and by Meira, Rodrigues and Moraes (2008) using 

decision trees. Another technique was used by Girolamo Neto et al. (2014) using 

data mining techniques to develop coffee rust prediction models for the SOMG, and 

they observed that for years of high and low-yields the best accuracies were 85.3% 

and 88.9%, respectively. 
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TABLE 8. Statistical indices of the algorithms in the prediction of coffee rust in high 

and low-yield coffee for the State of Minas Gerais, Brazil. Legend: BOE is Boa 

Esperança; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxá; MUZ is 

Muzambinho; PAT is Patrocínio, VAR is Varginha, KNN is KNeighbors Regressor, 

MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple 

Linear Regression (Ridge). 

Locations Yield 
KNN MLP RFT RLM   KNN MLP RFT RLM   KNN MLP RFT RLM 

R
2
adj   RMSE    Willmott’s ‘d’ 

ARG 

High 

yield 

0.719 0.634 0.864 0.833   19.837 21.213 8.807 14.091   0.821 0.847 0.966 0.932 

ARX 0.727 0.504 0.868 0.790   19.994 22.865 8.906 14.932   0.823 0.715 0.969 0.916 

BOE 0.705 0.619 0.860 0.755   19.670 21.779 8.353 16.399   0.800 0.736 0.969 0.867 

CDM 0.763 0.688 0.874 0.823   19.723 32.473 8.198 16.106   0.849 0.392 0.979 0.915 

MUZ 0.670 0.377 0.866 0.739   21.235 27.375 8.733 17.692   0.776 0.535 0.970 0.864 

PAT 0.768 0.644 0.859 0.849   14.970 16.872 7.369 11.232   0.836 0.797 0.968 0.935 

VAR 0.736 0.615 0.871 0.798   21.709 26.497 9.270 17.937   0.838 0.687 0.973 0.897 

  Average 0.727 0.583 0.866 0.798   19.591 24.153 8.519 15.484   0.820 0.673 0.971 0.904 

                                

ARG 

Low 

yield 

0.754 0.647 0.867 0.854   17.457 19.454 7.818 12.029   0.854 0.833 0.971 0.942 

ARX 0.703 0.477 0.871 0.800   18.540 21.978 8.265 13.785   0.803 0.656 0.966 0.921 

BOE 0.684 0.441 0.871 0.737   7.117 8.918 2.557 5.654   0.782 0.555 0.975 0.859 

CDM 0.688 0.502 0.858 0.823   8.783 10.489 3.806 16.106   0.785 0.650 0.965 0.915 

MUZ 0.481 0.334 0.870 0.612   19.341 21.121 7.418 15.963   0.609 0.495 0.960 0.773 

PAT 0.743 0.657 0.865 0.844   15.126 15.897 6.786 10.601   0.827 0.836 0.970 0.943 

VAR 0.668 0.541 0.877 0.701   12.027 13.497 4.464 10.570   0.792 0.659 0.975 0.831 

  Average 0.674 0.514 0.868 0.767   14.056 15.908 5.873 12.101   0.779 0.669 0.969 0.883 

 

 

The RFT algorithm showed the highest accuracy (RMSE) and the MLP the 

lowest performance for both fruit loads in the cercospora forecast (Table 9). 

The Willmott's 'd' indexes for the high-yield coffee predicting with RFT were 

0.939, 0.887, 0.928, 0.840, 0.654, 0.865 and 0.637 for the ARG, ARX, BOE, CDM, 

MUZ, PAT and VAR locations, respectively. The Willmott's 'd' indexes for the MLP at 

high-yields were 0.644, 0.487, 0.628, 0.640, 0.654, 0.565 and 0.637 for the ARG, 

ARX, BOE, CDM, MUZ, PAT and VAR locations, respectively. The mean accuracy 

difference between these algorithms was 0.259% (Table 9). 

The average R2adj for the prediction of the cercospora in high-yield coffee 

were of 0.667, 0.507, 0.736 and 0.655 for the algorithms KNN, MLP, RFT and RLM, 

respectively. At low-yields the R2adj values were 0.632, 0.525, 0.725 and 0.628 for 

KNN, MLP, RFT and RLM, respectively. The authors Souza et al. (2013a), who used 
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the decision tree methodology to evaluate cercosporiosis in conventional and organic 

coffee plantations, observed that the calibrated models had a 60% accuracy in the 

SOMG. 

 

TABLE 9. Statistical indices of the algorithms in the forecast of the cercospora in high 

and low-yield for the State of Minas Gerais, Brazil. Legend: BOE is Boa Esperança; 

ARG is Araguari; CDM is Carmo de Minas; ARX is Araxá; MUZ is Muzambinho; PAT 

is Patrocínio, VAR is Varginha, KNN is KNeighbors Regressor, MLP is Multi-layer 

Perceptron, RFT is Random Forest Regressor and RLM is Multiple Linear 

Regression (Ridge). 

Locations Yield 
KNN MLP RFT RLM   KNN MLP RFT RLM   KNN MLP RFT RLM 

R2adj   RMSE    Willmott’s ‘d’ 

ARG 

High 

yield 

0.726 0.495 0.895 0.763   20.337 27.003 7.298 16.019   0.823 0.644 0.939 0.913 

ARX 0.665 0.386 0.786 0.573   12.387 16.741 6.089 13.178   0.763 0.487 0.887 0.710 

BOE 0.594 0.540 0.840 0.536   4.057 4.249 4.491 4.049   0.689 0.628 0.928 0.741 

CDM 0.688 0.529 0.529 0.664   2.849 3.316 3.158 2.606   0.774 0.640 0.840 0.817 

MUZ 0.587 0.611 0.611 0.718   6.304 6.295 3.295 5.025   0.698 0.654 0.654 0.845 

PAT 0.716 0.421 0.921 0.621   5.731 7.035 7.035 5.515   0.775 0.565 0.865 0.830 

VAR 0.689 0.569 0.569 0.707   2.804 3.192 3.192 2.330   0.792 0.637 0.637 0.843 

  Average 0.666 0.507 0.736 0.655   7.781 9.690 4.937 6.960   0.759 0.608 0.821 0.814 

                                

ARG 

Low yield 

0.725 0.500 0.500 0.753   19.291 26.608 4.847 16.061   0.824 0.651 0.651 0.909 

ARX 0.561 0.433 0.733 0.503   9.678 13.133 7.196 9.709   0.706 0.478 0.978 0.673 

BOE 0.668 0.536 0.936 0.597   3.106 3.518 3.518 3.095   0.724 0.553 0.853 0.766 

CDM 0.526 0.541 0.841 0.614   2.615 2.591 2.591 2.270   0.641 0.618 0.818 0.788 

MUZ 0.560 0.516 0.516 0.632   5.597 5.832 5.832 5.049   0.673 0.561 0.961 0.792 

PAT 0.788 0.621 0.621 0.743   2.972 3.270 6.971 2.325   0.846 0.724 0.773 0.913 

VAR 0.598 0.533 0.933 0.554   1.780 1.905 1.905 1.648   0.701 0.562 0.762 0.742 

  Average 0.632 0.525 0.725 0.628   6.434 8.122 4.694 5.737   0.731 0.592 0.828 0.798 

 

 

In predicting the severity of the coffee bean miner using climate variables, the 

RFT algorithm showed the highest accuracy (RMSE) and the highest precision 

(R2adj) in both fruit loads and in all localities, while MLP had the lowest accuracy 

(Table 10). 

In the prediction of the coffee miner in high-yield plants, the Willmott's 'd' of the 

RFT were 0.864, 0.834, 0.842, 0.848, 0.845, 0.829 and 0.849 for the ARG, ARX, 

BOE, CDM, MUZ, PAT and VAR, respectively. The MLP for high-yield coffee showed 

values of 0.439, 0.570, 0.598, 0.741, 0.806, 0.447 and 0.886 for the ARG, ARX, 
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BOE, CDM, MUZ, PAT and VAR locations, respectively. The mean accuracy 

difference between these algorithms was 0.240% (Table 10). 

The average R2adj for the prediction of the coffee miner in high-yield plants 

was 0.615, 0.486, 0.850 and 0.643 for the KNN, MLP, RFT and RLM algorithms, 

respectively. At low-yields the values of R2adj were 0.629, 0.471, 0.857 and 0.589, 

for KNN, MLP, RFT and RLM, respectively (Table 10). This demonstrates that the 

algorithms do not present prediction differences for the coffee miner bug at high or 

low-yields. 

 

TABLE 10. Statistical indexes of the algorithms in the prediction of Coffee miner in 

high and low-yield crops for the State of Minas Gerais, Brazil. Legend: BOE is Boa 

Esperança; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxá; MUZ is 

Muzambinho; PAT is Patrocínio, VAR is Varginha, KNN is KNeighbors Regressor, 

MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple 

Linear Regression (Ridge). 

Locations Yield 
KNN MLP RFT RLM   KNN MLP RFT RLM   KNN MLP RFT RLM 

R2adj   RMSE    Willmott’s ‘d’ 

ARG 

High 

yield 

0.688 0.197 0.858 0.656   14.367 22.430 6.645 15.483   0.789 0.439 0.864 0.832 

ARX 0.426 0.537 0.839 0.602   4.982 5.438 1.063 4.126   0.622 0.570 0.834 0.716 

BOE 0.426 0.516 0.840 0.530   4.982 2.147 1.018 2.033   0.622 0.598 0.842 0.689 

CDM 0.673 0.655 0.859 0.575   1.339 1.372 0.662 1.365   0.766 0.741 0.848 0.727 

MUZ 0.708 0.723 0.856 0.643   2.167 2.108 1.201 2.261   0.780 0.806 0.845 0.779 

PAT 0.674 0.049 0.842 0.643   11.282 14.375 4.061 10.399   0.709 0.447 0.829 0.836 

VAR 0.709 0.824 0.855 0.854   1.087 0.880 0.565 12.029   0.799 0.886 0.849 0.942 

  Average 0.615 0.486 0.850 0.643   5.744 6.964 2.174 6.814   0.727 0.641 0.844 0.789 

                                

ARG 

Low yield 

0.723 0.454 0.850 0.664   14.505 19.605 7.433 14.776   0.801 0.675 0.858 0.844 

ARX 0.478 0.535 0.861 0.554   8.148 8.225 3.716 7.591   0.627 0.573 0.842 0.668 

BOE 0.622 0.403 0.848 0.467   2.457 2.871 0.953 2.227   0.723 0.457 0.850 0.623 

CDM 0.659 0.545 0.863 0.625   1.655 1.854 0.775 1.601   0.749 0.619 0.854 0.762 

MUZ 0.681 0.537 0.852 0.621   2.539 2.946 1.225 2.292   0.776 0.590 0.842 0.751 

PAT 0.599 0.140 0.868 0.628   9.537 11.117 4.416 8.387   0.690 0.642 0.851 0.881 

VAR 0.638 0.684 0.859 0.564   1.273 1.224 0.588 1.232   0.735 0.747 0.850 0.712 

  Average 0.629 0.471 0.857 0.589   5.731 6.835 2.729 5.444   0.729 0.615 0.849 0.749 

 

 

In the prediction of the coffee borer, the RFT algorithm showed the highest 

accuracy in both productive loads and in all localities, whereas the KNN showed the 

lowest accuracy in the predictions (Table 11). 
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The indices of Willmott's 'd' of the RFT to predict the coffee borer at high-yields 

were of 0.955, 0.933, 0.969, 0.930, 0.955, 0.954 and 0.963 for the localities of ARG, 

ARX, BOE, CDM, MUZ, PAT and VAR, respectively. However, the Willmott's 'd' 

indices for KNN were 0.721, 0.740, 0.813, 0.643, 0.823, 0.694 and 0.793 for the 

ARG, ARX, BOE, CDM, MUZ, PAT and VAR, respectively. The mean accuracy 

difference between these algorithms was 0.214% (Table 11). 

The average R2adj for the prediction of coffee borer in high-yield plants was 

0.633, 0.672, 0.854 and 0.744 for the KNN, MLP, RFT and RLM algorithms, 

respectively.  At low-yields the R2adj were 0.633, 0.672, 0.854 and 0.744, for KNN, 

MLP, RFT and RLM, respectively (Table 11). This demonstrates that the algorithms 

do not present differences in prediction of coffee borer at high or low-yields. 

 

TABLE 11. Statistical indices of the algorithms in the prediction of coffee borer in high 

and low-yield coffee for the State of Minas Gerais, Brazil. Legend: BOE is Boa 

Esperança; ARG is Araguari; CDM is Carmo de Minas; ARX is Araxá; MUZ is 

Muzambinho; PAT is Patrocínio, VAR is Varginha, KNN is KNeighbors Regressor, 

MLP is Multi-layer Perceptron, RFT is Random Forest Regressor and RLM is Multiple 

Linear Regression (Ridge). 

Locations Yield 
KNN MLP RFT RLM   KNN MLP RFT RLM   KNN MLP RFT RLM 

R2adj   RMSE     Willmott’s ‘d’ 

ARG 

High 

yield 

0.621 0.501 0.855 0.778   4.870 5.369 2.229 5.621   0.721 0.604 0.955 0.882 

ARX 0.635 0.512 0.852 0.730   4.004 4.489 2.223 4.307   0.740 0.549 0.933 0.841 

BOE 0.692 0.857 0.865 0.811   1.295 0.936 0.550 1.019   0.813 0.901 0.969 0.889 

CDM 0.500 0.629 0.838 0.694   2.197 2.150 0.853 1.387   0.643 0.519 0.930 0.802 

MUZ 0.713 0.838 0.851 0.740   0.923 0.736 0.476 0.855   0.823 0.887 0.955 0.843 

PAT 0.592 0.545 0.858 0.834   2.155 2.244 0.919 1.521   0.694 0.627 0.954 0.912 

VAR 0.679 0.825 0.861 0.618   0.557 0.433 0.227 0.519   0.793 0.887 0.963 0.747 

  Average 0.633 0.672 0.854 0.744   2.386 2.337 1.068 2.175   0.747 0.751 0.951 0.845 

                                

ARG 

Low yield 

0.654 0.641 0.862 0.770   4.356 4.442 1.815 5.402   0.752 0.726 0.969 0.874 

ARX 0.596 0.864 0.877 0.671   2.677 1.873 1.075 2.597   0.680 0.873 0.951 0.806 

BOE 0.593 0.902 0.857 0.797   0.987 0.541 0.395 0.658   0.723 0.938 0.957 0.878 

CDM 0.542 0.950 0.830 0.689   1.376 0.532 0.827 1.025   0.661 0.969 0.937 0.799 

MUZ 0.619 0.621 0.853 0.735   1.339 1.338 0.444 0.861   0.738 0.720 0.963 0.839 

PAT 0.715 0.859 0.835 0.752   1.974 1.485 1.159 1.906   0.805 0.903 0.939 0.867 

VAR 0.531 0.872 0.862 0.574   0.410 0.238 0.147 0.385   0.695 0.916 0.971 0.704 

  Average 0.607 0.815 0.854 0.712   1.874 1.493 0.837 1.833   0.722 0.864 0.955 0.824 
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The RMSE maps of the RFT for the SOMG and CEMG regions for rust, 

cercospora, coffee miner and coffee borer can be observed in Figures 12-15. 

The spatial variability of the RMSE index for the RFT algorithm shows the 

accuracy of this model in the prediction of rust in high-yield (Figure 12.A) and low-

yield (Figure 12.B) coffee, using the climatic elements as independent variables. The 

RFT in the prediction of Rust in high-yield coffee demonstrated a more constant 

variability of RMSE in the SOMG and CEMG regions. Patrocínio had an RMSE of only 

7.3% (Figure 12.A). In the prediction of rust in low-yield coffee the SOMG region 

showed the lowest RMSE value of 2.55% (BOE), while in the CEMG region the values 

reached 8.26% (ARX). RMSE of only 2.55% is considered very accurate in prediction 

models using climatic data (Moreto and Rolim, 2015, Marca et al., 2015). 

The RFT in predicting the severity indexes of cercospora showed greater 

accuracy in the SOMG region in both crop loads. In SOMG the RMSE values ranged 

from 3.19 to 4.49 for high-yield coffee (Figure 13.A) and between 1.90 to 5.83 for low-

yield (Figure 13.B). The highest RMSE were found in the Araguari locality, reaching 

values of 7.29% in high-yield plants. 

In the prediction of the Coffee miner the RFT algorithm demonstrated low 

RMSE values in both productive loads. In the SOMG region the RMSE ranged from 

0.56 to 1.20 for high-yield and between 0.587 and 1.22 for low-yield coffee (Figure 

14). In Araguari the RFT demonstrated the highest values of RMSE in the prediction 

of the Coffee miner, reaching 7.43% in low-yield coffee. 

The RFT algorithm demonstrated greater accuracy in the SOMG region in both 

the productive loads in the prediction of the coffee borer. In SOMG values ranged from 

0.227 to 0.853 for high-yield and 0.147 and 0.827 for low-yield coffee. In the CEMG 

the RMSE values were elevated. For example, in the prediction of coffee borer in 

Araguari the RMSE was of 2.229 and 1.815 in high and low-yield coffee, respectively 

(Figure 15). 
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FIGURE 12. Spatialization of the RMSE index (%) of the forecast of coffee rust at 

high (A) and low-yields (B) by the Random Forest Regressor algorithm for the south 

of Minas and Cerrado Mineiro regions, Brazil. 
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FIGURE 13. Spatialization of the RMSE index (%) of the forecast of the Cercospora 

at high (A) and low-yields (B) by the Random Forest Regressor algorithm for the 

south of Minas and Cerrado Mineiro regions, Brazil. 
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FIGURE 14. Spatialization of the RMSE index (%) of the forecast of the Coffee miner 

at high (A) and low-yields (B) by the Random Forest Regressor algorithm for the 

south of Minas and Cerrado Mineiro regions, Brazil. 
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FIGURE 15. Spatialization of the RMSE index (%) of the forecast of the Coffee berry 

borer at high (A) and low-yields (B) by the Random Forest Regressor algorithm for 

the south of Minas and Cerrado Mineiro regions, Brazil. 
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Conclusions  

 

The rust, cercospora, and miner showed a sigmoid progression curve, while 

the coffee borer showed a Gaussian trend in both crop fruit loads. 

The maximum air temperature, the number of days with relative humidity 

above 80% and the relative humidity were the climatic variables that showed 

significant correlations with the coffee rust disease. Precipitation showed negative 

correlations with the coffee miner in both loads, which causes a decrease in the 

severity of the pest with increasing rainfall. 

The predictive models of coffee diseases and pests developed in this work 

provide better subsidies for the monitoring of diseases in years of high and low-yield 

fruits.  

The algorithms of machine learning do not present differences in the 

predictions between high and low-yield harvests. The random forest model was more 

accurate in the prediction of coffee rust, cercospora, coffee miner and coffee borer 

using climatic conditions. In the prediction of coffee rust, cercospora, and coffee 

miner, the neural networks presented the lowest performance, whereas for the coffee 

borer the k-Nearest neighbor‟s algorithm had the lowest performance. 

 

 

Acknowledgements 

 

This research was supported by the São Paulo Research Foundation 

(FAPESP, 2015/17797-4). 

  



94 
 

 

CAPÍTULO 4 – Validation of ERA-Interim (ECMWF) surface climatic data and 

implications for modelling water balance  

 

ABSTRACT - Gridded meteorological systems greatly facilitate the analysis of the 
impacts of climate on crop development and productivity. Comparisons of these data 
with actual surface data validate this data source for various analyses in agricultural 
areas. The impact of the use of these grid data is an important evaluation for the 
temporal and spatial simulation of soil-water availability for crops. We thus sought to 
determine the accuracy of climatic data from the European Centre for Medium Range 
Weather Forecast (ECMWF) with the meteorological ground stations, and tested its 
application for modelling climatic water balance. Monthly data for air temperature (T) 
and precipitation (P) from ECMWF were compared with the data from 771 surface 
stations (National Meteorological Institute, INMET) in the state of Minas Gerais in 
southeastern Brazil for 1979-2017. Potential evapotranspiration was estimated by the 
Thornthwaite method (1948), and water balance was estimated by the method 
proposed by Thornthwaite and Mather (1955), with an available water capacity of 100 
mm. We temporally and spatially compared the two data sources, and the 
comparisons were evaluated for accuracy using mean absolute percentage error 
(MAPE) root mean square error (RMSE) and for precision using the adjusted 
coefficient of determination (R2adj). ECMWF T and P tended to be temporally and 
spatially similar to the INMET data, with R2adj = 0.95±0.0017, MAPE = 
13.08±23.39%, and RMSE = 0.86±0.42 °C for T and R2adj = 0.95±0.003, MAPE = 
14.10±17.01%, and RMSE = 1.64±0.58 mm for P. The largest deviation between 
INMET T and ECMWF T was 2.81 °C, mainly in the southwest of the state (the Minas 
Gerais triangle) and part of the central region during winter and spring, and the 
smallest deviation was -0.19 °C in the northeast. The largest deviation between 
INMET P and ECMWF P was 75 mm mo-1 in the summer, mainly between January 
and February in the central region of Minas Gerais. ECMWF T and ECMWF P 
allowed an accurate estimation of the components of the water balance. For 
example, the lowest MAPEs were 1.21% for ECMWF water-storage capacity 
(southern Minas Gerais), 9.16% for ECMWF water deficiency (Vale do Jequitinhonha 
e Mucurí), and 8.69% for ECMWF excess water (Vale do Jequitinhonha e Mucurí). 
The average deviations were ±10 mm mo-1 between the INMET and ECMWF water-
storage capacities, ±7.6 mm mo-1 between the INMET and ECMWF water 
deficiencies, and ±23.6 mm mo-1 between the INMET and ECMWF water excesses. 
We concluded that the climatic variables from the ECMWF system were more 
accurate and could be used to model the climatological water balance. 
 
KEY-WORDS: Climatic zoning; forecast verification; water deficiency; climatic 

variables; general circulation model. 
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Introduction  

 

Agricultural production is greatly affected by climatic variability and extreme 

events (Ceglar et al., 2016), and the accuracy of models forecasting regional 

productivity is strongly linked to the sources of meteorological and soil data (Orth et 

al., 2016). Data sources may be limited by temporal data failures, calibrations, 

possible sensor problems, and spatial scales. Countries and even regions with few 

surface meteorological stations (Rodrigues, Moretto, Guilhoto, 2015) or with data 

gaps (Pereira et al., 2002) may benefit from gridded global data (GGD) systems to 

resolve problems where meteorological conditions are important. The European 

Centre for Medium-Range Weather Forecast (ECMWF) is a GGD system that 

provides free and relatively simple grid data.  

ECMWF collects information from a variety of meteorological sources around 

the world, such as meteorological and satellite radar systems (ECMWF, 2009; Couto 

et al., 2015), and is an important source of data. ECMWF data are processed on a 

10-day period scale at a spatial resolution of 27 × 27 km, freely available for 

downloading from the Joint Research Centre meteorological database of the 

European Commission (Grazziani, 2007; Moraes; Rocha; Lamparelli, 2014) that 

processes information for rainfall, air temperature, global solar radiation, and 

evapotranspiration using the Penman-Monteith equation. 

The surface of the Earth is an essential component of the climatic system 

(Orth et al., 2016), interacting with the atmosphere by the exchange of water and 

energy, and can also accumulate and maintain anomalies induced by atmospheric 

forcing (Aquila et al., 2016). Surface meteorological stations thus record 

micrometeorological conditions, and GGD systems provide data for meso to 

micrometeorological conditions. 

The use of meteorological information from the ECMWF atmospheric system 

is an alternative to the use of surface meteorological data. Few studies, however, 

have compared the accuracies of the ECMWF and surface data. Some studies have 

evaluated published global models. For example, Sodoudi et al. (2010) compared the 

accuracy of ECMWF precipitation data with surface-station data in Iran and 

concluded that the ECMWF system performed better for high mountainous regions 
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than for flat terrain and deserts, with an error of 0.46 mm d-1. McDonnell et al. (2018) 

verified and corrected the ECMWF prediction error for Irish meteorological stations 

and found that the ECMWF system performed well, with a mean RMSE of 5.56 mm 

d-1. These data from atmospheric models can also be used to quantify soil water, but 

this application has not yet been tested. 

Agriculture is one of the human activities most affected by climatic conditions 

(Sá Júnior et al., 2012), and the availability of soil water is the main cause of variation 

in crop yields (Martinez et al. 2013, Schrader et al., 2013). Cultivars can only use soil 

water within the reach of their root systems (Moreira et al., 2014), and productivity is 

substantially reduced due to the coincidence of periods with low rainfall during the 

growing season (Faria and Bowen, 2003). For example, the timing of crop 

establishment and flowering presents a high risk, because frequent water deficits in 

short dry periods associated with high evapotranspiration strongly affect the 

development and productivity of agricultural crops.  

Quantifying reductions in productivity as a function of water deficits requires 

simulating the components of the water balance (WB) of the soil (Negm et al., 2013). 

Many conventional stations are required for precise simulations, and the data must 

be accurate, but these conditions have not yet been met. Using grid data for 

simulating WBs is one method to address errors and lack of data from surface 

stations. 

WB is an account of the amount of water in the soil (Brunel-Saldias et al., 

2018) from the application of the principle of mass storage, which states that water 

storage (STO) is the result of inputs and outflows of water in a volume of soil (Moreira 

et al., 2014; Abatzoglou et al., 2018). Soil STO variability is calculated as: 

   DRDLoROETCADLiRUDEIPSTO      (1) 

where STO is the variation in storage over time; precipitation (P), irrigation (I), dew 

(DE), run in (RU), the input of lateral drainage (DLi), and capillary ascension (CA) 

runoff are the water-input components in the soil profile; and evapotranspiration (ET), 

runoff (RO), the outflow of lateral drainage (DLo), and drainage (DR) to the water 

table are the water-outflow components. All components or flows are given in mm 

time-1, and the number and form of simulations of these components indicate whether 

a WB model can be classified as empirical (functional) or mechanistic.  
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WB models were first developed and applied for climatological purposes in the 

1940s (Thornthwaite, 1948) and 1950s (Thornthwaite and Mather, 1955). These WB 

models simulated the balance between inputs from rainwater and ice melt and 

outflows from evapotranspiration, ice flow, and deep drainage. They have become 

universal due to their simplicity and ease of use. The Thornthwaite and Mather 

(1955) (WBTM) model was quickly adopted for irrigation and management purposes. 

Several studies have applied the WBTM model in its original form (Alley, 

1984). For example, Pereira (1986) successfully used the original WBTM model to 

study the minimum and maximum water storage of a podzolic soil in the state of São 

Paulo, Brazil. Other WB models such as BUD (Budyko, 1958), FAO (Doorenbos and 

Pruitt, 1977), SWAP (Van-Dam, 1997), DSSAT-SWBM (Ritchie, 1998), and SWB 

(Dripps et al., 2003) have been proposed, but the WBTM model is very interesting 

due to its simplicity and high accuracy. 

The use of ECMWF data instead of surface data to simulate regional WB 

components has been hypothesised, but we have found no studies comparing WB 

modelling with climatic data from surface stations and ECMWF data for Brazilian 

conditions. We thus sought to determine the accuracy of the climatic data from the 

ECMWF with the meteorological ground stations and tested its application for 

modelling climatic WBTM. 

 

Material and methods  

 

We used monthly meteorological data for mean air temperature (T) and rainfall 

(P) for 1979-2017 in the state of Minas Gerais, southeastern Brazil. Minas Gerais has 

an area of 586 528 km2 and is located between 13.94 and 22.50°S and 41.73 and 

52.87°W (Figure 1). The Köppen and Geiger (1928) climatic classification lists five 

classes (Am, Aw, BSh, Cwa, and Cwb) but Aw is the predominant class in Minas 

Gerais. 
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FIGURE 1. Location of the state of Minas Gerais (MG) in Brazil. 

 

Data from ECMWF and meteorological stations of the National Institute of 

Meteorology (INMET) (Figure 2B) were used. Data were compiled from 771 INMET 

stations (Figure 2A) and 1578 points corresponding to ECMWF virtual stations 

(Figure 2C). 
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FIGURE 2. Regions of Minas Gerais (A) and locations of the INMET meteorological 

stations (B) and the ECMWF virtual stations (C). 

 

Monthly ECMWF data were obtained, with a spatial resolution of 1°, and then 

pre-processed and transformed into 0.25° (±25 × 25 km) grids. Data from the 

ECMWF system were freely collected at http://www.ecmwf.int/. The data were 

interpolated, and the meshes generated were overlapped to select the ECMWF 

points that corresponded to the geographic coordinates of the INMET stations. The 

coordinates and overlapping meshes allowed us to compare the two data sources. 

The comparison between the T and P data was stratified relative to the seasons and 

as a function of the regions of Minas Gerais. Summer, autumn, winter, and spring 

were defined as January-March, April-June, July-September, and October-

December, respectively. This stratification was necessary to more accurately 

represent the peculiarities of the ECMWF system in each region and season. 

 

 

 

 

http://www.ecmwf.int/
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Modelling Water Balance 

 

Potential evapotranspiration (PET) was calculated using the method of 

Thornthwaite (1948): 

                              (2) 
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where ETp is standard evapotranspiration, COR is a correction factor based on the 

actual number of days and the photoperiod of the month, Tn is the mean temperature 

of month n, I is an index for the heat level in the region, a is a regional thermal index, 

NDP is the number of days of the period in question, and N is the average 

photoperiod of the month in question. 

  

PET data from INMET and ECMWF were used to generate the WB 

components. The WBTM model with an available water capacity of 100 mm was 

used: 
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where PET is potential evapotranspiration (mm), WC is available water capacity 

(mm), STO is soil-water storage (mm), NAC is the difference between total rainfall 

and PET, P is rainfall (mm), DEF is water deficiency in the soil-plant-atmosphere 

system (mm), AET is actual evapotranspiration (mm), EXC is excess water in the 
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soil-plant-atmosphere system (mm), ALT is the difference between STO of the 

current and the preceding month (mm), and i is the month. 

 

After completing the WB calculations, the ECMWF data (TECMWF; PECMWF; 

STOECMWF; DEFECMWF; EXCECMWF) and the data of the surface meteorological stations 

(TINMET; PINMET; STOINMET; DEFINMET; EXCINMET) were compared by statistical indicators 

(accuracy and precision). The accuracy or accuracy, that is, the estimate is close to 

the observed value, was evaluated by MAPE (Mean Absolute Error) and RMSE (root 

mean square error). Precision is the ability of the model to repeat the estimate and 

was evaluated by the R2 (coefficient of determination) adjusted according to Cornell 

and Berger (1987) and the p-value of the regression (Table 1). 

 

TABLE 1. Indices of statistical accuracy and precision used for evaluating the climatic 

data from ECMWF and INMET. Yest, estimated value of y; Yobs, observed value of 

y; Xobs, observed value of x; n, number of datapoints; and k, number of independent 

variables in the regression. Overlined variables indicate averages. 

Statistical indexes Equations  
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Maps were generated using kriging interpolation (KRIGE, 1951) with 1 

neighbour and a resolution of 0.25 ° in the spherical model (equation 13). The 

meshes and semivariograms were adjusted for determining the values of the nugget 

effect, structural variation (the difference between the level and the nugget effect), 

range for all months in exponential, spherical, and Gaussian models. These settings 

allowed a better comparison with the ECMWF grid data. 

 ̂          ∑                        
                                                               (13) 

where:        is observation weights      ;       is interpreted as the realization of 

VAZ (  ;  VAZ (x) is Semivariogram modeling      , is the expected value of Z     at 

the point  ;     , is the number of data inside a neighborhood  . 

 

Results and discussion  

 

Air temperature data 

 

TECMWF indicated a temporal trend similar to the TINMET data, with T highest 

from September to April (summer) and lowest from April to August (winter) in each 

region of Minas Gerais. This trend of variability was also reported by Alvares et al. 

(2013). Mean R2adj, MAPE, and RMSE for the temporal variation in all periods and 

regions were 0.95±0.0017, 13.08±23.39%, and 0.86±0.42 °C, respectively. The 

details of R2adj, MAPE, and RMSE and between the temporal TINMET and TECMWF 

data for each region are shown in Figure 3. The temporal accuracy of the ECMWF 

system was highest for Zona da Mata (ZM) and Vale do Jequitinhonha e Mucurí 

(VJM), where mean MAPE and RMSE were <12% and 1 °C, respectively, for the 

entire year. For example, the average monthly T for ECMWF and INMET for VJM 

(Figure 3F), where MAPE was lowest (5.1%), was 24.5 and 24.7 °C, respectively. 
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FIGURE 3. Temporal variation of the data for mean air temperature from INMET 

surface stations and ECMWF for the main regions of Minas Gerais, 1979-2017. A) 

Cerrado Mineiro, B) Norte de Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao 

Metropolitana, and F) Vale do Jequitinhonha e Mucurí. 

 

The spatialisation of TINMET (Figure 4) and TECMWF (Figure 5) demonstrated 

that the ECMWF system could represent the spatial variability of T. T was lowest in 

the south and highest in the northeast, with means of 18.5 and 25.5 °C, respectively. 
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FIGURE 4. Spatial variation of the data for air temperature from INMET surface 

stations in Minas Gerais, 1979-2017. A) January, B) February, C) March, D) April, E) 

May, F) June, G) July, H) August, I) September, J) October, K) November, and L) 

December. Maps are from the spherical model with one neighbour and a resolution of 

0.25°. 
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The nugget, sill, and range for the TINMET data averaged 0.129±0.112, 

1.14±0.139, and 127.61±14.71, respectively (Table 2). The sill of semivariogram 

adjustment is its limit (the sum of the nugget effect with the variation of the data) after 

stabilisation from a particular distance. The distance at which the semivariogram 

stabilises is known as the range. The sill of the semivariogram was lower in hot 

months, varying between 0.93 and 1.14 °C. The level of sill increased as T 

decreased, getting at 1.40 °C in June in the spherical model, indicating higher 

variance in the data pairs in months with lower Ts. 

The nugget did not vary as a function of T, e.g. the pips effect averaged 0.12 

and 0.13 °C in months with high and low Ts, respectively. The nugget is the 

semivariance for a distance of zero and represents the random variance that the 

semivariogram measures. Interestingly, the nugget is low because it represents 

measurement errors (Landim, 2003) or the general spatial dependence. 
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TABLE 2. Models, parameters, and quality of the experimental semivariograms 

adjusted for fitting INMET air temperature. V0, nugget; V, structural variation 

(difference between the plateau and the nugget); (V0 + V), sill; Ro, range (km); R2adj, 

model adjustment determination coefficient; r, crossed validation correlation 

coefficient. 

Month Models V0 V (V0+V) Ro V/(V0+V)      r     R
2
 Cross validation 

Jan 

Exponential 0.01 1.06 1.07 149.8 99.5 0.95 0.900 y = 0,9971x + 0,0993 

spherical 0.12 0.92 1.04 128.5 88.5 0.95 0.900 y = 0,9963x + 0,1226 

Gaussian 0.26 0.81 1.07 113.9 75.7 0.95 0.895 y = 0,9945x + 0,1707 

Feb 

Exponential 0.01 1.13 1.14 149.6 99.6 0.95 0.897 y = 0,9945x + 0,1532 

spherical 0.12 0.98 1.10 128.2 89.1 0.95 0.898 y = 0,9942x + 0,1671 

Gaussian 0.28 0.86 1.14 113.9 75.4 0.94 0.893 y = 0,9925x + 0,2139 

Mar 

Exponential 0.00 1.15 1.15 149.1 99.8 0.95 0.910 y = 0,9915x + 0,2186 

spherical 0.12 1.00 1.12 132.1 89.3 0.95 0.910 y = 0,9919x + 0,2155 

Gaussian 0.28 0.87 1.15 113.9 75.7 0.95 0.906 y = 0,9907x + 0,253 

Apr 

Exponential 0.00 1.27 1.27 148.6 100.0 0.96 0.924 0,9901x + 0,2375 

spherical 0.13 1.09 1.22 127.7 89.3 0.96 0.925 y = 0,9904x + 0,2375 

Gaussian 0.29 0.95 1.24 109.0 76.6 0.96 0.921 y = 0,9891x + 0,2751 

May 

Exponential 0.00 1.31 1.31 140.6 100.0 0.97 0.936 y = 0,9908x + 0,2036 

spherical 0.14 1.16 1.30 126.9 89.2 0.97 0.937 y = 0,9906x + 0,2137 

Gaussian 0.30 1.01 1.31 108.3 77.1 0.97 0.937 y = 0,9906x + 0,2137 

Jun 

Exponential 0.00 1.41 1.41 140.6 100.0 0.97 0.936 y = 0,992x + 0,1702 

spherical 0.14 1.26 1.40 126.4 90.0 0.97 0.933 y = 1,0217x + 0,0362 

Gaussian 0.32 1.10 1.42 107.9 77.5 0.97 0.935 y = 0,99x + 0,2219 

Jul 

Exponential 0.00 1.27 1.27 140.6 100.0 0.97 0.936 y = 0,9949x + 0,1155 

spherical 0.12 1.13 1.25 126.6 90.4 0.97 0.937 y = 0,9926x + 0,1605 

Gaussian 0.29 0.98 1.27 108.1 77.2 0.97 0.934 y = 0,9909x + 0,202 

Aug 

Exponential 0.00 1.16 1.16 141.0 100.0 0.97 0.940 y = 0,9959x + 0,1055 

spherical 0.12 1.04 1.16 126.9 89.7 0.97 0.941 y = 0,9922x + 0,1762 

Gaussian 0.26 0.91 1.17 108.1 77.8 0.97 0.938 y = 0,9902x + 0,2244 

Sep 

Exponential 0.00 0.98 0.98 141.5 100.0 0.97 0.946 y = 0,994x + 0,1479 

spherical 0.09 0.86 0.95 124.2 90.5 0.97 0.947 y = 0,9914x + 0,2021 

Gaussian 0.22 0.76 0.98 109.0 77.6 0.97 0.945 y = 0,9878x + 0,2821 

Oct 

Exponential 0.00 0.95 0.95 140.6 100.0 0.97 0.942 y = 0,993x + 0,1768 

spherical 0.09 0.84 0.93 123.9 90.3 0.97 0.943 y = 0,9907x + 0,2297 

Gaussian 0.22 0.74 0.96 108.3 77.1 0.97 0.94 y = 0,9878x + 0,3002 

Nov 

Exponential 0.00 1.00 1.00 149.0 99.9 0.96 0.931 y = 0,9943x + 0,1505 

spherical 0.11 0.87 0.98 132.4 88.8 0.96 0.939 y = 0,9915x + 0,2158 

Gaussian 0.24 0.76 1.00 113.5 76.0 0.96 0.927 y = 0,9886x + 0,2881 

Dec 

Exponential 0.00 1.09 1.09 148.5 100.0 0.95 0.911 y = 0,9964x + 0,1035 

spherical 0.12 0.95 1.07 127.7 88.8 0.95 0.911 y = 0,9929x + 0,1834 

Gaussian 0.26 0.83 1.09 109.2 76.1 0.95 0.907 y = 0,9909x + 0,2372 
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FIGURE 5. Spatial variation of air temperature from the ECMWF data for Minas 

Gerais, 1979-2017. A) January, B) February, C) March, D) April, E) May, F) June, G) 

July, H) August, I) September, J) October, K) November, and L) December. Maps are 

from the spherical model with one neighbour and a resolution of 0.25°. 

 

The ECMWF system had the smallest deviations for the state, mainly in April 
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(Figure 6D). The deviations between the TINMET and TECMWF data were largest (-2.31 

°C) mainly in the Minas Gerais triangle and parts of Regiao Metropolitana, mostly in 

July, August, and September (Figure 6G-I). Regions such as SM and ZM had 

deviations <1.8 °C, but they were constant throughout the year. 

 

FIGURE 6. Spatialisation of the deviations between the air temperatures from the 

INMET surface stations and ECMWF data for Minas Gerais, 1979-2017. A) January, 

B) February, C) March, D) April, E) May, F) June, G) July, H) August, I) September, 
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J) October, K) November, and L) December. Maps are from the spherical model with 

one neighbour and a resolution of 0.25°. 

 

The ECMWF system underestimated T relative to the INMET data throughout 

the year, especially when T was low (Figure 7). The underestimates were largest for 

SM, as expected, because SM is a mountainous region and had the lowest T, varying 

from 15 to 23 °C (Sá Júnior et al., 2012). For example, T for April was 

underestimated at values <24 °C (Figure 7D). The ECMWF system underestimated T 

for September in all regions except Norte de Minas (NM) (Figure 7I). The 

underestimates were largest for SM for each month, with high MAPEs and low R2adj. 

For example, MAPE and R2adj were 9.9% and 0.60 for January and 11.7% and 0.60 

for June, respectively (Figure 8AB). 
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FIGURE 7. Relationship between the air temperature (°C) from the INMET surface 

stations and the ECMWF data for Minas Gerais, 1979-2017. MET, Regiao 

Metropolitana; VJM, Vale do Jequitinhonha e Mucurí; ZM, Zona da Mata; CE, 

Cerrado Mineiro; SM, Sul de Minas, and NM, Norte de Minas. A) January, B) 

February, C) March, D) April, E) May, F) June, G) July, H) August, I) September, J) 

October, K) November, and L) December. The dotted and dashed lines correspond 

to the 1:1 lines. 
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FIGURE 8. A) R2adj (precision), B) MAPE (accuracy), and C) RMSE (accuracy) of 

the spatial relationship between the temperatures from the INMET surface stations 

and rainfall of the ECMWF system for Minas Gerais. MET, Regiao Metropolitana; 

VJM, Vale do Jequitinhonha e Mucurí; ZM, Zona da Mata; CE, Cerrado Mineiro; SM, 

Sul de Minas; NM, Norte de Minas and, MG, Minas Gerais state. 
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Precipitation data 

 

ECMWF was able to monitor the temporal variability of P. The PECMWF and 

PINMET data had similar temporal trends throughout Minas Gerais, with P highest from 

October to May, with a mean of 200 mm mo-1, and with P lowest from April to August. 

Mean R2adj, MAPE, and RMSE for the temporal variation in all periods and regions 

were 0.95±0.003, 14.10±17.0%, and 1.64±0.58 mm, respectively. The details of 

MAPE, RMSE, and R2adj and between the temporal PINMET and PECMWF data for each 

region are shown in Figure 9. The ECMWF system was most accurate for seasonal 

data in the southern region of Minas Gerais (Figure 9C), with R2adj, MAPE, and 

RMSE of 0.97, 9.5%, and 0.67 mm, respectively. The MAPE of 9.5% was low, 

because a P of 20 mm mo-1 has an error of only ±1.9 mm mo-1. McDonnell et al. 

(2018) found ECMWF errors <10% between P data from surface stations and 

ECMWF data in Ireland and ensured that ECMWF data could be used to estimate 

grass biomass. 
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FIGURE 9. Accuracy and precision of the temporal variation of average rainfall from 

the INMET surface stations and ECMWF data for the main regions of Minas Gerais, 

1979-2017. A) Cerrado Mineiro, B) Norte de Minas, C) Sul de Minas, D) Zona da 

Mata, E) Regiao Metropolitana, and F) Vale do Jequitinhonha e Mucurí. 

 

The ECMWF system was able to represent the spatial variability of P. P was 

highest for December, with 315 mm in southern Minas Gerais and 175 mm in the 

northeast (Figure 10L). R2adj, MAPE, and RMSE for the spatial relationship between 

PINMET (Figure 10) and PECMWF (Figure 11) were 0.65, 10.46%, and 10.54 mm, 

respectively, for all sites and periods. Moraes et al. (2012) reported that the ECMWF 

system was moderately precise for P throughout most of the state of São Paulo with 

R² between 0.50 and 0.70. 
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FIGURE 10. Spatial variation of the pluviometric precipitation for Minas Gerais from 

the INMET data, 1979-2017. A) January, B) February, C) March, D) April, E) May, F) 

June, G) July, H) August, I) September, J) October, K) November, and L) December. 

Maps are from the spherical model with one neighbour and a resolution of 0.25°. 

 
 

The INMET P data in the semivariogram analysis had mean nugget, sill, and 

range of of 3.16±8.19 mm, 100.85±142.18 mm, and 198.92±57.74, respectively 
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(Table 3). The nugget adjusted in the spherical and exponential models did not vary 

with the monthly seasonality of P, indicating that the data did not vary. The sill varied 

as a function of the month. For example, P averaged 276 and 14.09 mm for the hot 

rainy period (November-January) and the cold dry period (May-July), respectively. P 

was lowest (9.95 mm) for June in the spherical model and highest (552.84 mm) for 

December in the Gaussian model. The range averaged 261.78 and 187.43 for the 

hot rainy and cold dry periods, respectively. The range was not strongly correlated 

with P, because P did not vary with the range. 
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Table 3 Models, parameters, and quality of the experimental semivariograms 

adjusted for fitting the INMET rainfall data. V0, nugget; V, structural variation 

(difference between the plateau and the nugget); (V0 + V), sill; Ro, range (km); R2adj, 

model adjustment determination coefficient; r, crossed validation correlation 

coefficient. 

Month Models  V0 V (V0+V) Ro V/(V0+V) r R
2
 Cross validation 

Jan 

Exponential 0 108.6 108.68 228.2 100.0 1.00 0.996 y = 0,9961x + 0,8504 

spherical 0 115.0 115.02 193.7 100.0 1.00 0.997 y = 0,9972x + 0,6696 

Gaussian 12.42 105.5 117.94 156.2 89.5 1.00 0.997 y = 0,9968x + 0,7353 

Feb 

Exponential 0 103.5 103.52 320.7 100.0 1.00 0.998 y = 0,9995x + 0,3468 

spherical 0 99.32 99.32 315.5 100.0 1.00 0.998 y = 0,999x + 0,4104 

Gaussian 7.07 99.05 106.12 254.6 93.3 1.00 0.997 y = 0,9982x + 0,4826 

Mar 

Exponential 0 73.4 73.4 235.2 100.0 1.00 0.997 y = 1,0001x + 0,1949 

spherical 0 71.77 71.77 180.3 100.0 1.00 0.997 y = 0,9978x + 0,5493 

Gaussian 2.24 70.7 72.94 138.5 96.9 1.00 0.997 y = 0,996x + 0,7051 

Apr 

Exponential 0 32.83 32.83 318.7 100.0 0.99 0.985 y = 0,9945x + 0,4918 

spherical 0 34.43 34.43 226.9 100.0 0.99 0.988 y = 0,9895x + 0,8453 

Gaussian 1.57 33.95 35.52 177.1 95.6 0.99 0.987 y = 0,9848x + 1,203 

May 

Exponential 0 15.18 15.18 217.3 100.0 0.99 0.988 y = 1,0009x - 0,0153 

spherical 0 15.94 15.94 195.7 100.0 1.00 0.991 y = 1,0009x + 0,011 

Gaussian 0.89 15.64 16.53 154.5 94.6 1.00 0.991 y = 0,9994x + 0,0768 

Jun 

Exponential 0 11.54 11.54 215.6 100.0 0.99 0.984 y = 1,0143x - 0,2374 

spherical 0 9.95 9.95 124.1 100.0 0.99 0.987 y = 1,0068x - 0,0897 

Gaussian 0.71 9.02 9.73 93.1 92.7 0.99 0.989 y = 0,9982x + 0,0418 

Jul 

Exponential 0 17.34 17.34 259.0 100.0 0.98 0.969 y = 0,9907x + 0,1285 

spherical 0.48 15.51 15.99 165.2 97.0 0.99 0.978 y = 0,9852x + 0,2531 

Gaussian 1.8 12.86 14.66 113.9 87.7 0.98 0.969 y = 0,9855x + 0,2765 

Aug 

Exponential 0 15.79 15.79 196.6 100.0 0.99 0.977 y = 1,0033x - 0,0579 

spherical 0 16.57 16.57 138.2 100.0 0.99 0.985 y = 0,9989x + 0,0495 

Gaussian 0.71 17.02 17.73 112.6 96.0 0.99 0.982 y = 0,9962x + 0,1202 

Sep 

Exponential 0 37.74 37.74 236.8 100.0 1.00 0.916 y = 1,0004x - 0,0276 

spherical 0 39.89 39.89 207.3 100.0 1.00 0.999 y = 0,995x + 0,3417 

Gaussian 1.5 41.03 42.53 166.8 96.5 1.00 0.993 y = 0,996x + 0,2827 

Oct 

Exponential 0 71.37 71.37 285.0 100.0 0.99 0.984 y = 0,9958x + 0,6844 

spherical 0 72.1 72.1 215.6 100.0 0.99 0.985 y = 0,9913x + 1,3327 

Gaussian 5.84 65.37 71.21 163.8 91.8 0.99 0.985 y = 0,9859x + 2,0185 

Nov 

Exponential 0 176.6 176.64 245.3 100.0 0.97 0.945 y = 1,0073x - 1,6558 

spherical 10.06 169.7 179.79 221.2 94.4 0.97 0.947 y = 1,006x - 1,4311 

Gaussian 36.21 145 181.21 188.4 80.0 0.97 0.931 y = 1,0028x - 0,8807 

Dec 

Exponential 0 529.9 529.97 194.2 100.0 0.99 0.977 y = 0,9852x + 4,2496 

spherical 0 527.0 527.07 169.8 100.0 0.99 0.979 y = 0,9835x + 4,772 

Gaussian 32.29 520.5 552.84 135.7 94.2 0.99 0.978 y = 0,9773x + 6,3897 
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FIGURE 11. Spatial variation of precipitation from the ECMWF data for Minas Gerais, 

1979-2017. A) January, B) February, C) March, D) April, E) May, F) June, G) July, H) 

August, I) September, J) October, K) November, and L) December. Maps are from 

the spherical model with one neighbour and a resolution of 0.25°. 

 

The largest deviations between the PINMET and PECMWF data averaged 75 mm 

mo-1 in spring (October-December) in the Minas Gerais triangle and central regions 
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(Figure 12J, L) and in summer (January and February) in the central regions (Figure 

12 A, B). This result was consistent with that by Ghosh et al. (2018), who reported 

that the ECMWF system was problematic for simulating the characteristics of 

summer PECMWF. The deviations were lowest (5 mm mo-1) for the winter (Figure 12G-

I), mainly in the northeast, the Minas Triangle, and central regions. 

 

FIGURE 12. Spatialisation of deviations between precipitation data from the INMET 

surface stations and ECMWF data for Minas Gerais, 1979-2017. A) January, B) 
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February, C) March, D) April, E) May, F) June, G) July, H) August, I) September, J) 

October, K) November, and L) December. 

 

The ECMWF system overestimated P for all months, especially when P 

increased (Figure 13). The ECMWF system underestimated the INMET values when 

P was low, e.g. P was underestimated for May when P was <30 mm mo-1, mainly in 

Cerrado Mineiro (CE). P was underestimated by 60, 185, and 155 mm mo-1 for 

October, November, and December, respectively (Figure 13J-L). The accuracy was 

lowest when P was high, e.g. average MAPE for the summer was 20%. P was lowest 

for the winter, when MAPE was 9.5% (Figure 14B). McDonnell et al. (2018) and 

Ghosh et al. (2018) also reported inconsistent PECMWF results for Ireland and 

southern Asia, respectively. 
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FIGURE 13. Relationship between rainfall (mm mo-1) data from the INMET surface 

stations and ECMWF for Minas Gerais, 1979-2017. MET, Regiao Metropolitana; 

VJM, Vale do Jequitinhonha e Mucurí; ZM, Zona da Mata; CE, Cerrado Mineiro; SM, 

Sul de Minas, and NM, Norte de Minas. A) January, B) February, C) March, D) April, 

E) May, F) June, G) July, H) August, I) September, J) October, K) November, and L) 

December. The dotted and dashed lines correspond to the 1:1 lines. 
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FIGURE 14. R2adj (precision), MAPE (accuracy), and RMSE (accuracy) of the spatial 

relationship between the rainfall data from the INMET surface stations and the 

ECMWF system for Minas Gerais. MET, Regiao Metropolitana; VJM, Vale do 

Jequitinhonha e Mucurí; ZM, Zona da Mata; CE, Cerrado Mineiro; SM, Sul de Minas; 

NM, Norte de Minas, and MG, Minas Gerais state. 
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ECMWF data for modelling Water Balance 

  

WB is the account of the amount of water in the soil, and soil-water storage 

(STO) is one of its most important components, because STO is strongly correlated 

with the development of agricultural crops. Conceptually, STO refers to the variation 

in the amount of water stored within a volume of soil over time, representing the input 

and outflow of water in the volume. STO decreased from March to October, with 

different trends and intensities for each region. For example, STO decreased from 

March to November in the north, by 15 mm mo-1 in October. STO was largest in Sul 

de Minas, decreasing only from May to September, mainly in august (85 mm mo-1). 

The comparison between STOINMET and STOECMWF indicated that monthly STO 

was similar for the ECMWF and INMET data. STO estimates were the least accurate 

for VJM, with R2adj, MAPE, and RMSE of 0.80, 21.24%, and 11.53 mm, respectively. 

The ECMWF data could be substituted for the INMET data for this region (Figure 

15F). STOECMWF was more accurate than STOINMET for southern Minas Gerais, with 

R2adj, MAPE, and RMSE of 0.90, 2.35%, and 1.21 mm, respectively. A MAPE of 

2.35% is considered very low, because a mean STO of 100 mm has a variation of 

only ±2.3 mm (Figure 15C). The deviations between STOINMET and STOECMWF 

averaged ±10 mm mo-1 (Figure 16). 
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FIGURE 15. Soil-water storage from the INMET surface stations and ECMWF data 

for the main regions of Minas Gerais, 1979-2017. A) Cerrado Mineiro, B) Norte de 

Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao Metropolitana, and F) Vale do 

Jequitinhonha e Mucurí. 
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FIGURE 16. Deviations between the data for soil-water storage (mm mo-1) from the 

INMET surface stations and ECMWF. 

 

Water deficiency (DEF) is the WB component that influences agricultural 

crops the most, because DEF affects transpiration, growth, and development 

(Sinclair and Ludlow, 1986). DEF is defined as the difference between PET and 

actual evapotranspiration, i.e. the amount of water a crop loses to evapotranspiration 

due to a low soil STO index. DEF varied amongst the regions of the state. DEF was 

highest for CE and NM, with annual totals of -85.63 and -38.59 mm y-1, respectively. 

DEF was lowest for SM and ZM, with annual totals of -2.75 and -11.67 mm y-1, 

respectively (Figure 17). 

The comparison between DEFINMET and DEFECMWF indicated that DEF was 

similar for the ECMWF and INMET data. DEFECMWF could replace DEFINMET for CE, 

SM, and MET but was overestimated for the other regions. The deviations between 

DEFINMET and DEFECMWF are shown in Figure 18. The accuracy between the 

DEFECMWF and DEFINMET data was lowest (MAPE = 19.6%) for CE (Figure 17A). A 

model was calibrated to adjust the ECMWF data to the INMET data (DEFINMET = 

0.574 × DEFECMWF + 0.6258) to increase the accuracy of the data from the ECMWF. 
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FIGURE 17. Water deficiency (mm mo-1) from the INMET surface stations and 

ECMWF for the main regions of Minas Gerais, 1979-2017. A) Cerrado Mineiro, B) 

Norte de Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao Metropolitana, and F) 

Vale do Jequitinhonha e Mucurí. 
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FIGURE 18. Deviations between the water-deficit data (mm mo-1) from the INMET 

surface stations and ECMWF. 

 

Water surplus (EXC) is another component of WB and is defined as the 

amount of residual water after the rainy season that is lost from a volume of soil by 

percolation (deep drainage) or surface runoff. EXC varied amongst the regions of the 

state. EXC was highest in SM from September to May, with an annual total of 793.3 

mm y-1. EXC was lowest in NM from October to April, with an annual total of 180.9 

mm y-1. The comparison between EXCINMET and EXCECMWF indicated that EXC was 

similar for the ECMWF and INMET data. EXCECMWF was overestimated relative to the 

INMET data for all regions. EXCECMWF was most accurate for VJM (R2adj = 0.92, 

MAPE = 8.69%, RMSE = 7.4 mm). EXC in this region occurs from October to April 

but mostly in November and December, with an annual total of 199.1 mm y-1 (Figure 

19F). The deviations between EXCINMET and EXCECMWF are shown in Figure 20. 
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FIGURE 19. Water surplus (mm mo-1) from the INMET surface stations and ECMWF 

for the main regions of Minas Gerais, 1979-2017. A) Cerrado Mineiro, B) Norte de 

Minas, C) Sul de Minas, D) Zona da Mata, E) Regiao Metropolitana, and F) Vale do 

Jequitinhonha e Mucurí. 
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FIGURE 20. Deviations between water-surplus data (mm mo-1) from the INMET 

surface stations and ECMWF. 

 

 

Conclusions 

 

 The climatic variables from the ECMWF system were accurate and could 

be used for modelling climatological WB. The monthly ECMWF T and P data were 

more spatially and temporally accurate than the data from the INMET surface 

stations. The average seasonal P data were most accurate in southern Minas Gerais, 

with R2adj, MAPE, and RMSE of 0.97, 9.5%, and 0.67 mm, respectively.  

 The ECMWF system estimated T less accurately in the coldest season 

(winter), with an average MAPE of 10.2%, and estimated P less accurately in the 

rainy season (summer), with an average MAPE of 19.9%. The ECMWF system 

efficiently estimated the STO, DEF, and EXC components of WB, despite the 

differences for T and P between seasons and regions. The mean deviations were 

±10 mm mo-1 between STOINMET and STOECMWF, ±7.6 mm mo-1 between DEFINMET 
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and DEFECMWF, and ±23.6 mm mo-1 between EXCINMET and EXCECMWF. MAPE was 

lowest for STOECMWF in southern Minas Gerais (1.21%), for DEFECMWF in JMV 

(9.16%), and for EXCECMWF also in JMV (8.69%). 
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CAPÍTULO 5. Considerações finais 

 

1. Atualmente existe uma preocupação mundial a respeito dos resíduos de 

agroquímicos nos alimentos o que tem influenciado diretamente na 

comercialização mundial de determinados produtos agrícolas. Com o 

crescente aumento dos programas de certificação no cafeeiro a preocupação 

com o meio ambiente tem aumentado. Acredita-se que com a utilização dos 

sistemas de alertas fitossanitários haverá uma redução da aplicação de 

agroquímicos, como inseticidas, fungicidas, e mais empresas poderão ser 

certificadas.  

 

2. As modelagens de doenças e pragas em função do clima obtidas neste 

trabalho (Capítulos 2 e 3) podem ser utilizadas para a elaboração de sistemas 

de alertas fitossanitários, buscando minimizar os impactos econômicos e 

ambientais causados pelas incidências dessas enfermidades no cafeeiro.  

 
 

3. A falta de estações meteorológicas de superfície na área em campo para 

aferição dos dados climáticos, não impede de fazer as modelagens tratadas 

neste trabalho, como observado no capítulo 4, pode ser utilizado os dados do 

ERA-Interim do ECMWF, uma vez que são acurados e precisos. 

 
 

4. Todas as análises desta Tese serão implementadas no futuro no sistema 

SISMET (http://sismet.cooxupe.com.br:9000/) da Cooxupé - Cooperativa 

Regional de Cafeicultores em Guaxupé. Assim, pelo SISMET todos os 

produtores da Cooxupé terão acesso às informações elaboradas neste 

trabalho. 

 
 

5. Com os resultados alcançados neste trabalho poderá ser utilizado como base 

para novas pesquisas e ser trabalhado para prestação de serviços de alertas 

visando uma cafeicultura economicamente e ambientalmente mais 

sustentável. 

 

 

http://sismet.cooxupe.com.br:9000/
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