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Abstract

This thesis is based on part of the work done during the Ph.D., and it concerns the

two distinguished domains of Quantum Chromodynamics (QCD) at zero tempera-

ture: the low-energy, confined domain, and the high-energy, asymptotically free one.

Aiming to bridge the gap between them, and inspired by suggested improvements

of the QCD perturbative series, this work investigates a proposal for an improved

perturbative expansion, as a method to be applicable to QCD phenomenology, as

well as to nonperturbative studies.

The proposal consists in an effective-loop expansion – a hybrid between Schwinger-

Dyson equations and usual loop expansions, making use of the latter’s framework,

yet dressing certain quantities in order to account for their complete behavior inside

loops. The thesis describes the main efforts on this matter, in its application to cor-

relation functions – the gluon and ghost propagators, in particular, as a preliminary

step preceding further applications.

After dealing with issues as transversality of the gluon self-energy and renor-

malizability within the method, the present form of the effective-loop expansion

contains dynamically massive gluons and an effective running charge, besides the

possible dressing of the three-gluon vertex. Within this formulation, reasonable

qualitative results were obtained for achieving the complete, nonperturbative be-

havior of the ghost and gluon propagators, and comparison with lattice is analyzed.

Readily achievable and longer term prospects are also discussed.

Keywords: Quantum Chromodynamics. Dynamical gluon mass. Schwinger-Dyson

equations. Dynamical Perturbation Theory.
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Resumo

A presente tese é baseada em parte do trabalho realizado durante o Doutorado

e diz respeito aos dois domı́nios da Cromodinâmica Quântica (QCD) a temperatura

zero: o regime confinado, a baixas energias, e o assintoticamente livre, a altas ener-

gias. Com o objetivo de cumprir uma ponte entre estes domı́nios e inspirado em

sugestões de aprimoramentos da série perturbativa, este trabalho investiga uma

proposta para uma expansão perturbativa aprimorada, a ser um método aplicável

tanto à fenomenologia da QCD quanto a estudos de seu regime não-perturbativo.

A proposta consiste numa expansão em loops efetivos – um h́ıbrido entre equações

de Schwinger-Dyson e expansão em loops usual, fazendo uso de ferramentas desta

porém vestindo certas quantidades como forma de considerar seu comportamento

completo dentro de loops. A tese descreve os principais avanços nesse sentido, na

aplicação a funções de correlação – em particular os propagadores do gluon e do

ghost, como um passo preliminar a futuras aplicações.

Após lidar com questões de transversalidade do propagador do gluon e renorma-

lizabilidade no método, a expansão em loops efetivos na sua presente forma contém

gluons (dinamicamente) massivos e uma carga efetiva, além da possiblidade de uma

vestimenta para o vértice de três gluons. Nesta formulação, foram obtidos resultados

qualitativos razoáveis para o comportamento não-perturbativo completo dos propa-

gadores do ghost e do gluon, e comparação com a rede é analisada. Perspectivas de

curto e de mais longo prazo são discutidas.

Palavras-chave: Cromodinâmica Quântica. Massa dinâmica de gluons. Equações

de Schwinger-Dyson. Teoria Dinâmica de Perturbação.
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Como é por dentro outra pessoa

Quem é que o saberá sonhar?

A alma de outrem é outro universo

Com que não há comunicação posśıvel,

Com que não há verdadeiro entendimento.

Nada sabemos da alma

Senão da nossa;

As dos outros são olhares,

São gestos, são palavras,

Com a suposição de qualquer semelhança

No fundo.

Fernando Pessoa

Soy lo que dejaron

Soy toda la sobra de lo que se robaron

Un pueblo escondido en la cima

Mi piel es de cuero, por eso aguanta cualquier clima

Soy una fábrica de humo

Mano de obra campesina para tu consumo

Frente de fŕıo en el medio del verano

El amor en los tiempos del cólera, mi hermano!

Soy el desarrollo en carne viva

Un discurso poĺıtico sin saliva

Las caras más bonitas que he conocido

Soy la fotograf́ıa de un desaparecido

La sangre dentro de tus venas

Soy lo que me enseñó mi padre

El que no quiere a su patŕıa, no quiere a su madre

Soy América Latina, un pueblo sin piernas, pero que camina

Calle 13 (Latinoamerica)

O rio que fazia uma volta atrás de nossa casa

era a imagem de um vidro mole que fazia uma

volta atrás de casa.

Passou um homem depois e disse: Essa volta

que o rio faz por trás de sua casa se chama

enseada.

Não era mais a imagem de uma cobra de vidro

que fazia uma volta atrás de casa.

Era uma enseada.

Acho que o nome empobreceu a imagem.

Manoel de Barros (O livro das Ignorãças)
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Chapter 1

Introduction

1.1 The object of research

Physics aims, basically, to describe the domain of natural phenomena: how the

things we see behave the way they do.

Along the centuries Physics managed to extend its meaning of “seeing”: with the

accumulated knowledge, we can infer that a certain process must have happened, or

that some system must have certain characteristics – even if we do not access them

directly by any measurement means. That is, when there are only indirect evidences

for them.

According with the current understanding of Cosmology, for instance, 24% of

the Universe must be composed by what is called dark matter, and about 71% by

dark energy, and one of their main properties is: we cannot observe them directly

at all. Why then is it believed that they are there? Because, as far as the currently

well-established knowledge goes, it all points to this conclusion, from observations

that cannot be, or at least were not, explained otherwise. Given that, physicists

then attempt to model such types of system to infer further effects that could be

observed, thus indirectly corroborating their stand.

In fact, there is something similar with the other ∼ 5% of the Universe, which

is the ordinary matter – the one we know to be made of atoms. Actually, of more

fundamental particles: as molecules are made of atoms, these are an electrons-

nucleus system, and nuclei are made of protons and neutrons, it does not stop here.

Protons and neutrons are made of even more elementary parts. And it seems to

stop there.

These parts are believed to be certain fundamental (i.e. indivisible and substructure-

less) particles: the quarks and the gluons. They are, as far as we currently know

from experiments, the basic building blocks of our ordinary matter.
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What happens is that no one has ever observed them, neither quarks nor gluons.

Nevertheless, the accumulated knowledge on this type of system, from the well-

established Quantum Theory, led to the conclusion that these particles should indeed

be.

There being enough evidence, the physicists’ work is then to formulate a precise

theory of these quarks and gluons that will be able to predict the whole behavior

observed in experiments with protons, neutrons and particles alike (v. Sect.1.2).

Moreover, one could think that this lack of direct observation is an empirical

limitation, like, for example, how it was thought that no experiment could isolate

and manipulate individual atoms, until technology did allow it.

However, the fact that we can access quarks and gluons only indirectly is unan-

imously [1] understood not to be a technical or experimental restriction, but being

an intrinsic quality: It is not just that we cannot observe isolated quarks or gluons,

but that they are never isolated: they do exist individually, but only bound to be

together in some specific manners. This phenomenon is called confinement, and it

must somehow be described by any theory that concerns quarks and gluons.

Yet more interesting, there is one correction to that: they are never isolated in

the usual state of matter, i.e. in the subatomic particles we know of. For very high

densities and temperatures, the quarks and gluons deconfine into another state of

matter – which is the quark-gluon plasma (QGP). It is believed that the Universe,

at some point near the Big Bang, was in a QGP, and this state has been produced in

heavy ion accelerators, providing experimental access to this deconfinement transi-

tion, which is also an open problem in Physics, as well as the (zero-temperature) con-

finement one. The present work will concern only the latter, the zero-temperature

confinement presented by the usual state of ordinary matter.

1.2 Development of the theory

First of all, some terminology: as processes were studied, Physics established a

classification of the fundamental interactions in nature. Besides gravitational force,

there are the electromagnetic and the weak – later unified into the electroweak

force, and, finally, the strong one. The electroweak and the strong forces are the

ones involved∗ in the physics of elementary particles, and we should note that the

distinction between them came along with the history of experiments.

So the first terminology is the following: the particles that participate in the

strong interactions are called hadrons, while the ones that do not so are called lep-

∗Up to the present, gravitation at small (quantum) scales is an open problem.
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tons. For example, electrons, muons, neutrinos are leptons, while protons, neutrons,

pions are hadrons [1].

The ruling theory for quarks and gluons is Quantum Chromodynamics (QCD),

and its purpose is to describe the very being of hadrons, and also their properties

and behavior.

Basically, we will spend this Section explaining what the name Quantum Chro-

modynamics means.

1.2.1 The Quantum

Although there is a lot about it, one can say that Quantum Mechanics (QM) is

nothing but the physics of small scales – from the order of atomic sizes and below.

That is, the dynamics of systems with the size of atoms or smaller are governed by

QM, just like the dynamics of greater systems (like the ones we daily see and touch)

are governed by Classical Mechanics, with Newton’s laws and so on.

So, describing the physics of microscopic scales and accounting for the atomic

spectrum, and interactions between electrons and nuclei, QM consists in the theo-

retical framework for the understanding of (ordinary) matter [2]. Furthermore, it

was seen that the QM rules should also apply to radiation [3], approximating the

concepts of matter and radiation.

This development was later accompanied by the Dirac’s work on making QM

compatible with Special Relativity [4], which led to a great advance: it predicted

the existence of particles and antiparticles. At the time it was seemingly strange,

but it was soon confirmed by experiment [5] and became a well-established and

fundamental property of matter.

In fact, the smaller the scales physicists achieved to access, the more they ob-

served processes characterized by transformation of some particles into others, as

those involved in nuclei decays, for instance. Therefore, a theoretical framework

that accounts for the appearance and disappearance of particles is able to describe

such processes.

In the next chapter, we will describe this theoretical framework in its evolved

form, that is Quantum Field Theory (QFT). For now, we proceed speaking of par-

ticles.

3



1.2.2 The Chromo

Sticking with the hadrons, experiments observed increasing types of them, building

up the hadronic spectrum† – which is just like the atomic periodic table, but for

more fundamental particles, deeper into the matter we know. Indeed, the hadron

spectrum is a set of particles supposed to share the same kind of substructure, and

substructure generally implies more fundamental degrees of freedom, i.e. implies

even more fundamental particles.

It was in 1964 that Gell-Mann and (independently) Zweig proposed the quarks

as constituents of this substructure. The original quark model contained three

kinds of quarks, then called flavors: up (u), down (d), and strange (s). Then,

the hadrons were classified as mesons, made of a quark and an antiquark (a qq̄ sys-

tem), or baryons, made of three quarks (qqq), and the quark model accounted well

for hadronic spectrum, that followed the patterns shown in Figures 1.1 and 1.2.

Figure 1.1: Meson spectrum for u, d, and s quarks. The Figure, taken from [1],

shows the mesons’ quark composition and given names.

Figure 1.2: Baryon spectrum for u, d, and s quarks. The Figure, taken from [1],

shows the baryons’ names and quark composition.

In a short time the three-flavor quark model was extended to contain a fourth

flavor, the charm (c), which was empirically evidenced in 1974. Later, two more

quarks were proposed in the model, the bottom (b) and the top (t). The former was

evidenced in 1977, and the top only in 1995, due to its large mass.

Now, consider a baryon with three identical quarks, like ∆++ or ∆−. Since it

is a fermion, its wave function should be anti-symmetric, but all of its observed

†For this history and further details we refer to [5, 6].
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properties yielded a symmetric one. This led to the hypothesis that there would

be an additional degree of freedom, even if unobserved, so that the particle’s wave

function could be: |qqq〉A = |space, spin, flavor〉S × |else〉A, with the subscript S(A)

denoting (anti-)symmetric state.

This additional degree of freedom is precisely the color. Further evidence for it

came, for example, with the ratio between cross-sections

R =
σ (e−e+ → hadrons)

σ (e−e+ → µ−µ+)
,

evaluated to be R ∝ ∑

f

Q 2
f , where the sum is over the quark flavors, each with

charge Qf. It was found that good agreement with experimental data is obtained

with a proportionality factor near 3 ‡.

Then, if this factor is due to an internal degree of freedom, the color, it seems

to be equally common to all flavors, and the data indicates it to assume three

possible configurations. This means that quarks present a color symmetry, and it is

formalized by the group SU(3)§.

1.2.3 And the dynamics

Symmetry principles had become one of the greatest paradigms in modern Physics.

The statement of Noether’s First Theorem that continuous global symmetries lead

to conservation laws [7] gave founded description of observables in a Field Theory.

Noether’s Second Theorem [8] for local symmetries, on the other hand, pro-

vided physicists with the gauge principle: according to it, the promotion of a global

symmetry to a local one dictates the system’s dynamics, that is, the form of the

interactions in it.

So, it is by implementing this gauge principle to the color symmetry that one

obtains QCD. It describes the quarks’ interactions as being mediated by other parti-

cles – the gluons (whose presence in hadrons were also indicated by experiments [9]).

That is, quarks interact by exchanging gluons, just like two electrons, for example,

interact by exchanging photons in (quantum) Electrodynamics.

‡Similar considerations for the pion decay into two photons, and for anomaly cancellation in

the Standard Model, are also successful with a corresponding factor ∼ 3.
§Hadrons consist in the singlet representations of this symmetry, which means that all hadrons

are “white” states, so that color is not observable.
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1.3 The present work

In the mainstream literature, the gluon is said to be a massless particle, since it is so

to any finite order in perturbation. Currently, though, nonperturbative studies of the

gluon propagator lead to the conclusion that it would display a massive character,

through the phenomenon of dynamical mass generation.

This phenomenon is understood to occur for both quarks and gluons, so that

their dynamical masses are resultant from their interactions: in fact, all indications

point that, generally, the masses of hadrons (therefore most of the mass of ordinary

matter) do come from these interactions, somehow as the binding energy among its

constituents. However, whether a consistent description of this binding is realizable

with relation to the dynamical quark and gluon masses is also an open question.

On the other hand, understanding of the transition from the asymptotically

free (v. Sect.3.1), high-energy domain to the confined, low-energy one also still

lacks, while much of the experimental access to the theory relies on perturbative

QCD, which, although having some well-established ground, still requires a model-

dependent machinery.

The aim of this research is to contribute to bridging this gap between pertur-

bative and nonperturbative QCD by means of an improved perturbative expansion,

inspired by the Dynamical Perturbation Theory proposed some years ago [10, 11].

We investigate the construction of effectively dressed loop expansions, with the

perspective for the future formulation of a loopwise dressed expansion with improved

convergence and wider domain of validity, linking QCD’s two domains by accessing

deeper into the infrared (IR) one.

It is, thus, rather a method than a model: we propose an effective loop expansion

which employs certain dressed quantities, in this way implementing nonperturbative

characteristics of the theory’s correlation functions inside the loops, so as to account

for their particular all-range fluctuations.

In addition, we want this effective expansion to be applicable to QCD phe-

nomenology, and, as the conciliation of a formally based method with phenomeno-

logical applicability can be even further away from a few-years future, we have

opted for simplicity – which is twofold: First, concerning the expansion itself, we

have guided ourselves to employ the fewer IR characteristics, and in one simplest

manner as possible, to compose the sought-after improved expansion at 1 loop level.

The second simplification lies in the objects we apply this expansion to: Yang-Mills

(YM) correlation functions. This thesis presents, in particular, the gluon and the

6



ghost¶ propagators.

The first idea was for the expansion to contain just dressed, massive gluons in

loops. However, as will be described along this thesis, the progress of the research

led us to consider two further ingredients: one is a running, effective charge which

was also proposed by Cornwall [11, 12] and had been successfully applied to phe-

nomenological calculations [13], consistently with dynamically massive gluons. The

other is a dressing for the three-gluon vertex, in order to guarantee the transversality

of the gluon self-energy – at least for one specific case, namely the background gluon

self-energy.

The earliest attempts in this work are presented in [14], and briefly described in

Subsect.4.1.1. Further developments and applications to YM vertices are in progress

[15] and will be in submitted to publication in a near future.

During the Ph.D., a similar introduction of dressed propagators was applied to

chiral symmetry breaking [16] and to technicolor [17], involving a distinct effective

propagator for the gluon [18] which supposedly contains intrinsic nonperturbative

features.

Nevertheless, the earlier attempts on this effective expansion for YM Green func-

tions led us to persist on this effort, to which the whole subsequent time of the Ph.D.

was dedicated, and whose main advances this thesis aims to present. In Chap.2 we

introduce some basics of QFT, while in Chap.3 we present, besides some basics of

QCD, results and approaches of relevance and influence for our proposal, which is

described and analyzed in Chap.4. Finally, the results for the gluon and ghost prop-

agators are presented and analyzed in Chap.5, where we also describe the future

prospects for continuation of this research.

Finally, before we start, we should set the basic conventions c = ℏ = 1. That

is, speeds are measured in units of the speed of light (in vacuum), and actions

are measured in units of the Planck constant (over 2π), and quantities may be

equivalently written in powers of units of mass, energy, momentum or length.

¶Introductory note: ghosts are parameterizations of extra, unphysical degrees of freedom that

are present in the theory due to its gauge symmetry. The combination of ghost and gluons are to

represent the actual gauge degrees of freedom.
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Chapter 2

Quantum Field Theory

This chapter concerns some generalities on QFT, and sets some conventions that

were used in the present work. For details and further topics, we refer to [19, 20, 21].

Also, Zee’s outstanding book [22] is highly recommended for absolutely any topic

that it covers.

To start, we borrow its very first phrase: “QFT arose out of our need to describe

the ephemeral nature of life.”

Indeed, QFT is an appropriate language to describe the dynamics of creation and

annihilation of degrees of freedom, and therefore, from the discussion in Chap.1, is

suitable for particle physics.

2.1 Basics

Basically speaking, field theory deals with dynamic variables distributed throughout

some space. For this reason, and despite its emergence from the conciliation between

QM and Special Relativity, QFT is employed in both condensed matter and particle

physics, and treated in general as nonrelativistic, or relativistic, respectively. So,

plainly stating, QM is just a QFT in a zero-dimensional space [22].

As in a quantum theory, the dynamics of a system is described by its S-matrix,

which is determined by the Hamiltonian and gives the transition amplitudes

〈out|in〉 ≡ 〈in|S |in〉 .

So, since our work concerns correlation functions, we first sketch how they are related

to these transition amplitudes, and therefore relatable to physical observables.

The first hypothesis is the asymptotic (adiabatic) condition: that the above

states are generated, from an unique vacuum state |Ω〉, by the Heisenberg field

8



ϕ (x) which satisfies

lim
x0→∓∞

〈α|ϕ (x) |β〉 = Z1/2 〈α|ϕ in
out

(x) |β〉 (2.1)

for all |α〉 , |β〉 eigenstates of the free field ϕin (x) = Sϕout (x)S
−1. The multiplicative

factor
√
Z is just the component of ϕ (x) |Ω〉 along ϕ in

out
(x) |Ω〉.

As a consequence, any transition amplitude between on-shell momentum eigen-

states is related to the correlation functions of the field ϕ (x),

G(n) (x1, . . . , xn) := 〈Ω|T [ϕ (x1) · · ·ϕ (xn)] |Ω〉 , (2.2)

where T is the time-ordering operator. This relation is the so-called reduction∗

formula:

〈p1, . . . , pn out| q1, . . . , ql in〉 =

(

i√
Z

)n+l ∫

d
Dx1 · · · dDyn ei(

∑n
j=1 pj ·yj−

∑l
k=1 qk·xk) ×

×
(

�x1
+m2

)

· · ·
(

�yn +m2
)

G(n) (y1, . . . , yn, x1, . . . , xl)

+ disconnected terms, (2.3)

where m2 = p2j = q2k ∀j, k, and the disconnected terms are those in which at least

one particle in the process is not affected by it (i.e. with identical initial and final

states).

By means of this relation, the computation of transition amplitudes amounts

to determining correlation functions of the interacting theory, which we proceed to

explore.

2.1.1 Correlation functions

In the path integral formalism of a D-dimensional QFT described by the Lagrangian

L [ϕ(x)] (its action denoted S [ϕ(x)]), the vacuum expectation value (2.2) in the pres-

ence of a source J(x) is given by the functional integral over the dynamic variables

Z [J ] ≡ 〈Ω, out|Ω, in〉J
=

∫

Dϕ exp i

(

S [ϕ(x)] +

∫

d
Dx J(x)ϕ(x)

)

(2.4a)

= Z [0]
∞
∑

n=0

in

n!

∫

d
Dx1 · · · dDxn J (x1) · · · J (xn)G

(n) (x1, . . . , xn) ,(2.4b)

=⇒ G(n) (x1, . . . , xn) =
1

Z [0]

δnZ [J ]

iδJ (x1) · · · iδJ (xn)

∣

∣

∣

∣

J=0

, (2.5)

∗or LSZ, for H. Lehmann, K. Symanzik, and W. Zimmermann [23].
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whose Fourier transforms are the Green functions in momentum space:

(2π)D δD (p1 + · · ·+ pn)G
(n) (p1, . . . , pn) .

For Grassmann fields we define the even order Green functions as

G(2n) (x1 . . . , xn, y1, . . . , yn) :=

(

δ

iδη̄ (x1)
· · · δ

iδη̄ (xn)

iδ

δη (y1)
· · · iδ

δη (yn)
Z [η, η̄]

)∣

∣

∣

∣

η,η̄=0

.

(2.6)

Connected Green functions† are generated by the functionalW [J ] := −i logZ [J ]:

G(n)
c (x1, . . . , xn) :=

δnW [J ]

δJ (x1) · · · δJ (xn)

∣

∣

∣

∣

J=0

, (2.7)

whose Legendre transform is the effective action [21]

Γ [φ] :=

[

W [J ]−
∫

d
Dx J (x)φ (x)

]∣

∣

∣

∣

J(x)=J(x,φ)

, (2.8)

where

φ (x, J) :=
δW [J ]

δJ (x)
=

〈Ω|ϕ(x) |Ω〉J
〈Ω|Ω〉J

, (2.9)

is the vacuum expectation value (VEV) of ϕ(x) in the presence of the source J(x).

Consequently
δΓ [φ]

δφ (x)
= −J (x, φ) , (2.10)

which is the quantum version of the classical equation of motion, δS/δJ = −J but

in the quantum case Γ [φ] contains all fluctuations that are embedded in the path

integral:

Z [J ] =

∫

Dϕ exp i (S [ϕ] + J.ϕ) = exp i (Γ [φ] + J.φ)

The effective action Γ [φ] generates the proper vertices, also known as 1-particle

irreducible (1PI) correlation functions. Going to momentum space:

Γ(n) (p1, . . . , pn) := in
δnΓ [φ]

δφ (p1) · · · δφ (pn)

∣

∣

∣

∣

φ=0

, (2.11)

where the convention is that all pi are in-going momenta in the Feynman diagram

for the n-point proper vertex. We also follow the convention that the given Feynman

diagram corresponds to i−nΓ(n) – that is, correspond to the functional derivatives,

no i factors.

†They are related to processes in which no subsets of particles interact independently from each

other, and are given by Feynman diagrams which are not separable in two or more disjoint ones.
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Finally, from the very definition of the field φ,

δ

δφ (y)

δW [J ]

δJ (x)
= δD (x− y) ,

it follows the inverse relation between the 2-point proper vertex and the propagator:

−Γ(2) (p,−p) =
(

iG(2)
c (p,−p)

)−1
, (2.12)

valid for commuting as well as for Grassmann fields.

Both Green functions above contain the quantum fluctuations of the theory,

which is basically what we aim to study. So now we briefly describe how the pertur-

bative expansion and the Schwinger-Dyson equations for such Green functions are

constructed.

2.1.2 Perturbative expansion

When distinguishing in a Lagrangian the free and the interacting terms, L = L0+Li

respectively, one can write:

Z [J ] =

∫

Dϕ
(

exp i

∫

d
Dx Li [ϕ]

)

exp i

∫

d
Dx {L0 [ϕ] + Jϕ}

=

(

exp i

∫

d
Dx Li

[

δ

iδJ

])
∫

Dϕ exp i

∫

d
Dx {L0 [ϕ] + Jϕ} , (2.13)

where L0 is related to a differential operator K, invertible by hypothesis, through

(up to surface terms):

∫

Dϕ exp i

∫

d
Dx {L0 + Jϕ} ∝ exp

−i
2

∫

d
DxdDy J (y)K−1 (y, x) J (x) .

Since Z [J ] is defined up to any multiplicative factor (see Eq.2.5), (2.13) becomes

Z [J ] = exp

(

i

∫

d
Dx Li

[

δ

iδJ

])

exp

(−i
2

∫

d
DxdDy J (y)K−1 (y, x) J (x)

)

,

(2.14)

and then, by expanding the exponential series of Li [δ/iδJ ], one obtains, for any

Green function, a perturbative expansion in the coupling constant(s) contained in

Li.

The corresponding expansion for the effective action leads to a formal series in

powers of the Planck constant ℏ, as well as a series in the coupling(s). Either way,

one then obtains the usual perturbative, loop expansion of the quantum fluctuations

of the field theory [19]‡.

‡Specifically, Sect.9-2-2.
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For QCD, starting with the (unrenormalized) Lagrangian [24, 25]

L = −1

4
F 2 + ψ̄j (i 6 D −mj)ψ

j + (∂µc̄a) (Dµc
a) +

1

2ξ
(∂µA

aµ) (∂νA
aν) , (2.15)

= −1

4
(∂µAν − ∂νAµ) (∂

µAν − ∂νAµ) +
ig

2
(∂µAν − ∂νAµ) [A

µ, Aν ] +
g2

4
[Aµ, Aν ] [A

µ, Aν ]

+ψ̄j (i 6 ∂ −mj)ψ
j + gψ̄j 6 Aµψ

j + (∂µc̄) (∂µc)− ig (∂µc̄) [Aµ, c] +
1

2ξ
(∂.A)2 , (2.16)

the perturbative expansion of (2.14) yields loop expansions like the example below

for the gluon propagator.

Figure 2.1: Perturbative expansion for the gluon propagator, up to two loops, show-

ing the corresponding orders in g0 (tree-level), g2 and g4.

Following given Feynman rules,one can generate the expansion for any Green

function of the theory, to any finite order – i.e. up to any given number of loops.

These sums can be structured in terms of 1PI functions, as in the Figure below.

All quantum fluctuations are contained in the full propagator, iG, represented by a

blank circle, that is the sum of its tree-level part, iG(0), with the connected series of

the 1PI corrections – called the self-energy, Σ, and represented by a shaded circle.

Figure 2.2: Dyson series for the gluon propagator: the full propagator as a connected

series of the 1PI self-energy.

The self-energy is related to full the 2-point proper function, −Γ, by:

−Γ ≡ −Γ(0) − Γ′ (2.17a)

= −Γ(0) + Σ , (2.17b)

where −Γ(0) is its tree-level part, and −Γ′ represents the corrections (the minus

signs just follow the convention introduced in Subsect.2.1.1). Summing up the whole
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Dyson series above amounts to the relation (2.12) between the propagator and the

2-point vertex:

−Γ = (iG)−1 ≡
(

iG(0)
)−1

+ Σ (2.18a)

= −Γ(0) − Γ′ , (2.18b)

whose diagrammatic representation is given below in Figure 2.3. While connected

functions are represented with blank circles, proper vertices are represented by black

ones.

Figure 2.3: Diagrammatic representation of relation (2.17) between the full 2-point

vertex and the full propagator, and their decomposition into tree-level and self-en-

ergy parts.

The self-energy can be treated, in principle, to any given order perturbatively,

but it can also be given in terms of other full correlation functions of the theory. In

the following subsection we explain what we mean by that.

2.1.3 The Schwinger-Dyson equations

Starting with the hypothesis that the identity
∫

Dϕ δ

δϕ
≡ 0 (2.19)

holds in the theory under consideration,

=⇒ −i
∫

Dϕ δ

δϕ
exp i

∫

d
Dx (L+ Jϕ) =

∫

Dϕ
[

δL
δϕ

(ϕ) + J

]

exp i

∫

d
Dx (L+ Jϕ) = 0 .

Considering δL
δϕ

as a functional of the derivative δ
iδJ(x)

:

[

δL
δϕ

(

δ

iδJ (x)

)

+ J (x)

]

Z [J ] =

∫

Dϕ
[

δL
δϕ

(

δ

iδJ (x)

)

+ J (x)

]

exp i

∫

d
Dx (L+ Jϕ)

=

∫

Dϕ
[

δL
δϕ

(ϕ) + J

]

exp i

∫

d
Dx (L+ Jϕ) .

∴

[

δL
δϕ

(

δ

iδJ (x)

)

+ J (x)

]

Z [J ] = 0 . (2.20)
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So, by applying further functional derivatives, as

δ

δJ (y)

{[

δL
δϕ

(

δ

iδJ (x)

)

+ J (x)

]

Z [J ]

}

= 0 , (2.21)

one obtains integral equations coupling various (full) correlation functions of the

theory. These are the Schwinger-Dyson equations (SDEs). We will explore their

meaning now, and for that it suffices to exemplify diagrammatically some SDEs for

QCD.

First, the SDE for the ghost propagator is given by:

Figure 2.4: The SDE for the ghost propagator. Blank circles represent connected

functions, and black ones, proper vertices.

So, the full (or dressed) ghost propagator is related to both the full gluon prop-

agator and the full ghost-gluon vertex. For the gluon, the SDE corresponds to:

Figure 2.5: The SDE for the gluon propagator, showing some two dressed-loop

contributions.

Therefore, the gluon propagator depends on all propagators and vertices of the

theory, each of which satisfies its own SDE. The ghost-gluon vertex depends also

on further correlation functions, such as the 4-point vertex in the last diagram of

Fig.2.6.
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Figure 2.6: SDE for the ghost-gluon vertex, up to 1 dressed-loop.

So, the SDEs constitute an infinite set of equations that intrinsically couple all

correlation functions of the theory: They express the fact that there is no indepen-

dent correlation function in QFT.

In principle, the SDEs concern full, i.e. all-order correlation functions. However,

they may still miss some information, related to the vacuum of the theory or to

topological effects [26]. Besides that, it is clear that the whole set of SDEs is

intractable in practice: rigorously, solving exactly one SDE of a theory amounts

to solving exactly all of them. Therefore, unless some kind of convergent limiting

procedure is known, truncation is unavoidable in order to reduce the set of equations

to a finite one.

Nevertheless, there is a history of researches improving self-consistent truncations

that can yield solutions that would reveal the complete behavior of the theory. This

will be discussed in Sect.3.2.

On the conceptual significance of SDEs, we note that, if the interactions are

ultimately related to the correlation functions, the way quarks interact with each

other, for instance, is intrinsically related to the behavior of all fields of the theory.

This means that QFT holds a whole distinct picture of interactions: it does not

speak of interactions between systems, but among them, and the impact of this

feature depends on how relevant the quantum fluctuations can become in a theory.

Since the interactions are expected to be, in one way or another, responsible for

confinement, this complex dynamics might be precisely what could enrich QCD in

such a way that it would present all properties required for a theory to describe

strong phenomena, from scaling (v. Sect.3.1) to confinement.
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2.2 Renormalization

Such distinguished behaviors as the ones just mentioned bear an important feature

of QFTs: the possibility that, in the same theory, the same degrees of freedom

display strikingly different behaviors – from almost free at high resolution (i.e. high

energies, or short distances), to strongly interacting at lower energies. This comes

from renormalization, which can be introduced as the following.

Basically, a physical observable U is, on the theoretical side, given by a formal

series in the parameters {gi} of the theory §:

U (g1, . . . , gN) =
∞
∑

n=0

N
∑

i1,...,in=1

Ui1,...,in gi1 · · · gin , (2.22)

which, on the experimental side, in measured in terms of physical quantities such as

scattering angles and energy, for example. Let us generally call (with a tendentious

notation for particle physicists) these physical quantities s, t, and u. Therefore,

Uexp(s, t, u)

is to be related to U (g1, . . . , gN), so one already expects that the parameters of the

theory should be functions of experimentally accessible physical variables. Taking

N = 1 for simplicity, a QFT should, then, lead to results like

U(g) =
∞
∑

n=0

U (n)gn =: f(g) ≡ f (g(s, t, u)) .

However, how could the theoretical parameters depend on such s, t , u, since no

Lagrangian has any dependence on them to begin with? The answer comes from a

further development of QFT: basically, it is renormalization, and the renormalization

group (RG) that allow not only the relation from the Lagrangian parameters g

to the measurable g(s, t, u), but also relating their values in different conditions,

g(s, t, u) ↔ g(s′, t′, u′).

In the next subsections we will give an overview of how this happens and its

application to QCD. For more introductory details, we refer to [22], and for more

specifics to [24, 27, 28, 21].

§Such as masses and couplings, but to be generally called as couplings (as one can rather think

of masses as 2-point self-couplings).
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2.2.1 Renormalized Lagrangians

We go back to the factor Z in the matrix elements (2.1) and (2.3), and note that

it can be incorporated into the Green functions of the theory: Renormalizing the

source J(x) 7→ Z1/2J(x), or, equivalently, the field ϕ(x) 7→ Z−1/2ϕ(x)¶, leads to the

renormalized correlation functions:

G
(n)
R = Z−n/2G(n) , (2.23a)

G
(n)
c R = Z−n/2G(n)

c , (2.23b)

Γ
(n)
R = Zn/2Γ(n) . (2.23c)

These Green functions are functional derivatives of the renormalized Lagrangian,

which is obtained by the above field renormalization, as well as by redefinition of

any parameters present in the original Lagrangian. To exemplify it, we consider the

scalar ϕ4 theory, with the Lagrangian

L =
1

2
(∂µϕ0) (∂

µϕ0)−
1

2
m 2

0 ϕ
2
0 − g0ϕ

4
0 .

Writing it as a function of the renormalized field and parameters, we obtain:

L =
1

2
Z (∂µϕ) (∂

µϕ)− 1

2
m 2

0 Zϕ
2 − g0Z

2ϕ4

=
1

2
(∂µϕ) (∂

µϕ)− 1

2
m 2ϕ2 − gϕ4 + Lc ,

where

Lc =
1

2
(Z − 1) (∂µϕ) (∂

µϕ)− 1

2
δmϕ

2 − δgϕ
4 ,

with δm = m 2
0 Z −m2 and δg = g0Z

2 − g.

Therefore, following this procedure, the renormalized theory is described by a

Lagrangian just like the original one, having added Lc, whose terms are called the

counterterms, and can be treated as additional interactions of the theory.

The renormalized Lagrangian for QCD is:

L = −1

4
ZA

(

∂µA
a
ν − ∂νA

a
µ

)

(∂µAaν − ∂νAaµ) +
1

2ξ
(∂.Aa) (∂.Aa) + Z̃c (∂

µc̄a) (∂µc
a)

+ZF ψ̄
j
(

i 6∂ − Zmj
mj

)

ψj − Z̃1gf
abc (∂µc̄a) cbAc

µ + Z1F gψ̄
jT a

jk 6Aaψk

−Z3
g

2
fabc

(

∂µA
a
ν − ∂νA

a
µ

)

AbµAcν − Z4
g2

4
fabef cdeAa

µA
b
νA

cµAdν . (2.24)

¶That is, the renormalized field equals Z−1/2×the original one, which we denote then by ϕ0.
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2.2.2 Renormalization Group

The counterterms can be calculated order by order in perturbation, as depicted in

Subsect.2.1.2: to each order in the coupling g, the counterterms are added to the

loop contributions so as to cancel possible ultraviolet (UV) divergences that arise in

the loop calculations [28, 25].

The UV divergences are parametrized within a certain regularization procedure,

and the definition of the counterterms leads to their dependence on this regulariza-

tion parameter. Each precise choice of counterterms amounts to a choice of renor-

malization scheme and scale. That is, the counterterms end up incorporating the

UV divergences and, irrespective of the chosen scheme, through the regularization

parameter they inevitably depend on some mass scale µ [24, 27].

In this way, the definition of the counterterms is doubly arbitrary: by choosing

one or another scheme, or by varying µ, one obtains equally valid correlation func-

tions to a given perturbative order (i.e. to a given power of g, or number of loops).

To be more precise, let us take a proper vertex (2.23c): In momentum space, the

unrenormalized vertex is a function of p and, say, of the coupling g and mass m.

The renormalized vertex will be, then, also a function of µ:

Γ
(n)
R (p, g,m, µ) = Zn/2(µ)Γ(n)(p, g,m) .

Then, the tautology dΓ(n)/dµ = 0 proves itself very useful:

=⇒ d

dµ

{

Z−n/2(µ)Γ
(n)
R (p, g,m, µ)

}

= 0 , (2.25)

which in turn implies that:

(

µ
∂

∂µ
+ β

∂

∂g
− γmm

∂

∂m
− nγ

)

Γ
(n)
R (p, g,m, µ) = 0 , (2.26)

where

β ≡ β(g,m/µ) = µ
∂g

∂µ
, (2.27a)

γm ≡ γ(g,m/µ) = − µ

m

∂m

∂µ
, (2.27b)

γ ≡ γ(g,m/µ) =
µ

2Z

∂Z

∂µ
. (2.27c)

So, the fact that the renormalized theory does come from the same Lagrangian,

i.e. it is univocally determined despite the arbitrariness of its parameters, implies

that these are actually constrained, satisfying equations (2.26) and (2.27) above.

These are the renormalization group equations (RGEs).
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For a given theory, the dependence of its RGEs on the mass scale µ can be

traded by the dependence on a momentum scale t, so that one ends up with total

derivatives defining the RG functions, like e.g. for the β function:

β(g) =
dg

dt
,

so that the β function describes the coupling g as a quantity depending on t, anal-

ogously to a phase space flow parametrized by t and given by β (g(t)). This flow

accounts for the behavior of the interactions of the given theory with the momentum

scale.

It was proven [29, 30] that QCD‖ presents a fixed point – which is a point

(gc, β(gc)) ≡ (gc, 0) – at gc = 0 in the UV. This behavior is called asymptotic

freedom, and corresponds to a decreasing g that goes to zero as the momentum

scale goes to infinity, so that the higher the energy, the weaker the interaction

among the degrees of freedom of the theory.

It is unknown, however, whether or not QCD presents an IR fixed point, cor-

responding to β → 0 as g → g′c in the IR limit. As we shall describe next, while

asymptotic freedom does allow a perturbative expansion in powers of the small cou-

pling g, this method is only reliable in the UV, and nonperturbative approaches

yet did not provide definite conclusions on the IR behavior of the strong coupling

αs := g2/4π.

‖In fact any non-Abelian YM theory, with possible addition of up to (in the SU(3) case) 16

fermions.
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Chapter 3

Quantum Chromodynamics

3.1 Perturbative QCD

3.1.1 From valence quarks to distribution functions

Since Rutherford’s atomic model [2], scattering experiments led to increasingly

deeper access to the structure of matter, and it was not different for the substructure

of hadrons.

In particular, deep inelastic scattering (DIS) experiments, in which a hadron-

hadron, or a lepton-hadron scattering produces a final state with distinct particle

content, were the ones to probe the hadrons’ internal structure. Considering a

lepton-hadron DIS, the cross-section has the form

σDIS ∼ σ0
[

W2 cos
2 (θ/2) + 2W1 sin

2 (θ/2)
]

,

where θ is a certain scattering angle of the outgoing lepton,W1 andW2 are structure

functions that carry the unknown details of the process, and σ0 is the cross-section

for the collision between the incoming lepton and a charged particle.

It was seen [31] that the high-energy behavior of the structure functions corre-

sponded to the hadron as being a collection of point-like particles – that is, when

probed at higher resolutions, the hadron structure is seen as made of point-like

constituents, which are Feynman’s partons.

As experiments explored this internal structure, it became clear that those par-

tons would not simply be the hadron’s constituents as in the quark model (as the

ones of Figs.1.1,1.2), but that there would be more – the called sea quarks. So, the

understanding of e.g. a baryon evolved from the picture of three valence quarks, in

Fig.3.1, to a picture of the valence quarks together with the sea quarks, as in Fig.3.2,

to finally one with the full partonic constitution of quarks and gluons, Fig.3.3:

The distributions in the figures above are called the parton distribution functions

(PDFs), which are a particular case of distribution functions for the structure of
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Figure 3.1: Representation of the proton as containing three valence quarks uud.

On the right, the corresponding density distribution of these quarks with uniformly

distributed fractions of the baryon’s momentum.

Figure 3.2: Representation of the proton as constituted by valence and sea quarks.

On the right, now a continuous distribution of these quarks with respect to the

fraction of the proton’s momentum.

Figure 3.3: Representation of the full partonic picture of the proton, with a distri-

bution of additional types of quarks and also gluons according to the graph shown

on the right.

hadrons – there are others types and generalizations of parton distributions [32],

all of them contributing to the understanding of this substructure, its dynamics,

and the emergence of certain properties of hadrons. The understanding of hadrons’

spins, for instance, is still an open problem, as well as the distinguished behavior of

the gluon PDF, in contrast with the quarks’, shown on the right in Fig.3.3.

Furthermore, the concept of PDFs allowed for one essential ingredient for per-

turbative QCD: factorization [33]. Generally put, it states that, in a hadron(H1)-
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hadron(H2) collision, the cross-section will be at least approximately given by

dσH1H2
≈

∑

ij types of partons

∫ 1

0

dx1

∫ 1

0

dx2 fi/H1
(x1)fj/H2

(x2) dσ̂ij(x1, x2) , (3.1)

where fk,H(xk) is the density distribution of the parton k in the hadronH at momen-

tum fraction xk, and σ̂ij(x1, x2) is the partonic cross-section for the i-j scattering,

which can, then, be calculated within QCD.

3.1.2 Limitations of perturbative QCD

Asymptotic freedom enables such calculations to be done perturbatively, to increas-

ing order in the coupling αs. The evolution from leading (LO) and next-to-leading

order (NLO) towards next-to-next-to leading order (NNLO) and so on took quite

some time to be accomplished.

The QCD beta function, for example, was determined to LO and NLO in the

early 1970’s, and to NNLO around six years later. Then almost two decades later

it was computed to N3LO [34], a calculation that involved O(104) diagrams.

The number of diagrams grows factorially with the number of loops, as well as

with the number of legs, implying increasing complexity for calculations to higher

orders, and convergence issues [28]. In fact, the perturbative series is only asymp-

totic: not necessarily convergent [35]. That is, it may not converge when higher

order terms are added – even for small values of the coupling, due to the factorial

growth with more loops.

Moreover, it is well-known that the coupling given by perturbation theory devel-

ops the so-called Landau pole – the divergence of αs(Q
2) at some scale Q ∼ ΛQCD –

which is estimated [1] to be of the order of a few hundreds of MeV . Fig.3.4 shows

the current experimental status of αs.

So, the ΛQCD scale sets a boundary for the validity of the perturbative method

– for energies smaller than this, it is definitely inadequate. The Landau singularity

spoils the analyticity of the theory, introducing into physical amplitudes singularities

that are not consistent with the behavior expected from analyticity conditions, on

the theoretical side, and also from experiment.

So, perturbative QCD can evaluate σ̂ in Fig.3.5 below, which describes the vari-

ous aspects and treatments involved in theoretically predicting experimental results

in colliders. The PDFs for the colliding hadrons are experimentally determined,

while the whole process after the parton scattering, in which highly energetic par-

tons fragment into further ones until they end up hadronizing and forming jets, is

greatly model-dependent [36].
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Figure 3.4: Summary of measurements of αs(Q
2). Figure from [1].

Figure 3.5: Concise depiction of the general theoretical treatment of hadron-hadron

collisions. Credits for the figure: Ref.[37].)

So, the complexity of accelerator experiments is such that their analysis depend

on complex tools such as algorithms for jet definition and event generators, as well

as on fragmentation and hadronization models, which are also objects of current

research and development.

3.2 Nonperturbative QCD

To believe that asymptotic freedom and the ever-increasing of αs make QCD’s con-

finement understood is, to some extent, like believing that the transition from quan-

tum to classical physics is understood from the verification of the classical limit of

the path integral as ℏ → 0. First, it is inaccurate to assert that αs indefinitely

increases in the IR: this would be the behavior if perturbation theory were valid at
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lower energies, which is not the case. Secondly, like there are approaches to describe

decoherence as a process somehow brought about from QM, the understanding of

how confinement takes place, someway resulting from the many-particle character

of a QFT when under the circumstances of the IR domain of QCD, is one ultimate

goal of nonperturbative QCD researches.

The nonperturbative (NP) domain is marked by further characteristics besides

confinement, e.g. vortices and topological effects [26], chiral symmetry breaking [38]

and nontrivial condensates [39], whose relation among each other are also object of

investigation, as well as how would they relate to the theory’s correlation functions

[40, 26].

There are in fact various approaches to these matters, from improved quanti-

zation [41, 42] and effective field theories [43], to lattice and SDEs, for instance.

Among these (rather incomplete) mentions, we will focus on the latter, yet citing

also lattice results, given that collaboration between lattice and continuum methods

has been, in the past decade, source for corroborating conclusions in NP QCD.

3.2.1 Lattice and Schwinger-Dyson agreements

Along the years of QCD being well-established, some confinement scenarios were

formulated, stating some or other – sometimes conflicting – properties of QCD,

some of which concerning Green functions, as conditions for confinement to take

place.

In particular, there were two types of behavior for the gluon and ghost propaga-

tors: one, of the called the scaling solutions, consists in a vanishing gluon propagator

at zero momentum accompanied by an IR enhanced (i.e. more divergent than the

tree-level 1/p2) ghost one. Some SDE results for the gluon propagator [44, 45], for

example, indicated an IR behavior ∼ 1/(p2)2. This specific IR enhancement can

be related [46, 18] to a linearly rising potential, accounting for a Schrödinger-like

description of a bound state of (heavy) quarks, and satisfies the Wilson area law,

which serves as a criterion for confinement [47].

The other kind is the behavior of the massive, or decoupling solutions [11, 48,

46, 50, 51], which give a (nonzero) finite freezing value for the gluon propagator,

and the ghost one diverging as 1/p2 in the deep IR – in other words, an also finite

and nonzero ghost dressing.

While analytical approaches led to conclusions agreeing with either one or an-

other scenario, it was the lattice computations [40] that strengthened the agreement

in favor of the massive (decoupling) solutions, at least for SU(2) and SU(3) YM in
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D = 3 and D = 4, and in the Landau gauge [49].∗ This agreement is illustrated

in Fig.3.6 below [50], which contrasts results from lattice and SDEs for the gluon

propagator, and also its perturbative behavior.

Figure 3.6: Comparison between SDE result from [50] and lattice result from [52],

also contrasted with the perturbative (1-loop) behavior, showing the agreement on

the massive-like solutions for the gluon. Credits for the Figure: Ref.[50].

3.2.2 Gluon mass and the strong coupling

Agreements such as the one displayed in Fig.3.6 contributed for the current general

acceptance of massive gluons.

It is important to say, however, that this dynamical mass does not mean that

there is a massive on-shell condition for the gluons – if there is any sense at all to

speak of an on-shell condition for the QCD fields. The massive solution consists in

a low-energy suppression that can be taken into account by a massive-like behavior

as:

∆(p2) ∼ 1

p2 +m2
g(p

2)
, (3.2)

where p is Euclidean and mg is intrinsically momentum-dependent: it decreases

monotonically with energy, going to zero [53] in the ultraviolet (UV) and assumes

a finite value as energy decreases.

While the massive character of gluons has gained increasing acceptance, the

∗We are in the present work mainly concerned with the Landau gauge. There are, nevertheless,

results for other gauges that may be of future interest.
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status of the strong coupling is quite unresolved, since distinct approaches do not

present enough agreement.

In fact, the very nonperturbative definition of αs is problematic: even though

the Slavnov-Taylor identities† (STIs) [54, 24, 20, 55]

Zg :=
Z̃1

Z̃cZ
1/2

A

≡ Z1F

ZFZ
1/2

A

≡ Z3

Z
3/2

A

≡ Z
1/2
4

ZA

, (3.3)

in principle provide an univocal definition, even nonperturbatively, their implemen-

tation in truncated SDEs can be nontrivial and they might as well be only approx-

imately satisfied [56]. So, in practice, one should distinguish the nonperturbative

coupling of each vertex by defining it in terms of either vertex Z̃1, Z1F , Z3, or Z4 [56],

and there is no guarantee in principle, due to the truncations and approximations

involved, that the result would be the same had one chosen another vertex.

Nevertheless, there are some indications for an IR finite αs, coming from lattice

and SDEs [57], as well as from phenomenological and from formal considerations

[58, 11].

There is a particular proposal which is of our special interest: In one of the first

suggestions of massive gluons [11], Cornwall also proposed an ansatz for the running

coupling given by

α(p2) =
1

4πb log
[(

4m2
g(p

2) + p2
)

/Λ2
QCD

] , (3.4)

where mg is the gauge-invariant dynamical gluon mass, b = (33− 2nf ) /48π
2, and

nf is the number of fermions. This charge has been employed in phenomenological

applications [13], and is consistent with a framework of SDEs, also introduced in

[11], that yield massive gluon solutions – namely, the Pinch Technique.

3.2.3 Pinch Technique

The Pinch Technique (PT) is an operational framework that, by means of rearrang-

ing Feynman graphs, accomplishes the definition of new, gauge-invariant correlation

functions, in the sense that they satisfy the Ward Identities (WIs) coming from the

classical action of the theory.

Besides being simpler than the STIs, many of the WIs are linear in the proper

vertices (inverse propagators included), which is one source of rearrangements char-

acteristic of the PT: given some momentum in a diagram, a WI involving it can

†They are functional differential equations for Z, W, and Γ implied by BRST invariance of the

quantized theory, and that imply, in turn, identities for and among correlation functions of the

theory.

26



cancel certain terms, or generate inverse propagators‡ that will transform this dia-

gram into another one which contains effective vertices that were not present in the

Lagrangian in the first place [55].

This was just one example of how cancellations and rearrangements occur. More

generally, the PT is a diagrammatic construction that implements, at the level of

Green functions, properties that are typically displayed by physical observables§.

Further development of this technique established a more refined formulation

[59, 55], leading to all-order results and allowing for a consistent PT framework of

SDEs.

Usually, the (unavoidable) truncation scheme of a SDE system can spoil the

cancellations that would occur if the whole sum were made and thus potentially

breaks the gauge (or BRST) symmetry, as already mentioned on the STIs and

the definition of the QCD charge. Therefore, the formulation of PT SDEs with

gauge-independent building blocks stands as a great advance: since the SDEs are

self-consistent by construction, they will provide, then, gauge invariant solutions as

well [55].

The PT gluon propagator is then kept transverse to all orders, being given by

∆µν(p
2) =

1

p2 +m2
g(p

2)
⊥µν(p) (+0 ‖µν(p)) , (3.5)

where

⊥µν(p) := δµν −
pµpν
p2

, (3.6a)

‖µν(p) :=
pµpν
p2

, (3.6b)

and p is Euclidean.

That is, in the PT framework a mass generation is allowed with no change in

tensor structure of the gluon, nor violation of fundamental identities and constraints

of the theory – a result that is also supported by lattice QCD ones [50]. Such dynam-

ical mass generation in the usual, covariant gauges is a current object of research,

and there are still problems with maintaining transversality and with violations of

STIs [56].

The relation between the PT gluon propagator and the usual one is explored in

[60], and they are equal to leading order in the dressed loop expansion (i.e. in the

number of loops in the PT gluon SDE).

‡One can think of the WI in Eq.4.9 as a prototype.
§In fact, the PT effective correlation functions present further properties associated with physi-

cal quantities, and can be used as ingredients in a then reformulated perturbative expansion – not

only for QCD, but also applied to Electroweak Theory (with symmetry breaking) [55].
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Connection with the Background Field Method

While the PT consists in a diagrammatic, operational procedure whose general and

all-order formulation took some time to be established, before that a connection

with the Background Field Method (BFM) was explored.

Basically, the BFM [61] is a quantization framework which decomposes the quan-

tum field ϕ into a sum with a background one, φ̂. Making ϕ 7→ ϕ+ φ̂ in (2.4a), one

obtains the new generating function¶

Z̃[J, φ̂] =

∫

Dϕ exp i
(

S[ϕ+ φ̂] + J.ϕ
)

,

and correspondingly defines W̃ [J, φ̂], φ̃ = δW̃/δJ and Γ̃[φ̃, φ̂], which is promptly

verified to satisfy

Γ̃[0, φ̂] = Γ[φ]|φ=φ̂ .

This means that the original effective action corresponds to the 1PI vacuum graphs

in the presence of the background field φ̂.

Applying the BFM to a non-Abelian gauge theory, and properly extending the

gauge symmetry to the background gluon field [61] defines what is called the back-

ground field gauge (BFG), whose Feynman rules contain both quantum and back-

ground gluons in external lines (but only quantum ones inside loops).

The key point is that the BFG correlation functions, just like the PT ones, satisfy

WIs instead of STIs [55]. This observation led to the formulation of a correspondence

between the PT and the Feynman BFG [62]. Later on, this correspondence was

established for general BFGs, by generalizing the PT [63]. Although this generalized

PT does not display all the PT features (such as analyticity and unitarity properties

[55]), the gauge-invariance given by the WIs remains satisfied.

So, in this way, the PT-BFM connection allows computing (generalized) PT

Green functions, which do satisfy WIs, by means of the usual QFT framework of

BFG Feynman rules, which is potentially useful for our proposal of implementing

NP properties into the usual Feynman rules language.

¶Note that the integration over dynamic variables is still Dϕ only, since φ̂ is a background,

non-quantum field.
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3.3 Improvements of the perturbative series

Returning to the open gap between QCD and hadronic physics, and to the aforemen-

tioned limitations of perturbative QCD, many authors consider that this problem

could be overcome by reorganizing the perturbative series, and such procedure seems

to depend on the strong coupling’s behavior in the infrared (IR) [58].

One approach to this matter is the Analytical Perturbation Theory (APT) [64], in

which an analyticity condition is imposed so that the Landau pole is systematically

subtracted, order by order, and as a result the theory develops an IR fixed point.

Nevertheless, some singularities remained, for example in Pomeron and Odderon

models [65], resulting from the IR singularity of the gluon propagator.

So, while there are indications that an IR fixed point should be accompanied by a

dynamical mass generation for the gluon [66], massive gluons had in fact been intro-

duced ad hoc within the APT framework [67], whose phenomenological applications

were shown to lead to a better convergence of the perturbative series [68].

Yet another approach to improve the perturbative series is the Dynamical Per-

turbation Theory (DPT) [10]. In this scheme, the quantities that are nonzero to

every order in perturbation are given by their free field values, while quantities that

decrease as λ ∝ e−1/g2 are kept to be possibly treated as expansions in gnλ.

The DPT proposal lacked, though, account that typically non-Abelian diagrams

in QCD disable an explicit separation between contributions from propagators and

from vertices. This problem was discussed in later works [69] that postulated a skele-

ton expansion to 1-loop for QCD in which, for quark-quark scattering for example,

the non-Abelian terms are decomposed [70] into two parts, each contributing either

to vertices or to the gluon propagator.

The work [10] concerned mainly a dynamical mass generation for quarks. With

the increasing agreement between lattice’s and Schwinger-Dyson equations’ (SDE)

results on the gluon propagator, and with the indications that the coupling would be

IR finite, we have motivation to extend the DPT idea considering these two effects

also.

This effort began to be dealt with by applying Cornwall’s effective charge (3.4)

to phenomenological calculations at tree-level, together with a gluon mass of the

form [51]:

m2
g(Q

2) =
m4

Q2 +m2
, (3.7)

as a DPT-like approach to incorporate nonperturbative features into QCD processes

described perturbatively.
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In general [71], as shown in [13], various applications involving very different en-

ergy scales had fit reasonably well the experiments, and they all lead to the following

range for the gluon mass at q2 = 0:

m0 ≈ O(1.2− 2)ΛQCD ,ΛQCD ≈ 300MeV . (3.8)

These tree-level applications have motivated a loop-level implementation of such

nonperturbative features, leading to the work of the present thesis.
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Chapter 4

Effective loop expansion

4.1 The proposal

Like DPT, our proposal is a pragmatic one for the development, even with no sound

derivation yet, of a set of rules that could improve and extend perturbative QCD.

The desired method would provide, already at 1 loop, good results in the UV and

deeper into the IR domain, consisting then in an effective-loop expansion not only

extending the domain of validity of perturbation theory, but with faster convergence.

That is, faster approach to the usual NNLO, N3LO and so on, incorporating, at 1

effective-loop, higher order and possibly intrinsic nonperturbative effects.

The first calculations within this scheme are to concern pure YM. In particular,

this thesis presents the work with the ghost and the gluon propagators. Further

applications to the ghost-gluon and the three-gluon vertices are in progress [15], to

be followed by the inclusion of quarks, upgrading the proposed method from YM to

QCD.

4.1.1 First attempts and issues found

The first, simplest attempt concerned the Landau gauge ghost and gluon propaga-

tors, as well as the ghost-gluon vertex at zero gluon momentum. It is described in

[14], and firstly involved dressing the gluon propagators inside loops, and nothing

else.

We verified, though, that introducing only massive gluons as IR ingredient was

not sufficient to successfully fit the lattice results for the three Green functions

considered then. We explored fits varying parameters within an effective charge

as well as with a constant αs. Although reasonably good fits, with the same set

of values of fitting parameters for the three Green functions, were accomplished,

we considered this first approach unsatisfactory for the following reasons. Besides

31



having employed an ad-hoc renormalization to cancel the divergences∗, by caution

we ought to ponder whether the successful fitting could be due to an excessive

number of parameters in the expression for the charge [14].

Moreover, the gluon self-energy then obtained was not transverse: dressing glu-

ons in the loops generates a nontrivial longitudinal component even in the Landau

gauge, definitely violating BRST symmetry and the STIs. As there are no such vio-

lations in the PT-BFM framework, we then proceeded to explore it. This is detailed

in Sect.4.3.

Meanwhile, we built a basic code with symbolic calculations in the software

Mathematica, using the FeynCalc package for some manipulations.

Later on, we built our own code, directly and exclusively with Mathematica

language, properly designed for our proposal and therefore more efficient for our

purposes. This routine is described in Appendix A, and allowed us to explore the

problem of transversality of the gluon self-energy, to work with general Rξ gauges

and to futurely compute further correlation functions in general momentum config-

urations.

4.1.2 Methodology

The procedure is: first, assume certain forms of the quantities (propagators, ver-

tices) present in each 1-loop expansion: some dressed, some not, composing the

“1-effective-loop” expansion that can be viewed as an approximation of the corre-

sponding SDE.

As to be detailed in the next section, our expansion dresses the gluon propagator

and the background-quantum-quantum gluon vertex, while the ghost dressing and

the ghost-gluon vertex are set to their tree-level forms, since researches indicate

[72] they display nonperturbative behavior qualitatively similar to their respective

perturbative one.

After calculated, this 1-effective-loop correction is analyzed according with cer-

tain renormalization schemes, described in Sect.4.4, to be compared with available

lattice results, which presumably correspond to all orders in conventional perturba-

tion expansion.

This comparison is to tell, then, if such effective-1-loop expansion is a good

approximation to what would be a higher order result, for correlation functions at

least, and in this sense being a better convergent expansion, able to access deeper

into the IR domain of the theory.

∗What we consider to be ad-hoc or not will be detailed in Sect.4.4. In particular, the schemes

employed in this first attempt were the ones given by (4.17) and (4.18).
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This project aims to make calculations analytically, with symbolic computations

only, yet in Mathematica. The reason for an analytical treatment is twofold. On one

hand, there already are very powerful numerical approaches concerning nonpertur-

bative YM and QCD, such as lattice, SDEs and Bethe-Salpeter equations. On the

other hand, and more importantly for practical purposes: for the desired method

to be applicable to QCD phenomenology, it had better be simple at the level of the

loop calculations themselves, since the perturbative machinery from there to actual

testable predictions is very complicated already, as pointed out in Chap.3.

So, a method that is analytically computable at the level of Feynman diagrams

can stand more chances to be useful in the whole picture of perturbative QCD, and

then to provide a link between the UV and IR domains.

In the following sections, we detail the approximations, procedures for calcula-

tions, and further considerations for developing the desired effective-loop expansion.

4.2 Gluon and ghost propagators to 1 effective-loop

From the SDE for the gluon self-energy (Fig.2.5), we have:

Σab
µν (p) = −δabNg2 1

µD−4

∫

dDl

(2π)D

{

1

2
Γµρτ(p,−l,l−p)Γνσα(−p,l,p−l)∆

ρσ
(l)∆

τα
(p−l)(4.1a)

+
1

2
[2gµνgρτ − (1− y) (gµρgντ + gµτgνρ)]∆

ρτ
(l) (4.1b)

+ Γ̃µ(l−p,p,−l)Γ̃ν(l,−p,p−l)

F(l)F(p−l)

l2 (p− l)2
− 2βgµν

F(l)

l2

}

, (4.1c)

where the parameters y and β distinguish the cases considered – the background

gluon in the BFG, or the quantum gluon in the Rξ covariant gauges (CG), respec-

tively given by:
{

β = 1 & y = 1/ξ , for BFG

β = 0 & y = 0 , for CG
, (4.2)

and: Γ is the bare three-gluon (or background-quantum-quantum gluon in the BFG),

Γ is the dressed one; Γ̃ is the bare ghost-gluon vertex, Γ̃ the dressed one; ∆ is the

full gluon propagator, and F is the ghost dressing.

Our present approximation considers:

Γ̃µ(k2,q,−k1) = Γ̃µ(k2,q,−k1) , (4.3a)

F(k) = 1 , (4.3b)

Γαµν(q,p1,p2) = Γαµν(q,p1,p2) + Vαµν(q,p1,p2) . (4.3c)
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The dressing of Γ, in (4.3c), will be discussed in the next section. For the dressed

gluon propagator inside loops, we take

∆µν(k) =
1

k2 +m2
⊥µν(k) +

ξ

k2
‖µν(k) . (4.4)

Representing these approximations diagrammatically, the gluon self-energy that

we calculate is given in Fig.4.1:

Figure 4.1: Diagrams contributing to the gluon self-energy in this approach. Each

diagram depends on the parametrization (4.2) specifying whether the external gluon

is a background or a quantum one.

The constant mass m in (4.4) is an approximation to the dynamical, running

mass m(k2) discussed in the previous chapter. In particular, if we compare the

transverse part 1/
(

k2 +m2
g

)

with

m2
g ≡ m2(k2) =

m4

m2 + k2
(4.5)

and with m2
g ≡ m2(0) := m, we see that this is a reasonable approximation, as

Fig.4.2 below shows.

DI p2 , m2 I p2 MM

DI p2 , m2 H0LM

0.001 0.01 0.1 1 10 100

0

1

2

3

4

p
2

DJ p2 N

Figure 4.2: Comparison of the transverse part of (4.4) with the dynamical mass

(4.5), and with a constant mass m := m2(0), taken to be 500MeV for this graph,

while p2 is in GeV 2 units.
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In other words, we employ the approximation

∆µν

(

k2,m2(k2)
)

≈ ∆µν

(

k2,m2(0)
)

. (4.6)

The same approximations for the ghost self-energy amount to the diagram in

Fig.4.3 below.

Figure 4.3: Diagram corresponding to the ghost self-energy. There is no dependence

on the parameters in (4.2), since the gluons inside loops are always quantum ones.

4.3 Transversality of the gluon propagator

One desired feature for the effective loop expansion is that does not generate lon-

gitudinal corrections for the gluon propagator – i.e. that the incorporation of non-

perturbative properties must only affect its transverse component.

The transverse and the longitudinal components of the self-energy are respec-

tively given by:

Σ⊥ =
1

(D − 1)
⊥µν

(p) Σµν (p) ,

Σ‖ = ‖µν(p) Σµν (p) ,

where Σab
µν (p) =: Σµν (p) δ

ab. So let us consider each contribution that constitutes

Σ‖. The ghost sector contribution (4.1c) is readily evaluated to be

‖µν(p)
∫

dDl

(

Γ̃µ(l−p,p,−l)Γ̃ν(l,−p,p−l)
1

l2 (p− l)2
− 2βgµν

1

l2

)

=
1

4
(1− β)2

∫

dDl
1

l2

(

2− p2

(p− l)2

)

.

As expected from the PT-BFM correspondence [55], the ghost sector is transverse

in the BFG (β = 1), irrespective of the specific gauge ξ. For the covariant gauges

(β = 0), the above contribution is to be summed up with the other ones.

For the tadpole diagram:

‖µν(p)
(

1

2
[2gµνgρτ − (1− y) (gµρgντ + gµτgνρ)]∆

ρτ
(l)

)

=
1

p2

[

∆ −1
ρσ(p) +

(

y − 1

ξ

)

pρpσ

]

∆
ρσ
(l) ,

and finally we proceed to the contribution (4.1a):

‖µν(p)
(

1

2
Γµρτ(p,−l,l−p)Γνσα(−p,l,p−l)∆

ρσ
(l)∆

τα
(p−l)

)

,
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and started exploring the hint, from the WI [60] within the BFM, that the transver-

sality of the gluon self-energy might be achieved with some dressing for the three-

gluon vertex in our 1 loop expansion.

At the beginning, we investigated a general V for the dressing (4.3c) and tried to

constrain it by imposing the vanishing of the longitudinal component of the gluon

self-energy. However, we recognized that, for being too general, it was not a good

strategy to start with, so we added the assumption that the function V would be

given by the ansatz considered in [73, 12], which is a function of the PT (or BFM)

gluon self-energy and, for our approximation (4.6), becomes

Vαµν(p,p1,p2) =
Θαµρ(p,p1)

p2p 2
1

⊥ρν
(p2)

+cyc. perm. , (4.7)

where

Θαµρ(k,q) = θ
m2

2
kαqµ (k − q)ρ , (4.8)

and with θ = 1. We kept, however, θ in the calculations as a parametrization of the

dressing of this vertex, so we can analyze the effects of employing or not this ansatz.

We then verified that the gluon self-energy is transverse with this vertex, for

θ = 1, and for any BFG. In fact, the vertex in this case does satisfy the referred WI

pα
(

Γαµν(p,p1,p2) + Vαµν(p,p1,p2)
)
∣

∣

p=−p1−p2
= ∆ −1

µν(p1)
−∆ −1

µν(p2)
. (4.9)

Given this positive result, we proceeded to compute the ghost and gluon propa-

gators, whose results must be renormalized since, as expected from analytical loop

calculations, divergences will be generated in the formalism.

4.4 Renormalization

From (2.18a), we have for the gluon propagator in terms of the Euclidean momentum

p:

Gab −1
µν (p) = i

{

−Γab (0)
µν (p)− iδab

Nαs

16π
Πµν(p)

}

,

=⇒ G −1
µν (p) = −

(

G(0)
µν

)−1
(p) +

Nαs

16π
Πµν(p) .

Taking the transverse part, we have:

G−1(p) = p2 +
Nαs

16π
Π(p) , (4.10)

which can be renormalized according to two approaches: we can follow the renormal-

ized perturbation theory (RPT) by adding counterterms, or else the renormalization
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procedure employed for SDEs and the lattice [49] – which we shall call nonperturba-

tive renormalization (NPR). Given that the effective expansion proposed is a hybrid

between the usual perturbation and the SDEs, that would connect the IR and UV

domains, it is not clear in principle which renormalization paradigm should be fol-

lowed – or whether an also hybrid renormalization should be constructed.

So, we have analyzed three approaches, to be detailed in the following subsec-

tions. For the general expression (4.10), the NPR approach amounts to making

G−1(p) 7−→ G−1
R (p, µ) = Z(µ2)

[

p2 +
N

16π
αsΠ(p)

]

, (4.11)

while following RPT, on the other hand, we have

G−1(p) = p2 +
N

16π
αsΠ(p)− ΓAA

counterterms

= p2 +
N

16π
αsΠ(p) + p2δZ +m2δm , (4.12)

where it will be necessary to introduce, in addition to δZ , also a mass counterterm

δm.

This is a potentially controverse point, due to the idea that a renormalizable

theory should only have counterterms of the form of terms already present in the

Lagrangian, so that δm would only make sense had we considered a tree-level gluon

mass. However, the dynamical gluon mass is of intrinsically nonperturbative char-

acter, coming from a dynamics that no finite order in (usual) perturbation can

describe. Our proposal intends to preserve it that way: it consists in a method, as

opposed to a model. While keeping the YM Lagrangian unchanged, we dress some

quantities inside loops in order to introduce the whole behavior of the theory into

the fluctuations.

While within SDE approaches no renormalization factor is necessary for the

gluon mass generation, our proposal is expected to touch this matter because it

implements intrinsic nonperturbative properties into the usual formalism of loops,

which traditionally contained only tree-level ingredients.

Moreover, the m2 divergence is a direct consequence of our approximation, in

the loop integral, of the dynamical mass m2(p2) to its freezing value m2(0). So, had

we not made this approximation, there would be no massive UV divergence, since

m2(p2 → ∞) → 0.

Finally, the above renormalizability paradigm can be extended [21, 24] to the

possible addition of a finite number of counterterms, besides the ones of Lagrangian

form.
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According to this, we could add the counterterm δm as long as it would suffice

at more effective-loops. Their implementation may, though, not even make sense

in our approach: Since we expect the 1 effective-loop Green function to account

for its whole all-order, nonperturbative behavior, e.g. by fitting lattice results,

consequently the very proposal of effective loop expansion is to suffice at 1 effective-

loop.

Given these observations, our proposal seems compatible with the renormaliz-

ability paradigm in its extended form, and the addition of δm is justified for renor-

malizing our results following the standards of RPT.

Proceeding with the analysis, we consider the general form of our results for the

propagators, which is:

Π(p) = p2
[(

A+Bs−1
)

γ̄ + f(s)
]

, (4.13)

where

γ̄ :=
2

D − 4
+ γ + log(

m2

4πν2
) , (4.14)

A and B are constants, f(s) is a function of s := p2/m2, and p is the Euclidean

momentum. For the ghost, B ≡ 0, while for the gluon we have one result for the

BFG and another for the transverse part in the CG, shown in Sect. 5.1. With (4.13),

(4.11) and (4.12) become:

G−1
R (p, µ) = Z(µ2)

{

p2
(

1 +
N

16π
αs

[(

A+Bs−1
)

γ̄ + f(s)
]

)}

, (4.15)

G−1(p) = p2
{

1 +
N

16π
αs

[(

A+Bs−1
)

γ̄ + f(s)
]

+ δZ

}

+m2δm , (4.16)

which we consider in detail, then.

4.4.1 Nonperturbative renormalization

Evidently, only one renormalization condition will not cancel both p2 and m2 di-

vergences. Therefore, within this approach alone an ad-hoc scheme is unavoidable.

From (4.15), we obtain:

G−1
R (p, µ) = G−1

R (µ, µ)
p2

(

1 + N
16π
αs [(A+Bs−1) γ̄ + f(s)]

)

µ2
(

1 + N
16π
αs [(A+Bσ−1) γ̄ + f(σ)]

) ,

where σ := µ2/m2. We can deal with this in two ways: implementing an ad-hocMS-

like subtraction for both divergences, or expanding this fraction into a difference.

The former would consist in annihilating the γ̄ terms, leading to:
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G−1
R (p, µ) 7−→ G−1

R (p, µ) = G−1
R (µ, µ)

p2
(

1 + N
16π
αsf(s)

)

µ2
(

1 + N
16π
αsf(σ)

) . (4.17)

Now, the expansion in αs must be cautious. Since we will dress αs later on, i.e.

implement its running with momentum, we should expand the expression for G−1
R ,

whose denominator is a function of µ instead of p, so the expansion will correspond

to one around the value αs(µ) = 0, thus being consistent even after dressing the

coupling. Doing that, we obtain

G−1
R (p, µ) = G−1

R (µ, µ)
p2

µ2

{

1 +
N

16π
αs

[

B
(

s−1 − σ−1
)

γ̄ + f(s)− f(σ)
]

}

,

so an additional ad-hoc condition must still be imposed in order to cancel the m2

divergence above. Opting again for MS-like yields

G−1
R (p, µ) = G−1

R (µ, µ)
p2

µ2

{

1 +
N

16π
αs [f(s)− f(σ)]

}

. (4.18)

4.4.2 Hybrid approach

Another way is to try a hybrid between the two renormalization paradigms: RPT

for δZ , and a multiplicative factor like in NPR, together with expansion in α(µ) to

try canceling the m2 divergence.

Starting with

G−1(p, µ1) = p2
{

1 +
N

16π
αs

[(

A+Bs−1
)

γ̄ + f(s)
]

+ δZ(µ1)

}

,

we determine δZ in terms of the value G−1(µ1, µ1), and then apply a NPR procedure

G−1
R (p, µ1, µ2) = Z(µ2)G

−1(p, µ1) , (4.19)

with the multiplicative factor Z(µ2) given in terms of the value of G−1
R (µ2, µ1, µ2).

Doing this, we obtain

G−1
R (p, µ1, µ2)

G−1
R (µ2, µ1, µ2)

=
p2

µ2
2

{

1 + N
16π
αsG(µ1, µ1)µ

2
1 [B (s−1 − σ1

−1) γ̄ + f(s)− f(σ1)]
}

{

1 + N
16π
αsG(µ1, µ1)µ2

1

[

B
(

σ−1
2 − σ1−1

)

γ̄ + f(σ2)− f(σ1)
]} ,

which requires anMS-like scheme to cancel the B terms, by making B 7→ 0, whether

we expand the above expression or not. We do this and remain considering both

cases, as follows:

G−1
R (p, µ1, µ2) = G−1

R (µ2, µ1, µ2)
p2

µ2
2

{

1 +
N

16π
αsG(µ1, µ1)µ

2
1 [f(s)− f(σ2)]

}

,

(4.20)
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and

G−1
R (p, µ1, µ2) = G−1

R (µ2, µ1, µ2)
p2

µ2
2

1 + N
16π
αsG(µ1, µ1)µ

2
1 [f(s)− f(σ1)]

1 + N
16π
αsG(µ1, µ1)µ2

1 [f(σ2)− f(σ1)]
. (4.21)

The factor Z(µ2) in expression (4.19) can actually account for the multiplicative

factor that is in principle arbitrary [74] in lattice computations of Green functions.

That is, the NPR procedure of (4.19) corresponds to relating the 1 loop result Gloop

to the lattice one, Glattice:

G −1
lattice(p) = Z(µ2)G

−1
loop(p, µ1), (4.22)

thus accounting for the arbitrary overall constant in Glattice. We will return to this

point when analyzing the results obtained for the 1 effective-loops.

We note that for the ghost, the second scale µ2 is unnecessary, so this scheme need

not be considered for renormalization of the ghost propagator. Also, we emphasize

the need for an ad-hoc cancellation of the mass divergence in all approaches until

this point. As we will see, there is only one case in which we could give a more

founded cancellation of divergences, and it was within RPT.

4.4.3 Renormalized Perturbation

We know that fixing the value of the full propagator at one momentum scale suffices

to fix one counterterm. As we argued in the beginning of this section, it does make

sense in our proposal to introduce a mass counterterm. In order to fix δm within a

momentum subtraction (MOM) scheme, we can choose a second momentum scale.

More precisely: with expression (4.16), we simultaneously fix the values G(µ1)

and G(µ2), and, with two linear equations, we can find consistent solutions writing

δZ and δm in terms of them. This leads to the following equivalent expressions:

G−1(p) = G−1(µ1) +
N

16π
αs

[

p2f(s)− µ2
1f(σ1)

]

+
(p2 − µ2

1)

(µ2
1 − µ2

2)

[

G−1(µ1)−G−1(µ2)−
N

16π
αs

[

µ2
1f(σ1)− µ2

2f(σ2)
]

]

(4.23)

= G−1(µ2) +
N

16π
αs

[

p2f(s)− µ2
2f(σ2)

]

+
(p2 − µ2

2)

(µ2
1 − µ2

2)

[

G−1(µ1)−G−1(µ2)−
N

16π
αs

[

µ2
1f(σ1)− µ2

2f(σ2)
]

]

.(4.24)

In the next chapter, when renormalizing our results, we will choose one scale,

say µ1, in the UV, and set G to its tree-level form

G(µ2
1) =

1

µ2
1

. (4.25)
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This will be enough for the ghost propagator. For the gluon, the need for another

scale can actually be meaningful. Recalling the approximation of the dynamical

mass m(p2) to m(0), µ2 can serve to make our result consistent with the mass we

used in loops as the freezing value m(0) =: m: We can do this by choosing µ2 in the

IR, and setting

G(µ2
2) =

1

m2 + µ2
2

. (4.26)

For the ghost propagator, we have

G̃−1(p) = p2
{

1 +
N

16π
αs [Aγ̄ + f(s)] + δZ

}

=: p2F−1(p) , (4.27)

where F (p) is the ghost dressing function. So, fixing δZ in terms of the value F (µ),

we obtain

F (p)−1 = F (µ)−1 +
Nαs

16π
[f(s)− f(σ)] , (4.28)

which is the RPT expression for the ghost dressing function, in the MOM scheme.

As in (4.25), we will set F (µ) = 1 for µ in the UV.

Although (4.23) and (4.24) are more complicated expressions, they are the less

arbitrary ones, since they require neither ad-hoc MS-like vanishings A,B 7→ 0.

Moreover, given that our approach aims to link and access both UV and IR do-

mains, the above setting of scales seems reasonable. Finally the IR condition relates

the mass renormalization with the freezing of the gluon mass, which is the main

ingredient of the effective loop expansion proposed. For these reasons, the RPT

approach described above is, at least conceptually, the preferred one by us. It is

in the next chapter, though, that the results will tell whether this renormalization

scheme will turn out to be successful or not.

There are, nevertheless, further ingredients in our effective expansion.

4.5 Further dressings: effective charge and running mass

We advocated the dressing of the gluon propagator inside loops based on its distin-

guished IR behavior, given by the dynamical mass generation. Having evaluated the

loop integrals, we obtain expressions in terms of αs, which also may display such

distinguished behavior. As referred in Chap.3, an IR finite coupling may as well

accompany an IR finite gluon propagator, besides indications of this behavior from

nonperturbative methods. Considering that we want to describe both UV and IR

domains, dressing αs 7→ αs(p
2) is a compelling idea.
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Since we also want to arrive at analytical expressions for our 1-effective loop

Green functions, we maintain the “Cornwall-inspired” guidance and opt to employ

his analytical expression (3.4)

αs(p
2) =

4π

11 log
[

(4m2(p2) + p2) /Λ2
QCD

] , (4.29)

where we shall take ΛQCD = rm(0) and consider r ∈ [1, 3], based on phenomenolog-

ical approaches mentioned in Chap.3.

We note that the above expression contains the dynamical, running gluon mass,

so we decided to explore the following two cases. One, with all dependence in m

being the constant value ≈ m(0), and the other implementing its running. That is,

αs(p
2) =

4π

11 log
(

r2(4m2
g+p2)

m2

) and s =
p2

m2
g

, (4.30)

where:

either m2
g ≡ m2(0) =: m2 , (4.31)

or m2
g ≡ m2(p2) =

m4

m2 + p2
. (4.32)

In other words, we will analyze both cases G(p2,m2(0)) and G(p2,m2(p2)). Now,

the expressions of the previous section become, following the same order as before:

G−1
R (p, µ) = G−1

R (µ, µ)
p2

(

1 + N
16π
αs(p

2)f(s)
)

µ2
(

1 + N
16π
αs(µ2)f(σ)

) , (4.33)

G−1
R (p, µ) = G−1

R (µ, µ)
p2

µ2

(

1 +
N

16π

[

αs(p
2)f(s)− αs(µ

2)f(σ)
]

)

, (4.34)

G−1
R (p, µ1, µ2) = G−1

R (µ2, µ1, µ2)
p2

µ2
2

(

1 +
N

16π
G(µ1, µ1)µ

2
1

[

αs(p
2)f(s)− αs(µ

2
2)f(σ2)

]

)

,

(4.35)

G−1
R (p, µ1, µ2) = G−1

R (µ2, µ1, µ2)
p2

µ2
2

1 + N
16π
G(µ1, µ1)µ

2
1 [αs(p

2)f(s)− αs(µ
2
1)f(σ1)]

1 + N
16π
G(µ1, µ1)µ2

1 [αs(µ2
2)f(σ2)− αs(µ2

1)f(σ1)]
,

(4.36)
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G−1(p) =G−1(µ1) +
N

16π

[

p2αs(p
2)f(s)− µ2

1αs(µ
2
1)f(σ1)

]

+
(p2 − µ2

1)

(µ2
1 − µ2

2)

[

G−1(µ1)−G−1(µ2)−
N

16π

[

µ2
1αs(µ

2
1)f(σ1)− µ2

2αs(µ
2
2)f(σ2)

]

]

(4.37)

=G−1(µ2) +
N

16π

[

p2αs(p
2)f(s)− µ2

2αs(µ
2
2)f(σ2)

]

+
(p2 − µ2

2)

(µ2
1 − µ2

2)

[

G−1(µ1)−G−1(µ2)−
N

16π

[

µ2
1αs(µ

2
1)f(σ1)− µ2

2αs(µ
2
2)f(σ2)

]

]

,

(4.38)

F (p)−1 = F (µ)−1 +
N

16π
[αs(s)f(s)− αs(σ)f(σ)] . (4.39)

With the definitions (4.30), (4.31), and (4.32), the above expressions were applied

to the results for the ghost and the gluon self-energies, which we continue to present

in the following chapter.
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Chapter 5

Results

5.1 Analytical expressions

In this section we present some results obtained from the Mathematica code devel-

oped. Following the notation of the previous chapter for the self-energy Π, in this

one we shall write Π ≡ p2ζ. That is, from (4.10),

G−1(p) = p2
(

1 +
Nαs

16π
ζ(p)

)

,

and from (4.13), then:

ζ(p) =
(

A+Bs−1
)

γ̄ + f(s) (5.1)

is the general form of the results to be shown next, directly relatable to the renor-

malized dressed expressions (4.33)-(4.38).

5.1.1 Gluon propagator

The gluon self-energy is decomposed into transverse (⊥µν(p)) and longitudinal (‖µν(p))
terms, denoted respectively as ζ⊥ and ζ‖. Also, superscripts BFG or CG will denote

the results for the background field or covariant gauges, respectively.

In the BFG, the longitudinal part indeed vanishes for θ = 1, while the best one

could do in CG (at D=4) is to obtain a finite longitudinal term for θ = (1 + ξ)/ξ.

In this case, this finite part is

ζCG
‖ |θ=(1+ξ)/ξ= −4 + s

s2
+

(1 + s) (4− s+ s2)

s3
log(1 + s)− log(s) ,

so that, definitely, no dressing of the form (4.7,4.8) for the three-gluon vertex can

render a vanishing longitudinal term for the (quantum) gluon self-energy. Never-

theless, this does not exclude the possibility that another form of dressing might

accomplish that, so this remains then as an open problem.
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For the BFG, the general result for the longitudinal part is:

ζBFG
‖ (p2) = (θ − 1)

[

−3(ξ − 1)

s
γ̄ +

(−3ξ + (4ξ − 5)s− 1)

s2

− log(s) +
(1 + s) (3ξ + s2 + (2− 3ξ)s+ 1)

s3
log(1 + s)

]

.

Therefore, the 1 effective-loop BFG self-energy is transverse, irrespective of the gauge

choice: the dressing (4.7,4.8) for the background-gluon-gluon vertex, with θ = 1,

guarantees the gauge-independent∗ transversality of the background gluon

self-energy, as actually expected from the WI (4.9) satisfied by that dressed vertex.

Now, for the transverse part, it turns out that all its dependence on θ is propor-

tional to ξ2 and ξ2y, so that, whether in the BFG or the CG, the transverse part is

independent of θ in the Landau gauge.

The expression obtained for the BFG gluon self-energy is, for general ξ and θ,

and (below) also for the Landau gauge:

ζBFG
⊥ =− (3(θ − 3)ξ + 44s+ 9)

s
γ̄

+
−3ξ + 3 (ξ2 + 7ξ + 15) s2 + s (3θξ2 + (4θ + 6)ξ − 37)− 1

s2

+
(−6θξ + s3 + (6ξ − 4)s2 − 6(2ξ + 1)s)

2s
log(s)

+
(1− s)(1 + s) (3ξ + s3 + 3(ξ − 3)s2 − 3(2ξ + 3)s+ 1)

s3
log(1 + s)

− 1

2

(

s2 − 20s+ 12
)

(

s+ 4

s

)3/2

log

(
√
s+ 4−√

s√
s+ 4 +

√
s

)

ξ=07−→ − (44 + 9s−1)γ̄ + 45− 37s−1 − s−2 +
1

2

(

s2 − 4s− 6
)

log(s)

+
(1− s)(1 + s)2 (s2 − 10s+ 1)

s3
log(1 + s)

− 1

2

(

s2 − 20s+ 12
)

(

s+ 4

s

)3/2

log

(
√
s+ 4−√

s√
s+ 4 +

√
s

)

, (5.2)

∗That is, independent of the gauge choice ξ.
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while the corresponding result for the CG case is

ζCG
⊥ =

(9ξ + 6ξs− 26s+ 9)

s
γ̄ +

−3ξ + (3ξ2 + 13ξ + 23) s2 + 3s (θξ2 + 2ξ − 19) + 1

s2

− (1 + s) (−3ξ + s4 + (3ξ − 8)s3 − 9(ξ + 2)s2 + (9ξ − 8)s+ 1)

s3
log(1 + s)

+
1

2

(

s2 + 6ξs− 2
)

log(s)− 1

2

(

s2 − 20s+ 12
)

(

s+ 4

s

)3/2

log

(
√
s+ 4−√

s√
s+ 4 +

√
s

)

ξ=07−→ −
(

26− 9s−1
)

γ̄ + 23− 57s−1 + s−2 − (1 + s)3 (s2 − 10s+ 1)

s3
log(1 + s)

+
1

2

(

s2 − 2
)

log(s)− 1

2

(

s2 − 20s+ 12
)

(

s+ 4

s

)3/2

log

(
√
s+ 4−√

s√
s+ 4 +

√
s

)

.

(5.3)

Also for general case and then in the Landau gauge, the CG longitudinal term

obtained is:

ζCG
‖ =− 3(ξ(θ − 1)− 1)

s
γ̄ +

−3(θ − 1)ξ + s(4(θ − 1)ξ − 5)− 1

s2

+
(1 + s) (3(θ − 1)ξ + s2 + s(2− 3(θ − 1)ξ) + 1)

s3
log(1 + s)− log(s)

ξ=07−→ 3s−1γ̄ − 5s+ 1

s2
+

(1 + s)3

s3
log(1 + s)− log(s) . (5.4)

A comparison between this longitudinal and the corresponding transverse part

can be given by the ratio ζCG
‖ /ζCG

⊥ . However, previous renormalization is necessary

for this comparison, and there seems to be no preferred scheme for the longitu-

dinal term: as opposed to the δm case, we do not consider the introduction of a

counterterm, say δ‖, a good procedure to be part of our proposal, given that such

longitudinal term amounts to violation of symmetries in either BFG or CG case,

and that dynamical gluon mass generation can be made compatible with a vanish-

ing longitudinal self-energy. Yet, in order to do some comparison, we employed last

chapter’s MS-like scheme, and considered the ratio

RMS′ :=
ζCG
‖ |A,B 7→0

ζCG
⊥ |A,B 7→0

, (5.5)

which is shown in Fig.5.1 below.
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Figure 5.1: Ratio (5.5) between the longitudinal and the transverse CG self-ener-

gies, with divergences canceled by the MS-like scheme. The p2 scale is GeV 2 and

m = 500MeV .

So, for p2 & 0.1GeV 2, the (MS-like) longitudinal self-energy is definitely negligi-

ble compared to the transverse one. For lower energies, though, it develops the same

order of magnitude, ζCG
‖ |A,B 7→0 being even greater than its transverse counterpart

for p2 . 0.01GeV 2.

While it is unknown how would this longitudinal-term generation affect further,

phenomenological applications, this is definitely a problem for of the effective-loop

proposal when applied to correlation functions, and it could not but be exposed.

We remark, still, that this comparison is renormalization-scheme dependent, and

anticipate the results of next section that this particular scheme did not provide

good results for the gluon propagator, so conclusions drawn from it should be con-

sidered with care. In any case, the BFG already stands in advantage for providing

a consistent framework for the desired effective-loop expansions.

5.1.2 Ghost propagator

The result obtained for the ghost self-energy is:

ζ̃ = (3− ξ)γ̄ − 5− s−1 − (ξ + s) log(s) +
(1 + s)3

s2
log(1 + s)

ξ=07−→ 3γ̄ − 5− s−1 − s log(s) +
(1 + s)3

s2
log(1 + s) . (5.6)
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5.2 Successful renormalization schemes

Among the results given above, the ones for the Landau gauge were analyzed accord-

ing with each of the renormalization approaches and schemes presented in Sect.4.4.

The ghost dressing presented the same qualitative behavior for both NPR and

RPT cases, yet with values of freezing not only different, but of different orders of

magnitude: Expressions (4.33) and (4.34) led to freezing values F (p2 → 0) ∼ 120

(for m = 500MeV , r = 2), and a strong dependence on the renormalization scale

µ: going from µ = 100GeV 2 to 1000GeV 2, the freezing goes from ∼ 120 to ∼ 1200.

On the other hand, the scheme (4.37),(4.38) led to a freezing value ∼ 1.25, and to

only slight variation with µ2 from 100 to 1000GeV 2. For F (µ2 = 100GeV 2) = 1,

the result is shown in Fig.5.2:
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Figure 5.2: RPT-MOM (4.39) renormalized ghost dressing function, contrasted

when dependent on a constant or a running gluon massmg. The squared momentum

p2 is in GeV 2 units, µ = 100GeV 2, m = 500MeV , and r = 2.

For the gluon propagator the situation was distinct. For both BFG and CG

cases, the only successful approach in reaching the expected qualitative behavior

was the RPT one.

This is actually a pleasant result because, first, it indicates a preferable renor-

malization approach and scheme; second, because, as explained in 4.4, the RPT

given by (4.23), (4.24), (4.28) is the one we consider better founded.

The qualitative behavior agreeing with lattice and SDEs was obtained, within the

RPT-MOM scheme, for the Landau gauge, with µ2
1 = µ2 = 100GeV 2, and, for the

gluon case, with µ2
2 = 0.001GeV 2 also. Figs.5.3,5.4 below present these succeeded
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RPT-MOM renormalized gluon propagator results for both constant and dynamical

gluon mass.

GBFG I p2 , m2 I p2 MM
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Figure 5.3: RPT-MOM (4.37) renormalized background gluon propagator, con-

trasted when dependent on a constant or a running gluon mass mg. The squared

momentum p2 is in GeV 2 units, µ = 100GeV 2, m = 500MeV , and r = 2.
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Figure 5.4: RPT-MOM (4.37) renormalized (transverse part of) quantum gluon

propagator, contrasted when dependent on a constant or a running gluon mass mg.

The squared momentum p2 is in GeV 2 units, µ = 100GeV 2, m = 500MeV , and

r = 2.
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The next graph compares directly the CG and the BFG results, for the case of

a dynamical mass.
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Figure 5.5: Comparison between the close RPT-MOM (4.37) results for the CG and

BFG, for the case of a constant mass. Also, p2 is in GeV 2 units, µ = 100GeV 2,

m = 500MeV , and r = 2.

In fact, the RPT-MOM scheme was the only case for which the BFG and the

transverse CG results were similar, as shown in Fig.5.5, which is potentially inter-

esting from a practical point of view, as discarding the longitudinal term ζCG
‖ (i.e.

keeping ζCG
⊥ only) yet would approximate the exactly transverse result ζBFG.

Furthermore, we see a more significant difference between the employment of

a constant or a dynamical mass for the ghost dressing F , giving distinct freezing

values, 1.24 and 1.55 respectively.

The reason is not so much for this difference being present in F , but for it

being absent in G. Since the RPT for the gluon involved an IR scale µ2, both

G(m2(0)) and G(m2(p2)) cases are constrained to a freezing value G(µ2) – in our

renormalization choice, equal to 1/(µ2
2 +m2(0)) and 1/(µ2

2 +m2(µ2
2)) respectively.

For the ghost propagator and dressing, there is no such constraint, therefore allowing

manifest difference between the dynamical and the constant mass cases for F (p→ 0).

Nevertheless, we should note that those two freezing values do correspond to very
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close curves for the ghost propagator, as shown in Fig.5.6 below.
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Figure 5.6: Curves for the ghost propagator corresponding to the dressing functions

of Fig.5.2, for a constant or a running gluon mass mg. Still, p2 is in GeV 2 units,

µ = 100GeV 2, m = 500MeV , and r = 2.

Moreover, the constraint on the freezing G(p2 → 0) of the gluon propagator to

be given by the gluon mass recalls us of the consideration, expressed in (4.22), that

lattice results for Green functions are given up to an arbitrary overall (multiplicative)

factor.

Since our results should not lose their UV limit to the perturbative behavior,

comparison with lattice data will likely require rescaling the latter by a multiplicative

factor.

5.3 Comparison to lattice results

In this section, we will compare our effective-loop results to both lattice and the

usual perturbative ones. The latter is taken from the massless limit of our results,

which, from (5.1) within the RPT, are given by:

G−1(p) = p2
{

1 +
Nαs

16π

(

A

[

2

D − 4
+ γ + log

(

p2

4πν2

)]

+ f0(p)

)

+ δZ

}

,

where f0(p) = limm→0[f(s) − A log(s)]. Taking the MOM renormalization scheme

yields

G−1(p) = p2
{

G−1(µ)

µ2
+
Nαs

16π

[

A log

(

p2

µ2

)

+ f0(p)− f0(µ)

]}

,
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where f0 are constants for all cases considered. Also, taking αs as Cornwall’s charge

(3.4) evaluated at the renormalization scale µ, we have

G−1(p) = p2
{

G−1(µ)

µ2
+

N

16π
αs(µ

2)A log

(

p2

µ2

)}

(5.7)

as the (usual, massless) perturbative expressions to be contrasted with our results.

The lattice results are from [75], and will be compared with ours for m =

500MeV , r := m/ΛQCD = 2, and µ2 = µ2
1 = 100GeV 2.

5.3.1 Gluon propagator

Since our approach for the gluon propagator included a consistency renormalization

condition G(µ2) = 1/(m2 + µ2
2) in the IR, the first rescaling of lattice data will be

based on this IR condition.

The lowest value of momentum for which there is lattice data is precisely the

µ2
2 = 0.001GeV 2 that we considered in our general analysis of the previous section.

Then, we divided the whole set of data by a common factor so that the lattice value

at µ2 would equal our G(µ2) = 1/(m2 + µ2
2), for m = 500MeV in this case†. The

contrasts are shown in Figs.5.7,5.8 below.
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Figure 5.7: Comparison of our BFG results for the gluon propagator with dynamical

and constant gluon mass to the (massless 1-loop) perturbative result, and to lattice

data rescaled in the IR. p2 is in GeV 2 units, µ1 = 100GeV 2, m = 500MeV , and

r = 2.

†Different combinations with m = 600MeV and r = 1.2 were also considered, and lead to

similar contrasts with the lattice.
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Figure 5.8: Comparison of our CG results for the gluon propagator with dynamical

and constant gluon mass to the (massless 1-loop) perturbative result, and to lattice

data rescaled in the IR. p2 is in GeV 2 units, µ1 = 100GeV 2, m = 500MeV , and

r = 2.

We see that, with this rescaling, the contrast between the 1-effective-loop and

the lattice results is similar to the contrast between SDE and the same lattice ones

shown in Fig.3.6, where the freezing of the SDE solution is constrained to equal the

original corresponding lattice value. This means that our 1-effective-loop result does

approximate the full, PT-SDE one – either in BFG or CG, as noted in Sect.5.2 – as

well as the usual perturbative one in the UV, and therefore is a positive result.

We should also explore, for matters of investigation, rescaling the lattice data

according to the other renormalization condition, the one in the UV, approximating

the lattice to our high-energy behavior. This leads to the graphs in Figs.5.9,5.10:
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Figure 5.9: Comparison of our BFG results for the gluon propagator with dynamical

and constant gluon mass to the (massless 1-loop) perturbative result, and to lattice

data rescaled in the UV. p2 is in GeV 2 units, µ1 = 100GeV 2, m = 500MeV , and

r = 2.
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Figure 5.10: Comparison of our CG results for the gluon propagator with dynamical

and constant gluon mass to the (massless 1-loop) perturbative result, and to lattice

data rescaled in the UV. p2 is in GeV 2 units, µ1 = 100GeV 2, m = 500MeV , and

r = 2.

In this case, the 1-effective-loop gluon propagator is definitely too suppressed

comparing with the lattice.
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While this can point to the IR-rescaling of the lattice as a better approach for

comparison with lattice, the situation for the ghost dressing function is not that

resolved.

5.3.2 Ghost dressing

On one hand, there is no IR condition imposed on the ghost dressing, which led to

quite distinct freezing values for F , as discussed in Sect.5.2. On the other, we have

also noted, with Figs.5.2,5.6, that such difference did not lead to much distinct ghost

propagators F (p)/p2. This means that an analysis in terms of the dressing function

accentuates the differences among the lattice, the 1-effective-, and the 1-usual-loop

results.

Since the IR rescaling of the lattice was well-succeeded for the gluon propagator,

we explored doing the same for the ghost dressing, rescaling the lattice data at

lowest momentum to be close to our freezing values for F . This led to Fig.5.11

below, showing that this is not a good procedure for the dressing.

FI p2 , m2 I p2 MM

FI p2 , m2 H0LM

FI p2 , 0M

Lattice HIR-rescaledL

0.001 0.01 0.1 1 10 100
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

p
2

FJ p2 , mg2 N

Figure 5.11: Comparison of our results for the ghost dressing with dynamical and

constant gluon mass to the (massless 1-loop) perturbative result, and to lattice data

rescaled in the IR. p2 is in GeV 2 units, µ = 100GeV 2, m = 500MeV , and r = 2.
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Now, rescaling the lattice values to the UV limit of our result led to Fig.5.12:
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Figure 5.12: Comparison of our results for the ghost dressing with dynamical and

constant gluon mass to the (massless 1-loop) perturbative result, and to lattice data

rescaled in the UV. p2 is in GeV 2 units, µ = 100GeV 2, m = 500MeV , and r = 2.

This is surely better, but, like in Figs.5.9,5.10 for the gluon propagator, it is too

IR suppressed compared with the UV-rescaled lattice.

It seems, then, that an intermediate rescaling of the lattice may be better – still

not satisfactory, though: our result is still IR suppressed, while the lattice becomes

remarkably lower than ours in the perturbative limit‡, as shown in Fig.5.13:

‡The difference in the UV limits is however quite similar to the difference between the three

F (p2,m2(p2)), F (p2,m2(0)), F (p2, 0) for p > µ.
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Figure 5.13: Comparison of our results for the ghost dressing, with dynamical and

constant gluon mass, to the respective (massless 1-loop) perturbative and lattice

ones. The latter is rescaled by a factor 2, p2 is in GeV 2 units, µ = 100GeV 2,

m = 500MeV , and r = 2.

If we apply this same rescaling to the data for the ghost propagator, the com-

parison looks better, as shown in Fig.5.14:
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Figure 5.14: Comparison of our results for the ghost propagator, with dynamical

and constant gluon mass, to the respective (massless 1-loop) perturbative and lattice

ones. The latter is rescaled by a factor 2, p2 is in GeV 2 units, µ = 100GeV 2,

m = 500MeV , and r = 2.
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5.4 Conclusions and prospects

Our results have shown that the desired method of effective loops is, first of all, still

likely to require further ingredients – as the rescaling of lattice data for the analysis,

which we consider still not enough for suggesting an univocal successful procedure.

Comparison to other lattice results, including SU(2) YM and possibly other gauges,

as well as calculation of more correlation functions, may clarify this situation and

further probe the effectiveness of our approximations.

Nevertheless, the results do display the IR qualitative behavior indicated by

purely nonperturbative studies for these propagators in the Landau gauge. At this

point of the proposal, this, together with the transversality of the background gluon

propagator and that ζCG
⊥ θ=0 ≈ ζBFG

⊥ θ=1 ≡ ζBFG
θ=1 , stands as some success for the em-

ployment of the three-gluon vertex dressing, the effective charge (3.4), and specially

the RPT renormalization approach.

Concerning the correlation functions still, the three-gluon vertex will soon be cal-

culated, so its 1-effective-loop result can also be compared with its dressing employed

in the effective-loop expansion. That is, besides comparing with lattice, the results

can be contrasted with the very expression inserted in the loops, that was chosen to

be dressed or not. This would tell if the scheme is approximately consistent§ as an

1 loop truncation, yet able to access deeper into the IR domain of the theory.

This framework, together with the Mathematica code, is readily applicable to

further cases: from YM vertices to the inclusion of quarks, in general gauges and

general momentum configurations. These calculations will provide further mate-

rial for analysis and comparison to lattice, so as to evolve the understanding of

limitations and the effectiveness of the method proposed.

Renormalization group analyses are also intended and, after the improvement

to full QCD, some first phenomenological applications are also planned for Post-

Doctorate research.

§As opposed to an actual SDE solution, which is self-consistent by construction.
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Appendix A

Summary of the calculation procedure

This appendix briefly describes the logic followed by the Mathematica code con-

structed, for the case of propagators.

It begins by distinguishing the terms of the following form:

nαβab (p, l)
(

(p− l)2 + am2
)α

(l2 + bm2)β
, (A.1)

specified by (αβab), for each α, β ≥ 0, a, b = 0, 1. Here, nαβab denotes the numerator

corresponding to each of these denominators.

Each nαβab is a function of the external and the loop momentum, p and l, re-

spectively. After the proper Feynman parametrization and accompanying change

of variables∗, we apply to n the usual loop integration properties – such as, for

example†:

(p.l)n 7→
{

0 for odd n

(p2l2/D)
n/2

for even n
(A.2)

so that it ends up as a polynomial in l2:

nαβab(p, l) 7−→ n̄αβab(p
2, l2, x) =

λsup
∑

λ=0

C
(λ)
αβab(p

2, x)
(

l2
)λ

, (A.3)

where x is the Feynman parameter and, by construction,

C
(λ)
αβab(p

2, x) =
1

λ!

dλn̄αβab

d(l2)λ

∣

∣

∣

∣

l2=0

. (A.4)

Each of these coefficients will be, then, the coefficient of each loop integral

1

νD−4

∫

dDl

(2π)D
(l2)

λ

(l2 +∆)α+β
=: int(α, β, a, b, λ) , (A.5)

∗For the α, β 6= 0 case, for instance, it is l 7→ l − xp.
†Similar relations with tensor indices are defined as well. Also, D is the spacetime dimension.
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where

int(α > 0, β > 0, a, b, λ) ≡ 1

16π2

Γ (λ+D/2)

Γ (D/2)

(

∆

4πν2

)−2+D/2

∆2+λ−α−βΓ (α + β − λ−D/2) ,

(A.6)

and ∆ ≡ ∆(α > 0, β > 0, a, b) = x(1− x)p2 + (xa+ (1− x)b)m2.

So, the sum of the integrals (A.6), with coefficients (A.4) and the additional

Feynman-parametrization factor

den(α > 0, β > 0) :=
xα−1(1− x)−1

Γ (α) Γ (β)
(A.7)

yield the contribution of all terms (A.1) with α, β > 0.

Similar procedure is done for the cases (α = 0, β > 0) and (α > 0, β = 0), with

corresponding Feynman parametrization and definitions for the functions den(α, β)

and int(α, β, a, b, λ). Summarizing, we have

nαβab (p, l)
(

(p− l)2 + am2
)α

(l2 + bm2)β

∫
dDl7−→ den(α, β)

λsup
∑

λ=0

C
(λ)
αβab(p

2, x) int(α, β, a, b, λ) ,

(A.8)

where C
(λ)
αβab is in either case given by (A.4).

The results for all (α, β, a, b) are summed up, and the sum is then expanded

around D = 4, and finally the integration over the Feynman parameter gives the

final result.
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