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The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike
regions within a light-front model allows one to address the issue of nonvalence components of the pion
and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance
model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple
parametrization for the emission or absorption of a pion by a quark. The results show an excellent
agreement in the space like region up to �10 �GeV=c�2, while in timelike region the model produces
reasonable results up to 10 �GeV=c�2.
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I. INTRODUCTION

Electroweak properties are widely used as an important
source of information on the structure of hadrons. In par-
ticular within the framework of light-front (LF) dynamics
[1–5], a large number of papers have been devoted to the
study of nuclei and hadrons (see, e.g., [6–22], just to give a
partial account of previous works with a finite number of
constituents).

The LF dynamics allows one to exploit the intuitive
language of the Fock space. Indeed the Fock-space lan-
guage is particularly meaningful within LF dynamics,
since: ‘‘The simplicity of the light-cone Fock representa-
tion as compared to that in equal-time quantization is
directly linked to the fact that the physical vacuum state
has a much simpler structure on the light cone because the
Fock vacuum is an exact eigenstate of the full Hamil-
tonian’’ [2]. In LF dynamics for a fermionic system, vac-
uum phenomena, such as spontaneous chiral symmetry
breaking, have their counterpart in the physics of the
zero modes (see, e.g. [2,23–25]).

Another basic motivation for choosing the LF dynamics
is represented by the striking feature that the Fock decom-
position is stable under LF boosts, since they are of kine-
matical nature and therefore do not change the number of
particles, i.e., are diagonal in the Fock space.

Therefore the LF dynamics is a suitable framework for
the investigation of the Fock expansion for mesons and
baryons, viz

jmesoni � jq �qi � jq �qq �qi � jq �qgi � . . .

jbaryoni � jqqqi � jqqqq �qi � jqqqgi � . . .
(1)

In particular, within the LF dynamics the electromag-
netic form factor of the pion has been the object of many
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papers (see, e.g., Refs. [7,9–12,14,17,20,21]). Indeed the
pion electromagnetic form factor yields a simple tool for
the investigation of pion and photon microscopic structure
in terms of hadronic constituents. To our knowledge, how-
ever, there is no paper where both the spacelike and the
timelike pion form factor are evaluated within the same
microscopical model, taking into account the fermionic
nature of the constituent quarks. Previously, in the timelike
region only the form factor for a pion composed by boson
constituents was explored in the light-front quantization
[17]. Such an investigation was performed by using both a
direct calculation and an analytic continuation, in a
Drell-Yan-West reference frame, with pointlike vertices.
Because of the pointlike nature of the photon-quark vertex,
such a model could not exploit the rich structure of the
meson excited states and only a �-meson type peak was
recovered.

In what follows we will present an approach to inves-
tigate in a common framework the pion and photon vertex
functions, with the perspective of an extension of our
approach to the nucleon. The intuitive language of the
Fock space will be adopted to analyze the above mentioned
vertex functions.

The aim of this work is to give a unified, microscopical
evaluation of the electromagnetic form factor of the pion,
both in the spacelike (SL) and in the timelike (TL) regions.
Peculiar features of our approach are the pion and photon
dressed vertex functions, both in the valence and in the
nonvalence sectors, as well as a careful consideration of the
fermionic nature of the constituents. A first presentation of
our approach was given in Ref. [26].

The choice of the reference frame where the form factor
calculation is carried out has a fundamental role, as shown
in previous works in the spacelike region [14,19,21,27] and
-1 © 2006 The American Physical Society
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in the timelike one [17]. For a unified, direct calculation of
the pion form factor in TL and SL regions, a reference
frame is needed where the plus component of the momen-
tum transfer, q� � q0 � q3, is different from zero (other-
wise, q2 � q�q� � q2

? cannot be positive). As a matter of
fact, a reference frame where q� � 0 allows one to ana-
lyze, in a common framework [26], the pair-production
process (Z-diagram contribution) [18], i.e. the effect of
multiquark propagation, as well as the ultrarelativistic
effect of the so-called instantaneous contributions and the
hadronic components of the photon wave function [2,28].

In Ref. [29] it was shown that, within the Hamiltonian
LF dynamics (HLFD), a Poincaré covariant and conserved
current operator can be obtained from the matrix elements
of the free current, evaluated in the Breit reference frame,
where the initial and the final total momenta of the system
are directed along the spin quantization axis z. Following
Ref. [29], we calculate the pion form factor in a reference
frame where q? � 0 and q� > 0.

Different roads are possible to construct a relativistic
description for the electromagnetic form factor of the pion.
One road is represented by the HLFD, where a fixed
number of constituents is retained and an Ansatz for the
3D pion wave function is introduced. Unfortunately, within
such an approach to describe the timelike form factor one
has to use an analytic continuation, plagued by well-known
limits (tiny variations in the spacelike analytic form that
interpolates the model results produce largely different
results in the timelike region). A second road is represented
by a fully covariant approach, e.g. in the manner of
Mandelstam [30]. However, up to now, there is no full
solution, ��k; P�, of the four-dimensional Bethe-Salpeter
equation for an interacting system composed by fermions,
both on the mass shell and off the mass shell of the system.
Therefore Ansätze for the 4D vertex functions relevant for
the problem under consideration and with a simple analytic
structure are adopted (e.g., as was done in Refs. [19,21]).
Unfortunately, those Ansätze can only partially retain the
full analytic complexity of the true vertex functions (given
by the dynamics governing the system under considera-
tion). A third road, the one we are going to explore, is
represented by an approach where Ansätze for the 3D
light-front amplitudes, present in the Fock expansion of a
hadron state, are assumed, which embed as much as pos-
sible the successful phenomenology developed within the
constituent quark model (CQM), i.e. retain the ability to
describe the meson spectra. In particular, in our approach,
(i) the light-front amplitude for the valence component of
the meson states will be put in relation with 3D HLFD
wave functions, (ii) the light-front amplitude for the j2q2 �qi
is approximated according to Ref. [18], while (iii) all the
other components are put equal to zero. This amounts to
truncating the Fock expansion to the lowest states. This
approximation preserves kinematical boost invariance, but,
as is well known, not the other symmetries. As it occurs for
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the other roads, the comparison with the experimental data
will give the extent to which the proposed approach is a
reasonable one.

To generate the diagrams that the developed phenome-
nology has shown important for the evaluation of the pion
form factor, we perform an approximate integration on the
LF energy, k� � k0 � k3, of the Mandelstam formula [30]
with a dressed photon vertex, disregarding the contribution
of the singularities of the hadron Bethe-Salpeter ampli-
tudes. As shown in the literature [18,19,31], the LF energy
integration allows one to obtain an explicit correspondence
between the sum of LF time-ordered amplitudes, including
valence and nonvalence diagrams, and the original cova-
riant amplitude. In this work this procedure is used as an
effective tool for obtaining regularized expressions for the
different contributions to the form factor in an arbitrary
reference frame (it is worth noting that we are not using the
standard q� � 0 reference frame to evaluate the pion form
factor). Let us note that the k� integration is able to
immediately produce the familiar kinematical constraints
on k� of the valence and nonvalence contributions.

In field theory the state has an infinite number of com-
ponents in the Fock space. In principle, the infinite set of
coupled eigenvalue equation for the Hamiltonian operator
in the Fock space can be replaced by an effective squared
mass operator acting in the valence sector [2]. We will
identify this effective mass operator with the mass operator
used in HLFD and then the hadron vertex functions in the
valence region will be connected (up to a normalization
factor) to the LF wave function of the valence component
of the hadron state. This is an essential step in our ap-
proach, since it allows us to exploit the successful phe-
nomenology developed within the CQM in order to
establish for the first time a microscopical connection
between the pion form factor and the meson spectrum
through the Hamiltonian LF dynamics. Furthermore, the
concept of hadronic valence, i.e. q �q, component of the
photon wave function will be introduced [2,28].

The main difficulties to be dealt with are (i) how to
construct the photon-hadron coupling when a q �q pair is
produced by a photon with q� > 0; and (ii) how to describe
the nonvalence content relevant for the process under
consideration, both in the pion and in the photon wave
functions.

The first issue is addressed by using a covariant general-
ization of the vector-meson-dominance (VMD) approach
(see, e.g., [32]) at the level of the photon vertex function
(see Ref. [26]) written in terms of VM vertex functions.
These latter vertex functions will be related in the valence
region to the corresponding LF wave functions. As a matter
of fact, it is necessary to construct the Green’s function of
the interacting q �q pair in the 1� channel. For the descrip-
tion of the vector-meson vertex functions in the valence
sector we use the eigenfunctions of the square mass op-
erator proposed in Refs. [33,34]. The simplified version of
-2
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the model that we are going to use [35] includes confine-
ment through a harmonic oscillator potential. The model
showed a universal and satisfactory description of the
experimental values of the masses of both singlet and
triplet S-wave mesons and the corresponding radial exci-
tations [35], giving a natural explanation of the almost
linear relationship between the mass squared of excited
states and the radial quantum number n [36,37]. Therefore
such a relativistic model, that retains the main feature of
the spectra and at the same time allows one to perform
simple numerical calculations, will be adopted for both
pseudoscalar and vector mesons.

The second issue, i.e. the contribution of the nonvalence
(2q2 �q) components of the pion and photon wave functions,
is addressed using a model where a quark in the valence
component radiates a pair by a contact interaction [18].
This interaction is described through a pseudoscalar cou-
pling of quark and pion fields, multiplied by a constant. In a
recent study of meson decay processes within LF dynamics
[18], this approximation was shown to give a good descrip-
tion of the experimental data. Here, we just follow the
above suggestion to parameterize the radiative pion emis-
sion amplitude from the quark.

Another important point to be carefully treated is the
contribution of the instantaneous terms, which is strictly
related to the fermionic nature of the constituents. We
remind the reader that the Dirac propagator can be decom-
posed using the light-front momentum components [2], as
follows:

6k�m

k2 �m2 � {�
�

6kon �m
k��k� � k�on �

{�
k��
�
��

2k�
; (2)

where �� � �0 � �3 and k�on � �jk?j2 �m2�=k�. The
second term on the right-hand side of Eq. (2) is an instan-
taneous term in the light-front time, related to the so-called
zero modes. As already known (see, e.g., [21]), the instan-
taneous contributions play a dominant role in the descrip-
tion of the pion electromagnetic form factor in the
spacelike region, in a reference frame where q� > 0.
Therefore a special care is devoted in the present work to
the treatment of the instantaneous contributions in the
light-cone representation of the fermion propagators. In
particular the contributions of the zero modes are under
control, thanks to the suitable momentum behavior of the
hadron vertex functions. It should be pointed out that the
effects of the instantaneous terms is emphasized by the
small mass of the pion.

Our description contains a small set of parameters: the
oscillator strength, the constituent quark mass, and the
width for the vector mesons. We use experimental widths
for the vector-mesons, when available [38], while for the
unknown widths of the radial excitations we use a single
width as a fitting parameter. The constant involved in the
description of the nonvalence component can be fixed by
the pion charge normalization in the limit of a vanishing
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pion mass. To evaluate the instantaneous vertex functions
we introduce a simple Ansatz with only one parameter,
instead of a more sophisticated treatment left for further
investigations (see Sec. X). It should be pointed out that
current analyses of the experimental data in the TL region
are carried on by using large sets of parameters (see e.g.
[39,40]).

In the present paper in order to simplify the numerical
calculations, we use a massless pion. It is worth noting
that in the timelike region the full result for the pion form
factor is always given by the pair-production process
(’’Z-diagram’’) alone, independently of this approxima-
tion, while in the spacelike region only the ‘‘Z-diagram’’
contribution [14,19,21,22,27,41] survives for a massless
pion [26]. The importance of the ‘‘Z-diagram’’ contribu-
tion to the electromagnetic current for q� > 0 was also
recently investigated in the context of the Bethe-Salpeter
equation within the light-front quantization in Ref. [42].

Since in this paper we wish to establish a connection
between the vertex functions in the valence region and the
HLFD wave functions, we have to isolate in the triangle
diagram the contributions where the vertex functions ap-
pear with both the quarks on the mass shell from the
instantaneous terms and from the terms with vertex func-
tions outside the valence-sector range, which represent the
absorption or the emission of a pion by a quark. Given the
complexity of the above mentioned aim, the actual calcu-
lations will be performed using simple assumptions for the
different vertex functions that are needed. We intend to
explore more elaborate approximations for the vertex func-
tions in future works.

This work is organized as follows. In Sec. II, we present
the general form of the covariant electromagnetic form
factor of the pion in impulse approximation and our
vector-meson-dominance approach for the dressed photon
vertex. In Sec. III, we first decompose the triangle diagram
in on-shell and instantaneous contributions. Then we inte-
grate for q� > 0 on the light-front energy in the momen-
tum loop of the triangle diagram, under analytical
assumptions for the vertex functions.

In order to construct a bridge with the Hamiltonian
language, the valence components of the light-front meson
and photon wave functions are defined in Sec. IV. In Sec. V,
we discuss the contribution of the nonvalence component
of the photon to the timelike current, which appears
through the vertex for the radiative emission of pions by
a virtual quark inside the photon. In this section, we also
discuss the contribution of the nonvalence component of
the pion wave function to the spacelike current. In Sec. VI,
we introduce the pion and vector-meson wave functions in
the expression of the triangle diagram. The timelike and
spacelike pion form factor, written in terms of the valence
components of the meson wave functions and of the emis-
sion/absorption vertices, is derived in Secs. VII and VIII,
respectively. In Sec. IX, we briefly revise the light-front
-3
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model for the pion and vector mesons and conclude the
derivation of our model for the pion form factor with a
discussion on our treatment of the vertex functions for the
instantaneous terms. In Sec. X, we compare our numerical
results for the pion form factor with the experimental data
in the momentum transfer range between �10 �GeV=c�2

and �10 �GeV=c�2. In Sec. XI, our conclusions are
presented.
FIG. 2. Dressed photon-decay amplitude (�� ! � ��) with two
possible x� time (light-front time) orderings, represented by
diagrams (a) and (b). The two dashed vertical lines represent
different light-front times (the light-front time flows from the
right to the left). Diagrams (a) and diagram (b) contain the
processes q! q �� and q! q�, respectively, represented by a
full square. The crosses indicate the quark lines which are on
shell, after the k� integration. The dashed circle represents the
dressed photon vertex (see Fig. 4 for details).
II. COVARIANT EM FORM FACTOR OF THE PION

As mentioned in Sec. I, we wish to generate the expres-
sion of the pion form factor within LF dynamics in a
general reference frame (remind that for a unified evalu-
ation of the pion form factor, both in the SL and in the TL
region, we are going to use a frame where q� > 0). As an
effective tool to this end, we integrate over the LF energy
k� (see the next section) the covariant expression, eval-
uated in impulse approximation [30], for the amplitude of
the processes ��� ! �0, or �� ! ��0, where the meson
�0 is a pion in the elastic case or an antipion in the
production process (see the triangle diagram of Fig. 1).
In the timelike region this covariant expression reads (see
Fig. 2)

j� � h ���jJ��q�j0i

� �{2e
m2

f2
�
Nc

Z d4k

�2��4
� ���k� P�; P ���

����k; P��

� Tr�S�k� P���5S�k� q����k; q�S�k��5	; (3)

where Nc � 3 is the number of colors; S�p� � �1=�6p�
m� {��	 is the quark propagator with m the mass of the
constituent quark; q� is the virtual-photon momentum; P��
and P��� are the pion momenta. The factor 2 stems from
isospin algebra, since

Tr
��x � {�y���

2
p

1� �z
2

�x � {�y���
2
p

�
� 2; (4)

where �1� �z�=2 is the isospin factor of the current and the
other isospin factors in Eq. (4) pertain to the pions.

The function ����k; P�� is the momentum component of
the q �q vertex function for the outgoing pion, which must be
taken as a symmetric function of the q, �q momenta. In this
FIG. 1. Covariant amplitude for ��� ! �0, or �� ! ��0. The
final meson �0 is a pion in the elastic case or an antipion in the
production process.
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vertex function, P� is the momentum of the outgoing pion
and k is the momentum of the incoming quark (see Fig. 2).
The ‘‘bar’’ notation on the vertex function labels the ad-
joint Bethe-Salpeter amplitude, i.e., the solution of a
Bethe-Salpeter equation where the two-body irreducible
kernel is placed on the right of the amplitude, while for the
Bethe-Salpeter amplitude it is placed on the left [43,44].
This is a well-known property of time orderings implied by
the Mandelstam formula, for initial and final states [30,43].
The vertex function is defined by the following equation:

{
6k�m

k2 �m2� {�
�5���k;P��

6k0 �m

k02 �m2� {�
�4�k0 �P� � k�

�
1

�2��4
Z
d4xd4y expi�k0 
 y� k 
 x�

� h0jT�q�x� �q�y�	jP�i; (5)

where q�x� is the quark field.
To obtain the current matrix element for the spacelike

region, P�� should be replaced by �P�� and �� by �0. Then
the pion vertices ����k; P�� and � ���k� P�; P ��� in Eq. (3)
are to be changed with ����k; P�� and ���0 �k� P�; P�0 �,
respectively (see Fig. 3). The momentum dependence of
the vertex functions � ���k� P�; P ���, ����k; P�� and of the
photon vertex function ���k; q� (see also [19]) is expected
to regularize the integrals of Eq. (3).

The dressed photon vertex, ���k; q�, is related to the
photon Bethe-Salpeter amplitude, which is defined from
the three-point function in the standard form:

{
6k0 �m

k02 �m2 � {�
���k; q�

6k�m

k2 �m2 � {�
�4�k0 � q� k�

�
1

�2��4
Z
d4xd4x0d4x00 expi�k0 
 x0 � k 
 x� q 
 x00�

� R�3 �x; x
0; x00�: (6)

The three-point function is given by
-4



FIG. 3. Diagrammatic representation of the spacelike elastic
form factor of the pion for q� > 0. The light-front time ordering
allows one to single out two-quark and four-quark configurations
at different light-front times, as indicated by the dashed vertical
lines. Diagram (a), where 0 � �k� � P�� , represents the con-
tribution of the valence component in the wave function of the
initial pion. Diagram (b), where 0 � k� � q�, represents the
nonvalence contribution to the pion form factor (pair-production
process). Both processes contain the contribution from the
dressed photon vertex. The full square is the vertex function
which describes a pion absorption by a quark. The dashed circle
represents the dressed photon vertex (see Fig. 4 for details).
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R�3 �x; x
0; x00� � h0jT�q�x� �q�x00���q�x00� �q�x0�	j0i; (7)

which is the matrix element between the vacuum states of
the time-ordered product of the four-quark fields written
above [44].

The central assumption of our paper is the microscopical
description of the dressed photon vertex, ���k; q�, in the
processes where a photon with q� > 0 decays in a quark-
antiquark pair. In these processes we consider for the
photon vertex, dressed by the interaction between the q �q
pair, the following covariant vector-meson-dominance ap-
proximation (see Fig. 4)

���k; q� �
���
2
p X

n

�
�g�� �

q�q�

M2
n

�
V̂n��k; k� q��n�k; q�

�
fVn

�q2 �M2
n � {Mn

~�n�q
2�	
; (8)

where �
�g�� �

q�q�

M2
n

�
1

�q2 �M2
n � {Mn

~�n�q
2�	
; (9)
FIG. 4. Dressed photon vertex. The double-wiggly lines rep-
resent the Green function describing the propagation of the
vector meson Vn. The loop on the right represents the VM decay
constant, fVn (see Appendix A).
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is the vector meson propagator [45]. In Eq. (8) fVn is the
decay constant of the nth vector-meson in a virtual photon,
Mn the corresponding mass, �n�k; q� gives the momentum
dependence and V̂n��k; k� q� the Dirac structure of the
VM vertex function, while ~�n�q2� is the total decay width.
Let us approximate Eq. (8) considering on-shell quantities
for the VM in the numerator, i.e. let us replace q� with
P�n � �jq?j2 �M2

n�=q�. This approximation amounts to
take the numerator in Eq. (8) for each vector-meson term at
the respective pole, obtaining the correct result where the
contribution is maximum. The motivation of this approxi-
mation will be clear in Sec. IV, where the on-shell VM
vertex function ��	�Pn� 
 V̂n�k; k� Pn�	�n�k; Pn� is re-
lated to the HLFD vector-meson wave function. Then the
photon vertex becomes

���k; q� �
���
2
p X

n;	

��	�Pn� 
 V̂n�k; k� Pn�	�n�k; Pn�

�
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q2�	

; (10)

where �	�Pn� is the VM polarization. Note that the total
momentum for an on-shell vector meson is P�n � fP�n �
�jq?j2 �M2

n�=q�;Pn? � q?; P�n � q�g, while q� �
fq�;q?; q�g and that at the production vertex, see Fig. 4,
the light-front three-momentum is conserved.

In Eq. (8) the sum runs over all the possible vector
mesons. The vector-meson decay constant fVn can be
obtained from the definition [16]

��	
���
2
p
fV;n � h0j �q�0���q�0�j
n;	i (11)

with j
n;	i the vector-meson state. A detailed expression
for fVn is given in Appendix A. The total decay width in
the denominator of Eqs. (9) and (10), ~�n�q

2�, is vanishing
in the SL region. In the TL region it is assumed to be equal
to

~� n�q2� � �n

�
p�q2�

p�M2
n�

�
3
�
M2
n

q2

�
1=2
; (12)

where p�q2� � �q2 � 4m2
�	

1=2=2 [46–48].
In Ref. [49] the following expression was used for the

Dirac structure, V̂n�k; k� Pn�, of the vector-meson vertex:

V̂ �
n �k; k0� � �� �

Mn

2

k� � k0�

Pn 
 k�mMn
(13)

where k0 � k� Pn.
Let us consider, instead of Eq. (13), a symmetric form

for V̂n�k; k� Pn�:

V̂�n �k; k� Pn� � �� �Mn
k� � k0�

Pn 
 k� Pn 
 k0 � 2mMn

� �� �
k� � k0�

Mn � 2m
: (14)

If in Eq. (14) both the CQ’s are taken on their mass shell
-5
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[i.e., k� � k�on � �jk?j2 �m2�=k�] and the VM mass,
Mn, is replaced by the free mass, M0, of the quarks in a
system of total momentum q�,

M0 � ��kon � �q� k�on� 
 �kon � �q� k�on�	
1=2 (15)

one obtains

�V̂�n �k; k� q�	on � �� �
k�on � �q� k�

�
on

M0 � 2m
: (16)

This form coincides with the on-shell expression given in
Ref. [8] for the 3S1 vector-meson vertex, but then ���k; q�
of Eq. (10) is not anymore a four-vector.

Let us note that to obtain the pion form factor only one
of the components of the current is actually needed. In the
following we will derive the pion form factor from the plus
component.

In Ref. [26] in order to evaluate the pion form factor we
considered the plus component of Eq. (10), where �n and
the VM polarizations were taken at the vector-meson pole,
and the on-shell expression for V̂�n , as given by Eq. (16),
was used, in order to have the structure of the VM vertex
suggested by the Hamiltonian LF dynamics.

In Appendix B, starting from Eq. (8), we propose a
current which satisfies current conservation. In the refer-
ence frame, where q� � Mn > 0 and q? � 0, the nth term
of this current has exactly the same plus component as the
nth term of the current defined in Eq. (10).

One might wonder that a bare �� coupling term should
be added to the current defined in Eqs. (8) and (10). For a
simple fully covariant theory, a bare �� coupling fulfills
current conservation [19,21]. However, as it is shown in
Appendix C, within our approximations a bare coupling
produces divergent matrix elements of the current, and
therefore we do not consider this term in the present paper.
III. APPROXIMATING THE TRIANGLE DIAGRAM
ON THE LIGHT FRONT

Our aim is to retain the essential physics contained in the
triangle diagram (Fig. 1) and to be able to use the
Hamiltonian wave-function language in order to retain
the successfully nonperturbative phenomenology devel-
oped within this framework. At the same time we wish to
go beyond a simple valence description. To accomplish
these goals and to eliminate the relative light-front time
between the quarks, we perform the k� integration in
Eq. (3) with some assumptions on the analytical structure
of the � and � vertices for the pion and the photon. To be
more precise, Eq. (3) is evaluated with the assumptions
that: (i) the momentum components, ��k; P�, of the vertex
functions, both for the pion and the vector mesons, vanish
in the complex-plane k� for jk�j ! 1; and (ii) the con-
tributions of the singularities of ��k; P� can be neglected.
Furthermore, the Dirac structures of the vector-meson
vertex function, V̂�n �k; k� q�, are assumed to be regular
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functions of the complex variable k�. The expressions for
V̂�n �k; k0� given by Eqs. (14) or (16) obviously fulfill the
requirement that no pole is present in the k� complex
plane.

Obviously the assumption (ii) implies that some inter-
esting physics may be missing. In order to have an idea of
the relevance of assumption (ii), we tested this assumption
by an evaluation of the spacelike pion form factor within
the analytic model of Ref. [21] for the Bethe-Salpeter
amplitude. We checked that in a reference frame
where q� � 0 the contribution of the poles of ��k; P� is
a large one, while in a reference frame where q� > 0 the
pion form factor obtained neglecting the poles of ��k; P� is
quite reasonable, especially for Q2 � �q2 
 2 �GeV=c�2.
Therefore, the application of assumption (ii) appears very
effective in a reference frame where q� > 0. We leave a
deeper exploration of this point to another work.

Explicit integration over k� with the above mentioned
assumptions is performed in Appendix D. It is worth noting
that the expected kinematical constraints on k�, which
allow the separation of valence and nonvalence contribu-
tions, are straightforwardly obtained through the k� inte-
gration. For the sake of clarity, the timelike case and the
spacelike case are treated separately.

A. Timelike case

In the timelike case, one has q� � P�� � P
�
�� , and q� >

0 . Equation (3) written in light-front variables and inte-
grated over k� becomes

j� �
e

�2��3
m2

f2
�
Nc

Z q�

0

dk�dk?
�k� � P�� �k��q� � k��

� f��P�� � k��I
�
1 ���k� � P�� �I

�
2 g; (17)

where the quantities I�1 and I�2 in Eq. (17) are defined as
follows:

I�1 � �
����k; P��� ���k� P�; P ���	k��k�on

�T�on;�1�

� T�1;�1� � T
�
2;�1�	; (18)

I�2 � �
����k; P��� ���k� P�; P ���	k��q���k�q��on

�T�on;�2�

� T�1;�2� � T
�
3;�2�	: (19)

The explicit expressions for the quantities T�on;�1�, T
�
on;�2�,

and for the instantaneous terms T�1;�i� �i � 1; 2�, T�2;1, T�3;2
can be found in Appendix D [see Eqs. (D18)–(D22),
respectively].

The first term of Eq. (17), with k� � P�� � 0, and the
second term, with k� � P�� 
 0, are represented in Fig. 2
by the diagrams (a), with the arrow of k� � P�� from the
left to the right, and (b) with the arrow of k� � P�� from
the right to the left, respectively. In the first term only the
vertex function ����k; P�� has the momentum fraction
k�=P�� in the valence-sector range [0, 1] and in the second
-6
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term only the vertex function � ���k� P�; P ��� has the
momentum fraction �k� � P�� �=P��� in the valence-sector
range [0, 1]. The vertex functions in the valence range give
the possibility to establish the desired bridge between
Bethe-Salpeter and Hamiltonian languages, as explained
in detail in Sec. IV.

B. Spacelike case

The expression for the triangle diagram in the spacelike
case, where P��0 � P�� � q�, can be obtained from Eq. (3)
replacing �P�� with P�� , �� with �0 and the pion vertices
����k; P�� and � ���k� P�; P ��� with ����k; P�� and
���0 �k� P�; P�0 �, respectively. Then, after the k� integra-
tion with the assumption q� 
 0, the triangle diagram can
be decomposed as follows (see Appendix D):

j� � j�I�� � j�II��; (20)

where j�I�� has the integration on k� constrained by
�P�� � k� � 0 [diagram (a) of Fig. 3], while j�II�� has
the integration on k� in the interval 0< k� < q�

[diagram (b) of Fig. 3]. The valence component of the
pion contributes to j�I�� only, while j�II�� is the contribution
of the pair-production mechanism from an incoming vir-
tual photon with q� > 0 [14,19,21,22,26,27,41].

1. Valence region contribution

Let us define k0 � k� P�, with �k0�;k0?� the light-front
momentum of a quark in the valence range. Then j�I�� can
be written in the following form

j�I�� �
e

�2��3
m2

f2
�
Nc

Z P��

0

dk0�dk0?
�k0� � P�� �k

0��P��0 � k
0��

� �T0�on;�4� � T
0�
2;�4� � T

0�
3;�4�	

���0�k
0; P�0�

����P� � k
0; P��	k0��k0�on

; (21)

where

k0�on �
�k02? �m

2�

k0�
: (22)

The explicit expressions for the quantity T0�on;�4�, and for the

instantaneous terms T0�2;�4� and T0�3;�4� can be found in
Appendix D [Eqs. (D47)–(D49), respectively].

In Eq. (21) both the vertex functions have the quark
momentum fractions k0�=P��0 and �P� � k0��=P�� in the
valence-sector range [0, 1]. Note that the on-shell momenta
in Eq. (D47) allow one to retrieve the relativistic spin
coupling factors with the spin 1=2 Melosh rotations auto-
matically included [8,9,50] (see the following section).

2. Pair-production contribution

As shown in Appendix D, the pair-production contribu-
tion can be written in the following form
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j�II�� � �
e

�2��3
m2

f2
�
Nc

Z q�

0

dk�dk?
�k� � P�� �k��q� � k��

� �T0�on;�2� � T
0�
1;�2� � T

0�
3;�2�	�

���0 �k� P�; P�0 �

�����k; P��	k��q���k�q��on
: (23)

The quantity T0�on;�2� and the instantaneous terms T0�1;�2� and

T0�3;�2� are defined in Appendix D by Eqs. (D50)–(D52),
respectively.

In Eq. (23) only the vertex function ���0 has the quark
momentum fraction �P� � k��=P��0 in the range [0, 1].

IV. VALENCE COMPONENT OF THE
LIGHT-FRONT WAVE FUNCTION

In order to establish a bridge between the Bethe-Salpeter
language and the Hamiltonian wave-function language and
thus to exploit the nonperturbative phenomenology devel-
oped within the Hamiltonian approach, in this section we
try to obtain a link between the Bethe-Salpeter amplitudes
in the valence range and the HLFD wave functions.

A. Meson wave functions

1. Pion

To fully interpret the terms that appear in Eqs. (17), (21),
and (23), we have to discuss valence and nonvalence
components of the light-front wave function. Let us first
begin with the valence component, which can be defined
starting from the Bethe-Salpeter amplitude [51]. In the
present model the pion Bethe-Salpeter amplitude is given
by

���k; P�� �
m
f�

6k�m

k2 �m2 � {�
�5���k; P��

�
6k� 6P� �m

�k� P��
2 �m2 � {�

; (24)

where the pion vertex is m
f�
�5���k; P��.

The valence component of the light-front wave function
can be obtained from the Bethe-Salpeter amplitude (24) in
the valence-sector range, 0 � k� � P�� , disregarding the
instantaneous terms in Eq. (24), multiplying �� by the
factor �k��k� � P�� �	=�2�{� and integrating over k�:


��k
�; ~k?;P�� ; ~P�?� � �{

m
f�
k��k� � P�� �

Z dk�

2�

�
6kon �m

k2 �m2 � {�
�5���k; P��

�
�6k� 6P��on �m

�k� P��
2 �m2 � {�

: (25)

Two poles, k�1� and k�3�, appear in Eq. (25), respectively,
in the lower and in the upper k� semiplanes. We perform
the k� integration in the lower complex semiplane disre-
garding the contributions that arise from the singularities
-7
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of the vertex ���k; P�� [cf. assumptions (i) and (ii) at the beginning of Sec. III]. Then the pion wave function becomes


��k
�;k?;P�� ;P�?� �

m
f�
�6k on�m��

5
P�� ����k; P��	�k��k�on	

�m2
� �M

2
0�k
�;k?;P�� ;P�?�	

��6k� 6P��on �m	: (26)

If the k� integration is done in the upper semiplane within the same assumptions, one has


��k
�;k?;P�� ;P�?� �

m
f�
�6kon �m��

5
P�� ����k; P��	�k��P����P��k��on	

�m2
� �M2

0�P
�
� � k�;P�? � k?;P�� ;P�?�	

��6k� 6P��on �m	: (27)
In principle, the elimination of the relative light-front
time between the quark and the antiquark in the pion
Bethe-Salpeter amplitude by the k� integration in
Eq. (25), should give a unique answer, which defines
the valence component of the wave function in the range
0 � k� � P�� , with both the quarks on their mass
shell. Therefore in order to require consistency within
our model, we will assume ����k; P��	�k��k�on	

and
����k; P��	�k��P����P��k��on	

to be equal in that kinematical
range [note that M2

0�k
�;k?;P�� ;P�?� is equal to

M2
0�P

�
� � k�;P�? � k?;P�� ;P�?�]. This assumption

produces a momentum component of the valence light-
front wave-function symmetrical for the exchange of the
quark momenta, since the vertex function ���k; P�� is
assumed to be symmetrical.

Within a Bethe-Salpeter approach, the function 
� ful-
fills a two-body Schrödinger-like equation, with the proper
Melosh structure represented by the matrix �6kon �
m��5��6k� 6P��on �m	 [8]. Therefore, when the plus com-
ponent of the quark momentum is in the interval 0 � k� �
P�� , the function 
� will be substituted in our approach
with the HLFD pion wave function, with momentum com-
ponent  ��k�;k?;P�� ;P�?� (see Ref. [8]):


��k�;k?;P�� ;P�?� � �6kon �m��5��6k� 6P��on �m	

�  ��k�;k?;P�� ;P�?�: (28)
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This substitution represents the required bridge announced
in Sec. I. Through this relation, we can embed in our
approach the nonperturbative features implicitly contained
in the model meson wave functions. Indeed, we use eigen-
states of a Hamiltonian which describes the essential fea-
tures of the experimental spectra.

2. Vector meson

In analogy with the pion case, one can define the light-
front VM wave function, which describes the valence
component of the meson state jn	i. Indeed, starting from
the Bethe-Salpeter amplitude for a vector meson

�n	�k; Pn� �
6k�m

k2 �m2 � {�
��	�Pn� 
 V̂n�k; k� Pn�	

��n�k; Pn�
6k� 6Pn �m

�k� Pn�2 �m2 � {�
; (29)

the valence component of the light-front wave function can
be defined from �n	�k; Pn� integrating over k�, disregard-
ing the instantaneous terms and multiplying by the factor
�k��k� � P�� �	=�2�{�, as we already did for the pion.
Furthermore, in this case one has to take on their mass
shell both the quark momenta in the Dirac structure of the
VM vertex function, V̂n�k; k� Pn�:

n	�k
�; ~k?;P�n ; ~Pn?� � �{k

��k� � P�n �
Z dk�

2�
6kon �m

k2 �m2 � {�
�n�k; Pn���	�Pn� 
 �V̂n�k; k� Pn�	on	

�
�6k� 6Pn�on �m

�k� Pn�
2 �m2 � {�

(30)

where �V̂n�k; k� Pn�	on is defined by Eq. (16) in order to retrieve the 3S1 vector-meson vertex of Ref. [8]. Assuming that
�n�k; Pn� does not diverge in the complex plane k� for jk�j ! 1, and neglecting the contributions of its singularities in
the k� integration, the valence VM wave function is


n	�k
�;k?;P�n ;Pn?� � P�n �6kon �m�

��	�Pn� 
 �V̂n�k; k� Pn�	on	

�M2
n �M

2
0�k
�;k?;P�n ;Pn?�	

��n�k; Pn�	�k��k�on	
��6k� 6Pn�on �m	: (31)

In analogy with the pion case, we assume ��n�k; Pn�	�k��k�on	
� ��n�k; Pn�	�k��P�n ��Pn�k��on	

in the valence-sector range,
0 � k� � P�n .

As for the pion, the function
n	, with the plus component of the quark momentum in the interval 0 � k� � P�� , will be
substituted with the HLFD vector-meson wave function, with momentum component  n�k�;k?;P�n ;Pn?� (with Mn !
M0�, [8]:


n	�k
�;k?;P�n ;Pn?� � �6kon �m���	�Pn� 
 �V̂n�k; k� Pn�	on	��6k� 6Pn�on �m	 n�k

�;k?;P�n ;Pn?�: (32)
-8
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In conclusion, Eqs. (26),(28) and (31), (32) establish a
link between the momentum part of the meson HLFD wave
functions and the momentum part of the meson vertex
functions.

The valence component of the VM wave function are
normalized to the probability of the valence component of
the meson state jn	i (see Appendix E). This probability is
estimated in a schematic model in Appendix F.

The corresponding normalization for the pion wave
function is included in an overall normalization constant
for the pion form factor.

B. Photon wave function

One can define as well the valence component of the
hadronic contribution to the photon wave function, starting
from the Bethe-Salpeter amplitude of the photon, which
can be written as

��
� �k; q� �

6k�m

k2 �m2 � {�
���k; q�

6k� 6q�m

�k� q�2 �m2 � {�
;

(33)

where ���k; q� is the photon-vertex amplitude [see
Eq. (6)].

In analogy with Eq. (30), the valence component of the
virtual-photon light-front wave function can be obtained
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from the Bethe-Salpeter amplitude (33) in the valence
sector, 0 � k� � q�, separating out the instantaneous
terms of Eq. (33), integrating in k� and multiplying by
the factor �k��k� � P�� �	=�2�{�.

Then, using our explicit expression for ���k; q� given by
Eq. (8), the light-front wave function of the photon can be
defined by


�
� �k�;k?; q2; q�;q?� � �{k��k� � q��

Z dk�

2�

�
6kon �m

k2 �m2 � {�
����k; q�	on

�
�6k� 6q�on �m

�k� q�2 �m2 � {�
; (34)

where the label ‘‘on’’ in ����k; q�	on means that, as in the
VM case, the Dirac structures of the photon-vertex ampli-
tude, ���k; q�, have to be taken with both the quark mo-
menta on their mass shell. Therefore, in analogy with
Eq. (30), a possible choice for the quantity V̂n�k; k� q�
of Eq. (8) is given by the quantity �V̂n�k; k� q�	on as
defined by Eq. (16).

Then, performing the k� integration with the assump-
tions given at the beginning of Sec. III, in the range 0 �
k� � q� Eq. (34) becomes

�
� �k�;k?; q2; q�;q?� � �6kon �m� 

�
� �k�;k?; q2; q�;q?���6k� 6q�on �m	; (35)

where the function  �� �k�;k?; q2; q�;q?�, which includes the Dirac structures of the photon vertex, is defined by

 �� �k�;k?; q2; q�;q?� � ����k; q�	on
q�

�q2 �M2
0�k
�;k?; q�;q?� � {�	

: (36)
As in the previous meson case, to have consistency in
our virtual-photon wave-function model, we will
not distinguish between ��n�k; q�	�k��k�on	

and
��n�k; q�	�k��q���q�k��on	

in the valence sector, 0 � k� �
q�. Therefore we obtain for  �� �k�;k?; q2; q�;q?� the
same result when the k� integration is performed both in
the lower or in the upper k� complex semiplane.

The valence wave function,
�
� �k�;k?; q2; q�;q?�, and

the function  �� �k�;k?; q2; q�;q?� depend on the value of
q2 carried by the virtual photon. Note that in the timelike
case a singularity appears in the photon valence wave
function [see Eq. (36)].
If, as in Eq. (10), the photon vertex ����k; q�	on is taken
with on-shell quantities for the vector mesons in the nu-
merator, i.e. if we take

����k; q�	on �
���
2
p X

n;	

�	�Pn� 
 �V̂n�k; k� Pn�	on

���n�k; Pn�	�k��k�on	

�
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q

2�	
(37)

and identify Eqs. (31) and (32), then the function
 �� �k�;k?; q2; q�;q?� can be written as follows:
 �� �k�;k?; q2; q�;q?� �
���
2
p X

n;	

��	�Pn� 
 �V̂n�k; k� Pn�	on	
�M2

n �M
2
0�k
�;k?;P�n ;Pn?�	

�q2 �M2
0�k
�;k?; q�;q?� � {�	

 n�k�;k?;P�n ;Pn?�

�
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q

2�	
(38)
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FIG. 5. (a) Valence component, jq �qi, of the wave function of
an incoming system (photon or meson). (b) Nonvalence compo-
nent, jq �qq �qi, of the wave function of the same incoming system.
The extra q �q pair is radiatively emitted by a quark in the valence
component.

DE MELO et al. PHYSICAL REVIEW D 73, 074013 (2006)
in terms of the momentum part of the HLFD vector-meson
wave functions,  n�k�;k?;P�n ;Pn?�.

V. CONTRIBUTION OF NONVALENCE
COMPONENTS TO THE CURRENT

In this section we wish settle our treatment for the non-
valence components through a simple approximation for
the vertex functions outside the valence range.

A. Timelike case: The photon nonvalence component

The process of pion-antipion production is shown in
Fig. 2, where the dashed lines [both in (a) and in (b)]
represent two different light-front times. At the first time
(the one on the right) the hadronic valence component of
the virtual photon is represented, while at the second one
the 2q2 �q photon nonvalence component is depicted (see
also Fig. 5). The two parts of Fig. 2, i.e. (a) and (b), differ
by the emission vertex of an antipion or of a pion [see also
Fig. 5(b)], respectively. The corresponding quark ampli-
tudes for the radiation of an antipion or a pion are given in
Eq. (17) by the antipion vertex � ���k� P�;P ���, evaluated
at k� � k�on for �k� P��� < 0, and by the pion vertex
����k;P��, evaluated at k� � q� � �k� q��on for k� >
P�� , respectively, i.e. outside the valence range.
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Once the interaction that couples the valence to the 2q2 �q
component is known (see Fig. 2), the amplitude for the
photon decay in a � �� pair can be constructed. To this end,
let us introduce a kernel operator K which realizes this
coupling. Then, we can write the following equation to
relate the valence component of the pion wave function,
 ��k0�;k0?;P�� ;P�?�, to the vertex function ����k;P�� at
k� � q� � �k� q��on, which is the amplitude for the pion
emission [see Figs. 2(b) and 6]:
�D � :�
m
f�

����k;P���k��q���k�q��on	

�
1

4

X
�0�0��

Z P��

0

dk0�dk0?
k0��P�� � k

0��
 ���k0�;k0?;P�� ;P�?���5�����5��0�0K

�0�0

�� �k
0�;k0?; k�;k?; q�; q�;q?�: (39)

For simplicity, the example of a �5 structure was used in Eq. (39), just to be consistent with our assumption of a
pseudoscalar pion model.

One can write an analogous expression for the emission of ��:

D �� :�
m
f�
�� ���k�P�;P ���	�k��k�on�

�
1

4

X
�0�0��

Z P���

0

dk0�dk0?
k0��P�� � k0��

 ����k
0�;k0?;P��� ;P ��?���

5�����5��0�0K
�0�0

�� �k
0�;k0?; k� � P�� ;k? � P�?;q�; q�;q?�:

(40)
FIG. 6. Virtual decay amplitude for a pion emission from a
quark (q! q�) produced by the operator K, see Eq. (39). The
analogous diagram for pion absorption by a quark can be easily
obtained by replacing the final pion leg with an initial pion leg.
In our model calculation, both pion emission vertices will
be substituted by a constant, following Ref. [18].

B. Spacelike case: the pion nonvalence component

In the spacelike region, for q� > 0 the nonvalence com-
ponent of the final pion wave function appears in both the
two contributions of the current obtained after the k�

integration, and given by Eqs. (21) and (23) [see
diagrams (b) and (c) in Fig. 7]. On one hand the valence
component of the final pion is coupled to the nonvalence
2q2 �q component [see Fig. 7(b)], through an interaction
kernel H , which contributes to the quark-photon absorp-
tion vertex of Eq. (D36), given by ���4� � ���k0 � P�; q�
-10
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with k0� � k0�on . On the other hand the vertex ����k;P��
in Eq. (23), evaluated at k� � q� � �k� q��on for �k� <
0, describes the quark-pion absorption through another
interaction kernel K0 and generates the nonvalence 2q2 �q
component of the final pion [see Fig. 7(c)]. We identify the
kernel K0 with the kernel K, already used in the previous
Sec. VA for the description of the pion emission (Fig. 6).

Equation (21) gives a contribution to the SL form factor
where the initial and the final pion valence components
appear [diagram (a) of Fig. 3]. The plus component of the
FIG. 7. Spacelike em form factor of the pion, ��� ! �0, for
q� > 0. Two possible light-front time orderings are shown. The
first one allows to single out the following processes: (a) where a
pointlike quark-photon interaction occurs, and (b) where the
absorption of a q �q pair by a quark proceeds through the kernel
H . Diagram (c) where the process �� ! q �q appears (pair-
production process) with the subsequent absorption of the initial
pion by a quark, corresponds to the second time ordering.
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quark-photon absorption vertex, given by ���k0 � P�; q�
with k0� � k0�on which enters in Eq. (21), is represented by
an empty circle in diagram (a) of Fig. 3 and is approxi-
mated by the sum of (i) the bare photon vertex multiplied
by a renormalization constant, a [diagram (a) of Fig. 7] and
(ii) the contribution due to the 2q2 �q component of the final
pion wave function, which is represented by diagram (b) of
Fig. 7.

Therefore, we can make the following identification:
�����k0 �P�;q�	�k0��k0�on �
	�� � a��

�����
X
�0�0

Z q�

0

dk00�dk00?
k00��q� � k00��

H �0�0

�� �k
0� �P�� ;k0? �P�?;k00�;k00?;P��0 ;P

�
�0 ;P�0?�

� � �� �k
00�;k00?;q�; q�;q?�	�0�0 : (41)
As already discussed in Sec. II, we do not consider the
bare term photon vertex in the model of the present paper,
since it violates current conservation for a massless pion
(see Appendix C). Therefore, disregarding the bare photon
vertex in the right-hand side of Eq. (41), we can formally
write

����k0 � P�; q�	�k0��k0�on �
’H �� : (42)
One could try to interpret Eq. (42) in terms of constituent
quark form factors. However, we have to point out that the
absorption vertex of Eq. (41) does not depend only on q2,
as one could naively think, but it depends on the virtuality
of the quark as well.

Let us note that, within our assumption of a vanishing
pion mass, the contribution of Eq. (21) is vanishing (see
Sec. VIII) and therefore there is no contribution from
����k0 � P�; q�	�k0��k0�on �

.
Equation (23) represents the pair-production term

(Z diagram) and is depicted in Fig. 7(c) . The quark-pion
absorption vertex, given by ����k;P�� evaluated at k� �
q� � �k� q��on, which appears in Eq. (23) can be written
as

D� :�
m
f�
�����k;P��	�k��q���k�q��on�

�
1

4

X
�0�0��

Z P��

0

dk0�dk0?
k0��P�� � k

0��
��5�����5��

0�0

�K��
�0�0 �k

�;k?; k0�;k0?;P��0 ; P
�
�0 ;P�0?�

�  ��k0�;k0?;P�� ;P�?�: (43)

For our purpose this quark-pion absorption vertex will be
taken constant, as we do in the TL case for the quark-pion
emission vertex, as was proposed in Ref. [18] (see Sec. IX).
VI. TRIANGLE DIAGRAM AND PION LF WAVE
FUNCTION

A. Timelike case

Let us insert into Eq. (17) the photon vertex of Eq. (10).
Furthermore, whenever the full expression for the light-
front pion wave function 
��k

�;k?;P�� ;P�?�, given by
Eq. (26), appears in Eq. (17) and the momentum fraction is
in the valence-sector range [0, 1], let us replace it with the
expression of Eq. (28), i.e. let us write the pion vertex in
terms of the momentum component of the HLFD pion
-11
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wave function. This means that we introduce in Eq. (17)
the wave functions  ��k�;k?;P�� ;P�?� and  ����k

� �
P�� �; �k� P��?;P��� ;P ��?� when these wave functions
have the correct support. Then the triangle diagram can
be expressed as follows:

j� �
e

�2��3
m
f�
Nc

Z q�

0

dk�dk?
�k� � P�� �k��q� � k��

�
X
n;	

���
2
p
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q

2�	

� f��P�� � k��I1;n;	 ���k� � P�� �I2;n;	g: (44)

The quantities I1;n;	 and I2;n;	 in Eq. (44) are defined as
follows:

I1;n;	 � �� ���k� P�; P ����n�k; Pn�	k��k�on

�

�
q�

�q2 �M2
0�k
�;k?; q�;q?� � {�	

� �Ton;�1;n;	� � T1;�1;n;	�	 � T2;�1;n;	�

�
(45)

I2;n;	 � �
����k; P���n�k; Pn�	k��q���k�q��on

�

�
q�

�q2 �M2
0�k
�;k?; q�;q?� � {�	

� �Ton;�2;n;	� � T1;�2;n;	�	 � T3;�2;n;	�

�
(46)

where

Ton;�1;n;	� �  ���k
�;k?;P�� ;P�?�Tr���6k� 6P��on �m	

� �5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��k�on
�6kon �m��5	;

(47)

Ton;�2;n;	� � � 
�
����k

� � P�� �; �k� P��?;P��� ;P ��?�

� Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on

� �6kon �m��5	; (48)

T1;�1;n;	� � �
1

2

m
f�
� ����k;P��	k��k�on

� Tr����5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��k�on
�6kon �m��

5	;

(49)
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T1;�2;n;	� � �
1

2

m
f�
�� ���k� P�; P ���	k��q���k�q��on

� Tr����5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on

� �6kon �m��5	; (50)

T2;�1;n;	� � �
1

2
 ���k�;k?;P�� ;P�?�

� Tr���6k� 6P��on �m	�5����	�Pn�


 V̂n�k; k� Pn�	k��k�on
�6kon �m��

5	; (51)

T3;�2;n;	� � �
1

2
 �����k

� � P�� �; �k� P��?;P��� ;P ��?�

� Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on
���5	:

(52)

Let us notice that the momentum component of the LF pion
wave function does not appear in the instantaneous terms
T1;�1;n;	� and T1;�2;n;	�, because in these terms the propagator
��6k � 6P��on � m	=�k� � P�� � �k � P���on � {�=�k� �
P�� �	 is replaced by ��=2. Indeed the amplitude

1

2

m
f�
�6kon �m��

5� ����k;P��	k��k�on
�� (53)

does not obey the same two-body Schrödinger-like
equation as the light-front pion wave function

��k�; ~k?;P�� ; ~P�?� does.

As already noted at the end of Sec. III A, the first and the
second term of Eq. (44) are represented in Fig. 2 by the
diagrams (a) and (b), respectively. Note that, due to the �
functions, the final pion or antipion wave functions enter
into the first or the second term of Eq. (44), respectively. In
Eq. (44) the pion vertices �� ���k� P�;P ���	, evaluated at
k� � k�on, and � ����k;P��	, evaluated at k� � q� � �k�
q��on, have the momentum fraction outside the valence-
sector range [0, 1] and can be related to the quark ampli-
tudes for radiative antipion or pion emission, respectively
[see Figs. 2(a) and 2(b)]. The presence of these vertices
gives rise to the contribution of the nonvalence component
of the virtual-photon wave function, relevant for the pro-
cess under consideration. In the spacelike region the analo-
gous processes can be interpreted for q� > 0 as the
contribution of the nonvalence component of the pion
wave function in the final state [18]. These points have
already been illustrated in Sec. V.

If we choose to take the Dirac structures in the photon
vertex with both quarks on their mass shell, i.e. ���k; q� �
����k; q�	on [see Eq. (37)], then whenever the full expres-
-12
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sion for the light-front vector-meson wave function

n	�k

�; ~k?;P�n ; ~Pn?�, given by Eq. (31), appears in
Eq. (44), we can take advantage of our identification of
Eqs. (31) and (32) to express the quantities I1;n;	 and I2;n;	

through the momentum component of the HLFD VM wave
function. However, in the instantaneous contributions to
I1;n;	 and I2;n;	 which are proportional to the quantities
074013
T2;�1;n;	� and T3;�2;n;	� we do not express the VM vertex
functions ��n�k; Pn�	k��k�on

and ��n�k; Pn�	k��q���k�q��on

through the momentum component of the HLFD VM
wave function, because the full expression for this function
given by Eq. (32) does not appear in these instantaneous
terms.

Then we obtain
I1;n;	 � �� ���k� P�; P ���	k��k�on

�
 n�k�;k?;P�n ;Pn?��M2

n �M2
0�k
�;k?;P�n ;Pn?�	

�q2 �M2
0�k
�;k?; q�;q?� � {�	

�Ton;�1;n;	� � T1;�1;n;	�	

� ��n�k; Pn�	k��k�on
T2;�1;n;	�

�
; (54)

I2;n;	 � �
����k; P��	k��q���k�q��on

�
 n�k�;k?;P�n ;Pn?��M2

n �M2
0�k
�;k?;P�n ;Pn?�	

�q2 �M2
0�k
�;k?; q�;q?� � {�	

�Ton;�2;n;	� � T1;�2;n;	�	

� ��n�k; Pn�	k��q���k�q��on
T3;�2;n;	�

�
: (55)
The quantities Ton;�1;n;	�, T1;�1;n;	�, T2;�1;n;	� and the quan-
tities Ton;�2;n;	�, T1;�2;n;	�, T3;�2;n;	� in Eqs. (54) and (55) have
the same expressions as in Eqs. (47), (49), (51), (48), (50),
and (52), respectively, with ��	�Pn� 
 V̂n�k; k� Pn�	k��k�on

and ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on
both replaced by

�	�Pn� 
 �V̂n�k; k� Pn�	on [see Eq. (16) for the definition
of �V̂n�k; k� Pn�	on].

Note that the region of integration over k� in Eq. (44) (a
consequence of the nonvanishing integration in the k�

complex plane) agrees with the support of the wave func-
tions  � and  �� of Eqs. (47) and (48), respectively.
Furthermore, in agreement with the above assumptions,
the vertex associated with the virtual photon and conse-
quently the wave function  n�k

�;k?;P�n ;Pn?� in
Eqs. (54) and (55) have the intrinsic fraction of the plus
component of the quark momentum, k�=q� � k�=P�n , in
the interval [0, 1].

To be able to evaluate the TL pion form factor
we have still to assign a value, in the instantaneous terms,
to the VM vertex functions ��n�k; Pn�	k��k�on

and
��n�k; Pn�	k��q���k�q��on
, as well as to the pion

vertex functions � ����k;P��	k��k�on
and �� ���k�

P�; P ���	k��q���k�q��on
.

B. Spacelike case

As in the timelike case, let us replace in Eqs. (21) and
(23) the pion vertex function with its expression in terms of
the momentum component of the HLFD pion wave func-
tion, whenever the full expression for the LF pion wave
function [Eq. (26)] appears, taking advantage of our iden-
tification of Eqs. (26) and (28).

1. Valence region contribution

Substituting in Eq. (21) the pion initial and final wave
functions and noting that for the final pion the bar vertex
gives the complex conjugate wave function, while in the
initial state the vertex gives the initial pion wave function,
in the valence region one gets (see Fig. 3):
j�I�� �
e

�2��3
Nc

Z P��

0

dk0�dk0?
�k0� � P�� �k

0��P��0 � k
0��
� �T�on;�4� 

�
�0 �k

0�;k0?;P��0 ;P�0?� ��P
�
� � k0�;P�? � k0?;P�� ;P�?�

� �T�2;�4� ��P
�
� � k

0�;P�? � k0?;P�� ;P�?�� ���0 �k
0; P�0 �	k0��k0�on

� �T�3;�4� 
�
�0 �k

0�;k0?;P��0 ;P�0?�

� ����P� � k
0; P��	k0��k0�on

	; (56)

where

�T �
on;�4� � Tr��6k0on �m��5��6k0 � 6P�0 �on �m	���4���6k0 � 6P��on �m	�5	 (57)

�T �
2;�4� � �

1

2
Tr��6k0on �m��

5�����4���6k0 � 6P��on �m	�
5	 (58)
-13



DE MELO et al. PHYSICAL REVIEW D 73, 074013 (2006)
�T �
3;�4� � �

1

2
Tr��6k0on �m��5��6k0 � 6P�0 �on �m	���4����5	: (59)
In the instantaneous terms proportional to �T�2;�4� and to
�T�3;�4� we do not express the pion vertex functions
� ���0 �k

0; P�0 �	k0��k0�on
and ����P� � k

0; P��	k0��k0�on
in terms

of the momentum component of the HLFD pion wave
function, because of the presence of �� instead of ��6k0 �
6P�0 �on �m	 or ��6k0 � 6P��on �m	, respectively.

In Eq. (56) the photon vertex, ���4� � ���k0 � P�; q�,
evaluated at k0� � k0�on , is the amplitude for the photon
absorption by a quark. As discussed in Sec. V B, the photon
absorption operator can be decomposed in a bare vertex,
i.e. �� [Fig. 7(a)], plus other terms. From the expansion in
the light-front Fock space, the next term relevant for the
process we are analyzing is due to a contribution of the
nonvalence 2q2 �q component of the final pion wave func-
tion; see diagram (b) of Fig. 7. This contribution can be
thought of as an expectation value of an operator between
074013
the valence component of the wave functions for the initial
and final pions. The operator can be constructed by apply-
ing to the virtual-photon wave function the kernel, H ,
which produces the nonvalence pion component from the
valence one [see Eq. (41)].

In Sec. VIII, it will be shown, assuming a massless pion,
that P�� � 0, and therefore j�I�� vanishes.

2. Pair-production contribution

Also the pair-production contribution to the current can
be rewritten in terms of the momentum component of the
HLFD pion wave function [see Eqs. (26) and (28)] when
the light-front pion wave function appears. Then Eq. (23)
becomes [see Fig. 3(b)]:
j�II�� � �
eNc
�2��3

m
f�

Z q�

0

dk�dk?�����k;P��	k��q���k�q��on

�k� � P�� �k
��q� � k��

X
n;	

���
2
p
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q2�	

��n�k; Pn�	k��q���k�q��on

�

�
q�

�q2 �M2
0�k
�;k?; q�;q?� � {�	

�T0on;�2;n� � T
0
1;�2;n�	 � T

0
3;�2;n�

�
; (60)

where

T0on;�2;n� �  ��0 ��k
� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on
�6kon �m��5	; (61)

T01;�2;n� �
1

2

m
f�
� ���0 �k� P�; P�0 �	k��q���k�q��on

Tr����5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on
�6kon �m��5	; (62)

T03;�2;n� �
1

2
 ��0 ��k

� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�5��6k� 6q�on �m	

� ��	�Pn� 
 V̂n�k; k� Pn�	k��q���k�q��on
���5	: (63)

As for the timelike case, we have used the expression of Eq. (10) for the photon vertex with the virtual photon going into
a q �q pair. The bar vertex ���0 implies that the final pion wave function in the above expressions has to be complex
conjugated. If we take the Dirac structures in the photon vertex with both the quarks on their mass shell, as in the timelike
case [see Eq. (37)], then using Eqs. (31) and (32) we can express j�II�� through the momentum component of the HLFD
vector-meson wave functions, when the LF VM wave function is present, i.e. in the terms given by Eqs. (61) and (62):

j�II�� � �
eNc
�2��3

m
f�

Z q�

0

dk�dk?�����k;P��	k��q���k�q��on

�k� � P�� �k��q� � k��

X
n;	

���
2
p
���	 �Pn�	

�fVn
�q2 �M2

n � {Mn
~�n�q

2�	

�

�
 n�k

�;k?;P�n ;Pn?��M2
n �M

2
0�k
�;k?;P�n ;Pn?�	

�q2 �M2
0�k
�;k?; q�;q?� � {�	

�T0on;�2;n� � T
0
1;�2;n�	 � ��n�k; Pn�	k��q���k�q��on

T03;�2;n�

�
;

(64)

with
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T0on;�2;n� �  ��0��k
� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	�	�Pn�


 �V̂n�k; k� Pn�	on�6kon �m��5	; (65)

T01;�2;n� �
1

2

m
f�
� ���0 �k� P�; P�0�	k��q���k�q��on

Tr����5��6k� 6q�on �m	�	�Pn� 
 �V̂n�k; k� Pn�	on�6kon �m��5	; (66)

T03;�2;n� �
1

2
 ��0 ��k

� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	�	�Pn�


 �V̂n�k; k� Pn�	on���5	: (67)
The vertex ����k;P�� evaluated at k� � q� � �k�
q��on represents the pion absorption amplitude by an on-
shell quark. The presence of this process can be also
interpreted as a 2q2 �q component in the final pion wave
function [see Figs. 3(b) and 7(c)], as illustrated in Sec. V.
VII. TIMELIKE EM FORM FACTOR OF THE PION

We have pointed out in Sec. I that, for a unified descrip-
tion of TL and SL form factors, it is necessary to choose a
reference frame where the plus component of the momen-
tum transfer q� is different from zero (otherwise, q2 �

q�q� � q2
? cannot be positive). Therefore, as in Ref. [29],

in order to calculate the pion form factor we adopt a
reference frame where q? � 0 and q� > 0.

The decay of a timelike virtual photon is written in terms
of the timelike form factor of the pion as follows:

j� � h� ��j �q�0���q�0�j0i � e�P�� � P
�
���F��q

2�; (68)

where q� � P�� � P
�
�� is the four-momentum of the virtual

photon. In Fig. 2, the diagrammatic analysis of the virtual-
photon decay in a � �� pair is shown.

The virtual-photon decay amplitude can be obtained
from Eq. (68) by evaluating the plus component of the
matrix element j�. To be able to evaluate the matrix
element j� from Eq. (44), we substitute in Eq. (44) con-
stant values for the vertices, �D� and D ��, namely, for pion
or antipion radiation by a quark, Eqs. (39) and (40),
respectively [see also Eqs. (45) and (46)]. Then, it
remains to specify the values of the instantaneous vertex
functions � ����k;P��	k��k�on

in Eq. (49), �� ���k�
P�; P ���	k��q���k�q��on

in Eq. (50), and ��n�k; Pn�	 in
Eqs. (54) and (55). This will be thoroughly discussed in
Sec. IX.

By using Eqs. (68) and (44) one can obtain the pion form
factor F��q2� from the plus component of the current:

F��q2� �
X
n

fVn
�q2 �M2

n � {Mn
~�n�q

2�	
g�Vn�q

2� (69)

where g�Vn�q
2�, for q2 > 0, is the form factor for the VM

decay in a pair of pions, as expected from the VMD
approximation. The characteristic feature of our approach
074013
is that we aim at a microscopic description of both fVn and
g�Vn�q

2�.
In Appendix G we evaluate g�Vn�q

2� in the rest reference
frame of the nth-resonance, where q? � 0 and q� � Mn,
taking advantage of the invariance of each term of

P
n in

Eq. (69) under LF boosts. In the limit of a vanishing pion
mass and making the purely longitudinal choice for the
pion momentum, i.e. P ��? � �P�? � 0, one obtains

g�Vn�q
2� �

1

Mn

Nc
�2��3

Z q�

0

���
2
p
dk�dk?

k�k��q� � k��
�I2;n; (70)

with

�I2;n �
�D�

�
 n�k�;k?;P�n ; 0��M2

n �M2
0�k
�;k?;P�n ; 0�	

�q2 �M2
0�k
�;k?; q�; 0� � {�	

�T 1;�2;n� � ��n�k; Pn�	k��q���k�q��on
T 3;�2;n�

�
: (71)

The explicit expression for T 1;�2;n� and T 3;�2;n� can be
found in Eqs. (G19) and (G20), respectively.

To evaluate the timelike pion form factor we have still
to specify the values of the instantaneous vertex
functions �� ���k� P�; P ���	k��q���k�q��on

in Eq. (G19)
and ��n�k; Pn�	k��q���k�q��on

in Eq. (71) that, as already
explained, cannot be directly related to  �� and  n.

VIII. SPACELIKE EM FORM FACTOR OF THE
PION

The spacelike form factor of the pion can be obtained
from the plus component of the proper current matrix
element

j� � h�j �q�0���q�0�j�0i � e�P�� � P
�
�0 �F��q

2�; (72)

where q� � P��0 � P
�
� .

In our reference frame, where q? � 0 and q� > 0, the
minus component of the four-momentum transfer is given
by q� � q2=q�, which is negative in the spacelike region.
Let us note that

q� �
jP�0?j2 �m2

�

P��0
�
jP�?j2 �m2

�

P��
: (73)

Hence, the constraint q� < 0 is obviously fulfilled for
-15



DE MELO et al. PHYSICAL REVIEW D 73, 074013 (2006)
any value of P�?, since jP�0?j � jP�?j and P��0 � q� �
P�� > P�� . From Eq. (73) one has

q2 � ��q��2
jP�?j2 �m2

�

P�� �q
� � P�� �

� �
jP�?j2 �m2

�

x��1� x��
; (74)

where x� � P��=q
�. Therefore, once a value for jP�?j is

chosen, P�� and P��0 are fixed. For a purely longitudinal
motion of the pions, i.e. P�? � P�0? � 0, it is easy to
obtain from Eq. (74) that

P�� � q�
�
�

1

2
�

����������������
1

4
�
m2
�

q2

s �
and

P��0 � q�
�
1

2
�

����������������
1

4
�
m2
�

q2

s �
:

(75)

In the limit of m� � 0, the longitudinal momenta of the
pions according to Eq. (75) are

P�� � 0 and P��0 � q� (76)

for any value of the momentum transfer.
In a frame where q� � 0, the electromagnetic current

j� in the spacelike region, Eq. (20), receives contributions
from the valence component of the wave function, j�I��

given by Eq. (56), as well as from the nonvalence compo-
nents, j�II�� of Eq. (64), i.e. from the Z-diagram contribu-
tion (see Fig. 7).
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The contribution of the pion valence wave function to
the current can be calculated from Eq. (56) introducing the
plus component of the operator ���k� P�; q� for k� �
k�on, as given in Eq. (41) and discussed in Sec. V B, once the
values of the pion vertex functions � ���0 �k

0; P�0 �	k0��k0�on
and

����P� � k0; P��	k0��k0�on
in the instantaneous terms have

been specified.
In the limit of zero pion mass, according to Eq. (56) the

valence contribution to the spacelike pion form factor
vanishes, since P�� � 0. Then, only the Z-diagram contri-
bution survives in this limit, as in the timelike region.

The contribution of the Z diagram to the elastic pion
form factor can be obtained from Eq. (72) by substituting
in Eq. (64) the pion absorption vertex of Eq. (43). The
result can be written as follows:

FII�q2� �
X
n

fVn
q2 �M2

n
fII
n �q

2�: (77)

Since fII
n �q2� is invariant under kinematical LF boosts, we

choose to evaluate the contribution of each vector meson,
fII
n �q

2�, in the same reference frame that we used in the
timelike region, i.e., we adopt the rest frame for each
resonance (q� � Mn, q? � 0; P�n � q� � Mn, P�n �
M2
n=q� � Mn).
Then for a finite value of the pion mass and taking

advantage of Eq. (G3), we have
fII
n �q

2� �
���
2
p Nc

8�3

��z
P��0 � P

�
�

Z q�

0

dk�

k��q� � k���P�� � k��

Z
dk?D�

�
 n�k�;k?;P�n ; 0?��M2

n �M2
0�k
�;k?;P�n ; 0?�	

�q2 �M2
0�k
�;k?; q�; 0?� � i�	

� �T 0
on;�2;n� �T 0

1;�2;n�	 � ��n�k; Pn�	k��q���k�q��on
T 0

3;�2;n�

�
; (78)

with

T 0
on;�2;n� �  ��0 ��k

� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m��

5	;

(79)

T 0
1;�2;n� �

1

2

m
f�
� ���0 �k� P�; P�0 �	k��q���k�q��on

Tr����5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m��
5	; (80)

T 0
3;�2;n� �

1

2
 ��0��k

� � P�� �; �k� P��?;P��0 ;P�0?�Tr���6k� 6P��on �m	�5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on���5	:

(81)
The Dirac structure �V̂nz�k; k� Pn�	on for the 3S1 meson
state is given by Eq. (G13). As noted in Appendix G, in our
reference frame one has ��z � 1. Eqs. (80) and (81) repre-
sent the instantaneous contributions. Analogously to the
timelike case, for a vanishing pion mass one has
T 0

on;�2;n� � 0 [see Eq. (G18)].
Let us now evaluate fII

n �q2� at q2 ! 0� for a finite value
of the mass of the pion. To begin with, we consider: (i) a
constant value for D�, (ii) a simple form for the LF pion
wave function [34]

 �0 ��k� � P�� �; �k? � P�?�;P��0 ;P�0?	

�
m
f�

P��0
m2
� �M2

0�0 �k
� � P�� ;k? � P�?;P��0 ;P�0?�

;

(82)
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and (iii) in the instantaneous term (80) take � ���0 �k�
P�; P�0 �	k��q���k�q��on

proportional to  ��0 ��k
� �

P�� �; �k? � P�?�;P��0 ;P�0?	 (see the next section). For a
finite value of the mass of the pion, let us note that in the
limit q2 ! 0� from Eq. (75) one obtains P�� ! 1 and
P��0 � �Mn � P

�
� � ! 1. Then, since the squared free

mass for the final pion is

M2
0�0 ��k

� � P�� �; �k? � P�?�;P��0 ;P�0?	

� P��0
�
jk?j2 �m2

P�� � k�
�
jk?j2 �m2

P��0 � P
�
� � k�

�
; (83)

it becomes large for P�� ! 1, i.e. M2
0�0 � P

�
�0 . Then

 ��0 ��k
� � P�� �; �k? � P�?�;P��0 ;P�0?	 becomes a con-

stant for P��0 ! 1. Furthermore, for P�� ! 1 the traces
in Eqs. (79) and (80) are proportional to �P�� . Therefore,
collecting together the factors P�� in Eq. (78), one con-
cludes that for a finite value of the pion mass
limq2!0�f

II
n �q

2� � limq2!0�1=P�� � 0. The same result,
limq2!0�f

II
n �q

2� � 0, should also hold for pion wave func-
tions which are eigenfunctions of a Hamiltonian [35].

On the contrary, in the limit of m� � 0, the longitudinal
momenta of the pions are P�� � 0 and P��0 � Mn, respec-
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tively [see Eq. (75)]. Then, according to Eq. (56), the
valence contribution to the spacelike pion form factor
vanishes, while the Z diagram yields a nonzero
contribution.

A comment is appropriate here. In the work of Ref. [21],
where m� � 0, it was found that the wave-function con-
tribution to the spacelike pion form factor strongly de-

creases in the frame q� �
����������
�q2

p
as the momentum

transfer �q2 increases. As a consequence, the Z-diagram
contribution, which is zero at q2 � 0, becomes the domi-
nant one at high momentum transfer. As the pion mass is
artificially decreased in that model, we find that the mo-
mentum at which the Z diagram starts to dominate the form
factor tends toward zero, in agreement with the previous
discussion.

Since in this paper we work at the limit of a vanishing
pion mass, in our reference frame, the full spacelike pion
form factor is given byFII�q2� alone. It has to be noted that,
as occurs in the timelike region and for the same reasons
(see Appendix G), for m� � 0 only the instantaneous
terms T 0

1;�2;n� and T 0
3;�2;n� [cf. Eqs. (80) and (81)] give

contribution to the pion form factor. These terms can be
written in the following form:
T 0
1;�2;n� � �

1

2

m
f�
� ���0 �k� P�; P�0 �	k��q���k�q��on

Tr�����6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m�	; (84)

T 0
3;�2;n� �

1

2
 ��0 �k

�;k?;Mn; 0?�Tr���6kon �m	��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�
�	: (85)
IX. A LIGHT-FRONT MODEL

To evaluate the pion form factor we need

(i) A
 model for the HLFD pion and vector-meson

wave functions which appear in Eqs. (70) and (78);

(ii) A
 value for the probability, Pq �q;n, of the VM va-

lence component (see Appendixes E and F);

(iii) A
n approximation for the pion vertex functions

which represent the pion emission or absorption
by a quark;
(iv) T
o assign a value to the instantaneous pion and VM
vertex functions.
A. Model wave functions and probability of valence
components

The vector-meson resonances are described by an effec-
tive light-front model inspired by QCD [35], that can be
also applied to the pion. The model retains the main
features of the meson spectra and allows one to perform
simple numerical calculations. The squared mass operator
for the S mesons contains a harmonic oscillator interaction
featuring the confinement and a Dirac delta function that
acts in the 1S0 channel (with a renormalized strength). The
wave functions for the 3S1 channel are solutions of the
following eigenvalue problem�

4�j
j2 �m2� �
1

64
!2r2 � a

�
�HO
n �r� � M2

n�HO
n �r�;

(86)

where j
j2 � M2
0=4�m2 is the square of the intrinsic

quark three-momentum, M2
n � n!�M2

� and the eigen-
functions �HO

n �r� are the three-dimensional harmonic os-
cillator wave functions for zero angular momentum. The
HLFD wave functions, without the Melosh rotations, are
given in the Fourier space by

 n�k
�;k?; P�n ;Pn?� � P�n �HO

n �j
j
2�: (87)

The factor P�n comes from the different normalizations
used for  n�k�;k?; P�n ;Pn?� and �HO

n �j
j
2�. Indeed the

function �HO
n �j
j2� is normalized through the equationZ

j�HO
n �j
j

2�j2d3
 � 1; (88)

while the function  n�k�;k?; P�n ;Pn?� is normalized
through the evaluation of the charge form factor of a vector
meson at q2 � 0, i.e. by using the so-called charge nor-
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FIG. 8. Instantaneous contributions to the timelike em form
factor of a massless pion. The instantaneous interaction is
attached to the pion vertex in (a) and to VM vertex in (b). The
dashed circle represents the dressed photon vertex (see Fig. 4 for
details).
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malization (Appendix E), more appropriate in a relativistic
context [30]. In the actual calculation, we have to consider
that, after properly integrating the valence component, its
probability should be recovered. This amounts to construct
a schematic model for the probability Pn;q �q for each ex-
cited state (see Appendix F), and subsequently to renor-
malize  n�k�;k?; P�n ;Pn?� in Eq. (87) as follows:

 n�k
�;k?; P�n ;Pn?� �

�����������
Pn;q �q

q
P�n �HO

n �j
j
2�: (89)

In the model of Ref. [35] the complete form of the pion
wave function is an eigenstate of the mass operator of
Eq. (86) plus a Dirac-delta interaction (in the configuration
space), which is necessary for producing a pion with a
small mass (i.e. a collapsing q �q pair in the 1S0 channel).
The pion wave function is found from the pole of the
resolvent, explicitly written in Ref. [35]. The result is the
following:

 ��k
�;k?; P�� ;P�?� � P��

X
n

�HO
n �j
j

2��HO
n �0�

m2
� �M2

n
; (90)

where �HO
n �0� is the S-wave harmonic oscillator eigen-

function in coordinate space at the origin.
In this model, the pion wave function approaches the

asymptotic limit, Eq. (82), imposed by the presence of the
Dirac-delta function in the interaction.

The relativistic constituent quark model of Ref. [35]
achieves a satisfactory description of the experimental
masses for both singlet and triplet S-wave mesons, with a
natural explanation of the ‘‘Iachello-Anisovitch law’’
[36,37], namely, the almost linear relation between the
square mass of the excited states and the radial quantum
number n. Since the model does not include the mixing
between isoscalar and isovector mesons, in this paper we
include only the contributions of the isovector �-like vec-
tor mesons.

Our model calculation can be repeated by using a differ-
ent set of meson wave functions like, e.g., the one of
Ref. [52], to study the dependence of the results from the
choice of the meson Hamiltonian.

B. Vertex functions for pion emission or absorption

As already discussed in Sec. VI, we approximate the
pion vertex functions which represent the antipion and pion
emission by a quark, as well as the quark-pion absorption
vertex by means of a constant

�D � �D �� �
m
f�
	�; and D� �

m
f�
	� (91)

in agreement with the constant form adopted in
Refs. [17,18] and successfully tested in the study of the
pseudoscalar meson decays [18]. The actual value of the
constant 	� is fixed by the pion charge normalization.

It is worth noting that such an approximation appears, a
posteriori, to be a reliable one from the direct comparison
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of our calculations and the experimental data (see Sec. X).
Moreover, its reliability could be inferred from the obser-
vation that the range of integration in the actual calculation
of the form factors is constrained at small values of 
 by
the phase space and at high values of 
 by the Gaussian
falloff of the meson wave functions.

C. Instantaneous vertex functions

As anticipated in Secs. VII and VIII, to simplify our
calculations we are going to use m� � 0. Within this
assumption, for the timelike form factor only the instanta-
neous contributions T 1;�2;n� and T 3;�2;n� survive, while for
the spacelike form factor only the instantaneous terms
T 0

1;�2;n� and T 0
3;�2;n� remain. Then to fully evaluate the

pion form factor in the timelike and in the spacelike region
we have still to assign a value to the instantaneous pion and
VM vertex functions, i.e. to the vertex functions �� ���k�
P�; P ���	k��q���k�q��on

and � ���0 �k� P�; P�0 �	k��q���k�q��on

in Eqs. (G19) and (84), respectively, and to the vertex
function ��n�k; Pn�	k��q���k�q��on

of Eqs. (G20) and (85).
The instantaneous contributions to the timelike pion form
factor corresponding to the vertex functions �� ���k�
P�; P ���	k��q���k�q��on

and ��n�k; Pn�	k��q���k�q��on
are

represented by diagrams (a) and (b) of Fig. 8, respectively.
Let us note that the presence of the factors �k� � P�� �

and k� in the denominators of the two instantaneous terms
produces an enhancement of the contributions around the
values �k� � P�� � � 0 and k� � 0 in the k� integration.
Within our assumption of a vanishing pion mass, this
means that, for both the instantaneous terms, there is an
enhancement of the contribution at the end point k� � 0,
which corresponds to an infinite value of the z component
of the intrinsic quark three-momentum, 
z � M0�2x�
1�=2 (
z � �1 for x � 0, since M0 ! 1). Therefore
the high momentum part of the meson vertex functions,
i.e. the short-range part in coordinate space, is very rele-
vant. Then in the instantaneous vertex functions �ist

��n� we
-18
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assume that the very short-range part of the one-gluon-
exchange interaction, which includes spin-spin terms [53],
is the dominant one. In symbolic notation we have (see
Fig. 8):

�ist �KistG0�full; (92)

where Kist is the Bethe-Salpeter kernel for the instanta-
neous vertex function �ist, G0 the propagator of two free
quarks, and �full the full vertex function.

The kernel Kist is assumed to be dominated by the
short-range part of the interaction. Actually we drastically
simplify Eq. (92) as follows:

�ist � c�full: (93)

This amounts to naively assume that �full is an eigenstate
of Kist G0. Furthermore, we assume that �full is still
074013
related to the LF meson wave function as illustrated in
Sec. IV, i.e. �full

��n� �  ��n��M
2
��n� �M

2
0	=P

�
��n�.

The constant c is thought to roughly describe the effects
of the short-range interaction. In particular, if we take
grossly into account only the spin-spin interaction term,
then the results of Ref. [26] are recovered (i) by choosing
c � �3=4 for the pion vertex function [Fig. 8(a)] and c �
1=4 for the VM vertex function [Fig. 8(b)] and (ii) by using
the probabilities Pq �q;n � �!1=2=2

�����������������������
2n� �3=2�

p
for the VM

valence components with �!1=2=2 � 1 (see Appendix F).
With this choice for the constants c’s, the relative weight of
the VM instantaneous terms with respect to the pion in-
stantaneous terms is equal to �1=3. At variance with
Ref. [26], in the present paper we use this relative weight,
wVM � cVM=c�, as a free parameter.

In conclusion, we replace the momentum component of
the pion vertex function in Eq. (G19) as follows:
m
f�
�� ���k� P�; P ���	k��q���k�q��on

!
c�
P���

 ���k
� � P�� ;k? � P�?;P��� ;P ��?��m

2
� �M

2
0�k
� � P�� ;k? � P�?;P��� ;P ��?�	;

(94)

and in Eq. (84) as follows:

m
f�
� ���0 �k� P�; P�0 �	k��q���k�q��on

!
c�
P��0

 ��0 �k
� � P�� ;k? � P�?;P��0 ;P�0?�

� �m2
� �M

2
0�k
� � P�� ;k? � P�?;P��0 ;P�0?�	: (95)

The momentum component of the VM vertex function in Eqs. (G20) and (85) is approximated by

��n�k; Pn�	k��q���k�q��on
!
cVM

P�n
 n�k

�;k?;P�n ;Pn?��M2
n �M

2
0�k
�;k?;P�n ;Pn?�	: (96)

As explained in the previous sections, in the limit of a vanishing pion mass both in the timelike and in the spacelike case
one has P�� � 0 and P��0 � P��� � Mn. Then, the quantities g�Vn�q

2� of Eq. (70) and fII
n �q2� of Eq. (78) acquire the same

functional form, despite the sign of q2, and reduce to the same function �n�q2�:

�n�q2� �
Nc

16�3

m
f�
	�c�

���
2
p

M2
n

Z Mn

0

dk�

�k��2�Mn � k
��

Z
dk?�T 1;n�k�;k?� �T 3;n�k�;k?�	 ��0 �k

�;k?;Mn; 0?�

� �M2
n �M

2
0�k
�;k?;Mn; 0?�	 n�k�;k?;Mn; 0?�; (97)

where T 1;n and T 3;n are given by

T 1;n � �
�m2

� �M
2
0�k
�;k?;Mn; 0?�	

�q2 �M2
0�k
�;k?;Mn; 0?� � i�	

Tr�����6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m�	

� �4
�m2

� �M
2
0�k
�;k?;Mn; 0?�	

�q2 �M2
0�k
�;k?;Mn; 0?� � i�	

�k��k� q�on;z � �k� q�on 
 kon � �k� �Mn�kon;z �m2

�m�2k� �Mn��kon � �q� k�on�zHS�M0�	 (98)

T 3;n � wVM Tr���6kon �m	��6k� 6q�on �m	�V̂nz�k; k� Pn�	on��	

� wVM4��k��k� q�on;z � �k� q�on 
 kon � �k
� �Mn�kon;z �m

2 �mMn�kon � �q� k�on	zHS�M0�	: (99)
-19



DE MELO et al. PHYSICAL REVIEW D 73, 074013 (2006)
In the last steps in Eqs. (98) and (99) the traces have been
explicitly evaluated and the function HS�M0� is given by

HS�M0� �
1

M0 � 2m
: (100)

Actually the value of c� together with the value of 	� is
fixed by the charge normalization and we have to assign a
value only to the relative weight wVM.

In Eq. (97) there is no divergence from the poles at the
end points k� � 0 and q� � k� � 0, because of the
Gaussian decrease of the used VM wave functions at these
end points, which correspond to infinite values of the z
component of the intrinsic quark three-momentum, 
z �
M0�2x� 1�=2 (
z � �1 or 
z � �1 for x � 0 or x � 1,
respectively).

Finally, both in the timelike and in the spacelike regions,
the pion electromagnetic form factor can be written as

F��q
2� �

X
n

fVn
�q2 �M2

n � {Mn
~�n�q2�	

�n�q
2�: (101)

We stress that the pion form factor is continuous at q2 � 0
in the limit m� ! 0 and that only the instantaneous terms
contribute in this limit. We would like to remind the reader
that the vector-meson wave functions are normalized to the
probability of the valence component, which can be
roughly estimated in a simple model, as shown in
Appendix F. The decreasing probability of the valence
component for the excited vector-meson states is essential
to make convergent the sum over the resonances.

X. RESULTS

The pion electromagnetic form factor is calculated
through Eqs. (97) and (101), where the pion and vector-
meson wave functions are eigenstates of the square mass
operator defined in Eq. (86) (shown for the vector channel
only).

In our calculation we have a small set of parameters:
(i) the constituent quark mass, (ii) the oscillator strength
!, (iii) the widths for the vector mesons, �n, and
(iv) the relative weight wVM of the two instantaneous
contributions.

The up-down quark mass is fixed at 0.265 GeV [35] and
the oscillator strength is fixed at ! � 1:556 GeV2 of
Ref. [35].
TABLE I. Known vector-meson masses, Mn, and widths, �n, used
calculated with the VM valence probabilities Pq �q;n obtained in A
1:556 GeV2, are compared with the experimental values from [38].

Meson Mn (MeV) Mexp
n (MeV) [38] �n (MeV)

��770� 770 775:8� 0:5 146.4
��1450� 1497 [54] 1465:0� 25:0 226 [54]
��1700� 1720 1720:0� 20:0 220
��2150� 2149 2149:0� 17 230 [55]
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For the first four vector mesons, the masses and widths,
presented in Table I, are used.

The nontrivial q2 dependence of �n�q2� in our micro-
scopical model allows a small shift of the VM masses with
respect to the values obtained in the analyses of the ex-
perimental data by using Breit-Wigner functions with con-
stant values for �n�q2�.

For the radial excitations with Mn > 2:150 GeV, the
mass values corresponding to the model of Ref. [35] are
used. For the unknown widths we use a single width as a
fitting parameter. We choose the value �n � 0:15 GeV,
which presents the best agreement with the compilation
of the experimental data of Ref. [56]. We consider 20
resonances in our calculation to obtain stability of the
results up to q2 � 10 �GeV=c�2.

The probabilities Pq �q;n of the valence component of the
VM states are fixed according to the schematic model of
Appendix F [see Eq. (F16) and Table II].

As we discussed in the previous sections, it is also
necessary to know the amplitude for the virtual process
where a constituent quark radiates or absorbs a pion. This
unknown function was first investigated in a phenomeno-
logical study of decay processes within LF dynamics [18],
where it was approximated by a constant, obtaining a
satisfactory description of the experimental data. We fol-
lowed the approximation proposed in [18] in the calcula-
tion of the decay amplitude �n�q2� of Eq. (97). The value of
the constant 	�, together with the constant c� (see the
previous section), is fixed by the charge normalization.

The values of the coupling constants, fVn, are calculated
using Eq. (A4) of Appendix A from the model VM wave
functions. The corresponding partial decay width, �e�e�,
for these mesons are calculated from our values of fVn
using Eq. (A5) [16] and are reported in Table I. The partial
decay widths for the vector mesons are in good agreement
with the data, when available [38].

We perform two sets of calculations, to test the effect of
the pion wave-function model. In one set we use the
asymptotic form of the pion valence wave function,
Eq. (82), and in another one we choose the eigenstate of
the square mass operator of the model of Ref. [35], given
by the pion wave function of Eq. (90).

For a deeper investigation of the model dependence of
our results, the calculations could be repeated with differ-
ent meson wave functions, as the ones of Ref. [52].
in the model. The corresponding decay widths into e�e� pairs,
ppendix F (see also Table II) and the oscillator strength ! �
(See text for details.)

�exp
n (MeV) [38] �e�e� (KeV) �exp

e�e� (KeV) [38]

146:4� 1:5 6.98 7:02� 0:11
400� 60 1.04 1:47� 0:4

250� 100 0.98 >0:23� 0:1
363� 50 0.65 -
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TABLE II. The vector-meson valence probabilities Pq �q;n for
the first 10 resonances.

n 0 1 2 3 4 5 6 7 8 9

Pq �q;n 0.77 0.31 0.29 0.27 0.22 0.18 0.18 0.18 0.17 0.16
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Furthermore different, more elaborate approximations for
the vertices representing pion emission or absorption by a
quark or for the instantaneous vertices could be used. We
leave these calculations to a future work.

The results for the form factor are shown in Figs. 9–11.
In Fig. 9 the results corresponding to the weight wVM �
�0:7 are shown, while in Fig. 11 the results corresponding
to wVM � �0:7 and wVM � �1:5 are compared in a linear
scale around the �meson peak. In Fig. 9 we also report the
results calculated with the masses and the widths used in
Ref. [26] and reported in Table III. For this calculations the
oscillator strength ! � 1:39 GeV2, the probabilities
Pq �q;n � 1=

�����������������������
2n� �3=2�

p
and c� � �3=4, cVM � 1=4

have been used.
Let us note that our results are the same within a few

percent, if in Dirac structure of the nth VM vertex
[Eq. (16)], the free mass is replaced with Mn.

In Fig. 9, we show our results in a wide region of square
momentum transfers, from �10 up to 10 �GeV=c�2, com-
paring them with the data collected by Baldini et al. [56]
and with the data of Ref. [57]. A general qualitative agree-
ment with the data is seen in this wide range of momentum
transfers, independently of the detailed form of the pion
wave function. It has to be stressed that the heights of the
-10 -8 -6 -4 -2

q
2
 (G

0.01

0.1

1

10

|F
π(q

2 )|

FIG. 9. Pion electromagnetic form factor as a function of the mom
wave functions, obtained with wVM � �0:7 (see Sec. IX) and the qua
respectively. The thin solid line represents the result with wVM � �
Ref. [56] (full dots) and Ref. [57] (open squares).
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TL bumps directly depend on the calculated values of fVn
and �n�q2�.

The results obtained with the asymptotic pion wave
function and the full model present some difference only
above 3 �GeV=c�2.

The pion form factor is particularly very well described
in the spacelike region, both using the weightwVM � �0:7
or the weight wVM � �1:5, as can be clearly seen in
Fig. 10, where the ratio of the SL form factor to the
monopole factor M�q2� � 1=�1� q2=M2

�� is shown. The
excellent agreement with the experimental form factor at
low momentum transfers is expected, since we have built in
the generalized �-meson dominance.

The timelike region between 0 and 3 �GeV=c�2, where
��770�, ��1450� and ��1700� appear, is shown in Fig. 11 in
a linear scale. The �-meson peak is placed at the right
position using a bare mass of 770 MeV. From this figure it
is clear that the parameter wVM is able to control the region
of the ��770� peak, while in other regions its effect is less
relevant. For wVM � �1:5, the ��770� peak is very well
described, except for the region around 2 �GeV=c�2, where
our results underestimate the experimental data. This dip is
due to a destructive interference between the contributions
of ��770�, ��1450�, and ��1700�, and could be potentially
sensitive for a detailed test of the model presently adopted
for the meson wave functions and other approximations
introduced.

It is clear that the introduction of !-like and 
-like
mesons could improve the description of the data in the
TL region. However, a consistent dynamical description of
the mixing of isospin states is far beyond the present
0 2 4 6 8 10

eV/c)
2

entum squared q2. Results for the asymptotic and the full pion
ntities shown in Table I, are indicated by dashed and solid curves,
1=3 and the parameters of Table III. Experimental data are from

-21



0 1 2 3

q
2
 (GeV/c)

2

2

4

6

8

|F
π(q

2 )|

FIG. 11. Pion electromagnetic form factor as a function of the
momentum squared q2. The solid curve corresponds to wVM �
�1:5 and the dashed line to wVM � �0:7, all the other quantities
are according to Table I. The experimental data are as in Fig. 9.
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-q
2
 (GeV/c)
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0.6

0.8

1
F π(q

2 )/
M

(q
2 )

FIG. 10. Spacelike pion electromagnetic form factor divided
by the monopole M�q2� � 1=�1� q2=M2

�� vs the momentum
squared q2. The solid curve corresponds to wVM � �1:5 and the
dashed line to wVM � �0:7, all the other quantities are accord-
ing to Table I. The experimental data are as in Fig. 9.
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work, and we leave it for future developments of the model
[40].

Finally, we have also calculated the adimensional
quantity, F��q2� jq2j=q2

0 (q0 � 0:77 GeV=c), up to q2 �
TABLE III. Vector-meson masses, Mn, and widths, �n, used in Ref.

with the VM valence probabilities Pq �q;n � �1=
��������������
2n� 3

2

q
� and the osci

Meson Mn (MeV) Mexp
n (MeV) [38] �n (MeV)

��770� 750 775:8� 0:5 149
��1450� 1465 1465:0� 25:0 310
��1700� 1723 1720:0� 20:0 240
��2150� 2150 2149:0� 17 180a

aThe value of 180 MeV for the width of ��2150� is the lower boun
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�1000 �GeV=c�2, observing a smooth decreases from a
value of 0.691 for q2 � �100 �GeV=c�2 to a value of
0.677 for q2 � �1000 �GeV=c�2.

XI. SUMMARY AND CONCLUSIONS

In this work, we are able to give a unified description of
the pion electromagnetic form factor in the space- and
timelike regions, thanks to the choice of a reference frame
where q� > 0. This unified description of the SL and TL
form factor is the first one which takes into account the
fermionic nature of the constituents quarks and a micro-
scopic description of the hadronic component of the pho-
ton wave function.

It should be pointed out that by studying in a common
framework the pion SL and TL form factors, we also
access information from the radially excited vector-meson
wave functions. Indeed, in our approach, in the timelike
region the virtual photon couples directly to the vector-
meson resonances, which in turn decay in ����. There-
fore our microscopical model could represent a useful tool
to address the investigation of the vector-meson Green
function.

The main steps are shortly summarized. As a method to
derive the pion form factor within the LF dynamics in an
arbitrary reference frame, we integrate over the light-front
energy, k�, the covariant matrix elements of the electro-
magnetic current between pion states, evaluated in impulse
approximation within the Mandelstam approach [30], with
all the vertices of the triangle diagram properly dressed.
Exploiting a suitable decomposition of the fermionic
propagators, one singles out on-shell and instantaneous
contributions. The integration over k� in the momentum
loop of the triangle diagram is performed disregarding the
effect of possible singularities of the vertex functions and
taking care of only the singularities in the propagators. The
validity of this approximation has been tested in the ana-
lytic model of Ref. [21] and an essential role played by the
choice of a reference frame where q� > 0 has been shown.

For the photon vertex function, in the processes where a
q �q-pair in the odd-parity spin-1 channel is produced, we
use a generalization of the Vector-Meson-dominance ap-
proach, built up from the VM Bethe-Salpeter amplitude
(phenomenologically determined) and the VM propagator,
enlightening the relation between the hadronic part of the
[26]. The corresponding decay width into e�e� pairs, calculated

llator strength ! � 1:39 GeV2, are reported in the sixth column.

�exp
n (MeV) [38] �e�e� (KeV) �exp

e�e� (KeV) [38]

146:4� 1:5 6.37 7:02� 0:11
400� 60 1.61 1:47� 0:40
250� 100 1.23 >0:23� 0:1
363� 50 0.78 -

d of the value obtained by Anisovitch et al. quoted in [55].
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photon valence wave function and the pion electromag-
netic form factor.

The expression for the electromagnetic current matrix
elements obtained after the k� integration are carefully
discussed and the different contributions can be immedi-
ately interpreted in terms of valence and nonvalence com-
ponents of the pion and photon wave functions.

As illustrated in Sec. IV, the valence component of the
light-front wave function for the pion and for the vector
mesons, obtained by a k� integration from the correspond-
ing Bethe-Salpeter amplitude (24) and (29) in the valence-
sector range, fulfills a two-body Schrödinger-like equation
with the proper Melosh structure. Therefore, in the valence
components of the pion and VM amplitudes, the momen-
tum part is described through the corresponding HLFD
wave functions, evaluated in a relativistic model which
shows a satisfactory description for the 1S0 and 3S1
mesons.

A schematic model is used for the probability, Pn;q �q, of
the valence component of the vector mesons.

The contribution of the nonvalence component of the
photon wave function appears in the timelike region, while
the nonvalence component of the pion appears in the space-
like region. The nonvalence contributions of the photon
and pion wave functions, relevant for the process under
consideration, involve emission/absorption amplitudes,
that in principle can be calculated from the valence com-
ponents of the corresponding particles, and a suitable
kernel. However, since our knowledge of this kernel is
poor, we use a constant vertex approximation for the
emission/absorption amplitudes [18].

To simplify our calculation, we take advantage of the
smallness of the pion mass, which is put to zero. Then, only
the ‘‘Z diagram’’ survives in the spacelike region.

We point out that, for m� � 0, only the instantaneous
terms contribute to the pion form factor. Therefore, in order
to evaluate the pion form factor we need the instantaneous
vertex functions, which we approximate by the full vertex
functions times a constant.

Only a few parameters define our light-front model: the
oscillator strength, the constituent quark mass, and the VM
meson masses and widths. We use the experimental width
and mass for the vector mesons, when available. For the
radial excitations above 2.150 GeV we use the masses of
theoretical spectrum and a single width as a fitting parame-
ter. It is worth noting that the results are not markedly
sensitive upon different pion wave functions, like the
asymptotic wave function and the full-model one of
Ref. [35]. This could be ascribed to the strong pion bind-
ing, that makes the pion wave function similar to its PQCD
asymptotic limit [58].
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In the spacelike region, the pion electromagnetic form
factor is very well described on the whole experimentally
explored interval, i.e. up to q2 � �10 �GeV=c�2. In the
timelike region, we find a general agreement up to
10 �GeV=c�2, except near the experimental dip at
2 �GeV=c�2.

Our model can be straightforwardly improved in many
respects. For instance: (i) more realistic VM wave func-
tions can be used, as the ones of Ref. [52], that take into
account, e.g., the D-state nature of some of the VM reso-
nances, as ��1700�; (ii) the introduction of both a dynami-
cal mixing of isospin states and the contribution of 

meson.

Other improvements, like taking care of the nonvanish-
ing pion mass, or considering a more realistic model for the
instantaneous vertices and for the emission/absorption of a
pion by a quark, are highly nontrivial.

In summary, our work appears an encouraging step
forward in achieving a detailed investigation of important
issues, as the light-quark content of the photon valence
light-front wave function, through the analysis of the pion
electromagnetic form factor in the timelike region. The
peculiar feature represented by the smallness of the pion
mass is the key point to accomplish such an investigation.
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APPENDIX A: VECTOR-MESON DECAY
CONSTANT

The vector-meson decay constant fVn of the nth state of
the vector meson is defined as [16]

��	
���
2
p
fV;n � h0j �q�0���q�0�j
n;	i; (A1)

where ��	 are the VM polarization vectors and j
n;	i is the
VM state.

Let us begin with the four-dimensional representation of
the decay amplitude in terms of the Bethe-Salpeter vertex
of the vector meson, and use the plus component of
Eq. (A1) and 	 � z in the rest frame of the vector meson,
where P�n � �Mn; ~0	 and ��z � 1:
fVn � �{
Nc

4�2��4
Z dk�dk�dk?
k��P�n � k��

�n�k; Pn�
�k� � k�on �

{�
k���P

�
n � k� � �Pn � k��on �

{�
P�n �k�

�

� Tr��6k� 6Pn �m��
��6k�m���z�Pn� 
 �V̂n�k; k� Pn�	on		: (A2)
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A factor of
���
2
p

enters in the denominator of Eq. (A2) from the normalization of the neutral vector meson, i.e., �u �u�
d �di�=

���
2
p

. Then integrating over k�, with the assumptions on the VM vertex function already presented at the beginning of
Sec. III, and taking advantage of the identification of Eqs. (31) and (32), one arrives at a three-dimensional formula for the
decay constant where the valence component of the vector-meson wave function appears:

fVn ��
Nc

4�2��3
Z Mn

0

dk�dk?
k��Mn� k��

 n�k
�;k?;Mn;0?�Tr

�
�6k� 6Pn�m��

��6k�m�
�
6�z�

�kon��Pn� k�on� 
 �z
M0�k�;k?;P�n ;Pn?�� 2m

��
:

(A3)
Evaluating the trace in Eq. (A3) the final expression of the decay constant is

fVn � �
Nc
8�3

Z Mn

0

dk�dk?
k��Mn � k��

 n�k
�;k?;Mn; 0?�

�
m2 � kon 
 �Pn � k�on � �Pn � k�on;zk

� � kon;z�Mn � k
��

�m�2k� �Mn�
�kon � �Pn � k�on�z

M0 � 2m

�
; (A4)
where M2
0 � �k

2
? �m

2�=�x�1� x�� with x � k�=Mn.
From the vector-meson decay constant one gets the

decay width to e�e� as [8]

�e�e� �
8��2

3

f2
Vn

M3
n
; (A5)

where � is the fine structure constant.
APPENDIX B: CURRENT CONSERVATION

Let us define the four quantities

V �
n � �V�n

q 
 Pn
M2
n
�
P�n
M2
n
q 
 �Vn (B1)

where, see Eq. (16) of Sec. II,

�V �
n � �V̂

�
n �k; k� q�	on � �� �

k�on � �q� k�
�
on

M0 � 2m
: (B2)

One can immediately verify that

q 
V n � 0: (B3)

Since the vector-meson propagator [45] is given by

D�
� �

�
�g�� �

q�q�
M2
n

�
1

�q2 �M2
n � {Mn

~�n�q
2�	
; (B4)

a possible conserved photon-(q �q) dressed vertex can be
defined as follows:

J ��k; q� �
X
n

J �
n �k; q�; (B5)

with
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J �
n �k; q� �

���
2
p �
�g�� �

q�q�
M2
n

�
V �

n�n�k; q�

�
fVn

�q2 �M2
n � {Mn

~�n�q
2�	

� �
���
2
p

V�
n �n�k; q�

fVn
�q2 �M2

n � {Mn
~�n�q2�	

:

(B6)

Indeed it is straightforward to show that q 
 J �k; q� � 0,
since one has q 
V n � 0.

For each term J �
n , let us consider the reference frame

where q� � Mn > 0 and q? � 0 (see Sec. VII for the
possibility to use different reference frame for different
terms in the sum). In this reference frame one has q� �
q2=Mn and then

q 
 �Vn �
1
2�q
� �V�n � q� �V�n 	 �

1
2�

�V�n q2=Mn �Mn
�V�n 	;

(B7)

q 
 Pn �
1
2�q

2 �M2
n	: (B8)

Therefore one obtains

V�
n �

1

2

��
q2

M2
n
�1

�
�V�n �

1

Mn
� �V�n q

2=Mn�Mn
�V�n �

�
� �Vn;z

(B9)

and in conclusion we have

J �
n �k; q� � �

���
2
p

�Vn;z�n�k; q�
fVn

�q2 �M2
n � {Mn

~�n�q
2�	
:

(B10)

If in Eq. (B1) the quantity �V�n is replaced by
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V̂ �
n �k; k� Pn� � �� �

k� � k0�

Mn � 2m
(B11)

as defined in Eq. (14), then the current J ��k; q� is a four-
vector.

Let us note that, if in Eq. (B10) the momentum compo-
nent of the VM vertex function �n�k; q� is taken at the VM
pole, then the plus component of the current J��k; q�
coincides with the one used in our calculations [see
Eq. (G3)].
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APPENDIX C: SUBTRACTION OF THE BARE
TERM IN THE PHOTON LF VERTEX

Let us calculate explicitly the contribution to the current
of a �� bare term in the case of massless pions, in collinear
kinematics (q? � 0, P�� � 0, P�? � 0, P��� � q�, P ��? �
0). As discussed at length in Sec. VII and VIII, only the
instantaneous term of the spectator constituent propagator
can give a contribution in the limit of a vanishing pion
mass. Therefore one has for the plus (minus) component
�j� � �2{
e

�2��4
m2

f2
�
Nc

Z
d4k� ���k� P�; P ���

����k; P��Tr
�
�5 �

�

2k�
�5�6k� 6q�m	���6k�m	

�

�
1

�k2 �m2 � {����k� q�2 �m2 � {��
(C1)
In the adopted frame, i.e. q? � 0, the current conservation
for the bare term reads

�j�q� � �j�q� � 0

Let us note that in [19,21], where simple Ansätze for the
vertex functions of photon and pion, respectively, are
assumed, the bare term fulfills the current conservation,
since it is possible to take into account the full analytical
structure of the considered vertex functions.
In the present approach, the contributions from the
singularities of the meson vertex functions are neglected
in the integration over k�, namely, only contributions from
the propagator poles are retained. Therefore in Eq. (C1), let
us (i) perform the trace and the integration on k� taking
into account only the propagators poles, and (ii) use the
identifications in Eqs. (26), (28), and (39) with m� � 0.
Then we have the following approximation for �j�, viz
�j�app � �
4eNc
�2��3

Z q�

0

dk�

k�
Z
dk? �D�

q�

�M2
0�k
�;k?; q�; 0?� � q2 � {�	

 ���k
�;k?;P��� ; 0?�

M2
0�k
�;k?;P��� ; 0?�
P���

: (C2)

After evaluating �j�app, within the same assumptions used for �j�app, the four divergence of the current reads as follows:

�j�appq
� � �j�appq

� �
4eNc
�2��3

1

q�
Z q�

0

dk�

k�
Z
dk? �D�M

2
0�k
�;k?; q�; 0?� ���k

�;k?;P��� � q�; 0?�
�2q� � k��
�q� � k��

: (C3)
Since in our model (i) the pion wave function at large
momentum has the asymptotic form given by Eq. (82),
which decays as 1=jk?j2, and (ii) D� is taken as a con-
stant, then the integrals in Eqs. (C2) and (C3) are ultravio-
let divergent. In principle, a regularization of the integrals
could be obtained by using a momentum dependent ap-
proximation for D�, and a different approximation for the
pion wave function, beyond the present model.

Therefore, in the model of the present paper, where a
massless pion is assumed, the contributions from the sin-
gularities of the pion vertex function are disregarded and
D� is taken as a constant, we give out the bare term in the
photon-vertex function.
APPENDIX D: INTEGRATION OF THE TRIANGLE
DIAGRAM OVER k�

The triangle diagram (Fig. 1) is integrated over k� with
the assumptions stated at the beginning of Sec. III.

To make clear the discussion of the k� integration, it is
helpful to first separate instantaneous and noninstantane-
ous contributions, using the decomposition of the Dirac
propagator given in Eq. (2). Indeed this decomposition is
useful to have a better control on possible divergences both
in k� and in k� integrations. In particular, as already
mentioned, it should be pointed out the tight relation
between the instantaneous terms and the so-called zero
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modes, where k� � 0. We assume that the behavior of the
functions ��k; P� in k� is able to regularize the divergen-
ces at the k� end points [59]. At the end of Sec. IX it is
shown that this is actually the case with our model for the
meson vertex functions.

Since three propagators are present in Eq. (3), one has a
total of eight contributions. The contribution with three
instantaneous terms vanishes because of the property
���� � 0, since the combination ���5�� appears.
Also the three contributions with two instantaneous terms
vanish, as a consequence of our assumptions on ��k; P�.
Indeed, only a single pole from the propagators is present
in these contributions. Then, since we assume that the
functions ��k; P� go to zero for jk�j ! 1 and disregard
their singularities, we can perform the integration in the k�

complex plane closing the contour in the semiplane where
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no singularity in the propagators is present and we obtain a
null result. Moreover, two of these contributions with two
instantaneous terms are also identically vanishing because
of the presence of the combination ���5��.

Therefore we are left with four contributions: three
contributions with one instantaneous term only and one
contribution with no instantaneous term.

To evaluate the triangle diagram we treat separately the
timelike case and the spacelike case.

1. Timelike case

In the timelike case, one has q� � P�� � P
�
�� , and q� >

0. Equation (3) written in light-front variables becomes
(the Jacobian for the transformation to the light-front var-
iables is 1=2):
j� � �{
e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k

��k� � q��
Tr�O�	

�
� ���k� P�; P ���

����k; P��
�k� � k�on �

{�
k���k

� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P���on �

{�
k��P��

�
: (D1)

The on-mass-shell values of the minus-components of the momenta in Eq. (D1) are given by

k�on �
k2
? �m

2

k�
; �k� q��on �

�k� q�2? �m
2

k� � q�
; �k� P���on �

�k� P��2? �m
2

k� � P��
; (D2)

and the operator O� is defined as follows:

O � � �6k� 6P� �m��
5�6k� 6q�m����k; q��6k�m��5: (D3)

Let us perform the decomposition of the propagators in instantaneous and in on-shell parts [see Eq. (2)], as discussed at
the beginning of this Appendix. Then Eq. (D1) becomes

j� � J �
on � J �

1 � J �
2 � J �

3 ; (D4)

where J �
on represents the on-shell contribution and J �

i (i � 1, 2, 3) represent the contributions with one instantaneous
term. Then we have

J �
on � �{

e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k

��k� � q��
� ���k� P�; P ���

����k; P��T
�
on (D5)

and

J �
i � �{

e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k

��k� � q��
� ���k� P�; P ���

����k; P��T
�
i ; (D6)

where

T �
on �

Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���k; q��6kon �m��5	

�k� � k�on �
{�
k���k

� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P���on �

{�
k��P��

�
; (D7)

T �
1 �

Tr����5��6k� 6q�on �m	�
��k; q��6kon �m��

5	

2�k� � k�on �
{�
k���k

� � q� � �k� q��on �
{�

k��q��
; (D8)
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T �
2 �

Tr���6k� 6P��on �m	�
5�����k; q��6kon �m��

5	

2�k� � k�on �
{�
k���k

� � P�� � �k� P���on �
{�

k��P��
�
; (D9)

T �
3 �

Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���k; q����5	

2�k� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P���on �

{�
k��P��

�
: (D10)

In Eqs. (D5) and (D6) the three propagators of the triangle diagram generate three poles:

k�
�1� � k�on �

{�
k�
; k�

�2� � q� � �k� q��on �
{�

k� � q�
; k�

�3� � P�� � �k� P��
�
on �

{�
k� � P��

: (D11)
Within our assumptions on the vertex functions ��k; P�,
if k� < 0 there are no poles in the lower complex semi-
plane of k� [cf. Eq. (D11)]. Therefore, if the k� integration
is performed by closing the contour of integration in the
lower semiplane, a vanishing result is obtained. Fur-
thermore, if k� > q�, there are no poles in the upper
complex semiplane and a vanishing result is obtained by
closing the contour in the upper semiplane. Then, the
integrals (D5) and (D6) have contributions only for k� in
the range 0< k� < q�. The integration range can be
decomposed in two intervals, 0< k� <P�� [diagram (a)
of Fig. 2] and P�� < k� < q� (diagram (b) of Fig. 2). In the
first one, if the k� integration contour is closed in the lower
semiplane, only the pole k�

�1� falls within the integration
contour, while in the second one, if the integration contour
is closed in the upper semiplane, only the pole k�

�2� falls
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within the integration contour. Then in the range 0< k� <
P�� one has contributions from J �

on, J �
1 and J �

2 , while in
the range P�� < k� < q� one has contributions from J �

on,
J �

1 and J �
3 .

For a q �q system, with four-momentum P� � f�M2 �
jP?j2�=P�; P�;P?g, the square free mass
M2

0�k
�;k?;P�;P?� can be written as follows:

M2
0�k
�;k?;P�;P?� �

k2
? �m

2

x
�
�P� k�2? �m

2

1� x
� P2

?;

(D12)

where �k�;k?� and �P� � k�;P? � k?� are the LF mo-
menta of the quarks, and x � k�=P�, with 0 � x � 1.
Using this definition of the free mass, the following equa-
tions hold:
1

�P� � �P� k��on � k
�
on�
�

P�

�M2 � P2
? �

�P�k�2
?
�m2

�1�x� �
k2
?
�m2

x �
�

P�

�M2 �M2
0�k
�;k?;P�;P?��

(D13)

1

�P0� � �P0 � �k� P���on � �k� P�
�
on	
�

P0�

�M2 � P02? �
�P�k�2

?
�m2

x0 �
�P0��k�P��2

?
�m2

�1�x0� �

�
P0�

�M2 �M2
0��k� P�

�; �k� P�?;P0�;P0?�	
; (D14)

where x0 � �k� � P��=P0�.
Then, performing the k� integration and using Eqs. (D13) and (D14) from Eq. (D4) we obtain

j� �
e

�2��3
m2

f2
�
Nc

Z q�

0

dk�dk?
�k� � P�� �k��q� � k��

f��P�� � k
��I�1 ���k� � P�� �I

�
2 g: (D15)

The quantities I�1 and I�2 in Eq. (D15) are defined as follows:

I�1 � �
����k; P��� ���k� P�; P ���	k��k�on

�T�on;�1� � T
�
1;�1� � T

�
2;�1�	; (D16)

I�2 � �
����k; P��� ���k� P�; P ���	k��q���k�q��on

�T�on;�2� � T
�
1;�2� � T

�
3;�2�	; (D17)

where

T�on;�1� � q�P��
Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���1��6kon �m��5	

�M2
0�k
�;k?; q�;q?� � q2 � {�	�M2

0�k
�;k?;P�� ;P�?� �m2

�	
(D18)
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T�on;�2� �
q�P��� Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	�
��2��6kon �m��

5	

�M2
0�k
�;k?; q�;q?� � q2 � {�	�m2

� �M
2
0��k

� � P�� �; �k� P��?;P��� ;P ��?�	
; (D19)

T�1;�i� � q�
Tr����5��6k� 6q�on �m	�

��i��6kon �m��
5	

2�M2
0�k
�;k?; q�;q?� � q2 � {�	

�i � 1; 2�; (D20)

T�2;�1� � P��
Tr���6k� 6P��on �m	�5�����1��6kon �m��5	

2�M2
0�k
�;k?;P�� ;P�?� �m2

�	
; (D21)

T�3;�2� � P���
Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���2����5	

2�M2
0��k

� � P�� �; �k� P��?;P��� ;P ��?� �m
2
�	

; (D22)

with

���i� � ���k�;k?; k� � k�
�i�; q� �i � 1; 2�: (D23)

2. Spacelike case

In the spacelike case one has to carry out a similar detailed analysis. In particular now one has P��0 � P�� � q�. Then the
expression for the triangle diagram can be obtained from Eq. (3) replacing �P�� with P�� , �� with �0 and the pion vertices
����k; P�� and � ���k� P�; P ��� with ����k; P�� and ���0 �k� P�; P�0 �, respectively:

j� � �{2e
m2

f2
�
Nc

Z d4k

�2��4
Tr�S�k� P���

5S�k� q����k; q�S�k��5	 ���0 �k� P�; P�0 �����k; P��

� �{
e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k

��k� � q��
Tr�O0�	

�
���0 �k� P�; P�0 �����k; P��

�k� � k�on �
{�
k���k

� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P���on �

{�
k��P��

�
; (D24)

where

O 0� � �6k� 6P� �m��5�6k� 6q�m����k; q��6k�m��5: (D25)

As in the timelike case, let us decompose the propagators in on-shell and instantaneous parts. Then Eq. (D24) becomes

j� � J 0�on � J 0�1 � J 0�2 � J 0�3 (D26)

where J 0�on represents the on-shell contribution and J 0�i (i � 1, 2, 3) represent the contributions with one instantaneous
term. Then we have

J 0�
on � �{

e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k��k� � q��

���0 �k� P�; P�0 �����k; P��T
0�
on (D27)

and

J 0�
i � �{

e

�2��4
m2

f2
�
Nc

Z dk�dk�dk?
�k� � P�� �k

��k� � q��
���0 �k� P�; P�0 �����k; P��T

0�
i (D28)

where
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T 0�
on �

Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	�

��k; q��6kon �m��
5	

�k� � k�on �
{�
k���k

� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P���on �

{�
k��P��

�
(D29)

T 0�
1 � T �

1 �
Tr����5��6k� 6q�on �m	���k; q��6kon �m��5	

2�k� � k�on �
{�
k���k

� � q� � �k� q��on �
{�

k��q��
(D30)

T 0�
2 �

Tr���6k� 6P��on �m	�
5�����k; q��6kon �m��

5	

2�k� � k�on �
{�
k���k

� � P�� � �k� P��
�
on �

{�
k��P��

�
(D31)

T 0�
3 �

Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���k; q����5	

2�k� � q� � �k� q��on �
{�

k��q���k
� � P�� � �k� P��

�
on �

{�
k��P��

�
: (D32)

In Eq. (D24) the quark propagators generate three poles:

k��1� � k�on �
{�
k�
; k��2� � q� � �k� q��on �

{�
k� � q�

; k��4� � �P
�
� � �k� P���on �

{�
k� � P��

; (D33)
where

�k� P��
�
on �

�k� P��2? �m
2

k� � P��
(D34)

Let us assume q� 
 0. Therefore, if k� > q� and within
the hypotheses stated at the beginning of this Section, there
are no poles in the upper complex semiplane and a vanish-
ing result is obtained by closing the k� integration contour
in this semiplane. Furthermore, if k� <�P�� , there are no
poles in the lower complex semiplane of k�. Therefore,
one obtains a vanishing result by closing the contour of
integration in the lower semiplane. Then, the integral has
contributions only for k� in the range �P�� < k� < q�.
The integration range can be decomposed in two intervals,
�P�� � k� � 0 and 0< k� � q�. In the first one, if the
integration contour is closed in the lower semiplane, only
the pole k��4� falls within the integration contour, while in
the second one, if the integration contour is closed in the
074013
upper semiplane, only the pole k��2� falls within the inte-
gration contour. Then in the range�P�� � k� � 0 one has
contributions from J 0�on , J 0�2 and J 0�3 , while in the range
0< k� � q� one has contributions from J 0�on , J 0�1 and
J 0�3 .

As a consequence, j� can be decomposed as follows

j� � j�I�� � j�II��; (D35)

where j�I�� has the integration on k� constrained by
�P�� � k� � 0, while j�II�� has the integration on k� in
the interval 0< k� < q�. The valence component of the
pion contributes to j�I�� only, while j�II�� is the contribution
of the pair-production mechanism from an incoming
virtual photon with q� > 0 [14,19,21,22,26,27,41].
Performing the k� integration, the two contributions to
j� are given by the following expressions:
j�I�� �
e

�2��3
m2

f2
�
Nc

Z 0

�P��

dk�dk?
�k� �P�� �k��q� � k��

�T0�on;�4� �T
0�
2;�4� �T

0�
3;�4�	�

���0 �k�P�;P�0 �����k;P��	k���P����k�P���on

(D36)

j�II�� ��
e

�2��3
m2

f2
�
Nc

Z q�

0

dk�dk?
�k� �P�� �k��q� � k��

�T0�on;�2� �T
0�
1;�2� �T

0�
3;�2�	�

���0 �k�P�;P�0 �����k;P��	k��q���k�q��on
;

(D37)

where

T0�on;�4� �
Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���4��6kon �m��5	

�P�� � �k� P���on � k�on	�P��0 � �k� P��
�
on � �k� q��on	

(D38)
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T0�on;�2� �
Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	�
��2��6kon �m��

5	

�q� � �k� q��on � k�on � {�	�P��0 � �k� P��
�
on � �k� q��on	

(D39)

T0�1;�2� �
Tr����5��6k� 6q�on �m	���2��6kon �m��5	

2�q� � �k� q��on � k
�
on � {�	

(D40)

T0�2;�4� � �
Tr���6k� 6P��on �m	�

5�����4��6kon �m��
5	

2�P�� � �k� P��
�
on � k

�
on	

(D41)

T0�3;�4� � �
Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���4����5	

2�P��0 � �k� P��
�
on � �k� q��on	

(D42)

T0�3;�2� �
Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	�
��2����5	

2�P��0 � �k� P��
�
on � �k� q�

�
on	

(D43)

with

���4� � ���k�;k?; k� � k�
�4�; q�: (D44)

The contributions j�I�� and j�II�� are represented by diagrams (a) and (b) of Fig. 3, respectively.

a. Valence region contribution

Let us change integration variables in Eq. (D36) for the valence contribution, defining k0� � k� � P�� and k0? �
k? � P�?, with �k0�;k0?� the light-front momentum of a quark in the valence range. Then j�I�� acquaints the following
more familiar expression

j�I�� �
e

�2��3
m2

f2
�
Nc

Z P��

0

dk0�dk0?
�k0� � P�� �k0��P��0 � k

0��
�T0�on;�4� � T

0�
2;�4� � T

0�
3;�4�	�

���0 �k
0; P�0 ����P� � k

0; P��	k0��k0�on
;

(D45)

where

k0�on �
�k02? �m

2�

k0�
(D46)

and we have defined k� � P�� � k0�. The quantities T0�on;�4�, T
0�
2;�4�, T

0�
3;�4� can now be expressed as follows:

T0�on;�4� � �P
�
�0P

�
� 	

Tr��6k0on �m��5��6k0 � 6P�0 �on �m	���4���6k0 � 6P��on �m	�5	

�m2
�0 �M

2
0�k
0�;k0?;P��0 ;P�0?�	�m

2
� �M2

0�k
0�;k0?;P�� ;P�?�	

(D47)

T0�2;�4� � �P
�
�

Tr��6k0on �m��5�����4���6k0 � 6P��on �m	�5	

2�m2
� �M2

0�k
0�;k0?;P�� ;P�?�	

(D48)

T0�3;�4� � �P
�
�0

Tr��6k0on �m��5��6k0 � 6P�0 �on �m	���4����5	

2�m2
�0 �M

2
0�k
0�;k0?;P��0 ;P�0?�	

: (D49)

In Eq. (D45) both the vertex functions have the quark momentum fractions k0�=P��0 and �P� � k0��=P�� in the valence-
sector range [0, 1]. Note that the on-shell momenta in Eq. (D47) allow one to retrieve the relativistic spin coupling factors
with the spin 1=2 Melosh rotations automatically included [8,9,50].

b. Pair-production contribution

By making use of Eq. (D13) the quantities T0�on;�2�, T
0�
1;�2�, T

0�
3;�2� in the pair-production contribution [Eq. (23)] become
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T0�on;�2� � P��0
Tr���6k� 6P��on �m	�

5��6k� 6q�on �m	�
��2��6kon �m��

5	

�q� � q�0 � {�	�m
2
�0 �M

2
0�k
0�;k0?;P��0 ;P�0?�	

; (D50)

T0�1;�2� �
Tr����5��6k� 6q�on �m	�

��2��6kon �m��
5	

2�q� � q�0 � {�	
; (D51)

T0�3;�2� � P��0
Tr���6k� 6P��on �m	�5��6k� 6q�on �m	���2����5	

2�m2
�0 �M

2
0�k
0�;k0?;P��0 ;P�0?�	

(D52)
where q�0 � k�on � �q� k�
�
on and k0� � k� � P�� , k0? �

k? � P�?.

APPENDIX E: NORMALIZATION OF THE
VECTOR-MESON WAVE FUNCTION

The light-front wave function of vector mesons includes
the relativistic spin part, as we have written in Eq. (31), so
one has to consider the whole structure of the wave func-
tion to obtain the normalization of the valence component
of the state. We normalize the wave function using the
good component of the vector current, imposing that

h
n;	jj��0�j
n;	i � 2MnPq �q;n; (E1)

where it appears the probability of the valence component
in the vector meson, Pq �q;n, which is estimated in the next
Appendix E.

The matrix element of the good component of the cur-
rent in impulse approximation is represented by a Feynman
triangle diagram. After the integration over the light-front
energy, performed disregarding the singularities of the VM
vertex in the k� complex-plane, one obtains the contribu-
tion of the valence wave function to the normalization:

Pq �q;n �
1

2Mn

Nc
16�3

Z Mn

0

dk�

�k��2�Mn � k
��

�
Z
dk?N �k�;k?�j n�k�;k?;Mn; 0?�j2:

(E2)

In Eq. (E2) the quantity N �k�;k?� is the following trace

N �k�;k?� � Tr���6k� 6Pn�on �m	

� �6�	 � �kon � �Pn � k�on� 
 �	HS�M0�	

� �6kon �m����6kon �m�

� �6�	 � �kon � �Pn � k�on� 
 �	HS�M0�		

(E3)

where HS�M
2
0� is defined in Eq. (100).

To evaluate the normalization, we choose the polariza-
tion in the transverse direction, which is free of the pair
term contribution in the limit of zero momentum transfer
[27,49].
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APPENDIX F: ESTIMATE OF THE PROBABILITY
OF THE VALENCE COMPONENT

In this Appendix we construct in the Fock space of
constituent q �q pairs a schematic model for the light-front
square mass operator M̂2 which allows one to roughly
estimate the probability of the valence component in the
nth excited vector-meson state, Pq �q;n. We are looking for a
square mass operator in the Fock space with a spectrum
where the mass of the nth vector meson grows with

���
n
p

, as
occurs experimentally [36,37].

Let us denote by i 
 0 the number of q �q pairs and by jii0
the noninteracting Fock state with i pairs.

Let us suppose that the free mass operator M̂0 is additive
in the number of pairs and therefore that the noninteracting
Fock-state jii0 is eigenfunction of the free squared mass
operator with eigenvalue �2i2:

M̂ 2
0jii0 � �2i2jii0; (F1)

where � is the energy of a free q �q state.
We suppose that the interaction M2

I in the squared mass-
operator (M̂2 � M̂2

0 � M̂
2
I ):
(i) h
-31
as constant diagonal matrix elements

0hijM̂
2
I jii0 �

2

�2 � c; (F2)
(ii) m
ixes the state jii0 with the states j�i� 1�i0 and
j�i� 1�i0, and is attractive and constant:

0h�i� 1�jM̂2
I jii0 � 0h�i� 1�jM̂2

I jii0 � �
1

�2 ;

(F3)
while the other matrix elements of M̂2
I are supposed to be

zero.
The eigenvalue equation for the squared mass operator is

M̂ 2
0jni � M̂

2
I jni � M2

njni; (F4)

where the nth excited state of the meson has massMn. The
VM wave function for the nth excited state in the Fock
space is given by
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jni �
X
i
1

an;ijii0; (F5)

and the amplitudes an;i are normalized as follows:X
i
1

jan;ij2 � 1: (F6)

In the above sums one has i 
 1, since the vector mesons
have quantum numbers different from the vacuum and then
an;0 � 0.

Introducing the interaction defined by Eqs. (F2) and (F3)
into Eq. (F4) and projecting the eigenvalue equation in the
Fock-space state basis fjii0g, one has

�2i2an;i �
an;i�1 � 2an;i � an;i�1

�2 � �M2
n � c�an;i: (F7)

If we define x � � 
 i, with �> 0, then Eq. (F7) can be
rewritten as follows:

�2�2

�4
x2an;i �

�an;i�1 � 2an;i � an;i�1	

�2

�
�2

�2 �M
2
n � c�an;i: (F8)

Then defining ��=�2 � �=4 and going to the continuous
limit one gets

�2

16
x2an�x� �

d2an�x�

dx2 � 	nan�x�; (F9)

with the boundary condition an�0� � 0, in order to reflect
the constraint an;0 � 0. Trivially, because of this constraint
the eigenvalues and the eigenstates of M̂2 correspond to the
odd eigenvalues and eigenstates of the unidimensional
harmonic oscillator, namely

	n �
�

2

�
n�

1

2

�
; (F10)

an�x� �

����������
2

2nn!

s �
�

4�

�
1=4
Hn���e

��2=2; (F11)

where Hn��� are the Hermite polynomials and

� �

�����
�

4

s
x:

The function an�x� in our case has to be normalized as
follow: Z 1

0
jan�x�j2dx � 1 (F12)

in order to have the proper correspondence with Eq. (F6).
This normalization explains the presence of the factor

���
2
p

in the definition of an�x� [Eq. (F11)].
Then, defining �=� � !=4, from the eigenvalues 	n of

Eq. (F9) one can obtain the masses of the vector-mesons,
viz
074013
M2
n �

!
2

�
n�

1

2

�
� c � !

�
nex �

3

4

�
� c; (F13)

where only the odd values of n, namely n � 2nex � 1, are
allowed. The number nex is the excitation number 0, 1, 2, 3
. . . of the vector mesons, with zero for the meson ground
state. Then the square mass of the vector mesons is given
by

M2
nex
� ! 
 nex �M

2
g:s:; (F14)

where the meson ground state has mass M2
g:s: � 3!=4� c

(note that, given !, the constant c is fixed).
At this point we exactly retrieve the experimental spec-

trum law [36,37], which is the motivation of this simple
model.

The final step is the estimate of the probability of the
valence state, namely Pq �q;n. From a comparison of the
discrete and the continuum case of our model, one can
associate to the probability jan;ij2 of the wave-function
component with i q �q pairs, Eq. (F5) the quantityZ i�

�i�1��
dxjan�x�j2 �

2

2nn!

�
�

4�

�
1=2 Z i�

�i�1��
dxjHn���j2e��

2

�
2

2nn!
����
�
p

Z i�
���
!
p

=2

�i�1��
���
!
p

=2
d�jHn���j2e��

2
:

(F15)

Then the probability Pq �q;nex
of the valence component is

given by the quantity

Pq �q;nex
� jan;1j2 �

Z �

0
dxjan�x�j2

�
2

2nn!
����
�
p

Z �
���
!
p

=2

0
d�jHn���j

2e��
2
: (F16)

Imposing that Pq �q;0, i.e. the valence component proba-
bility in the ground state of the vector mesons, is about the
same as the one found in constituent quark models of the
pion [21], i.e. it is equal to 0.77, we obtain !1=2� � 2:94.

Alternatively, let us evaluate the average number of q �q
pairs in the vector meson:

��������
hi2i

q
�

��������
hx2i

p
�
�

2

�1=2�

������������
n�

1

2

s
�

2

!1=2�

������������������
2nex �

3

2

s
:

(F17)

Then we can estimate the probability for the lowest Fock
component to be roughly given by

Pq �q;nex
�

�!1=2

2
������������������
2nex �

3
2

q : (F18)

If the value !1=2� � 2 is used in this last estimate, the
probabilities considered in Ref. [26] are obtained. With this
choice, the valence component probability in the ground
state of the vector meson is equal to �0:8.
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APPENDIX G: EVALUATION OF g�Vn�q
2� IN THE

TIMELIKE REGION

First of all let us evaluate
P
	 of Eq. (44). The momen-

tum of the vector meson is P�n � fP�n � �jq?j2 �
M2
n�=q

�;q?; q�g and the momentum of the virtual photon
is q� � fq�;q?; q�g (as already noted, see Fig. 4, at the
production vertex the LF three-momentum is conserved).
In a frame where q? � 0, one has q� � q2=q� for the
photon, while for the vector meson P�n � M2

n=q�. Using
Cartesian components for the four-vectors, i.e. a� �
�a0; a	, in this frame the three polarization four-vectors
are given by

��x � �0; 1; 0; 0	; ��y � �0; 0; 1; 0	;

��z � �Pnz=Mn; 0; 0;
�������������
1� �

p
	;

(G1)

where � � P2
nz=M2

n. Let us recall that, in the frame we
are adopting, Pnz � �q� � P�n �=2 � �q�2 �M2

n�=2q�.
Therefore, in the reference frame defined by q? � 0 and
q� > 0 the polarization four-vector ��z does not have a
defined sign for the zero component. The plus-component
of ��z is given by

��z �
Pnz
Mn
�

�����������������
1�

P2
nz

M2
n

s

�
q�2 �M2

n

2q�Mn
�

�������������������������������������
1�

�
q�2 �M2

n

2q�Mn

�
2

s
: (G2)

The plus component of the other polarization four-vectors
are vanishing (i.e., ��x � ��y � 0) and therefore we haveP
	��
�
	 �Pn�	

��	�Pn� 
 V̂n � ���z �Pn�	��z�Pn� 
 V̂n.
Each term of

P
n in Eq. (69) is invariant under LF boosts,

that are kinematical, and therefore to simplify the calcu-
lations it can be evaluated in the rest frame of the corre-
sponding resonance. In the rest frame of the nth-resonance
one has q� � Mn and q� � q2=Mn for the photon, while
P�n � P�n � Mn for the vector meson. This means that we
choose a different frame for each resonance, but all these
frames are related by kinematical LF boosts along the z
074013
axis to each other, and to the Breit frame where q� �

�q� �
����������
�q2

p
, adopted in previous analyses of the SL

region (we have always q? � 0) [21,29].
Then, in the evaluation of the sum in Eq. (69) one has

��z � 1 and X
	

���	 �Pn�	
��	�Pn� 
 V̂n � �V̂nz (G3)

for the contribution of any resonance. In conclusion we
have

g�Vn�q
2� �

1

P��� � P
�
�

Nc
�2��3

Z q�

0

���
2
p
dk�dk?

�k� � P�� �k
��q� � k��

� f��P�� � k�� �I1;n ���k� � P�� � �I2;ng; (G4)

where the quantities �I1;n and �I2;n can be obtained from
Eqs. (54) and (55) replacing m=f��� ���k� P�; P ���	k��k�on

and m=f�� ����k; P��	k��q���k�q��on
with D �� and �D�, re-

spectively, [see Eqs. (40) and (39)]:

�I1;n �D ��

�
 n�k

�;k?;P�n ; 0��M2
n �M

2
0�k
�;k?;P�n ; 0	

�q2 �M2
0�k
�;k?; q�; 0� � {�	

� �T on;�1;n� �T 1;�1;n�	 � ��n�k; Pn�	k��k�on
T 2;�1;n�

�
(G5)

�I2;n �
�D�

�
 n�k�;k?;P�n ; 0��M2

n �M2
0�k
�;k?;P�n ; 0�	

�q2 �M2
0�k
�;k?; q�; 0� � {�	

� �T on;�2;n� �T 1;�2;n�	

� ��n�k; Pn�	k��q���k�q��on
T 3;�2;n�

�
(G6)

with

T on;�1;n� � � ���k�;k?;P�� ;P�?�Tr���6k� 6P��on �m	

� �5��6k� 6q�on �m	

� �V̂nz�k; k� Pn�	on�6kon �m��5	 (G7)
T on;�2;n� �  �����k
� � P�� �; �k� P��?;P��� ;P ��?�Tr���6k� 6P��on �m	�5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m��5	

(G8)
T 1;�1;n� �
1

2

m
f�
� ����k;P��	k��k�on

Tr����5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m��5	 (G9)
T 1;�2;n� �
1

2

m
f�
�� ���k� P�; P ���	k��q���k�q��on

Tr����5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�6kon �m��
5	 (G10)
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T 2;�1;n� �
1

2
 ���k�;k?;P�� ;P�?�Tr���6k� 6P��on �m	�5���V̂nz�k; k� Pn�	on�6kon �m��5	 (G11)

T 3;�2;n� �
1

2
 �����k

� � P�� �; �k� P��?;P��� ;P ��?�Tr���6k� 6P��on �m	�
5��6k� 6q�on �m	�V̂nz�k; k� Pn�	on�

��5	

(G12)
The 3S1 vector-meson vertex �V̂n�k; k� Pn�	on given by
Eq. (16), as it was used in previous calculations [8], is
completely determined by the kinematical momenta of the
individual quark and antiquark. In the 3S1 vector-meson
intrinsic frame, where q� � Mn and q? � 0, one has

�V̂nz�k; k� Pn�	on �

�
�3 �

k3
on � �P3

n � k3�on

M0n � 2m

�
; (G13)

where M2
0n � �jk?j

2 �m2�=x�1� x� (x � k�=q� �
k�=Mn).

The kinematics for the final two-pion state in the par-
ticular frame where the photon has momentum q? � 0,
q� � Mn and q� � q2=Mn can be derived from the
energy-momentum conservation, which yields

q� � Mn � P��� � P
�
� ; P ��? � �P�? (G14)

and thus

q� � P��� � P
�
� �

jP�?j2 �m2
�

P���
�
jP�?j2 �m2

�

P��

�
1

q�
jP�?j2 �m2

�

x��1� x��
(G15)

where x� � P��=q
� and x �� � P���=q

� � 1� x�.
Equations (G14) and (G15) put in evidence the relation
between the kinematical variables of the virtual photon and
the ones of both pion and antipion. In the timelike region
the value of q2 does not fully determine the values for the
four-momenta of the pion and the antipion in the final state
of the � �� pair. In order to reduce the freedom we make the
purely longitudinal choice, i.e. P ��? � �P�? � 0. Then,
from Eqs. (G14) and (G15), one obtains

x� �
1

2
�

����������������
1

4
�
m2
�

q2

s
: (G16)

Let us note that the minimum allowed value for q2 is 4m2
�.

At this threshold value one has x� � 1=2. Therefore, since

P��� � P
�
� � q� � 2P�� � q��1� 2x�� � Mn�1� 2x��;

(G17)
074013
one cannot evaluate Eq. (G4) exactly at threshold, unless
an exact cancellation occurs between vanishing numerator
and denominator of Eq. (G4). For finite values of m�, the
values x� � 1 or x� � 0 are possible only for an infinite
value of the momentum transfer and imply an infinite value
of P�z or P ��z, respectively.

In the limit of a vanishing pion mass (m� � 0),
Eq. (G16) gives x� � 1 or 0, which implies that one of
the terms of Eq. (G4) vanishes due to the � function. To
simplify our calculations, we make the approximation
m� � 0 and adopt the choice x� � 0, which implies P�� �
0, P�� � q� � q2=Mn, P��� � q� � Mn, and P��� � 0.
Then only the second term of Eq. (G4), containing the
quantity �I2;n, gives a contribution to the TL pion form
factor.

Furthermore, for m� � 0 one has T on;�2;n� � 0. Indeed,
in this limit �6k� 6P��on � 6kon and

�6kon �m��
5�6kon �m� � �6kon �m���6kon �m��

5

� �6kon6kon �m2��5 � 0

(G18)

Therefore only the instantaneous contributions T 1;�2;n� and
T 3;�2;n� survive in the limit of a vanishing pion mass and
can be written as follows:

T 1;�2;n� � �
1

2

m
f�
�� ���k� P�; P ���	k��q���k�q��on

� Tr�����6k� 6q�on �m	�V̂nz�k; k� Pn�	on

� �6kon �m�	 (G19)
T 3;�2;n� �
1

2
 ����k

�;k?;Mn; 0?�

� Tr���6kon �m	��6k� 6q�on �m	

� �V̂nz�k; k� Pn�	on��	: (G20)
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