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VARREDURAS GENÔMICAS PARA A DETECÇÃO DE LOCI ENVOLVIDOS NA 

BIOLOGIA REPRODUTIVA DE BOVINOS 

 

 

 RESUMO – O desempenho reprodutivo dos animais tem um grande impacto 

sobre a indústria da carne bovina. A caracterização de regiões genômicas que 

afetam a fertilidade dos animais pode contribuir para a identificação de marcadores 

preditivos de desempenho reprodutivo e desvendar os mecanismos moleculares 

envolvidos em aspectos complexos da biologia reprodutiva dos bovinos. Nos dois 

primeiros estudos relatados, os genomas de touros da raça Nelore (Bos indicus) 

foram examinados em busca de loci que explicam variação nas características peso 

ao nascer (PN) e perímetro escrotal (PE), utilizando dados de mais de 777.000 

marcadores do tipo polimorfismo de sítio único (single nucleotide polymorphism - 

SNP). Um segmento do cromossomo 14, o qual engloba o gene ortólogo PLAG1 que 

afeta estatura em humanos, foi encontrado tanto em PN quanto em PE. Este locus 

possui efeitos pleiotrópicos sobre características reprodutivas e de tamanho corporal 

em bovinos, e representa um ponto de partida para a dissecção da genética da 

fertilidade bovina. Em outro estudo, um teste estatístico composto foi desenvolvido e 

aplicado na busca de evidências de assinaturas de seleção no genoma de raças 

bovinas de leite e de corte. Padrões de variação genética que podem ter sido 

moldadas pela seleção humana foram detectados no genoma de quatro diferentes 

raças bovinas (Angus, Pardo Suíço, Gir e Nelore). O estudo indica o gene Cornichon 

3 (CNIH3) como um forte candidato, que pode estar envolvido na regulação do pico 

pré-ovulatório do hormônio luteinizante na raça Pardo-Suíço. Embora estes 

resultados apenas toquem a superfície dos mecanismos moleculares por trás da 

reprodução dos bovinos, os loci aqui identificados abrigam novos e conhecidos 

genes candidatos que afetam a fertilidade da espécie, e oferecem novas 

perspectivas sobre aspectos complexos de sua biologia reprodutiva. 

 

 

Palavras-chave: Bos indicus, Perímetro escrotal, Fertilidade, Peso ao nascer, 

PLAG1, SNP  
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GENOME-WIDE SCANS TO UNCOVER LOCI UNDERLYING BOVINE 

REPRODUCTIVE BIOLOGY 

 

 

 ABSTRACT – Reproductive performance has a high impact on the beef cattle 

industry. The characterization of genomic regions affecting fertility can contribute to 

the identification of diagnostic markers for reproductive performance and uncover 

molecular mechanisms underlying complex aspects of bovine reproductive biology. 

In the first two reported studies, the genomes of progeny-tested Nellore bulls (Bos 

indicus) were scanned for loci explaining variance in birth weight (BW) and scrotal 

circunferemce (SC), using data containing over 777,000 single nucleotide 

polymorphism (SNP) markers. Among the identified loci, a chromosome segment 

located on autosome 14, encompassing the orthologous human stature gene 

pleiomorphic adenoma 1 (PLAG1), was found to affect both BW and SC. This locus 

has been found to have pleiotropic effects on reproduction and body size traits in 

cattle, and represents a starting point to the dissection of the complex inheritance of 

bovine fertility. In a separate study, a composite statistical test was developed and 

applied to scan dairy and beef cattle genomes for evidences of natural and artificial 

selection signatures. Patterns of genetic variation that may have been shaped by 

human-driven selection were detected in the genomes of four different cattle breeds 

(Angus, Brown Swiss, Gyr and Nellore). The study pointed to the Cornichon homolog 

3 gene (CNIH3) as a strong candidate involved in the regulation of pre-ovulatory 

luteinizing hormone surge in Brown Swiss. Although these findings only scratch the 

surface of the molecular mechanisms underlying bovine reproduction, the loci 

identified here harbor known and novel functional candidate genes affecting fertility in 

cattle and offer new insights on complex aspects of bovine reproductive biology. 

  

 

 

Keywords: Bos indicus, Scrotal circumference, Fertility, Birth weight, PLAG1, SNP 
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CHAPTER 1 - General considerations 

 

1. Introduction 

 

Descendants from the extinct aurochs (Bos primigenius), the humpless taurine 

(Bos taurus) and the humped indicine cattle (zebu, Bos indicus) were domesticated 

some 8,000 years B.C. in Southwestern and Southern Asia, respectively, and spread 

through the world accompanying our species due to the expansion of agriculture 

(LOFTUS et al., 1994; BRUFORD et al., 2003). Within their recent evolutionary 

history, humans and cattle colonized the world together (AJMONE-MARSAN et al., 

2010), and today, the ability of the bovine species to convert low-quality forage into 

meat, milk and draft power is of direct importance to the livelihood of over 6.6 billion 

people (THE BOVINE GENOME SEQUENCING AND ANALYSIS CONSORTIUM et 

al., 2009). 

By 2050, global meat production will need to be doubled relative to the current 

production levels in order to feed over 9.2 billion people, and these figures will need 

to be achieved under strict socio-environmental sustainable guidelines (FAO, 2010). 

In this scenario, the cattle industry needs to undergo deep innovation in order to 

increase production efficiency. 

 One way to meet growing demands under such constraints is by selecting 

animals with above-average productive performance as parents of the next 

generation. This has been traditionally done by the industry through progeny testing, 

assessment of sires estimated breeding values (EBV) and use of assisted 

reproductive technologies (GARCIA et al., 2013). However, measuring and 

evaluating progeny performance has been a major challenge due to its high cost and 

time consuming nature, and more efficient alternatives must be sought. 

The first critical part in selecting superior animals is the establishment of a list 

of cost-effective measurable traits that have a high impact in the activity. According to 

Garrick (2011), the major economically important traits in beef cattle are those related 

to reproductive performance, growth rate, and survival. The reproductive 

performance of animals is of particular importance as it affects generation intervals, 

the rate of genetic change, and the amount of product that can be sent to the market 
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(VAN MELIS et al., 2010), and age at puberty, age at first conception, duration of 

post-partum anoestrus and total lifetime productivity are the main factors influencing 

reproductive performance in cattle (BURNS et al., 2010). 

Ideally, reproductive traits for selection would be moderately heritable, 

measured early in life and correlated with future mating performance (FORTES et al., 

2012). However, traits considered indicative of reproductive performance generally 

exhibit complex inheritance (i.e., the genetic variance accounts for only a fraction of 

the total trait variance, and many small effects genetic loci contribute to genetic 

variation), and are expressed late in the life of an animal (CAMMACK et al., 2009). 

Hence, the molecular dissection of the complex genetic architecture underlying 

fertility and correlated traits may be of great importance to the identification of 

predictive markers for the improvement of selection for reproductive performance. 

In recent years, the release of reference genome assemblies, together with 

initiatives for genome re-sequencing, has enabled the discovery of millions of single 

nucleotide polymorphism (SNP) markers across populations in several species of 

animals, including cattle (THE BOVINE GENOME SEQUENCING AND ANALYSIS 

CONSORTIUM et al., 2009; THE BOVINE HAPMAP CONSORTIUM et al., 2009). 

These genetic markers are bi-allelic loci that are highly abundant and tightly 

distributed across the genome (KIM & MISRA, 2007). As SNPs that are located 

nearby in a chromosome region exhibit high correlations (i.e., linkage disequilibrium), 

one can assay few tens of thousands of these genetic markers and use them as 

surrogates for unobserved variants across the genome (BOHMANOVA et al., 2010). 

The development of high-throughput DNA microarray technologies has recently 

allowed for the rise of low cost large-scale genotyping, and it is now possible to 

profile hundreds of thousands of SNP markers in a single bovine DNA sample 

(MATUKUMALLI et al., 2009). 

Genomic selection, the concept of using high-density SNP information to 

predict EBVs, was first introduced by Meuwissen et al. (2001), and is the main 

present date driver of the generation of large amount of cattle genomic data. The 

approach consists in estimating the relative breeding values of individual 

chromosome fragments, and then summing up the values of all inherited 

chromosome fragments in a selection candidate in order to obtain a molecular 
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estimate of its genetic merit. Genomic selection has been propagated as a “paradigm 

shifting” innovation in the sector in recent years, and the use of genomic information 

to predict breeding values has revolutionized the dairy cattle industry and is now 

being implemented in beef cattle (GARRICK et al., 2011; GARCIA et al., 2013). 

Although genomic selection is currently the main stream application of 

genomics in the beef cattle industry, the generation of large amount of genomic data 

has the potential to take us beyond predicting genetic merit. It is becoming clear that 

linking phenotypes to gene function can generate invaluable knowledge to develop 

new technologies. By using SNP data, it is now possible to scan whole cattle 

genomes, and uncover loci explaining variance in traits of interest (BUSH & MOORE, 

2012), or even seek genomic regions where past selection has taken place 

(OLEKSYK et al., 2010). As this wealth of data offers a new opportunity to shed light 

into complex aspects of bovine reproductive biology, the objective of this Master of 

Science dissertation was to perform genome-wide scans to identify putative loci 

underlying reproductive performance in cattle.  

In Chapter 2, the genomes of over 600 Nellore sires were scanned in the 

search of loci affecting birth weight. Although the beef industry pursues animals with 

heavy carcasses, selecting animals with high weights at birth often results in 

decreased reproductive performance due to increased rates of dystocia (COOK et al. 

1993) and perinatal mortality (JOHANSON & BERGER, 2003). Identifying loci that 

individually affect weight and fertility traits, as well as variants with pleiotropic effects, 

may be of help to balance these conflicting selection goals. A strong signal was 

found on chromosome 14, surrounded by several genes previously demonstrated to 

affect stature in cattle and humans (FORTES et al., 2012). This genomic region 

includes the pleomorphic adenoma 1 gene (PLAG1), which has been recently found 

to have pleiotropic effects on fertility and body size traits in cattle (FORTES et al., 

2013). This study was published in BMC Genetics in June 2013 (UTSUNOMIYA et 

al., 2013a). 

In Chapter 3, a genome-wide mapping for chromosome segments explaining 

differences in scrotal circumference at yearling in Nellore cattle is reported. Putative 

loci affecting the trait were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. 

Interestingly, the locus encompassing PLAG1 was again detected, replicating the 
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evidence that this gene has a key role in fertility and body size in cattle. Novel 

candidate genes that affect growth and testicular size in other animal models were 

also identified, including SP4, MAGEL2, SH3RF2, PDE5A and SNAI2. This study has 

been submitted for publication, and is currently under peer-review. 

Finally, in Chapter 4, a simple approach for combining different ways to scan 

genomes for evidence of signatures of natural and artificial selection is described and 

applied to dairy and beef cattle. Patterns of genetic variation that may have been 

shaped by human-driven selection were detected in the genomes of four different 

cattle breeds (Angus, Brown Swiss, Gyr and Nellore), and represent important 

resources for characterizing genome regions that affect economically important traits. 

In particular, the most significant SNP identified is intronic to the Cornichon homolog 

3 gene (CNIH3), and may be involved in the regulation of pre-ovulatory luteinizing 

hormone surge. This study was published in PLoS ONE in May 2013 (UTSUNOMIYA 

et al., 2013b). 
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1. Abstract 

 

Birth weight (BW) is an economically important trait in beef cattle, and is 

associated with growth- and stature-related traits and calving difficulty. One region of 

the cattle genome, located on Bos taurus chromosome 14 (BTA14), has been 

previously shown to be associated with stature by multiple independent studies, and 

contains orthologous genes affecting human height. A genome-wide association 

study (GWAS) for BW in Brazilian Nellore cattle (Bos indicus) was performed using 

estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 

777,000 single nucleotide polymorphisms (SNPs). The most significant SNP 

(rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of 

the variance in BW EBVs. The surrounding 1 Mb region presented high identity with 

human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the 

orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 

(SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) 

previously reported in literature by linkage mapping studies in cattle, including QTLs 

for birth weight, mature height, carcass weight, stature, pre-weaning average daily 

gain, calving ease, and gestation length. This study presents the first GWAS applying 

a high-density SNP panel to identify putative chromosome regions affecting birth 

weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated 

with body size in taurine cattle (Bos taurus) also affect birth weight and size in zebu 

cattle (Bos indicus). 
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2. Introduction 

 

Birth weight (BW) is an economically important trait in beef cattle, and is 

usually the first characteristic measured in a calf. Birth weight is associated with 

growth-related traits (BOLIGON et al., 2009), mature size (MEYER, 1995) and 

carcass weight, thus being a valuable production indicator, as well as a selection 

criterion to improve calving ease (BOURDON & BRINKS, 1982; ERIKSSON et al., 

2004). 

Despite the beef industry’s pursuit of animals with rapid growth, yielding 

heavier carcasses, selection for these objectives needs to be properly balanced 

against selection for reproductive traits, which have great economic importance in 

beef cattle production systems (PHOCAS et al., 1998; GUTIÉRREZ et al., 2007). 

While low estimated breeding values (EBVs) for BW are associated with reduced calf 

viability (ERIKSSON et al., 2004) and lower growth rates (BOURDON & BRINKS, 

1982; COOK et al. 1993), the use of sires with high EBVs for BW on dams with small 

pelvic size may result in higher rates of dystocia (COOK et al. 1993) and increased 

perinatal mortality (JOHANSON & BERGER, 2003). These antagonisms result from 

the strong association of birth weight with the body size of the calf, i.e., with the 

stature of the animal (MEYER, 2009). Calving difficulties can result from a mismatch 

between pelvic opening and calf size (GUTIÉRREZ et al., 2007). This relationship 

between BW with reproductive and growth/size traits highlights the importance of 

understanding the underlying genetic architecture of BW. 

Birth weight exhibits sufficient variability and heritability in the Nellore breed 

(Bos indicus), with an average of 29.8 ± 2.7 kg (NOBRE et al., 2003) and estimated 

heritability between 0.25 and 0.33 (BOLIGON et al., 2009; NOBRE et al., 2003; 

ALBUQUERQUE & MEYER, 2001). Despite the low frequency of dystocia in Nellore 

cows, BW has been recorded and used to monitor genetic trend. One selection 

strategy of the breeding programs in Brazil has been to preferentially use sires with 

higher EBVs for weaning and yearling weights, but with low or close to average EBVs 

for BW (ALIANÇA, 2011). The identification of major genes and variants affecting 
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multiple weight and carcass traits or influencing BW alone would be of help to 

balance these conflicting goals, because BW is positively correlated with weaning 

and yearling weights (BOLIGON, 2009). 

In the past two decades, linkage studies attempting to map quantitative trait 

loci (QTLs) affecting weight, growth, or stature in cattle have been published (e.g. 

SPELMAN et al., 1999; KNEELAND et al., 2007; MALTECCA et al., 2009; 

MCCLURE et al., 2010; COLE et al., 2011). The release of the reference bovine 

genome (THE BOVINE GENOME SEQUENCING AND ANALYSIS CONSORTIUM et 

al., 2009), the discovery of common single nucleotide polymorphisms (SNPs) across 

breeds (THE BOVINE HAPMAP CONSORTIUM et al., 2009; MATUKUMALLI et al., 

2009), and the availability of high-throughput microarrays have enhanced the 

process of mapping loci that affect complex traits. This has led to several population-

based investigations of associations between weight/growth/height phenotypes with 

genome-wide variants in different cattle breeds (MCCLURE et al., 2010; SNEILLING 

et al., 2010; PAUSCH et al., 2011; PRYCE et al., 2011; NISHIMURA et al., 2012). 

In particular, two regions of the bovine genome associated with stature and 

growth have been highlighted recently. The first, located on Bos taurus (BTA) 

autosome 6 (SNEILLING et al., 2010; NISHIMURA et al., 2012), shelters the 

orthologous genes NCAPG and LCORL, which have been also found to be 

associated with adult height in humans (GUDBJARTSSON et al., 2008; WEEDON et 

al., 2008). The second, located on BTA14 (MCCLURE et al., 2010; PAUSCH et al., 

2011; PRYCE et al., 2011; NISHIMURA et al., 2012), contains the genes PLAG1, 

CHCHD7, RDHE2, MOS, RPS20, LYN, PENK and TGS1, that were previously found 

to affect stature in both cattle and humans (PRYCE et al., 2011; GUDBJARTSSON et 

al., 2008; LETTRE et al., 2008; KARIM et al., 2011; LITTLEJOHN et al., 2012). 

Importantly, the majority of the genome-wide association studies (GWAS) reported in 

literature were conducted in the humpless subspecies of cattle (Bos taurus, known as 

taurine cattle), and GWAS in the humped bovine subspecies (Bos indicus, often 

referred as indicine or zebu cattle) are only now emerging, especially because the 

first SNP microarrays were optimized for taurine cattle (MATUKUMALLI et al., 2009). 

In this paper, results from a genome-wide scan for SNPs associated with BW 

variation in Nellore cattle using EBVs of progeny-tested Brazilian bulls are reported. 
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As EBVs take into account information from performance of the individual, progeny 

and parents, pedigree relationships, and systematic management and environmental 

factors, they can be used as composite phenotypes for proceeding with association 

analyses (see, e.g., GARRICK et al., 2009). The objective of this study was to 

identify putative SNP associated with differences in BW and to explore the genomic 

regions around them to unravel prospective functional relationships among weight, 

fertility, and growth/size traits. 

 

3. Material and methods 

 

3.1. Estimated breeding values 

 

Estimated breeding values for BW were obtained from routine genetic 

evaluations using performance and pedigree data from the Aliança database 

(ALIANÇA, 2011), containing data from different commercial Nellore breeding 

programs, including more than 250 farms distributed across Brazil and Paraguay. 

The genetic evaluation for BW was calculated using a subset of that data that 

included 542,918 animals, born from 1985 to 2011, and distributed in approximately 

5,000 distinct contemporary groups. These data were collected in 243 grazing-based 

herds in Brazil. Estimated breeding values were obtained using an animal model that 

included fixed effects for the age of dam at calving and contemporary group (defined 

as animals from the same herd, born in the same year and season, and belonging to 

the same management group at birth, and sex), as well as random effects that 

include direct additive genetic, maternal additive genetic, maternal permanent 

environmental and residual error effects. The variance ratios required to solve the 

mixed model equations were computed based on restricted maximum likelihood 

(REML) estimates of the variance components from previous studies in this 

population. Only EBVs of progeny-tested bulls whose accuracy (i.e., square root of 

reliability, calculated based on prediction error variance estimates) was ≥ 0.50 were 

used for sample collection and genotyping (described later). The majority of the bulls 

were used under artificial insemination service. 
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3.2. Genotyping, informativeness, and quality assurance 

 

A total of 654 progeny-tested Nellore bulls were genotyped with the Illumina® 

BovineHD Genotyping BeadChip assay, according to the manufacturer’s protocol. 

Genotype calls (i.e. successfully determined genotypes) were defined as genotypes 

with GenCall Scores greater than 0.70, using the validated standard cluster file 

provided by the manufacturer. As chromosomes X, Y and mtDNA present different 

mode of inheritance from the rest of the genome, only autosomal markers with 

unique genomic coordinates were included into the analyses. After this initial 

screening, potential duplicated samples were determined by calculating the 

proportion of alleles identical by state (IBS) shared between all pairs of individuals. 

Any pair of samples with IBS ≥ 0.95 for 2,000 randomly sampled markers was 

considered unexpected duplicates, and resulted in the exclusion of both members of 

the pair. Individual SNPs were removed from the dataset if they did not exhibit: 1) 

minor allele frequency (MAF) greater than or equal to 0.02, 2) Fisher’s exact test P-

value for Hardy-Weinberg Equilibrium (HWE) greater than or equal to 1×10-5 (i.e. 

extremely deviating from HWE, suggesting potential genotyping error) or 3) Call rate 

(CRSNP) of at least 98%. After the SNP pruning, individuals exhibiting call rate (CRIND) 

below 90% were also removed. These procedures and many others described later 

were performed in the R v2.15.0 environment (R DEVELOPMENT CORE TEAM, 

2008), using combinations of functions from the R base, locally developed scripts, 

and the GenABEL v1.7-2 package (AULCHENKO et al., 2007b). 

 

3.3. Assessment of population substructure 

 

Sires genotyped in this study were known to belong to one of two major 

breeding program subgroups in the Aliança database (ALIANÇA, 2011) that have 

different selection objectives. One group emphasizes selection for weaning and 

yearling weight (subgroup 1) and the other emphasizes selection for fertility and 

carcass traits (subgroup 2). Thus, genetic stratification was expected and therefore 

population substructure was evaluated by performing a Principal Coordinates 
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Analysis (PCoA). Pair-wise genomic kinship coefficients for all subjects under study 

were calculated first, following Amin et al. (2007) and Astle and Balding (2009): 

 

      
 

 
 

                  

        

 
    [1] 

 

where       is the estimated genomic kinship between individuals   and  ,   is the total 

number of loci used for the calculation,    is the reference allele frequency for locus  , 

and      and      are the locus   genotypes for individuals   and  , respectively (coded 

as 0, 1 or 2 reference alleles). Calculations were based on 10,000 randomly sampled 

markers using GenABEL (AULCHENKO et al., 2007b). The calculated genomic 

kinship coefficients within the yielded   x   symmetric matrix (where   is the total 

number of samples) were then transformed to squared Euclidean distances, and the 

dissimilarities between the subjects within the matrix were captured in     

dimensional spaces of   observations (eigenvectors), via classical multidimensional 

scaling (MARDIS, 1978). 

 

A clustering analysis was applied to the two eigenvectors that explained the 

largest proportion of the data variance using the k-means algorithm (HARTIGAN & 

WONG, 1979) implemented in R (R DEVELOPMENT CORE TEAM, 2008). 

Individuals were clustered into 2 groups, and the association between the prior 

information on breeding program and the k-means clustering results was tested using 

Pearson’s    with Yates’ continuity correction in order to see if the algorithm could 

reproduce the known breeding programs subgroups. Additionally, an F-test for 

homogeneity of variance between subpopulations and a t-test for difference between 

subpopulation means, defining subpopulations either as k-means assignments or 

breeding program of origin, was performed to determine if there was confounding 

due to stratification. 
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3.4. Association analysis 

 

In order to reduce computation time, the ideas of Aulchenko et al. (2007a) 

were abstracted and a three-step association analysis was performed. In the first 

step, a linear regression using the weighted least squares method with weights equal 

to the squared accuracy (i.e., reliability) of the EBVs was applied. By weighting the 

EBVs by their respective accuracies, the uncertainty around the estimates was taken 

into account when estimating the regression parameters. The following model was 

fitted: 

 

           
 
       [2] 

 

Where    is the EBV of sire  ,   is the overall mean,     is value   

(corresponding to sire  ) in the eigenvector   calculated in the PCoA,    is the 

estimated effect of eigenvector  , and    is the residual effect for animal  . Only 

eigenvectors significantly (P < 0.05) correlated with the dependent variable, as 

assessed by Pearson correlations, were included in the model. Next, the residuals 

were obtained from the fitted model in [2]: 

 

  
         [3] 

 

and had their homoskedasticity and normality tested by using the studentized 

Breusch-Pagan test and the Shapiro-Wilk test, respectively. Then, these residuals 

were used as the new dependent variable for a single-marker linear regression: 

 

  
            [4] 

 

where    is the marker regression coefficient (i.e., the allele substitution effect of the 

SNP) and    is the genotype (0, 1 or 2) of the sire  . For each SNP,    and its 

respective standard error (   ) were estimated using ordinary least squares. The 



14 
 

association between the SNP and the trait was assessed via a test statistic, 

calculated as: 

 

   
   

 

   
  [5] 

 

The test statistics are assumed to asymptotically follow a    distribution with 

one degree of freedom under the null hypothesis. To assess the validity of this 

assumption, the deviation of the distribution of the test statistics from the expected 

theoretical quantiles was examined via 1) a quantile-quantile (Q-Q) plot, and 2) 

calculation of the inflation/deflation factor: 

 

  
          

     
 [6] 

 

If      , the inflation was considered acceptable, and the Genomic Control (GC) 

correction was applied to adjust for that inflation (DEVLIN & ROEDER, 1999). Then, 

P-values were derived from the    cumulative distribution function for the corrected 

test statistics. Finally, markers within the smallest 0.1% P-value percentile (i.e., most 

significant) were considered for re-analysis with the full model: 

 

           
 
            [7] 

 

The EBVs were again weighted by their respective accuracies. The 

conservative Bonferroni adjustment for multiple testing (  = 0.05 /  , where   is the 

number of tests, i.e., number of SNPs) was used to reject the null hypothesis (    , 

i.e. there is no association between the SNP and the EBVs), which resulted in an 

adjusted significance of   = 1.15 × 10-7. 
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3.5. Exploratory view of significant SNPs 

 

For any peak crossing the Bonferroni significance threshold, the estimated 

regression parameters were reported. For the most significant SNP, a 95% 

confidence interval (CI) for the estimated allele substitution effect size (   ) was 

calculated, and the percentage of the EBV variance explained was calculated as: 

 

       
      

 

  
      [8] 

 

Where   and   are the allele frequencies and    is the sample EBVs variance. The 

upper and lower limits of the estimated 95% CI for    were used to derive a 95% CI 

for       . 

 

The genomic region containing the most significant SNP of a peak was 

explored by inspecting a 1 Mb window around the location of this SNP using the 

BioMart tool and the Ensembl genes 69 database (KINSELLA et al., 2011) to 

interrogate 500 kb to each side of the marker using the UMD v3.1 assembly. The 

cattle QTLdb database (HU et al., 2013) was also examined to find out if the 

significant SNP mapped against any previously described bovine QTL. Additionally, 

the alignments of the UMD v3.1 assembly sequence of the 1 Mb window against the 

human (Homo sapiens, GRCh37 assembly), pig (Sus scrofa, Sscrofa10.2 assembly) 

and mouse (Mus musculus, GRCm38 assembly) genome builds were inspected in 

the Ensembl Comparative genomics alignments and Comparative genomics synteny 

tools in order to determine if any homologous genes were present in the putative 

region. 
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4. Results 

 

4.1. Genotype informativeness and quality control 

 

From the initial set of 777,961 SNPs, 42,669 (5.5%) were non-autosomal 

markers. Fifty four autosomal SNPs with redundant genomic coordinates were 

identified and excluded from further analyses. The IBS check revealed no 

unexpected sample duplicates. A total of 223,309 (30.4%) markers were excluded 

due to MAF < 0.02. The number of SNPs excluded due to CRSNP < 0.98 and Fisher’s 

exact test P-value for HWE < 1x10-5 were 122,611 (16.7%) and 13,194 (1.8%), 

respectively. Five individuals were removed due to low CRIND. The final dataset 

included data for 649 individuals and 434,020 SNPs. 

 

4.2. Descriptive statistics of dependent variables 

 

Based on the results for the Shapiro-Wilk test, there was no evidence that 

EBVs deviated from normality (P = 0.415), and no outliers were observed. Average 

accuracy was 0.87 ± 0.11, with minimum, median and maximum accuracies of 0.51, 

0.91 and 0.99, respectively. After fitting the regression in formula [2], there was no 

evidence against the hypotheses of normally distributed (P = 0.57) and 

homoskedastic residuals (studentized Breusch-Pagan test, P = 0.11). These findings 

suggest that the dependent variables used were reliable and did not violate possible 

assumptions of the statistical analyses used hereafter. 

 

4.3. Population substructure 

 

The PCoA revealed genetic stratification among the Nellore samples (Figure 

1). After using k-means clustering to assign individuals to two different groups 

according to their coordinates in the PCoA, a highly significant association (P = 

5.41x10-34) between the k-means assignments (         = 531,           = 118) and 

breeding program subgroups (           = 352,            = 297) was found. For the 

k-means groups, BW average was 0.434 ± 1.306 in cluster 1 and -0.216 ± 1.295 in 
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cluster 2. For the breeding program subgroups, the trait averages in subgroup 1 and 

subgroup 2 were 0.683 ± 1.276 and -0.119 ± 1.255, respectively. When considering 

either k-means clusters or breeding program subgroups as subpopulation labels, the 

EBVs showed homogeneity of variance (P > 0.05), but the trait mean was 

significantly different between groups (P = 1.21x10-6 and P = 4.37x10-15 for k-means 

and breeding program, respectively). Thus, population substructure was a potential 

confounder in the genotype-EBV association analysis, which justified the inclusion of 

eigenvectors from the PCoA as fixed effects in the linear model. 

 

4.4. Association analysis 

 

A total of 32 eigenvectors from the PCoA were significantly correlated with the 

phenotypes, which together explained 15.23% of the genotypic variability. Residuals 

from the weighted regression on these significant eigenvectors were used as the 

dependent variable for the SNP association analysis. The Q-Q plot (Figure 2) 

showed that the deviation of the observed test statistics from the theoretical quantiles 

was mild and acceptable (  = 1.002831), and the values were adjusted for the 

inflation factor via GC. The    values deviating from the expected values were 

interpreted as SNPs departing from the null hypothesis. The genome-wide deflated 

P-values are shown in Figure 3. 
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Figure 1. Principal Coordinates Analysis based on the genomic kinship coefficient. 

Percentages inside brackets correspond to the variance explained by each 

respective eigenvector. Each ‘+’ represents an individual and ovals are 

95% inertia ellipses. A) Subjects colored according to breeding program 

subgroups. B) Subjects colored according to k-means clustering results. 
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Figure 2. Quantile-quantile plot for the test statistics (  ) used in the association 

analysis. 

 

 

Figure 3. Manhattan plot of genome-wide -log10(P-values) for birth weight estimated 

breeding values in Nellore cattle. The horizontal line represents the 

Bonferroni significance threshold (  = 1.15x10-7). 
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A peak crossing the boundary for Bonferroni significance (  = 1.15x10-7) 

was detected on BTA14, comprising 5 SNPs (Table 1) which were highly linked 

(mean    = 0.728 ± 0.12). The most significant SNP (rs133012258, PGC = 

1.34x10-9), located at BTA14:25376827, had an estimated allele substitution 

effect of 0.452 kg (i.e., for each extra A allele, the BW breeding value is 

expected to increase 0.452 kg), with lower and upper limits for the 95% CI of 

0.306 kg and 0.598 kg, respectively, and the percentage of the variance in sires 

EBVs explained by the SNP was 4.62% (with a 95% CI of 2.12-8.09%). The 

overall rs133012258 A allele frequency was 0.274, whereas the breeding 

program subgroups 1 and 2 had frequencies of 0.351 and 0.184, respectively. 

Figure 4 shows the distribution of the EBVs (in standard deviations) for the 

three genotype classes of rs133012258. In both Illumina TOP and Forward 

allele notation, the AB correspondence for rs133012258 was A = A and B = G. 

 

 
Figure 4. Box plots for the birth weight estimated breeding values according to 

rs133012258 genotypes. Values in the y axis are expressed in terms 

of standard units.  
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Table 1. Summary of parameters and statistics estimated for the identified significant SNPs 

Ensembl variant ID Illumina probe ID 
BTA14 Position 

(bp) 
n 

Effect 

allele 

Allele 

frequency 
CR 

a
 (%) 

HWE 

P-value 
 b

(kg) SE    
c       

d
 P-value 

rs133012258 BovineHD1400007343 25376827 649 A 0.274 100.00 0.920 0.452 0.074 36.858 36.753 1.34x10
-9

 

rs41627948 BovineHD1400007374 25504073 648 B 0.181 99.85 0.110 0.522 0.090 33.202 33.108 8.72x10
-9

 

rs42646720 BovineHD1400007144 24590812 649 B 0.243 100.00 0.390 0.457 0.081 31.999 31.909 1.62x10
-8

 

rs136764901 BovineHD1400007159 24651537 641 B 0.244 98.77 0.200 0.459 0.082 31.546 31.457 2.04x10
-8

 

rs136287861 BovineHD1400006765 23313228 645 A 0.272 99.38 0.766 0.408 0.075 29.580 29.497 5.60x10
-8

 

a 
CR = Call rate 

b   = Estimated allele substitution effect 
c
 T

2
= Chi-squared statistics for :          

 

   
    

d
 GC-T²= Corrected Chi-squared statistics for . Genomic control correction was performed by dividing the    statistics by the distribution inflation/deflation factor estimate (λ = 1.002831). 
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Table 2. List of genes within the 1 Mb region surrounding the most significant SNP (rs133012258) 

Gene Ensembl ID BTA14 coordinates 
Distance from 

SNP (kb) 
Strand HSA8 homology SSA4 homology MMA4 homology Description 

U6 ENSBTAG00000043923 25492090:25492184 115.4 + No homologues No homologues No homologues U6 spliceosomal RNA 

PENK ENSBTAG00000004924 25218586:25222991 153.8 - ENSG00000181195 ENSSSCG00000006243 ENSMUSG00000045573 Proenkephalin-A 

IMPAD1 ENSBTAG00000015637 25544907:25560879 168.1 - ENSG00000104331 ENSSSCG00000006242 ENSMUSG00000066324 
Inositolmonophosphatase 

3 

SDR16C6 ENSBTAG00000040321 25153583:25179651 197.2 - No homologues No homologues ENSMUSG00000071019 
Short-chain 

dehydrogenase / 

reductase family 16C 

member 6 SDR16C5 

(RDHE2) 
ENSBTAG00000018570 25105062:25117554 259.3 - ENSG00000170786 ENSSSCG00000006245 ENSMUSG00000028236 

Epidermal retinol 

dehydrogenase 2 

Unknown ENSBTAG00000039031 25067486:25067823 309.0 - No homologues No homologues No homologues Uncharacterized protein 

CHCHD7 ENSBTAG00000033284 25052885:25058779 318.0 + ENSG00000170791 ENSSSCG00000006246 ENSMUSG00000042198 
Coiled-coil-helix-coiled-

coil-helix domain-

containing protein 7 

PLAG1 ENSBTAG00000004022 25007291:25009296 367.5 - ENSG00000181690 ENSSSCG00000006247 ENSMUSG00000003282 
Pleiomorphic adenoma 

gene 1 

MOS ENSBTAG00000019145 24975950:24976948 399.9 - ENSG00000172680 ENSSSCG00000006248 ENSMUSG00000078365 
V-mos Moloney murine 

sarcoma viral oncogene 

homolog 

U1 ENSBTAG00000028889 24970516:24970679 406.1 + No homologues No homologues No homologues U1 spliceosomal RNA 

RPS20 ENSBTAG00000019147 24955079:24956324 420.5 - ENSG00000008988 ENSSSCG00000006249 ENSMUSG00000028234 
40S ribosomal protein 

S20 

snoU54 ENSBTAG00000045097 24955769:24955835 421.0 - No homologues No homologues No homologues Small nucleolar RNA U54 

LYN ENSBTAG00000020034 24847257:24920713 456.1 + ENSG00000254087 ENSSSCG00000006250 ENSMUSG00000042228 
Tyrosine-proteinkinase 

Lyn 
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One of the 5 significant SNPs, rs42646720 (BTA14:24590812, PGC = 1.62x10-

8), is located within intron 2 of the gene Kell blood group complex subunit-related 

family, member 4 (XKR4 or KIAA1889, ENSBTAG00000044050). Thirteen genes 

were found within 500 kb of the most significant SNP (Figure 5), including the human 

height-associated orthologous genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 

(SDR16C5) and PENK (Table 2). The bovine reference genome sequence of this 

region was found to have high identity with human (Homo sapiens - HSA), pig (Sus 

scrofa - SSC) and mouse (Mus musculus - MMU) autosomes 8 (HSA8), 4 (SSC4) 

and 4 (MMU4), respectively (Figure 6), and the majority of the genes had homology 

across species (Table 2). The most significant SNP also overlapped 28 QTLs 

previously reported in the literature by linkage mapping studies using different cattle 

breeds (Table 3), including QTLs for birth weight, mature height, carcass weight, 

stature, pre-weaning average daily gain, calving ease and gestation length.  

 

Figure 5. Regional association plot for birth weight in the 1 Mb window around 

rs133012258. Upper box: each dot represents a SNP, and its color heat 

the degree of linkage disequilibrium with rs133012258 (black diamond). 

The horizontal dashed line represents the Bonferroni significance threshold 

(  = 1.15x10-7). Lower box: genes (green arrows; right-handed = positive 
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strand, left-handed = negative strand) within the region in the UMD v3.1 

assembly. 

 

 

 

Figure 6. Ensembl alignments of UMD v3.1 sequence for the 1 Mb region 

surrounding rs133012258. The bovine reference genome sequence was 

aligned against (from top to bottom) the human (GRCh37 assembly), pig 

(Sscrofa10.2 assembly) and mouse (GRCm38 assembly) genome builds. 

Gene colors: yellow - merged Ensembl/Havana, red - protein coding, blue - 

processed transcript, grey - pseudogene, purple - RNA gene. Triangles: 

black - breakpoint between different chromosomes, blue - inversion in 

chromosome, brown - breakpoint on chromosome, red - gap between two 

underlying slices. 
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Table 3. QTLdb hits within the 1 Mb region surrounding the most significant SNP 

(rs133012258) 

Trait BTA14 coordinates QTLdb ID PubMed ID 

Body weight (birth) 6311565:71762521 5375 19016677 

Height (mature) 19204282:42398519 10962 20477797 

Carcass weight 25224396:30870876 1375 16151698 

 
10808022:28658498 10960 20477797 

Stature 25219037:65017465 4613 10575619 

Pre-weaning average daily gain 25224396:35530275 2630 15537758 

Calving ease (maternal) 19204282:28658498 10959 20477797 

Gestation length 6311565:30372479 5374 19016677 

 
17512260:48646289 5385 19016677 

Rump angle 25224396:29928419 1592 16230715 

Longissimus muscle area 19204282:42398519 10964 20477797 

Fat thickness at the 12th rib 19204282:28658498 10961 20477797 

Marbling score 16670076:73064076 1334 14677852 

Abnormal flavor intensity 5565085:28658498 4833 18254735 

Tick resistance 5545944:77366190 9917 17894560 

Milk yield 25372161:25525285 6209 18650300 

 
16243029:28716621 3608 12729552 

Milk fat yield (or percentage) 13401044:35992517 2733 9691050 

 
1641277:25448723 3408 12605852 

 
25224396:29928419 2676 14762090 

 
13401044:35992517 2732 9691050 

Milk protein yield (or percentage) 1641277:56300551 3413 12605852 

 
9479897:44651695 2604 12778594 

 
1641277:81189386 10099/10100/10101 18298934 

Somatic cell score 13401044:35992517 2734 9691050 

 
13401044:35992517 2776 14556700 

 
20567087:44651695 4884 17954769 

Clinical mastitis 9479131:44651695 3177 14762087 

 

 

5. Discussion 

 

Five SNPs on BTA14 were identified as associated with BW in Nellore cattle 

(P < 1.15 × 10-7), whose surrounding region has been shown to contain many QTLs, 

genes and variants affecting stature-related traits in cattle by several independent 

studies (SPELMAN et al., 1999; KNEELAND et al., 2004; MALTECCA et al., 2009; 

MCCLURE et al., 2010; PAUSCH et al., 2011; PRYCE et al., 2011; NISHIMURA et 

al., 2012). More particularly, the genes PLAG1, CHCHD7, RDHE2, MOS, RPS20, 

LYN and PENK have been found to influence both human and cattle height (PRYCE 
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et al., 2011; NISHMURA et al., 2012; GUDBJARTSSON et al., 2008; WEEDON et 

al., 2008; LETTRE et al., 2008; KARIM et al., 2011; LITTLEJOHN et al., 2012). 

The BTA14 region pointed out by the present study has also been shown to be 

associated with reproductive traits. Cole et al. (2011) reported a QTL on BTA14 

associated with stillbirth, which also has been associated with body size in dairy 

cattle (JOHANSON & BERGER, 2003; COLE et al., 2009), but found no effect on 

stature or other conformation traits on that chromosome. The region also associates 

with many fertility and growth-related traits in the indicine breed Brahman, for 

example scrotal circumference (FORTES et al., 2012a; FORTES et al., 2012b), age 

at the first corpus luteum (FORTES et al., 2012a; HAWKEN et al., 2012), blood levels 

of insulin-like growth factor 1 (IGF1) (FORTES et al., 2012b; HAWKEN et al., 2012) 

and hip height (HAWKEN et al., 2012). 

A significant SNP was found within intron 2 of the XKR4 gene in the present 

study. Lindholm-Perry et al. (LINDHOLM-PERRY et al., 2012) identified five SNPs 

near XKR4 associated with feed intake and gain in crossbred steers. Bolormaa et al. 

(2011) found five SNPs in a narrow region of BTA14 encompassing XKR4 associated 

with rump fat thickness measured at the P8 position (CHILLP8) in seven breeds of 

cattle, including taurine, indicine and composite breeds. The authors found that four 

of these SNPs were also associated with CHILLP8 in a confirmatory sample of 1,338 

animals, including Angus, Hereford and Brahman cattle. Furthermore, Porto-Neto et 

al. (2012) performed a replication study using samples of Belmont Red, Santa 

Gertrudis and Brahman animals genotyped for SNPs within XKR4 and found that 

although the SNP effect may vary depending on the breed, the variant rs42646708 

(BTA14:24573257) explain around 1.3% of CHILLP8 variance in cattle. This SNP is 

also located within intron 2 of XKR4, only 17.6 kb apart from the intronic SNP 

detected in the present study, which strongly suggests XKR4 as a candidate gene for 

being further explored in future studies of weight and carcass traits in Nellore cattle. 

The most significant SNP (rs133012258, PGC = 1.34 × 10-9) was found to 

explain 4.62% of the variance in sires EBVs, with a 95% CI of 2.12-8.09%. One 

hundred and eighty loci associated with human adult height explain only 10% of the 

phenotypic variance together, while individual loci account for 0.4% or less (LANGO 

et al., 2010). SNPs analyzed by (PRYCE et al., 2011) within a nearby BTA14 region 
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explain from 0.29 to 2.53% of the bovine stature variability, and the quantitative trait 

nucleotides (QTN) spanning MOS, CHCHD7 and PLAG1 described by (KARIM et al., 

2011) explain from 1.10 to 3.50% of height in Jersey and Holstein breeds. 

Furthermore, the genome-wide survey performed by (PAUSCH et al., 2011) provided 

strong evidence for two QTL on BTA14 and BTA21 that together explain at least 10% 

of the variation of EBVs for calving ease in the German Fleckvieh. 

Considering that multiple stature-related traits are governed by variants with 

small effects, and that the genomic region identified in this study has been previously 

found to be associated with several of these traits, the putative SNP detected in the 

present analysis can be considered as a marker in linkage disequilibrium (LD) with 

major untyped (i.e., not probed by the SNP assay used) causative variants affecting 

BW and other height-associated traits in Nellore cattle, and further studies would be 

needed to determine if the QTNs reported by Karim et al. (2011) are also segregating 

in the Nellore population. Also, future investigations are needed to better characterize 

the effect of nearby SNPs on other weight and carcass traits in Nellore cattle, as it is 

not clear yet how the putative pleiotropic effect of these variants would be used 

towards balancing conflicting selection goals for birth, weaning and yearling weights. 

Although we cannot confirm that the allele substitution effects of these SNPs work in 

the same direction for all three traits, because only birth weight was analyzed here, 

these findings suggest that the SNPs identified would be key polymorphisms to be 

monitored over time. In a scenario where the SNP effects have the same direction in 

all three traits, one strategy could be avoiding strong positive selection or drifting of 

the allele that contributes to higher BW EBVs, and identify and promote positive 

selection of other variants that have effects on weaning and yearling weights only. 

The high identity found in the alignment of this BTA14 region against other 

mammalian species genomes suggests that these orthologous genes are located in 

a conserved syntenic block which may have arisen and been maintained after 

speciation from a common ancestor of the mammal clade. Moreover, the evidence 

for variants associated with growth and stature within this BTA14 region in both 

taurine and zebu cattle raises two hypotheses: 1) these variants have been 

introgressed into Nellore via historical admixture with taurine Creole cattle in the 

maternal line, and was maintained in the breed in spite of several generations of 
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backcrossing; 2) these are ancient polymorphisms, probably already segregating in 

the founder population of wild Aurochs (Bos primigenius) before subspecies 

formation. 

Regarding functional meaning, the set of genes reported participate in diverse 

growth and tumor development mechanisms. Among these genes, PLAG1 is the 

most appealing functional candidate. It is an oncogene that encodes a transcription 

factor broadly expressed during fetal development, but is down-regulated at birth 

(KARIM et al., 2011). It interacts with several growth factors controlling body size, 

including IGF2 (VAN DYCK et al., 2007). In addition, PLAG1 knock-out mice have 

been shown to have marked growth retardation and reduced fertility (HENSEN et al., 

2004). In a replication study, Littlejohn et al. (2012) confirmed the findings reported 

by Karim et al. (2011), demonstrating association of growth rate and early life and 

peripubertal body weight with PLAG1 polymorphisms, supporting its status as a key 

regulator of mammalian growth. 

The lack of significant association between BW and SNPs within other 

previously described weight- and height-related chromosome regions in the present 

study should not be interpreted as a lack of existence of true association, but rather it 

might be due to limitations specific to this study. Firstly, because complex trait 

mapping requires large sample sizes and only 649 bulls were analyzed here. 

Secondly, the significance level adopted was highly stringent, which may have 

caused inflation of type II errors. In spite of these limitations, it was possible to 

demonstrate that a well-characterized chromosome region affecting human and 

taurine cattle stature also associates with BW in a zebu breed. The release of a Bos 

indicus reference genome assembly, as well as the application of re-sequencing and 

replication studies would help improve resolution to narrow down the genomic region 

as close as possible to the true causative variants. 

 

6. Conclusions 

 

This study is believed to be the first genome-wide association study applying a 

high-density SNP panel to identify putative chromosome regions affecting birth 

weight in zebu cattle. The findings presented, which are strongly supported by the 
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literature, point to orthologous genes already known to affect growth- and stature-

related traits in both humans and cattle, which may shelter ancient polymorphisms 

responsible for variation in those traits since before cattle subspecies divergence. 
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1. Abstract 

 

 The reproductive performance of bulls has a high impact on the beef cattle 

industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef 

herds, and is used as a major selection criterion to improve precocity and fertility. The 

characterization of genomic regions affecting SC can contribute to the identification 

of diagnostic markers for reproductive performance and uncover molecular 

mechanisms underlying complex aspects of bovine reproductive biology. In this 

paper, we report a genome-wide scan for chromosome segments explaining 

differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 

777,000 single nucleotide polymorphisms. Loci that excel from the genome 

background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority 

of these regions were previously found to be associated with reproductive and body 

size traits in cattle. The signal on chromosome 14 replicates the pleiotropic 

quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and 

stature in several species. Based on intensive literature mining, SP4, MAGEL2, 

SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they 

affect growth and testicular size in other animal models. These findings contribute to 

linking reproductive phenotypes to gene functions, and may offer new insights on the 

molecular biology of male fertility. 

 

Keywords: Bos indicus, testicular size, male fertility, SNP 
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2. Introduction 

 

Reproductive performance has a high economic value in beef cattle, because 

fertility affects generation intervals, the intensity of selection pressure that can be 

applied to the population, and the amount of product that can be sent to the market 

(VAN MELIS et al., 2010). Furthermore, reproductive wastage is a major reason for 

culling beef cows. 

Domestic cattle are composed by two interfertile species: the humpless taurine 

cattle (Bos taurus) and the humped indicine or zebu cattle (Bos indicus). Indicine 

breeds, such as Nellore cattle, form the majority of the beef herds in tropical and 

subtropical countries. Zebus generally take longer to reach puberty than taurines 

(MARTIN et al., 1992), making the improvement of reproductive performance an 

impending challenge in the production systems of these regions of the world.  

Scrotal circumference evaluated at yearling (SC) is the most recorded 

reproductive trait in breeding programs for beef cattle, as the trait is inexpensive and 

easy to measure (BALL et al., 1983), is highly heritable (DIAS et al., 2003), and is 

associated with testis development, quantitative and qualitative semen parameters 

(BOURDON & BRINKS, 1986), age at puberty in bulls and related heifers (TOELLE & 

ROBISON, 1985; EVANS et al., 1999), heifer pregnancy (VAN MELIS et al., 2010), 

and body weight (BERGMANN et al., 1996). Consequently, SC is used in these 

programs as a major indicator of precocity and fertility. 

Characterizing genomic regions that explain differences in SC in B. indicus 

can contribute to the identification of reproductive performance informative molecular 

markers to assist breeding, as well as to the mapping of loci implicated in 

reproductive biology. In this paper, we analyzed data of estimated breeding values 

(EBV) from 861 Nellore bulls genotyped for over 777,000 single nucleotide 

polymorphism (SNP) markers. We aimed at identifying putative genomic regions 

explaining differences in SC in B. indicus cattle via genome-wide mapping. 
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3. Material and methods 

 

3.1. Ethical statement 

 

Local ethical committee approval was not necessary in the present study, 

because phenotypic data were obtained from a database (ALIANÇA, 2012), and 

DNA samples used for genotyping were obtained from commercialized semen 

straws. 

 

3.2. Animals and genotypes 

 

Estimated breeding values for SC were obtained from routine genetic 

evaluations (ALIANÇA, 2012), comprising data from 542,918 animals born between 

1985 and 2011, and raised in 243 grazing-based Brazilian herds. Scrotal 

circumference in yearlings (around 18 months of age) was measured as 

recommended by the Society for Theriogenology (BALL et al., 1983). Genetic 

evaluation of SC was based on two single-trait animal models, both including a fixed 

effect of contemporary group (defined as animals from the same herd, born in the 

same year and season, and belonging to the same management group from birth 

until yearling), and random effects that included direct additive genetic, maternal 

additive genetic, maternal permanent environmental and residual error effects. In the 

first model (SCA), the fixed effect of age at SC measurement was included as a 

covariate. In the second model (SCAW), covariates accounting for differences due to 

age and weight at yearling were included. Estimated breeding values were 

deregressed by the method described by Garrick et al. (2009) and treated as 

pseudo-phenotypes in the genome-wide mapping analysis. 

 

3.3. Genotyping and data filtering 

 

Only sires widely used via artificial insemination whose accuracies (i.e., 

square root of reliability, calculated based on prediction error variance estimates) for 

SCA and SCAW were greater than 0.5 were considered for genotyping. A total of 861 
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progeny-tested Nellore bulls were genotyped for 777,962 SNPs with the Illumina® 

BovineHD Genotyping BeadChip assay, according to the manufacturer's protocol. As 

a first filtering criterion, only samples with call rate greater than 0.9 and SNPs with 

GenTrain score greater than or equal to 0.7 were considered for analysis. 

Mitochondrial DNA and unmapped markers were also excluded.  

As males are hemizygous for both sex chromosomes, observation of 

heterozygous X and Y genotypes are only possible for SNP probes that hybridize 

against the XY pseudo-autosomal region (PAR). As the UMD v3.1 bovine genome 

assembly (ZIMIN et al., 2009) does not allow for clear distinction of PAR markers, all 

heterozygous X- and Y-linked genotypes were considered as genotyping errors and 

set to missing. Next, SNPs were removed from the dataset if they did not exhibit 

minor allele frequency greater than or equal to 0.02 or call rate of at least 0.98. 

These procedures and many others described later were performed using 

customized functions and the base and the GenABEL v1.7-6 packages in R v2.15.0 

(AULCHENKO et al., 2007; R DEVELOPMENT CORE TEAM, 2008). 

 

3.4. Genome-wide mapping 

 

We adapted the two-steps Fast Association Score Test-based Analysis 

(FASTA) (CHEN & ABECASIS, 2007) to compute allele substitution effects 

accounting for relatedness, population structure and heterogeneity of variance in 

deregressed EBVs (dEBVs). In the first step, the variance-covariance matrix for the 

pseudo-phenotypes was estimated using an animal model that included random 

additive genetic and residual effects. In the second step, the estimated variance-

covariance matrix was used to compute allele substitution effects for each SNP via 

generalized least squares. A detailed description of this analysis can be found in 

Appendix A. 

Next, aiming at mapping loci explaining differences in SC, we investigated 

chromosome windows where the average phenotypic variance explained by SNPs 

deviated substantially from the genome background. First, the percentage of 

phenotypic variance explained by each SNP was calculated as: 
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where, relative to SNP  ,     is the estimated allele substitution effect,    and    are the 

allele frequencies, and   
  is the total trait variance. 

 Second, in order to reduce noise and improve mapping, the phenotypic 

variance explained by SNPs was smoothed across the genome by averaging       in 

sliding windows of 1 Mb, sliding 50 kb at a time. Only windows containing at least 10 

SNPs were averaged, and we considered as outliers the windows where      

          , where     is the interquartile range and    is the third quartile of the 

distribution. Third, we used BEDTools v2.12.0 (QUINLAN & HALL, 2010) to merge 

the intervals of overlapping outlier windows. These merged windows were 

considered as candidate loci for SC. 

 We assessed the relative mapping resolution gain when using sliding windows 

instead of single SNPs by calculating the signal-to-noise ratio between the two 

strategies. For each approach, we let the signal-to-noise coefficient be represented 

by the reciprocal of the coefficient of variation       , where   and   are the mean 

percentage of phenotypic variance explained and its standard deviation, respectively, 

by either single SNPs or windows. Then, we calculated the ratio of the signal-to-noise 

coefficients between strategies as               . 

 

3.5. Assessment of functional relevance 

 

The cattle QTLdb database (HU et al., 2013) was examined to find out if any 

genomic region identified here overlapped with a previously described bovine 

quantitative trait locus (QTL), in particular those related to body size and reproductive 

traits. Gene coordinates in the UMD v3.1 assembly (ZIMIN et al., 2009) were 

obtained from the Ensembl genes 73 database using the BioMart tool (KINSELLA et 

al., 2011), and overlaps between the boundaries of candidate loci and gene 

coordinates were determined using BEDTools v2.12.0 (QUINLAN & HALL, 2010). 

Finally, we conducted intensive literature review to propose functionally sound 

candidate genes associated with SC. 
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4. Results 

 

A total of 525,961 SNPs (67.6%) and 861 individuals (100.0%) passed the 

filtering criteria and were retained in the dataset. After filtering, the average and 

median gap size between consecutive markers were 5.1 kb and 3.3 kb, respectively, 

indicating high density coverage of the genome. In spite of the effort and interest to 

analyze both sex chromosomes, Y SNPs did not present sufficient variability to allow 

for estimation of allele substitution effects. 

For both SCA and SCAw, the distributions of pseudo-phenotypes were 

approximately normal, and the dEBVs for these two traits were fairly correlated, with 

   = 0.74 (Figure 1). Accuracies were virtually equal for SCA and SCAw (identical up 

to the second decimal place), with mean, minimum, median and maximum of 0.84 ± 

0.11, 0.51, 0.86 and 0.98, respectively. 

A total of 52,493 SNP windows of 1 Mb were built across the genome, with an 

average density of 198 ± 59 SNPs per window. The ratio between the signal-to-noise 

coefficients of sliding windows and single SNPs was 2.54, indicating that the 

smoothing strategy allowed for a 2.54 fold improvement in mapping resolution 

(Figure 2). Considering the            threshold for percentage of phenotypic 

variance explained (SCA = 0.40% and SCAw = 0.42%), 236 (0.45%) and 279 (0.53%) 

windows were declared outliers for SCA and SCAW, respectively. After merging 

overlapping outlier windows, we obtained a total of 8 and 6 candidate loci explaining 

approximately 4% of the variance in SCA and SCAW, respectively (Table 1).  

Overall, results from the genome-wide mapping analysis were strikingly similar 

between SCA and SCAW, indicating that fitting the covariate for weight at yearling in 

the model did not cause substantial mapping differences. Indeed, four loci were 

shared between the two traits in chromosomes 6, 10, 14 and 21, respectively (Figure 

3), which exhibited clear signals in the genome-wide plot of smoothed phenotypic 

variance explained by SNP windows (Figure 2). From the total of six differentially 

detected loci, one was located nearby the shared locus on chromosome 14 (Table 1), 

and the three SCAW private loci on chromosomes 10 and 7 were close to be declared 

outliers for SCA (Figure 2). 
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Figure 1. Descriptive statistics for scrotal circumference dEBVs of 861 Nellore bulls. 

Histograms (top), boxplot (bottom left) and normal quantile-quantile plots 

(bottom right) are provided for scrotal circumference A) corrected for age 

(SCA) and B) corrected for age and weight at yearling (SCAW). A scatter 

plot illustrating the linear relationship between the two dEBVs is also 

provided (C). 
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Figure 2. Manhattan plots of scrotal circumference variance explained by SNP 

windows in Nellore cattle. Pseudo-phenotypes were based on dEBVs 

corrected for age (SCA) and corrected for age and weight at yearling 

(SCAW). Each dot represents a 1 Mb SNP window. Horizontal dashed lines 

represent adopted thresholds (SCA = 0.40% and SCAW = 0.42%). Arrows 

indicate signals shared between the two models. Histograms represent the 

distribution of phenotypic variance explained by SNP windows, and the 

dotted vertical line marks the adopted thresholds. 
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Table 1. Detected major loci explaining variance in scrotal circumference in Nellore cattle. 
Scrotal circumference 

model 
Chromosome 

Position start 

(Mb) 

Position end 

(Mb) 
Peak position (Mb) 

Segment 

length (Mb) 

Number of 

SNPs 

Average 

MAF
a
 

Average 

    
b
 

Functional candidate gene 

Corrected for age (SCA) 6 5.20 6.65 5.80-6.00 1.45 42 0.28 0.52 PDE5A (ENSBTAG00000024888) 

 
10 26.90 28.80 28.00 1.90 387 0.23 0.49 C15ORF55 (ENSBTAG00000014948) 

 
10 34.80 35.80 35.30 1.00 140 0.19 0.40 FSIP1 (ENSBTAG00000012015) 

 
10 78.85 79.85 79.35 1.00 122 0.20 0.41 - 

 
14 20.25 21.45 20.90 1.20 310 0.24 0.41 SNAI2 (ENSBTAG00000013227) 

 
14 23.40 33.85 29.10 10.45 2236 0.23 0.55 PLAG1 (ENSBTAG00000004022) 

 
18 34.55 35.80 35.20 1.25 206 0.22 0.44 CES4A (ENSBTAG00000038325) 

 
21 0.00 2.50 1.20 2.50 127 0.17 1.07 MAGEL2 (ENSBTAG00000045998) 

   
    

  
 

Corrected for age and 

weight at yearling 

(SCAW) 

4 28.95 30.80 30.15 1.85 301 0.20 0.48 SP4 (ENSBTAG00000014389) 

 
6 5.05 6.75 5.80-6.00 1.70 84 0.27 0.63 PDE5A (ENSBTAG00000024888) 

 
7 59.15 60.25 59.75 1.10 158 0.16 0.43 SH3RF2 (ENSBTAG00000006762) 

 
10 27.15 28.25 27.70 1.10 209 0.21 0.43 C15ORF55 (ENSBTAG00000014948) 

 
14 23.25 35.50 25.00 and 27.00 12.25 2687 0.23 0.63 PLAG1 (ENSBTAG00000004022) 

 
21 0.00 2.50 1.20 2.50 127 0.17 1.23 MAGEL2 (ENSBTAG00000045998) 

a 
MAF = Minor allele frequency. 

b      = Average percentage of phenotypic variance explained by overlapping 1 Mb SNP windows 
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Figure 3. Regional plots of scrotal circumference variance explained by SNP 

windows in Nellore cattle. Pseudo-phenotypes were based on dEBVs 

corrected for age (SCA) and corrected for age and weight at yearling 

(SCAW). Clear common signals between SCA and SCAW were found on 

chromosomes A) 6, B) 10, C) 14 and D) 21. Vertical black dashed lines 

delimit the regions where the highest variance explained were found. 

Linkage disequilibrium structure for these regions (bottom) is portrayed as 

a heatmap of    values between SNPs. 

  

A total of 285 and 190 genes were mapped against the major loci found for 

SCA and SCAW, respectively, and a total of 309 unique genes were observed. From 

these, 246 protein coding, 25 snoRNA, 12 snRNA, 9 miRNA, 9 rRNA, 1 misc_RNA 
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and 7 pseudo genes were observed. From this gene list, we filtered 9 functional 

candidates implicated in growth, testicular size and fertility (Table 1), which included: 

pleiomorphic adenoma gene 1 (PLAG1, ENSBTAG- 00000004022), 

carboxylesterase 4A (CES4A, ENSBTAG00000038325), Sp4 transcription factor 

(SP4, ENSBTAG00000014389), melanoma antigen family L 2 (MAGEL2, 

ENSBTAG00000045998), phosphodiesterase 5A (PDE5A, ENSBTAG00000024888), 

snail family zinc finger 2 (SNAI2, ENSBTAG- 00000013227), nuclear protein in testis 

(C15ORF55, ENSBTAG00000014948), fibrous sheath-interacting protein 1 (FSIP1, 

ENSBTAG00000012015), and SH3 domain containing ring finger 2 (SH3RF2, 

ENSBTAG00000006762). 

A total of 76 production and reproduction QTLs, mined from 24 distinct 

publications, were mapped against the loci found here. The largest trait contingency 

observed was composed by traits related to body size (43 QTLs), followed by 

reproductive traits (23 QTLs). Furthermore, the locus detected on chromosome 4 

(Table 1) mapped against one previously described QTL for SC in Angus cattle (B. 

taurus) (MCCLURE et al., 2010). 

 

5. Discussion 

 

The genome-wide mapping analysis detected positional candidate loci 

explaining approximately 4% of the dEBVs for SC (Table 1). Although this represents 

only a fraction of the trait variance, this percentage is substantial considering that 180 

loci associated with human adult height, a highly heritable and classic polygenic trait, 

explain only 10% of the phenotypic variance together (LANGO et al., 2010). This is 

evidence that multiple loci across the genome are involved in the complex 

inheritance of SC, and the functional candidate genes filtered here may only scratch 

the surface of the molecular mechanisms underlying the trait. The dissection of the 

pathways regulating precocity in B. indicus cattle will require multiple studies across 

breeds and trait models, with intensive multidisciplinary reasoning. Nevertheless, the 

loci reported here excel from the genome background, and represent important data 

in the context of bovine reproductive biology.  
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 The region explaining the largest proportion of SC variance in the present 

study mapped to the beginning of chromosome 21, peaking around 1.5 Mb. The 

closest gene found in this region was MAGEL2. The orthologous human and murine 

genes regulate normal circadian output, and are highly expressed in the 

suprachiasmatic nucleus of the hypothalamus (KOZLOV et al., 2007). The human 

MAGEL2 has been implicated in Prader-Willi Syndrome, a genetic disorder 

characterized by short stature, low muscle tone, cognitive disabilities, increased food 

intake, obesity, low levels of insulin and insulin-like growth factor 1 (IGF1), 

incomplete sexual development, hypogonadism, and male infertility (KOZLOV et al., 

2007; BISCHOF et al., 2007). The disorder manifests when a segment on human 

chromosome 15, which encompasses seven maternally imprinted genes including 

MAGEL2, presents a deletion or loss of expression of the paternal alleles. 

Inactivation of the mouse MAGEL2 alone was shown to lead to abnormalities 

suggestive of hypothalamic dysfunction similar to the Prader-Willi Syndrome 

(BISCHOF et al., 2007).  

 Of note, variation of copy number gain spanning the interval between 1.57 Mb 

and 2.99 Mb on bovine chromosome 21 has been found by the comparison of 

individual whole genome sequence data of Nellore with the B. taurus breeds Angus, 

Holstein and Hereford (BICKHART et al., 2012). As the Prader-Willi Syndrome is 

caused by loss of the paternal copy of the orthologous sequence in humans, and 

MAGEL2 is essential for proper hypothalamic control of growth and fertility (KOZLOV 

et al., 2007), association of copy number variants with growth and reproductive traits 

seems to be a sensible hypothesis to be tested on this chromosome segment. 

 The locus detected on chromosome 7 encompasses SH3RF2. Rubin et al. 

(2010) discovered a deletion removing all but the first exon of the orthologous 

chicken gene that is associated with body weight, and demonstrated that strong 

selection caused the deletion to reach fixation in a high growth lineage. Interestingly, 

using a mouse model of Prader-Willi syndrome, Stefan et al. (2005) found that loss of 

expression of the MAGEL2 region induces upregulation of SH3RF2 and its flanking 

genes TCERG1, LARS, RBM27 and GPR151. As both the MAGEL2 and the 

SH3RF2 regions were flagged in the present study, a trans-acting regulatory 

mechanism involving the loci on chromosomes 7 and 21 found here is likely to 
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underlie SC variation. Hence, these signals are plausible candidates for weight and 

male fertility traits in Nellore cattle. 

 We identified a candidate locus on chromosome 14 with the highest 

percentage of phenotypic variance explained mapping to positions 25 Mb and 27 Mb. 

Fortes et al. (2012b) reported associations for IGF1 at 6 months and SC at 12 

months in young Brahman bulls (B. indicus) in an overlapping region around 25 Mb, 

which was previously shown to correlate with age of Brahman bulls when they 

achieve 26 cm of SC (FORTES et al., 2012a). This region has been well 

characterized in taurine cattle as harboring several human orthologues affecting 

stature and growth (PRYCE et al., 2011), especially PLAG1 (KARIM et al., 2011). 

The locus has also been found to be associated with birth weight in Nellore cattle, 

and suggested to shelter polymorphisms with pleiotropic effects on traits that 

correlate with body size (UTSUNOMIYA et al., 2013). Furthermore, some first 

evidences for pleiotropism in body size and fertility traits in the PLAG1 region have 

been recently found in Brahman cattle (FORTES et al., 2013). 

 Although the human stature orthologues flanking 25 Mb are appealing 

candidates for SC, the chromosome 14 signal found here comprises a large segment 

spanning from 20.25 Mb to 35.85 Mb. This may be evidence that multiple genes and 

variants within this region are involved. For instance, SNAI2 is located around 21.58 

Mb and encodes for Slug (also known as Slugh), a Zinc-finger transcription factor 

that when mutated in mice produces individuals with testicular atrophy and marked 

decrease in seminiferous tubules sizes (PÉREZ-LOSADA et al., 2002). Although 

these mice are able to copulate, their offspring are small. Also, Fortes et al. (2013b) 

showed that ability to produce sperm at 18 months in Brahman bulls is not as 

significant around 25 Mb, and exhibits signals of association shifted towards the 35 

Mb position instead.  

 Another possible justification for a signal coming from such a large 

chromosome segment is a long range linkage disequilibrium (LD) persistency within 

the region. In fact, we found a strong LD structure underpinning the signal (Figure 3), 

which may be hampering the localization of the true locus involved. In either case, 

these evidences together support the entire chromosome segment identified here as 

a key region affecting growth and fertility traits in cattle. 
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 The locus detected on chromosome 6 is located 124 kb downstream of 

PDE5A. The phosphodiesterase encoded by PDE5A is substantially expressed in the 

testis, and mice overexposed to inhibitors of this protein present testicular tissue 

alterations, including decreased testis weight, degeneration, and atrophy of the 

seminiferous epithelium (VEZZOSI & BERTHERAT, 2011). This genomic region also 

shelters genes that interact with other proteins previously linked to small testis size. 

For instance, the protein encoded by MAD2 belongs to the mitotic checkpoint 

complex, and is recruited by the mitotic kinase Bub1. A residue change in the 

catalytic loop of Bub1 was shown to lead to male subfertility, with marked reduction in 

testicular size (RICKE et al., 2012). 

 Several QTLs mapping to the loci detected here were related either to body 

size or reproductive traits that are associated with SC. In particular, the peak on 

chromosome 4 mapped against one previously reported QTL for SC (MCCLURE et 

al., 2010), which encompasses SP4. This gene encodes for a zinc finger transcription 

factor that is predominantly expressed in the brain, but is also detectable in the 

testicular tissue (HAGEN et al., 1992; SUPP et al., 1996). Gölner et al. (2001) 

showed that SP4-knockout mice develop until birth without obvious abnormalities, but 

two-thirds of them die within 4 weeks after birth and the remaining one-third present 

growth retardation. Surviving male mice exhibit reduced testis size, although 

complete spermatogenesis can be observed. Surviving female mice exhibit small-

sized thymus, spleen and uterus, and all mice show pronounced delay in sexual 

maturation. As SP4-knockout mice present growth retardation mainly after birth, it is 

likely that variations in the bovine SP4 affect body size and testicular growth from 

birth to yearling age, but they are unlikely to affect fetal development or 

spermatogenesis. Moreover, the evidence of delayed sexual maturation and reduced 

testicular size in surviving SP4-knockout mice is consistent with the known positive 

correlation between SC and precocity in cattle. 

 The functional candidate gene surrounding the peak on chromosome 18 was 

CES4A, a hydrolase member of the carboxylesterase large family (enzyme class EC 

3.1.1.1.-), also known as CES6, CES8 or Hydrolase A. Carboxylesterases act in the 

transesterification of a broad spectrum of substrates, and play an important role in 

the metabolism of endogenous lipid and foreign compounds such as drugs and 
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pesticides (SATOH & HOSOKAWA, 2998). Hydrolase A is known to be expressed in 

several tissues, including the testis (YAN et al., 1995). Esterase activity (EC 3.1.1.-) 

has been found to be abundant in the testis and associated with androgen production 

(HUGGINS & MOULTON, 1948). Two intronic SNPs in the human CES4A were 

found to be correlated with high density lipoprotein levels (HDL) in an association 

analysis deposited in the dbGaP database (www.ncbi.nlm.nih.gov/gap, accession: 

pha002900.1, accessed on 21 Oct 2013), conducted in an expanded population 

sample from the original 1966 Northern Finland Birth Cohort (NFBC66) study 

(SABATTI et al., 2009). Also, testosterone treatment of aging men with 

hypogonadism was demonstrated to lower HDL levels, and the mechanism 

underlying this relationship and its role in coronary disease risk have been targets of 

debate and controversy (LANGER et al., 2002). These evidences together point to 

CES4A as a functional candidate gene affecting differences in SC in Nellore cattle, 

and the underlying mechanism may involve the dynamics between HDL and 

androgen levels. 

 Some of the genes lying within the loci detected nearby positions 28 Mb and 

35 Mb on chromosome 10 are related to the testicular tissue, but their association 

with scrotal circumference is unclear. The nuclear protein in testis gene (C15ORF55 

or NUTM1) is mainly known by its involvement with midline organs carcinoma 

(FRENCH et al., 2003). The fibrous sheath-interacting protein 1 (FSIP1) was shown 

to bind to Akap4 during spermatogenesis in order to form the fibrous sheath of the 

sperm flagellum (BROWN et al., 2003).  The peak found around 79.35 Mb on 

chromosome 10 did not reveal an appealing functional candidate gene, but the 

region overlaps QTLs for dystocia, fetal death and birth weight. Further investigation 

of these loci is needed to elucidate if they contribute to phenotypic variation in SC, as 

well as to clarify the molecular mechanisms underlying this contribution. 

 

6. Conclusions 

 

 In summary, this is believed to be the first study applying a high-density SNP 

panel in a genome-wide survey of loci affecting scrotal circumference in Nellore 

cattle, which contributes with important preliminary data to the dissection of molecular 
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mechanisms regulating precocity in the bovine species. The loci identified here 

harbor known and novel functional candidate genes affecting scrotal circumference in 

B. indicus cattle. Fine mapping of these signals with whole genome sequence data 

and hypothesis-driven experiments may shed light on the genes and networks 

underlying phenotypic variation in fertility traits in cattle. In a broader perspective, as 

the majority of the genes found in eutherian mammals are orthologous, further 

investigation of these loci in cattle may offer new insights on complex aspects of 

mammalian reproductive biology. 
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1. Abstract 

 

As the methodologies available for the detection of positive selection from 

genomic data vary in terms of assumptions and execution, weak correlations are 

expected among them. However, if there is any given signal that is consistently 

supported across different methodologies, it is strong evidence that the locus has 

been under past selection. In this paper, a straightforward frequentist approach 

based on the Stouffer Method to combine P-values across different tests for evidence 

of recent positive selection in common variations, as well as strategies for extracting 

biological information from the detected signals, were described and applied to high 

density single nucleotide polymorphism (SNP) data generated from dairy and beef 

cattle (taurine and indicine). The ancestral Bovinae allele state of over 440,000 SNPs 

is also reported. Using this combination of methods, highly significant (P < 3.17x10-7) 

population-specific sweeps pointing out to candidate genes and pathways that may 

be involved in beef and dairy production were identified. The most significant signal 

was found in the Cornichon homolog 3 gene (CNIH3) in Brown Swiss (P = 3.82x10-

12), and may be involved in the regulation of pre-ovulatory luteinizing hormone surge. 

Other putative pathways under selection are the glucolysis/gluconeogenesis, 

transcription machinery and chemokine/cytokine activity in Angus; calpain-calpastatin 

system and ribosome biogenesis in Brown Swiss; and gangliosides deposition in milk 

fat globules in Gyr. The composite method, combined with the strategies applied to 

retrieve functional information, may be a useful tool for surveying genome-wide 

selective sweeps and providing insights in to the source of selection. 

 

Key-words: Positive selection, Genome-wide scan, Meta-analysis, SNP, Cattle 
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2. Introduction 

 

Selection changes the frequency of advantageous variants and their neighbor 

polymorphic sites, sweeping the genome and leaving patterns that become prevalent 

in a population despite chromosome recombination (SABETI et al., 2002). These 

patterns are broadly referred as signatures (or footprints) of selection, and many 

methods have been developed for identifying them from genomic data (OLEKSYK et 

al., 2010). The application of such approaches to dairy and beef cattle can help 

detecting chromosome regions that underwent not only natural but also 

anthropogenic selection, and that may be associated with traits of economic interest. 

The available portfolio of methodologies varies in terms of the underlying 

selection processes assumed, the age of the sweep, and if the test is performed 

within-population or depends on population comparisons (Table 1). In this scenario, 

one may expect that correlations among different tests are weak. However, if there is 

any given signal consistently supported across different methodologies, it may be 

strong evidence that the locus has been under past selection. 

Recently, Grossman et al. (2010) stated that ‘‘If each signature provides 

distinct information about selective sweeps, combining the signals should have 

greater power for localizing the source of selection than any single test’’. Driven by 

this thought, they developed a Bayesian method for combining P-values from 

different approaches, namely Composite of Multiple Signals (CMS), which was 

capable to discriminate causal variants from neutral markers in simulated data. 

Application of CMS to real data led to the discovery of evidence of recent positive 

selection in LARGE and IL2 in Nigeria human population, genes that were previously 

incriminated in resistance to Lassa Fever (ANDERSEN et al., 2012). 

Although suitable for analysis of human populations, CMS is still challenging to 

be applied to cattle genomic data, as the computation of likelihood tables requires 

coalescent simulations using calibrated demographic models in an attempt to mimic 

the empirical data. Despite availability of good models for cattle history (MURRAY et 

al., 2010), uncertainties around the model and specific recent events that happened 

during breed formation makes difficult matching the simulations to the real data.
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Table 1. Types of signatures of selection detectable from genomic data. Ages of selection are based on estimations for human 

data in years, assuming a generation interval of 25 years (OLEKSYK et al., 2010). 

Type of 
signature 

Detectable pattern Methodologies 
Underlying 
selection 

phenomena 
Population level 

Age of 
selection 

(generations) 
References 

Function-
altering 
mutation 

 
Changes in non-
synonymous to 
synonymous variation 
ratio in the open 
reading frame of a 
coding region 
 

ω = Dn/Ds  
positive and 
purifying 
selection 

Within species >  40,000 Nielsen et al. (1988) 

Local genetic 
diversity 
depression 

Deficit of local 
heterozygosity 
compared to the rest 
of the genome 

ZHp, SNP 
heterozygosity 

positive 
selection 

Within 
populations 

< 10,000 
Rubin et al. (2010); 

Oleksyk et al. (2010) 

Change in the 
allele 
frequency 
spectrum 

Increase in the 
frequency of derived 
alleles 

ΔDAF, Tajima’s D, Fu 
and Li’s D-test, Fay and 
Wu’s H-test, CLR 

positive 
selection 

Within and 
between 
populations 

< 3,200 

Grossman et al. (2010); 
Tajima et al. (1989); Fu 
and Li (1993); Fay and 

Wu (2000); Williamson et 
al. (2007) 

Population 
differentiation 

Difference in the allele 
frequencies between 
populations 

FST  
positive and 
balancing 
selection 

Between 
populations 

< 3,000 
Weir and Cockerham 

(1984) 

Extended 
haplotype 
homozygosity 

LD persistency and 
unusual long-range 
haplotypes 

LRH, iHS, XP-EHH, 
Rsb, ΔiHH, varLD 

positive 
selection 

Within and 
between 
populations 

< 1,200 

Sabeti et al. (2002); 
Voight et al. (2009); 

Sabeti et al. (2007); Tang 
et al. (2007); Grossman 
et al. (2010); Ong and 

Teo (2010) 
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This paper describes and applies to dairy and beef cattle data a 

straightforward frequentist meta-analysis approach for combining P-values across 

different tests for footprints of recent positive selection in genome-wide single 

nucleotide polymorphism (SNP) data, targeting common, moderate frequency 

variants. Two between and two within population tests for selection sweeps are 

covered, divided into three different categories: extended haplotype homozygosity 

(EHH), change in the allele frequency spectrum, and local heterozygosity depression. 

Strategies for assigning relevant SNPs to genes are also described, allowing for 

exploration of the biological meaning of the findings and facilitating hypothesis 

generation. Additionally, the ancestral Bovinae allele state of over 440,000 SNPs is 

reported. 

 

3. Material and methods 

 

3.1. Samples and quality control 

 

Genotypes for Illumina® BovineHD Genotyping BeadChip assay of Angus 

(ANG), Brown Swiss (BSW), Gyr (GYR) and Nellore (NEL) individuals were available 

for prospection of selection sweeps. Details on sample size and data source for each 

breed can be found in Table 2. Only autosome markers (n = 742,910) were included 

into the analyses. Markers were removed from the dataset if they did not exhibit: 1) 

minor allele frequency (MAF) greater than or equal to 0.03, 2) P-value for Hardy-

Weinberg Equilibrium (HWE) greater than or equal to 1x10-6 or 3) Call rate (CRSNP) 

greater than or equal to 90%. After the SNP quality control (QC), individuals 

exhibiting call rate (CRIND) below 90% were also removed. This procedure was 

performed for each breed genotype’s dataset in parallel using PLINK (PURCELL et 

al., 2007). In order to mitigate relatedness in the dataset, individuals were further 

investigated for the proportion of alleles shared identically by descent (IBD) using 

PLINK. Potential parent-offspring, half-siblings and duplicate pairs were 

conservatively removed (see Appendix B for details). Markers commonly passing QC 

in all four breeds were then overlapped. As the final SNP set consisted of markers 

passing QC with relatively small amount of missing data, and most of the methods for 
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the detection of selection sweeps do not accommodate missing values, an imputation 

procedure was adopted to fill the existing missing genotypes. For this purpose, 

fastPHASE software was used (SCHEET et al., 2006) with the following arguments: -

H-4 -K10 -T10 -C25. 

 

3.2. Ancestral allele discovery 

 

Since some methodologies for detecting positive selection rely on the 

comparison of the recombination breakdown between haplotypes carrying the 

ancestral and the derived allele (SABETI et al., 2002; VOIGHT et al., 2009; SABETI 

et al., 2007), ancestral allele states were assessed using outgroup species assumed 

to be derived from a common founder Bovinae species that included 2 Gaur (Bos 

gaurus), 6 Water Buffalo (Bubalus bubalis) and 2 Yak (Bos grunniens) with 

genotypes derived from the same assay. Genotypes for the three outgroup Bovinae 

species were pooled into a single dataset. Markers with a CRSNP of 100% (i.e., the 

SNP probe designed to hybridize bovine DNA also recognizes other Bovinae 

species, meaning that the target sequence is within a syntenic block across the 

outgroups and may have been inherited from a common ancestor) and MAF = 0 (i.e., 

monomorphic markers, being the one single allele present likely to be the common 

ancestral variant) were sought. For each case, the major allele (frequency = 100%) 

was determined as ancestral. The final SNP set was then defined and included 

markers passing QC with ancestral allele information available. 

 

3.3. Genome-wide scan methods for positive selection 

 

3.3.1. Long-range haplotype based methods 

 

The two methodologies described here are based on the concept of Extended 

Haplotype Homozygosity (EHH) (SABETI et al., 2002), and were applied using the 

rehh package in R (GAUTIER & VITALIS, 2012) with minor adaptations to the source 

code. As the basis for the two tests, the integrated EHH for the ancestral allele 

(iHHA), derived allele (iHHD) and SNP site (iES) was calculated for each marker. EHH 
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Method 1: Voight et al. (2006) described a within population score for the ratio 

between iHHA and iHHD, called Integrated Haplotype Score (iHS): 

 

       
    

    
  

 

As iHS distribution is approximately normal, the scores are divided into 20 

equally sized bins according to their derived allele frequencies, and then 

standardized to have mean 0 and variance 1. The scores reflect how unusual the 

haplotypes containing the ancestral (positive values) and derived (negative values) 

allele are, relative to the entire genome. As both tails from the distribution were of 

interest, two-sided P-values were derived as                 from the Gaussian 

cumulative density function. EHH Method 2: Tang et al. (2007) defined Rsb, a 

between populations test, as: 

 

       
       

       
  

 

The outcome also resembles a normal distribution. Unlike iHS, the 

standardization procedure recommended by Tang et al. (2007) does not divide 

scores into bins and uses the median instead of the mean. Positive values suggest 

selection in the population used in the numerator, while negative values indicate 

signals in the population used as denominator. For each pair of breeds, Rsb scores 

were calculated using the standardization procedure recommended by Tang et al. 

(2007). As every population was used both as numerator and denominator, one-

sided upper tail P-values were derived from the normal cumulative density function.  

 

3.3.2. Change in the allele frequency spectrum 

 

Grossman et al. (2010) described a simple method based on the difference in 

the derived allele frequency between populations (DAF). Values range from -1 to 1 
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and are normally distributed. DAF scores were standardized using the distribution’s 

mean and standard deviation, and one-sided upper tail P-values were obtained. 

 

3.3.3. Local heterozygosity depression based method 

 

Rubin et al. (2010) defined and applied a Z-score test for local heterozygosity 

depression (ZHp) on whole genome sequence data of domestic chicken, which 

basically expresses how much the expected heterozygosity in chromosome windows 

deviate from the average genome heterozygosity. The approach was adapted to 

each SNP site and computed using the observed instead of the expected 

heterozygosity values. The values were standardized to produce mean 0 and 

variance 1. For this method, negative values were of interest and the resulting site 

heterozygosity scores were multiplied by -1 in order to switch their direction, yielding 

a new statistic called SHp (i.e. site ZHp). One-sided upper tail P-values were 

obtained for each score. 

 

3.3.4. Meta-analysis of multiple tests 

 

As all applied methodologies had P-values retrieved from normal distributions 

with same parameters (mean 0 and variance 1), the weighted version of Stouffer 

method was adapted for the combination of Z-transformed P-values, as reviewed by 

Whitlock (2005). For each marker and each test  , the respective P-value was 

transformed into a Z-score by             . Within population tests were 

performed only once per breed, hence their respective weight    was set to 1. For 

each comparison of between population tests, the Z-score was weighted to    , 

where   is the number of comparisons. Then, the combined statistic of   tests, for 

each SNP in each breed, was defined as: 
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The meta-SS (stands for Meta-analysis of Selection Signals) scores were 

referred back to the standard normal distribution in order to obtain combined 

significance values, which were intended to address either the combination of 

information among different, independent tests can reject the shared null hypothesis 

(neutral marker). Significance level for genome-wide meta-SS P-values was based 

on a Bonferroni threshold (           ). 

 

3.4. Functional annotation 

 

For every peak crossing the significance line, three different strategies for the 

annotation of functional features were applied, based on the genomic coordinates 

from the UMD3.1 assembly (ZIMIN et al., 2009). Strategy 1: Since any given gene 

harboring signals is a direct candidate, the presence of significant intragenic SNPs 

was checked in the Ensembl Variation 67 database using the BioMart tool 

(KINSELLA et al., 2011). Strategy 2: The closest gene in the vicinity of the most 

relevant SNP of a given peak could be responsible for the signal. Hence, the most 

significant SNP from each observed peak was isolated and the closest gene to it was 

mapped using the ClosestBed algorithm from the BedTools software (QUINLAN & 

HALL, 2010). Strategy 3: Since there are cases where variants from multiple genes 

in linkage disequilibrium (LD) with the marker contribute to the signal together, due to 

the fact that functionally related genes are often spatially close to each other (TANG 

et al., 2007), the third approach was based in a window scheme to capture genes 

that were potentially in LD with the significant SNP. The derived gene lists were 

processed in DAVID (HUANG et al., 2009a; HUANG et al., 2009b) for annotation of 

functional terms. Although DAVID provides means for enrichment analysis, with 

significance tests for overrepresented terms, the inclusion criterion of functional terms 

was solely based on existence of information. Finally, the Enrichment Map 

Cytoscape plugin (METICO et al., 2010) was used to build networks of inter-related 

terms based on the number of genes shared between terms, i.e., no hypothesis or 

significance test was applied, being the networks strictly descriptive. Terms were 

drawn as nodes (circles). Edges linking nodes represented gene sharing, and their 
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thickness, the degree of gene set overlap (i.e., proportional to the number of genes 

being shared). An extended description of this section is provided in Appendix B. 

 

4. Results 

 

4.1. Ancestral allele discovery 

 

By assessing the outgroup species genotypes, an average CRIND of 83.79%, 

96.93%, 94.87% and 88.63% for Water Buffalo, Yak, Gaur and pooled data was 

observed, respectively. From the initial set of 742,910 autosomal markers, 

considering only markers perfectly typed across the pooled outgroup samples (CRSNP 

= 100%), a total of 559,663 SNP probes were successfully hybridized (71.94%), and 

111,376 SNPs were polymorphic (MAF > 0). Hence, a total of 448,287 SNPs 

(56.75%) had their ancestral allele determined, being provided as a TSV file 

(available at: http://dx.doi.org/10.1371/journal.pone. 0064280). 

 

4.2. Quality control 

 

Number of SNPs passing QC was 579,470, 554,826, 485,655 and 461,702 for 

ANG, BSW, GYR and NEL, respectively. Overlapping of the four SNP lists retrieved a 

final set of 281,994 markers, from which 157,702 had ancestral allele information 

available. Even with the drastic drop in the number of SNPs, the intermarker distance 

mean and median were 15.94 kb and 6.43 kb, respectively, superposing the median 

spacing of 37 kb declared for the BovineSNP50 assay (MATUKUMALLI et al., 2009). 

These findings indicated that the overall marker coverage was satisfactory, although 

generation of local gaps by QC was observed. No individuals were removed due to 

QC. The number of remaining samples for each breed, after duplicates and first 

degree relationship removal, was: 24 for ANG, 44 for BSW, 23 for GYR and 581 for 

NEL. As NEL exhibited a sample size much larger than the other breeds, 45 

individuals were sampled from the total (Appendix B). Details on the final base 

dataset used for all further analyses can be found in Table 2. 
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Table 2. Description of cattle genotypes available for analysis before (BF) and after 

(AF) filtering for cryptic relatedness and quality control. 

Breed Code Subspecies Purpose 

HapMapa BOKUb ZGCc Total 

BF AF BF AF BF AF BF AFf 

Angus ANG Bos taurus Beef 27 24 0 0 0 0 27 24 

Brown 

Swiss 
BSW Bos taurus Dairy 24 13 48 31 0 0 72 44 

Gyr GYR Bos indicus Dairy 30 23 0 0 0 0 30 23 

Nellore NEL Bos indicus Beef 35 24 0 0 691 21d 726 45 

aThe Bovine HapMap Consortium (2009) 
bUniversity of Natural Resources and Life Sciences, Vienna. 
cZebu Genome Consortium. 
d The actual number of NEL samples passing control criteria was 581: 557 for ZGC and 24 

for HapMap. In order to avoid an unbalanced dataset, we decided to keep a final set of 45 

NEL: all 24 HapMap samples plus 21 randomly chosen ZGC samples. 
f Final base dataset used for the selective sweep analyses. 

 

 

4.3. Identification of selection signals and functional annotation 

 

All performed tests for footprints of selection resembled a normal distribution 

(Appendix C - Figure 1C) and genome-wide Z-transformed P-values were weakly 

correlated, satisfying the independence condition for meta-analysis (Appendix C - 

Figure 2C). Genome-wide distribution of meta-SS P-values and the closest genes to 

the top of the peaks can be found in Figure 1. The number of SNP with P-value 

crossing the genome-wide significance (P < 3.17x10-7) was: 153 for ANG, 212 for 

BSW, 3 for GYR and 13 for NEL. The most significant SNP was found in BSW (P = 

3.82x10-12), and is an intronic variation in Cornichon homolog 3 gene (CNIH3 - 

ENSBTAG00000044171), located at BTA16:28478192. 
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Figure 1. Manhattan plots of genome-wide meta-SS -log10(P-values) for Angus, 

Brown Swiss, Gyr and Nellore breeds. Number of SNPs indicated 

represents count of markers crossing the significance line (P < 3.17x10-7). 

Red and blue diamonds are intragenic and intergenic top SNPs on peaks, 

respectively. 
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In order to illustrate the potentiality of combining signals resulting from 

different methodologies for the detection of positive selection, a regional plot of P-

values for each of the individual tests for the CNIH3 region in BSW (candidate for 

being selected) and NEL (candidate for being neutral) was provided in Figure 2. For 

the same genomic region, two extra graphics were provided: 1) a EHH decay plot, 

showing the decrease of the probability of IBD as a function of the distance from the 

core SNP site (i.e., the CNIH3 intronic SNP) for both the haplotypes containing the 

derived and ancestral alleles, and 2) a bifurcation diagram for the haplotypes 

containing the derived allele, representing the breakdown of LD at increasing 

distances from the core allele (in this case, the derived allele) at a given core SNP (in 

this case, the CNIH3 intronic SNP). It can be seen from the BSW and NEL 

comparison that the signal of the unusual derived allele long haplotype in BSW, 

revealed by the meta-SS statistics, is not detectable in NEL. It is noticeable, by the 

shape of the SNP significances distribution in the meta-SS scatter plot, that iHS and 

Rsb had higher influence in the composite test, and the combination of methods 

penalized SNPs with little statistical support. 

The number of genes directly harboring significant SNPs was 20 for ANG, 27 

for BSW, 1 for GYR and 3 for NEL (the full list can be viewed at: 

http://dx.doi.org/10.1371/journal.pone.0064280). Two synonymous exonic SNP for 

ANG and BSW, one non-synonymous variation (BTA7:42652319, Ala->Thr) for a 

gene of the olfactory receptor family (LOC524290/OR2W3 - 

ENSBTAG00000025293) in ANG (P = 7.65x10-9) and a 3’UTR variation 

(BTA2:47315215) for the KIF5C (kinesin family member 5C - 

ENSBTAG00000018125) gene in NEL (P = 2.68x10-7) were found. All other variants 

within genes were located in introns. The application of the LD-window approach 

(Strategy 3) retrieved SNP windows with an average size of 576.8 kb overall breeds, 

and the largest window spanned 1.83 Mb. Total number of genes within windows 

included in each breed specific list was: 309 for ANG, 177 for BSW, 4 for GYR and 

14 for NEL (full lists can be found at: http://dx.doi.org/10.1371/journal.pone.0064280). 
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Figure 2. meta-SS, component tests, EHH and derived allele bifurcation for CNIH3 in 

Brown Swiss (A) and Nellore (B). Vertical dashed lines and red diamonds 

represent the position of the intronic SNP detected as highly significant in 

Brown Swiss (BTA16:28478192, P = 3.82x10-12). Horizontal dashed lines 

mark the Bonferroni significance threshold (P = 3.17x10-7). 
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Networking of functional terms from ANG gene list (Figure 3A) revealed three 

groups: 1) immune response related genes, involved with chemokine and cytokine 

activity; 2) transcription activity, comprising the biosynthesis of ribonucleoproteins, 

transcription activation and aminoacylation of tRNA with L-histidine residuals; and 3) 

glucolysis and gluconeogenesis pathways. For BSW, a network related to post-

transcriptional modifications of rRNAs (mostly methylation of adenosine residuals) 

and another involved with Calpain (Figure 3B) were observed. A significant intronic 

SNP (BTA16:27801014, P = 2.61x10-7) was detected in the Calpain 2 (m-Calpain - 

ENSBTAG00000012778) catalytic subunit, which may be capturing the signal of a 

causal untyped variant under selection. Due to a low number of genes mapped, it 

was not possible to build a network of functional terms for GYR and NEL. Across all 

lists, a total of 69 genes (13.69%) had no functional term associated to them, being 

either uncharacterized proteins or novel RNAs with no functional record available. All 

DAVID annotation chart reports are provided at:  http://dx.doi.org/10.1371/ 

journal.pone.0064280). 
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Figure 3. Descriptive Network of functional terms in Angus (A) and Brown Swiss (B). 

Nodes (red circles) are annotated functional terms. Edges connecting 

nodes represent gene share, being thickness proportional to the number of 

genes shared between terms (i.e., the degree of gene set overlap). 

 

 

5. Discussion 

 

Concordances among EHH based tests seemed to have led the composite 

statistics in most cases, and disagreements between Rsb and iHS scores showed 

severe drop in significance support. It was noticed that SHp and DAF did not 
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contribute much towards spatial resolution individually, but they did help pinpointing 

SNP when blended with the other methods. This was in line with observations made 

by Grossman et al. (2010) when applying the DAF  method, which despite the little 

power to localize the sweep alone, showed to better distinguish selected from neutral 

variants in that study. All methods applied in this study were deemed capable of 

identifying recent sweeps, as well as signatures dating back up to a few thousand 

generations (OLEKSYK et al., 2010). Considering that the significance of the 

combined test was mainly influenced by EHH based tests, and that cattle generation 

interval vary between 3 and 5 years, the methodology applied could have identified 

sweeps that happened as far as 6,000 years ago (1,200 cattle generations). Although 

this comprises most of cattle domestication history, the majority of the signals 

detected are more likely to have arisen during breed formation, which goes up to 

some hundreds of years ago (AJMONE-MARSAN et al., 2010). This argument is 

based on two observations: 1) the meta-analysis method applied herein focused on 

breed-by-breed test integration, which may have favored the detection of breed-

specific recent signatures; 2) for strong positive selective sweeps, which may have 

happened early in cattle domestication, the favored allele is expected to be nearly 

fixed across cattle breeds, and intrinsic factors of the present study contributed to the 

underrepresentation of fixed loci within the dataset used. 

One factor that contributed to the underrepresentation of fixed loci in the 

dataset used is related to the SNP assay. As the SNP ascertainment strategies for 

the design of bovine arrays were focused on developing marker panels of common 

variations to support genome-wide association applications, and relied on sequence 

data of most major breeds for variation detection (MATUKUMALLI et al., 2009), the 

presence of SNP sites harboring rare variants (i.e. nearly fixed loci across cattle 

breeds) is scarce. Even if sequence data was used, the bovine reference genome 

available for detecting variants is the domesticated type (THE BOVINE GENOME 

SEQUENCING AND ANALYSIS CONSORTIUM et al., 2009), and sites of variation 

that underwent strong positive selection during domestication are probably difficult to 

be identified, as the unselected variant may be very rare. For instance, Rubin et al. 

(2010) sought genome-wide heterozygosity depression in chicken using low 

coverage whole genome sequence data of DNA pools of domestic and wild lines, 
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and the reference genome of what is considered to be the ancestral type (Gallus 

gallus). The strategy allowed for the detection of genome regions that were nearly 

fixed in the domesticated lines and exhibited low identity to the wild-ancestor 

haplotypes, suggesting selection sweeps during domestication. 

 Another important factor contributing to the low representation of rare variants 

in the present study is the filtering of SNP with moderate allele frequencies in all 

breeds (MAF < 0.03), which may have made the detection of selection sweeps dating 

back to early cattle domestication unlikely. Nevertheless, the strategies adopted 

seemed to be capable of detecting footprints of recent positive selection, which may 

be anthropogenically ascertained by breeding and related to milk and meat 

production. The functional findings discussed later support this hypothesis. 

The most significant signal found comes from the CNIH3 gene in BSW (P = 

3.82x10-12). Figure 4 shows all present date known and predicted relationships of 

human CNIH3 with other proteins assessed by data integration in the STRING 9.0 

database (SZKLARCZYK et al., 2011), which indicates direct interaction of CNIH3 

with multiple amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) selective 

glutamate receptors (GRIA1, GRIA2, GRIA3, GRIA4 and GRIK1). CNIH3 regulates 

the trafficking and gating properties of AMPA receptors in the central nervous system 

(SHI et al., 2010), which were previously shown to participate in luteinizing hormone 

(LH) secretion (BRANN & MAHESH, 1997). Sugimoto et al. (2010) detected a single 

amino acid substitution (Ser -> Asn) in the bovine GRIA1 that leads to decreased 

release of gonadotropin-releasing hormone (GnRH) and slower pre-ovulatory LH 

surge, making carrier cows less responsive to superovulation hormone treatment. 

Sugimoto et al. (2010) sequenced GRIA1 in Japanese Black and Holstein 

commercial sires and found no departures from HWE in the locus, meaning that 

there is no evidence of selection pressure on the reported variants in either breeds. 

The signal on CNIH3 found in the present study suggests that at least the underlying 

pathway has suffered recent selection pressure in BSW, although the selection force 

is unknown. 
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Figure 4. Protein network of human CNIH3, according to STRING 9.0 action view. 

Nodes are proteins; edges and arrows indicate interaction. Blue edges: 

binding; green arrows: activation; pink edges: post-translational 

modification; yellow edges: expression. 

 

ANG exhibited three groups in the network map, one addressing 

chemokine/cytokine activity, a second with components of the transcription 

machinery and another related to glucolysis/gluconeogenesis. Both transcription 

activity and glucose metabolism are broad themes to be hypothesized, but it is 

possible that they have faced recent selection for high metabolic efficiency relative to 

increased meat yield and fat deposition. Regarding cytokines and chemokines, it has 

been found that they modulate different stages of muscle cell development 

(GADIENT & PATTERSON, 1999; ZOICO & ROUBENOFF, 2002). In a recent work, 

Zhao and collaborators (2012) found evidence that RNA expression of genes 

involved with acute inflammatory response has high influence in meat tenderness in 

Angus cattle. They observed that chemokines and cytokines genes, including 

chemokine C-C ligand 8 present in our gene list (ENSBTAG00000014113, BTA19), 

were deregulated in animals submitted to a surgical procedure, which in turn showed 

higher Warner-Bratzler shear force in beef samples after slaughter compared to the 
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control group, suggesting that they play important role in muscle metabolism, either 

in vivo or in postmortem proteolysis regulation. These findings support that genes 

participating in chemokine/cytokine activity are under selection in ANG cattle. 

The calpain-calpastatin system is a proteolytic complex that has also been 

largely incriminated in postmortem meat tenderization in beef cattle (KOOHMARAIE 

& GEESINK, 2006). However, evidence of selection for components related to this 

system in the BSW data is somewhat surprising. Based on proteome analysis, Kuhla 

et al. (2011) proposed a model in which the muscle breakdown provides substrates 

for milk production in early lactation, being a key mechanism in the nutritional 

imbalance of high-yielding dairy cows. Although Kuhla et al. (2001) did not mention 

the calpain-calpastatin system, this may be one hypothesis for the 

overrepresentation of related terms found. Alternatively, Arnandis et al. (2012) has 

shown that calpains are responsible for mitochondrial and lysosomal membrane 

permeabilization during lysosomal-mediated mammary epithelial cell death in mice. 

Also, milk yield is known to decline as a function of many factors after peak lactation, 

including decrease in alveolar secretory epithelial cell number due to programmed 

cell death (WILDE et al., 1997). These evidences, together with the functional terms 

found, bring a second hypothesis that calpain-related genes are candidates under 

selection for lagged or mild post-peak lactation mammary gland involution in BSW. 

Both hypotheses point to the calpain-calpastatin system as a new target pathway 

involved in lactation dynamics in dairy cows. 

Another intriguing candidate pathway pointed out by the present study is the 

ribosome biogenesis in BSW, more particularly the step involving methylation of 

rRNA. The addition of a methyl group to the 29-hydroxyl group of the backbone 

ribose is a conserved type of post-transcriptional RNA modification (KISS, 2002), and 

is an essential step in ribosome assembly. Most 29-O-methylated sites occur in 

functionally important regions of rRNAs and may influence ribosome structure and 

function (DECATUR & FOURNIER, 2002). It has been found that expression of 

ribosome components did not increase, and some of them had a slight decrease, 

during lactation in bovine mammary, which may be due to prioritization of synthesis 

of milk-specific mRNAs (BIONAZ & LOOR, 2011). Thus, since the anabolic demand 

in lactation is not accompanied by increase in the expression of ribosome 
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components, rRNA post-transcriptional modifications may play an important role in 

the translation efficiency of milk-specific proteins during lactation. 

It was found an intronic signal for ST6GALNAC5 (ENSBTAG00000007309) in 

GYR (P = 1.24x10-9). ST6GALNAC5 is involved in the synthesis of gangliosides, 

more particularly the GD1 in the brain (MOMOEDA et al., 2007). Gangliosides are 

glycosphingolipids containing one or more sialic acid residues in their structure, 

mainly n-acetylneuraminic acids. Some types of gangliosides can be found as 

components of the membrane fraction of the milk fat globule, which derives from the 

apical plasma membrane of secretory cells in the lactating mammary gland (BODE et 

al., 2004). Prolactindependent deposition of GD1 gangliosides in the milk fat 

globules of mice (comprising up to 80.5% of the total milk lipidbound sialic acid at the 

3rd day of lactation) has been reported as a result of the expression of 

ST6GALNAC5 during lactation, and may be an important source of GD1 for the 

developing neonate brain (MOMOEDA et al., 2007). These evidences raise the 

hypothesis that ST6GALNAC5 has been indirectly selected in GYR via percentage of 

fat in the milk. 

The present study found substantially fewer evidences of recent selection in 

GYR and NEL, relative to BSW and ANG. When only within population tests were 

combined in the meta-SS statistics, GYR and NEL exhibited considerable numbers of 

selective sweeps, but still less than the taurine breeds analyzed (Appendix C - Figure 

3C). However, when only between populations tests were combined, the indicine 

breeds showed a severe drop in signals (Appendix C - Figure 4C). As tests based on 

LD persistency and unusual long-range haplotypes were an important part of the 

composite statistics, the decreased number of sweeps found in the indicine breeds 

could be explained by differences in haplotype block structure and extent of LD 

across taurine and indicine breeds. In fact, ANG and BSW were shown to have 

greater mean haplotype block size and average LD than GYR and NEL (VILA-

ANGULO et al., 2004). Thus, the higher extended haplotype homozygosity of taurine 

breeds may have masked the detection of selective sweeps in the genomes of 

indicine breeds. 

Many studies on signatures of selection in cattle have been published in 

recent years, and known genomic regions under selection are often used in literature 
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as ‘confirmatory’ loci in order to validate new findings. Examples of such loci are the 

melanocortin 1 receptor gene (MC1R - ENSBTAG00000023731), responsible for the 

black/red coat color in ANG (MATUKUMALLI et al., 2009; KUNGLAND et al., 1995; 

STELLA et al., 2010), and the Mast/stem cell growth factor receptor gene (KIT - 

ENSBTAG00000002699), incriminated in the ‘piebald’ spotted coat-color in Hereford 

and BSW (GROSZ & MACNEIL, 1999; STELLA et al., 2010). MC1R is located at 

BTA18: 14757332-14759082, and KIT is located at BTA6:71796318-71917431 in the 

UMD v3.1 assembly. Both KIT and MC1R regions were underrepresented in SNP 

coverage in the present study due to QC effects and ancestral allele information 

availability, and gaps spanning BTA6 71.7–72.4 Mb and BTA18 14.0–15.0 Mb were 

observed. These observations could justify the absence of significant signals for KIT 

or MC1R. However, other studies searching for selective sweeps in these breeds 

also did not report signals in KIT and MC1R regions in BSW and ANG (THE BOVINE 

HAPMAP CONSORTIUM, 2009; QANBARI et al., 2011), respectively. 

Some of the putative loci under selection detected herein were compared to 

previous studies, more particularly the signals found in BSW, since information on 

signatures of selection is more abundant in taurine dairy cattle. The topology of iHS -

log10(P-values) across BTA 4, 5, 16 and 19 reported by Schwarzenbacher et al. 

(2012) was noticeably similar to the meta-SS reported herein, and BTA 6 exhibited 

similarities with iHS reported by Qanbari et al. (2011) and Schwarzenbacher et al. 

(2012) in Brown Swiss and by Hayes et al. (2008) in Norwegian Red. Hayes et al. 

(2009) assessed evidence of divergent selection in Holstein and Angus using FST and 

iHS, and were able to detect signals in Holstein BTA 6 that resembled the meta-SS 

pattern found in the BSW dataset used in the present work. Moreover, Flori et al. 

(2009) examined FST within and across three French dairy cattle breeds, finding 

putative regions under selection that overlap the findings on BSW chromosomes 5 

and 6 in the present study. 

Based on the findings presented, the combination of multiple methods and the 

functional annotation strategies adopted seemed to be highly informative. 

Notwithstanding, some challenges still need to be overcome when considering 

scanning genome-wide data for selection sweeps. First, as similar genomic patterns 

can be produced by other phenomena, such as genetic drift, separating false 
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positives from real selection signals may not be trivial. Second, identified candidate 

regions often lacked spatial resolution, spanning from hundreds of kilobases to few 

megabases and comprising many genes. Third, distinguishing causal variants from 

nearby neutral loci may be the most difficult issue, as those variants were probably 

seldom typed in SNP arrays, and even with whole genome sequence data, variants 

in LD with the actual selected locus could have produced similar signals due to 

genetic hitch-hiking. Integrating different methodologies may help mitigating these 

problems, and should provide a valuable tool for seeking loci that are likely to have 

undergone recent artificial selection. 

Finally, hypothesis making research implies proposing the function given the 

loci. In the present paper, this has meant inferring the source of selection for a given 

set of significant signals by extracting known gene functions and interaction 

information from available databases resources. Although the adopted functional 

annotation workflow using automated database mining and networking seemed to be 

a useful tool for providing insights on the driving forces behind the signals, the 

comprehensive nature of the annotation approach was expected to retrieve analysis 

artifacts due to systematic biases. Thus, hypothesis-driven investigations on the 

findings herein reported will contribute to elucidate which functions did undergo 

selection. 
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APPENDICES 

 

APPENDIX A - Extended methods for weighted FASTA 

 

1. The standard FASTA 

 

Variance-components models are the gold standard for genome-wide 

association analysis of single nucleotide polymorphism (SNP) markers accounting for 

relatedness and population substructure. However, fitting all model parameters for 

every tested SNP makes the process computationally demanding. In order to 

overcome this problem, approximation approaches have been proposed, which 

divide the estimation of parameters into two steps: first, a variance-components 

model is fitted to the data; then, the significance of each marker is either obtained 

from score tests corrected for the variance-covariance matrix (CHEN & ABECASIS, 

2007; ZHANG et al., 2010; KANG et al., 2010; LIPPERT et al., 2011) or least 

squares regressions using residuals as the dependent variable (AULCHENKO et al., 

2007; AMIN et al., 2007). 

The Fast Association Score Test-based Analysis (FASTA) method (CHEN & 

ABECASIS, 2007) comprises fitting a variance-components model to the data in 

order to obtain the variance-covariance matrix for the phenotypes, which is then used 

to compute allele substitution effects for each tested SNP. The variance-components 

model is based on the polygenic model: 

         [1] 

where   is the vector of phenotypes observed for   individuals,   is a  x   design 

matrix of   covariates,   is a column vector of size   of fixed effects of covariates, 

and   and   are vectors of unobserved random additive genetic and residual effects, 

respectively. 

 The polygenic model involves partitioning the total trait variance   
  in two 

components: variance due to genetic differences among individuals, namely additive 

genetic variance   
 , and a residual variance   

 . Additive genetic effects are 

assumed to follow a          
  , where   is a relationship matrix. The diagonal 

elements of matrix   are individual variances, which can be expressed as    , 
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where   is the inbreeding coefficient (ASTLE & BALDING, 2009). The off-diagonal 

elements of this matrix are covariances between individuals, which can be expressed 

as twice their kinship coefficient. Unbiased estimates of kinship coefficients between 

individuals can be obtained from genotypic data as (AMIN et al., 2007; ASTLE & 

BALDING, 2009): 

      
 

 
 

                  

        

 
    [2] 

where       is the estimated genomic kinship between individuals   and  ,   is the total 

number of loci used for the calculation,    is the reference allele frequency for locus  , 

and      and      are the locus   genotypes for individuals   and  , respectively (coded 

as 0, 1 or 2 reference alleles). 

 The model specifies that the random residual effect for each individual is 

normally distributed with mean zero and variance   
 . These residuals are assumed 

to be independent between individuals, and the joint distribution of residuals is 

defined as          
  , where   is an identity matrix. In this setting, variances are 

assumed to be equal among individual phenotypes, and the variance-covariance 

matrix is defined as: 

      
      

  [3] 

The log-likelihood function of the model is then specified as: 

        
 

 
        

 

 
        

 

 
        

  
       [4] 

Maximum likelihood estimates for each model parameter are obtained from this 

function by using an optimization algorithm. Next, the estimated   
  and   

  are used 

in [3] to calculate the variance-covariance matrix at the point of maximum likelihood. 

Then, for each SNP, the allele substitution effect and its variance are obtained using 

generalized least squares equations: 

            
  

   
  

    
  

   [5] 

                
  

   
  

 [6] 

Where       and            are the estimated allele substitution effect and its 

variance, respectively;          , where   is the vector of observed genotypes for 

a given marker coded as 0, 1 or 2 reference alleles, and      is a genotype mean;  
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and    is the vector of dependent phenotype residuals          (phenotype 

adjusted for the estimated fixed effects). 

 

2. Adapting FASTA to account for heterogeneity of variance in dEBVs 

 

Following Garrick et al. (2009), a deregressed estimated breeding value 

(dEBV) represents a pseudo-phenotype that summarizes all the information available 

on the individual and its relatives, as if it was a single observation. In this special 

case, variances are unequal among individual pseudo-phenotypes as the number of 

repeated measures or observations of relatives for each individual varies. Thus, it is 

necessary to adapt the polygenic model to allow for heterogeneity of variance among 

individuals. This can be achieved by replacing the diagonal of the identity matrix   in 

the residual variance matrix by individual weights that are proportional to the estimate 

errors. Now, residual random effects are assumed to follow a          
  , where   

is a diagonal weight matrix.  

The main objective in maximizing the likelihood in [4] is to obtain estimates for 

the variance components and random/fixed effects of the model. However, it is easy 

to show that the polygenic model in FASTA is equivalent to the animal model:  

          [7] 

where   is a design matrix of order  x   that relates phenotypes to random animal 

effects. The random effects are assumed to be distributed as:  

 
 
 
       

 
 
   
   

  

    
    [8] 

This model can be fitted using the mixed model equations (MME) developed by 

Henderson (1973): 

 
            

              
  

 
   

 

  
   

      

      
  [9] 

Where   is the variance ratio   
    

 . Now, variance components can be estimated via 

restricted (residual) maximum likelihood (REML), and    and    can be simultaneously 

estimated. The variance-covariance matrix for the phenotypes is then defined as 

        
       

 . As dEBVs are single observations, matrix   is an identity 
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matrix, so the model in [7] can be rewritten as         , and the variance-

covariance matrix becomes 

     
     

  [10] 

Note that     when variances are equal among individual phenotypes, in which 

case         
     

 , and the animal model is equivalent to the original 

polygenic model used in FASTA. Thus, we used REML to estimate variance 

components and MME to estimate fixed and random effects in the first step of 

FASTA, allowing for fitting phenotypes with unequal variances. The allele substitution 

effect and the variance of each SNP were then obtained as in the original FASTA 

approach, following [5] and [6]. 

 

3. Choosing appropriate weights for dEBVs 

  

The choice of weights to be used can vary according to the nature of the 

response variable being analyzed. In the case of dEBVs, Garrick et al. (2009) 

proposed the following weights to account for heterogeneity of variance: 

   
      

    
    

 

  
     

 [11] 

where   is the assumed proportion of the genetic variance not explained by markers 

due to partial genome coverage and incomplete linkage disequilibrium between 

markers and causal variants,    is the estimated heritability of EBVs before 

deregression, and   
  is the reliability of the dEBV of animal  . These weights are 

diagonal elements of the inverse of the scaled residual variance matrix    
 , with   

  

being factored out before inversion. Hence, the weight matrix   can be expressed in 

the non-inverted form as: 

   
      

   
      

  [12] 

 Garrick et al. (2009) argued that the choice of a value for   can be made by 

assessing a range of values or by estimating   from validation analyses. In practice, 

they showed that the impact of the assumed value of   is to influence the relative 

value of individuals with accurate information, in comparison to individuals with less 
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reliable information. When    , weighting by   is equivalent to weighting 

observations by the inverse of their variances, which in the case of dEBVs can be 

approximated by         . As the use of too large a value of   would result in little 

contrast between dEBVs with low and high accuracy, and the use of too small a 

value of   would result in excessive emphasis on dEBVs with high accuracy, we 

decided to fix   at 0.5. 
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APPENDIX B - Cryptic relatedness control and functional annotation 

 

1. Cryptic relatedness control 

 

We were interested in account for as much diversity as possible and keep only 

unrelated individuals within our dataset. It was known that BOKU and ZGC samples 

lodge different degrees of cryptic relatedness. According to The Bovine HapMap 

Consortium (2009), their sampling strategy involved genotyping individuals that were 

unrelated for ≥ 4 generations, but each breed had at least one sire, dam and progeny 

trio. We expected to find duplicates within HapMap samples, because we knew the 

consortium had genotyped some animals twice for genotype quality assessment. It 

was also possible that there were duplicated samples between BOKU and HapMap 

or ZGC and HapMap, because high ranked sires may have been genotyped by the 

three initiatives. As our access to pedigree information was limited, we investigated 

our dataset for pairwise allele identity using PLINK. The method adopted is based on 

Identity by Descent (IBD) and was described by Purcell and collaborators (2007). 

Briefly, it uses a method-of-moments approach to estimate the probability of sharing 

0, 1 or 2 alleles identical by descent for any two individuals, assuming they come 

from the same homogeneous, random-mating population. If we denote IBS states as 

I and IBD states as Z (in both cases, the possible states being 0, 1, and 2), then we 

can express the prior probability of IBS sharing as: 

                           

   

   

 

As described in detail in Purcell et al (2007), for each SNP, the          is specified in 

terms of the allele frequency; averaging over all SNPs, we obtain the expected global 
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value for         . Then, rearranging the three equations implied by the equation above, 

we solve for         ,         , and          and calculate: 

    
      

 
         

which is an estimation for the proportion of alleles shared identically by descent. 

Expected values of    for the different types of relationship can be found in Table 1B. 

This estimate and its expected values were used for investigation of cryptic 

relatedness within breeds. 

First, we looked for possible replicates. Duplicated (or even monozygote twins) 

samples usually present P(Z = 2) ~ 1 and    ~ 1 (i.e. all alleles are identical by 

descent). Thus, pairs of samples showing    ≥ 0.9 were considered duplicates, and 

one of the samples was randomly excluded. Second, heatmaps of    values were 

drawn for each breed, in order to obtain an overall view of the cryptic relatedness 

present within the datasets. To improve visualization even more, Euclidean distances 

were calculated from    dissimilarities and samples were clustered according to the 

amount of alleles shared by descent. Finally, potential Parent-Offspring and Full-

Siblings pairs were considered confounders for our analyses and at least one sample 

was excluded for each pair identified. As a single sample can hold first degree 

relationship with one or more samples at the same time, it is clear that its exclusion 

would solve the confounding effects and preserve more samples within the dataset 

than excluding random members of each pair. Thus, we developed an algorithm 

(written in R) that performs conservative exclusion of samples. For a given cryptic 

relatedness threshold (in this case,    > 0.4), the following procedure is executed: 

 

 

a. For each sample, count the number of cryptic relationships it holds. 

b. Sort samples by count score. 

c. Exclude the sample with the highest score. 

d. Repeat a, b and c until all scores are equal to 0. 
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Table 1B. Different types of relatedness and their IBD values 

Type Degree E(  )                            

Full-Sibling 1-2 0.5000 0.2500 0.5000 0.2500 
Half-Sibling 2 0.2500 0.5000 0.5000 0.0000 

Grandparent-grandchild 2 0.2500 0.5000 0.5000 0.0000 
Avuncular 2-3 0.2500 0.5000 0.5000 0.0000 

First-Cousin 3 0.1250 0.7500 0.2500 0.0000 
Unrelated - 0.0000 1.0000 0.0000 0.0000 

Half-Avuncular 3 0.1250 0.7500 0.2500 0.0000 
Half-First-Cousin 4 0.0625 0.8750 0.1250 0.0000 

Half-Sib+First-Cousin 2-3 0.3750 0.3750 0.5000 0.1250 
Parent-Offspring 1 0.5000 0.0000 1.0000 0.0000 

MZ-Twins 0 1.0000 0.0000 0.0000 1.0000 

 

 

 

We found 7 BOKU-HapMap, 3 ZGC-HapMap and 3 HapMap-HapMap 

duplicates. After removal of replicated samples, we plotted the    heatmap (Figure 1B) 

and carried out a principal coordinates analysis (Figure 2B) to check for the integrity 

of our genotype files and sample tracking. The number of remaining samples for 

each breed after duplicates and first degree relationship (   > 0.4) removal were: 24 

ANG, 44 BSW (13 HapMap and 31 BOKU), 23 GYR and 581 NEL (24 HapMap and 

557 ZGC). As NEL exhibited a sample size much larger than the other breeds, 45 

individuals were sampled from the total 581 (all 24 remaining HapMap samples + 21 

ramdom ZGC samples), in order to do fair comparisons. We decided to keep all 

possible HapMap genotypes because the sampling strategy adopted by the HapMap 

consortium attempted to account for as much within-breed diversity as possible. 
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Figure 1B. Heatmap and clustering of samples based on relatedness, as measured 

by   . Values range from 0 (green - completely unrelated samples) to 0.5 

(red - IBD sharing of half of the alleles, corresponding to Parent-Offspring 

or Full-Siblings pairs). 
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Figure 2B. Principal Coordinates Analysis. Red = BSW, Green = ANG, Orange = 

GYR and Blue = NEL. Percentages inside brackets correspond to 

proportion of variance explained by the respective eigenvectors. 

 

2. Functional annotation 

For any peak crossing the significance line, we applied three different 

strategies for the annotation of functional features. 

Strategy 1: Since any given gene harboring signals is a direct candidate, the 

first approach consisted on checking if any significant SNP was intragenic via mining 

the Ensembl Variation 67 database with the Ensembl Biomart tool (Kinsella et al., 

2011). 

Strategy 2: The closest gene in the vicinity of the most relevant SNP of a peak 

may be the responsible for the signal. Hence, the second strategy comprehended 

isolating the most significant SNP from each observed peak and mapping the closest 

gene to it. For that matter, we downloaded the Bovine UMD3.1 gene set from 

Ensembl Genes 67 database via Biomart tool and used the ClosestBed algorithm 

from the BedTools software (Quinlan & Hall, 2010). 
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Strategy 3: There are cases where variants in multiple genes in linkage 

disequilibrium (LD) with the marker contribute to the signal together, because 

functionally related genes are often spatially close to each other. In fact, the usage of 

SNP chips is driven by the hypothesis that high marker density coverage of the 

genome is capable of capturing most of the genomic information by LD and 

haplotype structure. Thus, our third approach was a LD-based window scheme, 

divided into three steps. 

Step 1: Every SNP crossing the significance line was defined as a ‘core SNP’. 

Step 2: We walked down to proximal and distal chromosome positions 

calculating correlations between the core SNP and the neighbor markers, checking if 

they tagged the core SNP or not based on r2 values.  The r2 threshold adopted to 

declare that one marker tagged the core SNP was set to 0.7. The positions of the last 

tag markers on both sides of the core SNP, i.e., positions from where r2 decayed 

below the defined threshold or the tag marker distance from the core position 

exceeded 1 Mb, were set as the boundaries of a window. This analysis was done in 

PLINK, using the options --show-tags --list-all --tag-r2 0.7 --tag-kb 1000. 

Step 3: The retrieved window was interpreted as a single locus, and any gene 

overlapping it was considered to be in LD with the core SNP, thus a candidate for 

being involved with the selection signal. Such genes were therefore annotated. For 

the sake of marker density and region resolution, we used the lists of SNPs passing 

within breed QCs, regardless of ancestral allele information, instead of the unified list. 

For core SNPs where no window boundaries could be determined, we included the 

closest gene in the vicinity to the list. As some windows may also overlap, the 

derived gene list was then parsed to exclude repeated gene names and 

subsequently processed in DAVID (Huang et al., 2009a; Huang et al., 2009b) for 

annotation of functional terms. We used the default parameters for each breed gene 

list, pooling together all genes annotated across the genome to reveal over-

represented functional terms. Our hypothesis was not that all genome signals 

detected came from a single selection event, but that some sweeps may have shared 

the same functional background, i.e. the same selection force. Therefore, genes from 

different regions and chromosomes may cluster together or not based on their 

function, revealing biological processes, rather than single genes, that undergone 
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selection. Finally, we used the Enrichment Map Cytoscape plug-in (Merico et al., 

2010) to build networks of inter-related terms based on the number of overlapping 

genes. Terms were drawn as nodes (circles). Edges linking nodes represented gene 

sharing, and their thickness the degree of gene set overlap. 
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APPENDIX C - Supplementary figures 

 

 

 

 

Figure 1C. Histogram for each individual standardized test score 

 

 

Figure 2C. Pearson correlations between each individual test Z-transformed P-values 
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Figure 3C. Manhattan plots of genome-wide meta-SS -log10(P-values) combining 

within breeds tests only. 
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Figure 4C. Manhattan plots of genome-wide meta-SS -log10(P-values) combining 

between breeds tests only. 

 

 


