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Abstract We present a novel fast algorithm for flow

simulations using the discrete vortex method, DVM, for

problems with periodic boundary conditions. In the DVM,

the solution of the velocity field induced by interactions

among N discrete vortex particles is governed by the Biot–

Savart law and, therefore, leads to a computational cost

proportional to O(N2). The proposed algorithm combines

exponential and power series expansions implemented

using a divide and conquer strategy to accelerate the cal-

culation of the cotangent kernel that models periodic

boundary conditions. The fast multipole method, FMM, is

applied for the solution of singular terms appearing in the

power series expansion and also for the exponential series

expansion. Error and computational cost analyses are per-

formed for the individual steps of the algorithm for double

and quadruple machine precision. The current method

presents more accurate solutions when compared to those

obtained by periodic domain replication using the free-field

FMM kernel. The novel algorithm provides computational

savings of nearly 240 times for double-precision simula-

tions with one million particles when compared to the

direct calculation of the Biot–Savart law.

Keywords Fast algorithm � Cotangent kernel � Periodic
boundary conditions � Discrete vortex method � Fast
multipole method

1 Introduction

In fluid mechanics, several problems can be modeled using

periodic boundary conditions and a number of applications

can be found in mechanical, civil, aeronautical and naval

engineering. For example, one can cite numerical simula-

tions involving periodic homogeneous directions such as in

isotropic turbulence [25, 27], turbulent channel flows [21]

or the turbulent flow past an airfoil [24]. Other problems

may present more complex periodic flow arrangements

such as in a turbine cascade configuration [5] or in a heat

exchanger [28]

In flows with regions of concentrated vorticity, mesh-

free numerical methods such as the discrete vortex method,

DVM, have become a suitable tool for simulation [4, 6].

Alternatively to the classical Eulerian methods, the DVM

applies a Lagrangian technique where vorticity is advected

with the local flow velocity. Recently, the DVM has been

applied to solve problems including airfoil leading edge

separation [12, 19], unsteady motion of a pitching airfoil

[18] and cylinder wake instability [8].

Vortex cloud modeling offers great potential for

numerical analysis of relevant problems in fluid mechanics.

Some of the main advantages of the Lagrangian vortex

methods are: (1) the absence of mesh generation which can

be cumbersome for complex configurations; (2) computa-

tional efforts are directed only to regions with non-zero

vorticity, differently from Eulerian formulations which

require solutions along the entire discretized flowfield; (3)

far-field boundary conditions are taken care automatically
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by the method and (4) vortex methods do not suffer from

numerical dispersion and dissipation errors.

Despite its advantages, in mesh-free vortex methods, the

number of operations at each time step is proportional to

the square of the number of vortices present in the flow

since it is necessary to compute the interactions among all

N discrete vortex particles using the Biot–Savart law. This

leads to large CPU requirements, proportional to N2. To

circumvent this difficulty, faster algorithms are required to

accelerate the vortex–vortex interactions computed by the

Biot–Savart law. Lindsay and Krasny [15] presented a

divide and conquer methodology with an adaptive local

refinement to accelerate the solution of vortex sheet

motion. Yokota et al. [25–27] employed the fast multipole

method [10, 17], FMM, to perform fast simulations of

isotropic turbulence and homogeneous shear flows using

vortex methods.

Mesh-free methods can be applied to solve problems

with periodic boundary conditions. For instance, several

authors have employed the DVM to study the development

of vortex sheet roll-up [1, 3, 13, 14, 22, 23] which requires

the application of a cotangent kernel to represent the

periodicity of the vortex particles. These authors studied

several aspects of the problem including the regularization

of the kernel and the development of instabilities in the

solution. Fast algorithms such as the FMM have been

applied in combination with vortex methods for the solu-

tion of flows with periodic boundary conditions

[7, 20, 25–27]. In general, periodicity is implemented in the

FMM through replication of the multipole expansions of

the computational domain. Ricciardi [20] presents an error

analysis of such implementation for a vortex sheet roll-up

problem. Other authors have also applied fast algorithms

together with Lagrangian methods to solve problems in a

different context, such as in Stokes flow simulations with

periodic boundary conditions [9, 16].

In this work, we present a novel fast algorithm for flow

simulations using the discrete vortex method for problems

with periodic boundary conditions. The proposed algorithm

combines exponential and power series expansions imple-

mented using a divide and conquer strategy to accelerate

the calculation of the cotangent kernel that models periodic

boundary conditions. The fast multipole method is applied

for the solution of singular terms appearing in the power

series expansion and also for the exponential series

expansion. Error and computational cost analyses are per-

formed for the individual steps of the algorithm for double

and quadruple machine precision. The current method

presents more accurate solutions when compared to those

obtained by periodic domain replication using the free-field

FMM kernel. The novel algorithm provides computational

savings of nearly 240 times for double-precision

simulations with one million particles when compared to

the direct calculation of the Biot–Savart law.

2 Numerical formulation

The discrete vortex method solves the Navier–Stokes

equations in the vorticity form. For an incompressible

Newtonian fluid, the 2D vorticity transport equation in non-

dimensional variables is given by

ox
ot

þ u � rx ¼ 1

Re
r2x; ð1Þ

where u ¼ u î þ v ĵ is the velocity vector, x ¼ r� u is

the z-vorticity component and Re is the Reynolds number.

Chorin [6] proposed a numerical solution of Eq. 1 solving

separately the inviscid and viscous terms in two fractional

steps. The first step considers the flow to be inviscid, i.e.,

Re ! 1, leading to

ox
ot

þ u � rx ¼ D x
D t

¼ 0; ð2Þ

while the second step solves the viscous effects

ox
ot

¼ 1

Re
r2x: ð3Þ

The calculation of the inviscid term requires the solution of

the Biot–Savart law, which computes the velocity field due

to the vortex interactions. For a two-dimensional problem,

the Biot–Savart law is written as

uðx; tÞ ¼ 1

2p

Z

S0

xðx0; tÞ � ðx� x0Þ
jx� x0j2

dS0; ð4Þ

where xðx0; tÞ is the vorticity and S0 represents a two-di-

mensional surface which surrounds the vorticity field.

In complex notation, the velocity induced by a potential

vortex j at a point k is given by

wj ¼ uj � i vj ¼ i
Ck

2pzjk
: ð5Þ

In this equation, Ck is the circulation of vortex k defined as

positive in the clockwise direction. The complex distance

between vortices j and k is given by

zjk ¼ ðxj � xkÞ þ i ðyj � ykÞ. Here, u and v are the Carte-

sian components of the velocity vector in the x and y di-

rections, respectively. If the vortex j is replicated n times,

from �1 to 1, with spatial periodicity k, it is possible to
calculate the induced velocity of this array at zj according

to

wj ¼
X1

n¼�1
i
Ck

2p
1

zjk þ nk

� �
: ð6Þ

4556 J Braz. Soc. Mech. Sci. Eng. (2017) 39:4555–4570

123



For k ¼ 1, this equation can be simplified to

wj ¼ i
Ck

2p
1

zjk
þ
X1
n¼1

1

zjk � n
þ 1

zjk þ n

� �" #
; ð7Þ

where the summation inside brackets has an exact solution

given by the cotangent function [2]

p cotðpzjkÞ ¼
1

zjk
þ
X1
n¼1

1

zjk � n
þ 1

zjk þ n

� �
: ð8Þ

This leads to an exact solution for the induced complex

velocity by an infinite array of periodical vortex particles

k at a point zj. Therefore, it is possible to rewrite Eq. 7 as

wj ¼ i
Ck

2p

�
p cotðpzjkÞ

�
: ð9Þ

As previously discussed, the direct calculation of the induced

velocity by Eq. 9 leads to an algorithm with computational

cost proportional to O(N2), being N the number of vortex

particles in the discretization.To accelerate the calculation of

the Biot–Savart law, we propose the following approxima-

tions which will be combined in a fast algorithm.

2.1 Exponential series expansion

The first approximation investigated is an exponential

series expansion of the cotangent function given by

cotðpzÞ ¼ þ i � 2i
X1
n¼0

expð2p i nzÞ; ð10Þ

where the argument z is given by z ¼ xþ i y. If one

truncates the series with p-terms, it is possible to write an

approximation as

cotðpzÞ � þ i � 2i
Xp
n¼0

�
exp 2p i nxð Þ exp �2pnyð Þ

�
:

ð11Þ

Hence, two distinct exponential terms are present. The one

dependent on the distance along the x-axis is imaginary and

purely oscillatory, so it does not contribute to the conver-

gence. On the other hand, the term based on the separation

along the y-axis is real and decays if y[ 0 and, since

j exp �2pyð Þj is smaller than unit, the series is convergent.

For y\0, the series diverges since the exponential grows.

However, as cotangent is an odd function, it is possible to

achieve convergence for both jyj[ 0 based on the identity

cotðzÞ ¼ � cotð�zÞ. Therefore, it is possible to write

cotðpzÞ � þ i � 2i
Xp
n¼0

�
exp þ2p i nxð Þ exp �2pnyð Þ

�
,

for y[ 0;

ð12Þ

and

cotðpzÞ � � i þ 2i
Xp
n¼0

�
exp �2p i nxð Þ exp þ2pnyð Þ

�
,

for y\0:

ð13Þ

The series convergence is investigated to determine the

number of p terms required to achieve an arbitrary preci-

sion E. To do so, one must solve

cotðpþ i pyÞx¼1 � i � 2i
Xp
n¼0

�
exp 2p i nð Þx¼1exp �2pnyð Þ

�( )�����
������ E;

ð14Þ

which is valid for y[ 0. Results are indicated by the dif-

ferent curves in Fig. 1, ranging from E ¼ 1� 10�6 to

1� 10�30. They are obtained for an argument where the

imaginary part y ranges from 0 to 1, while the real part is

fixed at x ¼ 1. It is possible to see faster convergence for

larger |y|, since fewer terms are required in the series

truncation. Recently, Ricciardi et al. [20] have shown that

simulations of vortical flows using the DVM may have

numerical instabilities in the inviscid limit due to numeri-

cal truncation errors that destabilize the solutions. In this

sense, they show that increasing the machine precision to

quadruple precision may delay the formation of spurious

solutions in the DVM. For the current formulation, the role

of machine precision is presented in Figs. 1a, b, for double

and quadruple precision, respectively.

2.2 Power series expansion

The second approximation is given by a power series

expansion that approximates the cotangent function for an

argument jzj\1. After a truncation with p terms, this

approximation is given by

cotðpzÞ �
Xp
n¼0

ð�1Þn22nB2n

ð2nÞ! ðpzÞ2n�1; ð15Þ

where the Bernoulli numbers B2n are defined as

B2n ¼ ð�1Þnþ1 ð2nÞ! 2
ð2pÞ2n

fð2nÞ: ð16Þ

In the above equation, the Riemann zeta function f is

computed for n� 1 as fð2nÞ ¼
P1

j¼1 j
�2n and, for n ¼ 0, it

is given by fð0Þ ¼ � 1
2
.

Combining the equations above, it is possible to obtain a

simplified series expansion for the cotangent function as

cotðpzÞ �
Xp
n¼0

ð�2Þ fð2nÞ
p2n

ðpzÞ2n�1; ð17Þ
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which leads to the cotangent power series equation

cotðpzÞ ¼ 1

pz
� 1

3
ðpzÞ � 1

45
ðpzÞ3 � 2

945
ðpzÞ5

þ � � � þ O ½ðpzÞ2pþ1�:
ð18Þ

It is possible to simplify Eq. 17, leading to

cotðpzÞ �
Xp
n¼0

C2n�1z
2n�1; ð19Þ

with coefficients C2n�1 that can be precomputed and stored

for faster calculations

C2n�1 ¼
ð�2Þ fð2nÞ

p
: ð20Þ

The convergence of Eq. 19 is investigated for jzj\1, where

z ¼ xþ i y. In these computations, the imaginary part is

null, i.e., y ¼ 0, but non-zero values for y can be used as

well. Hence, only the influence of the separation of two

particles along the x-axis is investigated, such that z ¼ x.

The absolute error from the series expansion to the exact

solution can be evaluated as

cotðpzÞ �
Xp
n¼0

C2n�1z
2n�1

�����
����� ¼ E: ð21Þ

Figure 2 shows that for small distances the cotangent

behaves like 1/z, and few terms are required for good

convergence of the series. When the distance increases,

z ! 1, the method lacks precision and the error grows, as
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Fig. 1 Convergence properties of the exponential series expansion of the cotangent function
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Fig. 2 Absolute value of the cotangent power series expansion based on the argument z for several truncation terms p evaluated with double
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presented in Fig. 3 for a different number of p terms in the

series. Finally, if the argument of the cotangent function is

larger than p (jzj[ 1), the present power series expansion

is not applicable, i.e., this formulation should not be used

for vortex particles far from each other.

However, since the cotangent function is a periodic

function with period p, it may be possible to rewrite it

using integer numbers n (n 2 Z) as cotðzÞ ¼ cotðzþ npÞ.
Hence, when the distance of two particles along the real

axis is large, it is possible to account for their interaction

indirectly using its image-vortex, leading to the same

result. This idea is shown in Fig. 4 where, if jxj[ 0:5, the

interaction is performed not with the original vortex par-

ticle, but with its periodic image. Hence, the convergence

is faster everywhere inside an unitary domain.

3 Fast summation algorithm

To reduce the computational cost from the direct calcula-

tion of the Biot–Savart law from O(N2) towards O(N), a

divide and conquer strategy will be used. Therefore, clus-

ters of vortex particles should interact with each other

instead of the direct particles.

As presented in Figs. 2, 3 and 4, particles close to each

other are evaluated using the power series expansion

approach. As will be later shown, while the singular term

1 / z present in this series must be handled by the FMM, all

the non-singular terms can be evaluated using a Newton

binomial expansion. Hence, these two methodologies are

coupled to solve the approximation through the power

series expansion. The methodology of the FMM used here
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Fig. 3 Error of the cotangent power series expansion based on the argument z for several truncation terms
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Fig. 4 Convergence of the cotangent power series expansion using periodic images of the vortex particles for jxj[ 0:5
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is the standard one presented in the literature and the

authors refer to the following references for details

[10, 17, 20]. For particles with large separation along the y-

axis, the exponential series expansion is employed.

The present fast algorithm follows the ideas of the fast

multipole method where a computational box involves all

the discrete vortex particles. This computational domain is

recursively divided to create smaller boxes that separate the

particles, defining clusters of vortices. To provide fast

convergence everywhere, the different series expansions

discussed in the previous sections are employed depending

on the relative position among the boxes.

3.1 Fast summation of the exponential series

Given a cluster b with Nb vortex particles with intensity Ck

placed at zk, if one accounts for the particles and all their

periodic images, the velocity field at a point zj is given by

XNb

k¼1

Ck cotðpzjkÞ

¼
XNb

k¼1

Ck þ i � 2i
X1
n¼0

exp
�
2p i nðþzj � zkÞ

�( )
,

for yj � yk [ 0;

ð22Þ

or

XNb

k¼1

Ck cotðpzjkÞ

¼
XNb

k¼1

Ck � i þ 2i
X1
n¼0

exp
�
2p i nð�zj þ zkÞ

�( )
,

for yj � yk\0:

ð23Þ

One must recall the requirement for convergence such that

the imaginary part y is positive. If it is negative, the series

given by Eq. 22 diverges. Hence, one must use the odd-

function property of the cotangent, as previously explained,

to work with negative values of the imaginary part using

Eq. 23. The deduction below is presented only for the case

of positive imaginary part, but the modifications to work

with negative values are straightforward.

To perform fast summations, it is necessary to split the

argument of the cotangent function in a product of two

functions. This is straightforward for an exponential func-

tion since

expðzj � zkÞ ¼ expðþzjÞ expð�zkÞ: ð24Þ

Furthermore, the middleman strategy of using the box

centers to form equivalent clusters of particles can be

employed. Defining zco and zcs as the center of observer and

source clusters, respectively, one can evaluate

ẑ ¼ zcs � zk;

~z ¼ zco � zcs ;

�z ¼ zj � zco :

ð25Þ

The terms above represent the distance from source cluster

to the source particles, the separation among clusters and

the distance to observer particles from the center of their

clusters, respectively. From the definitions provided in

Eq. 25, one may recover Eq. 24 as

exp
�
ðzcs � zkÞ þ ðzco � zcsÞ þ ðzj � zcoÞ

�
¼ exp

�
zj � zk

�
:

ð26Þ

A similar technique of particle-to-multipole (P2M), mul-

tipole-to-local expansion (M2L), and local-to-particle

expansion (L2P) steps from the free-domain FMM can be

employed [10, 17]. There is no need to use M2M and L2L

steps since no multi-level operations are required.

From Eqs. 25–26, it is possible to rewrite Eq. 22 as

XNb

k¼1

Ck cotðpzjkÞ ¼
XNb

k¼1

i Ckþ

XNb

k¼1

(
� 2 i Ck

Xp
n¼0

�
expð2p i nẑÞ expð2p i n~zÞ expð2p i n�zÞ

�)
;

ð27Þ

where, after manipulation of the order of the summations

one has

XNb

k¼1

i Ckþ

Xp
n¼0

(
� 2 i expð2p i n~zÞ expð2p i n�zÞ

XNb

k¼1

�
Ck expð2p i nẑÞ

�)
:

Therefore, a multipole-type expansion dependent only on

the source-particles and defined for n ¼ 0 to p can be

obtained using P2M operations as

MðbÞ
n ¼

XNb

k¼1

�
Ck expð2p i nẑÞ

�
: ð28Þ

Hence, one can write the right-hand side of Eq. 27 as

XNb

k¼1

i Ck þ
Xp
n¼0

(
� 2 i expð2p i n~zÞ expð2p i n�zÞMðbÞ

n

�)
;

where it is possible to evaluate local representations for a

box b0 of far away clusters from the b boxes using M2L

operations given by

Lðb0Þ
n ¼ �2 expð2pin~zÞMðbÞ

n : ð29Þ

Finally, for n ¼ 0 to p, the use of L2P operations accounts

for the induced velocity from all Nb source particles
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located in the far-field of certain box b0 at an observer

placed at zj inside this box. This is written as

XNb

k¼1

Ck cotðpzjkÞ ¼ i
XNb

k¼1

Ck þ i
Xp
n¼0

�
Lðb0Þ

n expð2pin�zÞ
�
:

ð30Þ

Given the truncation of the series in p terms, the compu-

tational cost of P2M and L2P operations, Eqs. 28 and 30,

respectively, is O(pN). Hence, they are linearly dependent

on the number of particles. Furthermore, the method has a

fixed cost which depends only on the box-to-box operations

given by Eq. 29. It is proportional to the desired precision

as well as the number of non-empty boxes at a level ‘,

given by O(4‘). Hence, the exponential series summation

has an overall cost of Oð2pN þ 4‘pÞ.
A quick test to validate this algorithm is performed with

the computation of the absolute error E, based on the

vertical distance for a far-field observer and series trunca-

tion using p terms. To do so, one thousand potential vortex

particles are placed along the x-axis, while the observer is

positioned along the y-axis from y ¼ �0:5 to 0.5. The

solution obtained with the algorithm is then compared to

the exact solution evaluated by the Biot–Savart law and the

deviation is shown in Fig. 5. In the figure, each line rep-

resents a different number of truncation terms in the series,

showing a convergence for quadruple machine precision.

3.2 Fast summation of the power series

The fast summation of the series given by Eq. 18 was first

applied by Gumerov and Duraiswami [11] to solve Fourier

transforms. Here, it is applied to solve problems involving

vortex dynamics using the discrete vortex method. The

local velocity field at zj induced by the Nb particles at zk
inside a box b is written as

wj ¼ i
XNb

k¼1

Ck

2p
p cotðpzjkÞ; ð31Þ

where zjk ¼ zj � zk. Two vortex particles can be far from

each other in the central domain, but they can be close to

the other’s image. Hence, to have better convergence, the

nearest distance among two vortex particles, following the

fact that cotðzÞ ¼ cotðzþ npÞ, is to compute zjk as

zjk ¼
zjk � 1; if jzjk � 1j ¼ min jzjk � 1j; jzjkj; jzjk þ 1j

	 

zjk; if jzjkj ¼ min jzjk � 1j; jzjkj; jzjk þ 1j

	 

zjk þ 1; if jzjk þ 1j ¼ min jzjk � 1j; jzjkj; jzjk þ 1j

	 

:

8><
>:

ð32Þ

Using Eq. 18 as an approximation for the velocity field

leads to

wj ¼
XNb

k¼1

Ck

2p

� �
p

1

pzjk
� 1

3
ðpzjkÞ �

1

45
ðpzjkÞ3 �

2

945
ðpzjkÞ5 þ � � �

� �� �
;

ð33Þ

where it is possible to obtain two main terms in the induced

velocity as

wj ¼
XNb

k¼1

Ck

2pzjk

� �
þ
XNb

k¼1

Ck

2p
p � 1

3
ðpzjkÞ �

1

45
ðpzjkÞ3 �

2

945
ðpzjkÞ5 þ � � �

� �� �
:

ð34Þ

The first series involves the singular terms and they have

exactly the same kernel used in the free-domain FMM,
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Fig. 5 Error of the fast exponential series summation for different truncation terms
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XNb

k¼1

i
Ck

2pzjk

� �
:

One should remind that it is possible to avoid the singular

values of the cotangent function (zjk ¼ np, for n 2 Z) using

the Lamb–Oseen vortex with a viscous core r [20] as

wj ¼ i
Ck

2p

p cotðpzÞ �
X1
n¼�1

1

zjk þ n

� �
exp �ðxjk þ nÞ2 þ ðyjkÞ2

r2

" #( )
:

ð35Þ

The second series contains the regular terms written as

XNb

k¼1

Ck

2p
p � 1

3
ðpzjkÞ �

1

45
ðpzjkÞ3 �

2

945
ðpzjkÞ5 þ � � �

� �� �
;

with the coefficients shown in Eq. 20. After truncating the

series using p terms, it is possible to use a simplified

notation for this series given by

XNb

k¼1

Ck

2

Xp
n¼1

C2n�1 z
2n�1
jk


 �( )
:

The term z2n�1
jk , for zjk ¼ zj � zk, can be solved exactly

using a Newton binomial expansion

z2n�1
jk ¼

X2n�1

m¼0

2n� 1

m

� �
z2n�1�m
j ð�zkÞm: ð36Þ

Considering a complex distance zjk and swapping the

summation order, it is possible to use a binomial expansion

and the series becomes

1

2

Xp
n¼1

C2n�1

X2n�1

m¼0

2n� 1

m

� �
z2n�1�m
j

XNb

k¼1

Ckð�zkÞmð Þ
" #( )

:

Since the inner summation depends only on the source par-

ticle k, a multipole clusterBðbÞ
m can be defined for a box b as

BðbÞ
m ¼

XNb

k¼1

Ckð�zkÞmð Þ: ð37Þ

Furthermore, BðbÞ
m can be precomputed to avoid a convo-

lution in the vortex particles. For m from 0 to 2p� 1, its

computational cost is O(2pN). From this new variable, it is

possible to write the power series as

1

2

Xp
n¼1

C2n�1

X2n�1

m¼0

2n� 1

m

� �
z2n�1�m
j BðbÞ

m

� �( )
:

The cotangent series, Eq. 31, is then written in its final

form as

wj ¼
XNb

k¼1

Ck

2p
1

zjk

� �
þ 1

2

Xp
n¼1

C2n�1

X2n�1

m¼0

2n� 1

m

� �
z2n�1�m
j BðbÞ

m

� �( )
;

ð38Þ

where the free-domain FMM is employed to solve the

singular term.

The most important time reduction in fast summation

methods is due to the cluster–cluster operations if the

number of clusters is smaller than the number of particles.

The function which governs the interaction among particles

can be manipulated without loss of precision using the

centroids of the clusters as middleman for the interactions.

This is shown in Eqs. 24–26 for the exponential series

expansion.

For the power-series expansion, this strategy is not

applicable since one does not have explicit functions for

the centroid of the source and observer clusters. Hence, in

this binomial series, the local expansions are performed via

cluster-particle, where the number of particles is now rel-

evant. In other words, at level ‘, there are O(4‘) non-empty

boxes which interact with N particles. Moreover, due to the

desired precision in the cotangent series evaluation, the

inner and outer summation costs are, respectively, O(2p)

and O(p). Finally, adding the cost to create the clusters B,

the total cost of the binomial series expansion is

Oð4‘2p2N þ 2pNÞ.
To validate the algorithm and to define parameters for

the computations, a measurement of the error is performed.

In addition, an assessment of the number of discrete

potential vortex particles in the computations is performed.

A shear-layer is placed along y ¼ 0 To evaluate its self-

induced velocity. The singular term of the cotangent series

is solved using the FMM series expansion truncated with

40 and 75 terms for double and quadruple precision,

respectively. These values guarantee machine precision

[20]. In Fig. 6, the RMS deviation from the exact solution

is shown. There, the dashed lines indicate computations in

double precision (8 bytes), while solid lines represent

results with quadruple precision (16 bytes). It is possible to

see that the series diverges so the error increases when

more terms are used in the series.

Although the series is convergent in Figs. 3 and 4, there,

its calculation is performed using a straightforward evalu-

ation of Eq. 18. Hence, each term in the power series goes

to zero as the exponent becomes larger since there are no

source errors. However, the fast summation algorithm

given by Eq. 38 employs a Newton binomial expansion

which may have truncation in several operations, for

instance, the grouping of source-terms in Bm, as well as the

evaluation of the binomial coefficients. This last term is the

main source of error in the method since it quickly
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becomes large for the computer to handle all its digits (the

largest factorials without truncation for double and

quadruple precision are, respectively, 21 and 37). There-

fore, the calculation of the Newton binomial expansion

may not achieve machine precision due to truncation

errors. Consequently, the cotangent series has the largest

errors in the algorithm and, to reduce these errors, the

number of terms used in the series expansion is that which

is closer to the inflection point in Fig. 6. For simulations

involving more than 32 particles, we do not observe much

difference between the inflection point. Summarizing, to

obtain the minimum error, we choose the number of terms

in the series to be around 20, for double precision, or 40,

for quadruple precision.

3.3 Refinement of the initial domain

As explained, the separation among vortex particles plays

an important role in the present fast algorithm. Based on

Figs. 3 and 5, it is necessary that the minimum separation

of the imaginary part to use the exponential series, as well

as the argument z of the power series, should obey

jyjJ0:125 to use exponential series or

jzj.0:70 to use power series.

An efficient algorithm for fast summation of randomly

scattered vortex particles should be based on clustering.

Hence, the domain refinement idea from the FMM is

employed here as previously discussed. One must not forget

the convergence criterion for Eq. 15, jzj\1, which imposes

the largest domain to have unitary size, i.e., S0 ¼ 1.

Using the ideas of divide and conquer, the domain is

refined into smaller boxes which interact among each other.

The separations of the boxes depend exclusively on the

division of the domain. Using the same box refinement

from the free-domain FMM to simultaneously satisfy the

requirements of box separation for both series expansions

discussed above, the refinement level used should be ‘ ¼ 3.

In this refinement level, the size of a box is S3 ¼ 0:125S0
since S‘ ¼ S0=2

‘.

A methodology can be imposed to regulate the series

expansion to be solved. The interactions among clusters

with minimum vertical separation jyj ¼ 0:125 is performed

via exponential series. In other words, the separation is, at

least, one box from the source to the observer cluster, as

presented in Fig. 7 for a generic observer box. In this fig-

ure, one can see an observer particle indicated in green

inside a dark gray box. This particle interacts with a source

particle indicated in cyan within a light gray box and their

separation is given by jyj ¼ 0:125. Hence, all boxes with

yj � yk [ 0 must solve Eq. 22, while the ones where yj �
yk\0 are solved by Eq. 23.

In the region where the vertical separation |y| among two

particles is smaller than 0.125, one must solve the power

series expansion, Eq. 38. This is shown in Fig. 8, where a

generic observer box indicated by dark gray interacts with

all source boxes, colored by light gray. Furthermore, the

maximum separation z among two particles is 0.673 and it

guarantees good convergence based on Fig. 3.

If the distance among two particles is greater than the

convergence range, jzj\1, this series expansion cannot be

applied. However, due to the periodic properties of the

cotangent function, one can use the replica of a source

particle instead, so the argument z is within the conver-

gence range, as presented in Eq. 32. To implement this

logic, if an observer box is close to the border of the

domain, it should not interact with the original source
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Fig. 6 Error in velocity magnitude for a shear layer discretized by a

different number of vortex particles. Dashed and solid lines present

results for double and quadruple precision, respectively. Legend

indicates the number of vortex particles used in the simulation

0.125

Fig. 7 Light gray boxes in the exponential interaction list of a dark

gray box
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cluster, but instead, it interacts with the replicated source

box within the nearest level 0 neighbor. One should remind

that this logic is only valid for the calculation using the

power series. The exponential series expansion does not

have any limitation with respect to the separation along the

x-axis and, therefore, for this case, all interactions are

performed within the original domain.

In Fig 9a below, the light gray boxes are descendants of

the left level 0 neighbor of the central domain, a.k.a.

domain n ¼ �1, and they interact with the dark gray box in

Fig. 9b. This artifice forces that the interactions are always

performed for the nearest clusters to guarantee

convergence.

One important remark is that level ‘ ¼ 3 guarantees the

fastest evaluation of both exponential series and Newton

binomial expansion. The only drawback of such coarse

level is the treatment of the singular term by the FMM,

where direct evaluation of the cotangent function is still

necessary to solve all terms of the power series expansion.

These direct evaluations are performed along near-field

clusters which do not satisfy the separation criteria of

‘‘well-separated’’ boxes in the FMM [10, 17].

To solve the FMM, one must solve both near and far-

field calculations. The fast summation of the far-field

interactions is performed using box-to-box operations in a

hierarchical pattern, where a multi-level approach with its

‘‘interaction list’’ regulates the interactions among clusters.

In the current implementation for the cotangent kernel, part

of the domain is solved by the exponential series expan-

sion, which does not require the evaluation of the 1 /

z term. This singular term is present only in the power

series and, therefore, not all boxes interact via FMM inside

the domain. In addition, the interactions of both exponen-

tial and power series expansions are performed at level

‘ ¼ 3. For the two reasons presented, modifications in the

interaction list are necessary to account for all the 24

boxes, at level 3, marked to perform the interaction using

the power series expansion. The list of boxes for a generic

observer box, indicated by dark gray in Fig. 8, is illustrated

in light gray in the same figure. In addition, to simplify the

implementation, no operations at level ‘ ¼ 2 are

performed.

The near-field evaluations in the FMM at level ‘ ¼ 3 are

expensive if a large number of particles have to be

accounted for. Therefore, further refinement levels are

necessary to reduce this cost. Due to the criterion of sep-

aration to apply Eqs. 22 and 23, the eight neighbors of a

box at level 3 are always accounted for using power series,

where the 1 / z term is present. Hence, these nine boxes

(the eight neighbors and the observer box itself) can be

recursively refined to level ‘ ¼ 4 and so forth, without any

restriction. This is shown in Fig. 10, where the boxes

around the dark gray one have been further refined in the

multi-level FMM. All the light gray boxes interact, either

directly via M2L operations or indirectly with the combi-

nation of M2L and L2L operations from boxes at level 3,

0.673

0.625

0.25

Fig. 8 Light gray boxes in the power series interaction list of that in

dark gray

n = − 1.(a) Domain number (b) Central domain n = 0.

Fig. 9 Interaction list with

nearest clusters (light gray) of a

box (dark gray)
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with the dark gray box. The white boxes are accounted for

via exponential series and, hence, they are ignored in this

step.

It is worth noticing that the maximum level of the FMM

algorithm to solve the near-field interactions has no limi-

tations in terms of separation criterion due to the series

convergence. However, the box cannot be further refined if

it conflicts with the particularities of each problem, e.g., the

viscous core of a Lamb–Oseen vortex becomes larger than

the box size. For more details about such issues, the authors

refer to Ref. [20].

Summarizing the fast algorithm: the fast interactions

among particles are given either by Eq. 30 (and its coun-

terpart that can be obtained from Eq. 23) if the particles are

distant, or by the computation of Eq. 38. Although the

exponential series is valid for positive arguments of Im(z),

one can benefit from the even–odd property of the cotan-

gent function and work with a similar equation for negative

arguments of Im(z). Hence, one must compute first the

boxes with positive separation and then evaluate the boxes

with negative separation.

The power series is solved using two different

methodologies: one is the FMM for the singular term 1 /

z and the other is the Newton binomial expansion which

evaluates all the non-singular terms of the power series.

The FMM still requires direct evaluations of the cotangent

function, while the Newton binomial expansion can be

solved without restriction among neighbor boxes. In addi-

tion, due to the convergence criterion, boxes that are far-

away from each other may interact via one of their image

replicas, to guarantee convergence using the smallest

argument.

In addition, the FMM can be accounted for using

refinement levels ‘ ¼ 3 or higher; the Newton binomial and

the exponential series expansion are accounted for at ‘ ¼ 3.

This level guarantees good convergence for all series and

leads to the smallest computational time. Using this com-

bination of free-domain FMM, Newton binomial expansion

and fast summation of exponential series, three different

formulations are employed simultaneously to solve the

convolution among vortex particles with periodic boundary

conditions for which the convolution kernel is the cotan-

gent function.

4 Results

In this section, the fast algorithm is employed to solve a

two-dimensional velocity field with periodic boundary

conditions and a vortex sheet roll-up problem using the

DVM. Furthermore, we present an assessment of the error

in velocity magnitude as well as an analysis of the com-

putational cost of the algorithm.

4.1 Evaluation of a random periodic velocity field

To evaluate a periodic velocity field using the fast algo-

rithm, 256 vortex particles are randomly placed inside a

square with unitary side, centered at the origin of the

Cartesian coordinate system. The circulation of each vortex

particle ranges from �0:1 6 C 6 0:1.

To illustrate the problem, Figs. 11a, b shows the velocity

magnitude for the direct calculation solving the Biot–

Savart law and the fast algorithm, respectively. The

velocity field is evaluated along a grid with 251 points in

each direction. The deviation of the fast numerical algo-

rithm is presented in Fig. 12, where the maximum error in

velocity magnitude is about 1� 10�12.

4.2 Vortex sheet roll-up problem

Here, the fast algorithm is employed to study the evolution

of a vortex sheet roll-up where the formation of the Kel-

vin–Helmholtz instability is observed. Such flow problem

has been investigated in the literature by several authors

[1, 3, 13, 14, 22, 23]. A periodical shear layer is discretized

using N vortex particles and its temporal evolution is

simulated. The vorticity c of a continuous shear layer with

length k, with a jump in velocity DU, is given by

c ¼ DUk: ð39Þ

Discretizing the shear layer using N vortex particles with

constant length k=N leads to

Ck ¼
DUk
N

; ð40Þ

and setting DU ¼ 1 and k ¼ 1, the circulation of each

vortex is given by

Ck ¼
1

N
: ð41Þ

Fig. 10 Multi-level FMM refinement around the observer box for

faster power series solution of the singular term
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The initial solution includes a sinusoidal displacement with

length k and amplitude A, as shown in Fig. 13 and it is

given by

yk ¼ A sin
2p
k
xk

� �
; ð42Þ

with

A\\k; ð43Þ

and

�0:5\xk\0:5: ð44Þ

Figure 14a presents the solutions of the shear layer

discretized by N ¼ 5120 vortex particles. The simulation is

performed using quadruple precision and a Lamb–Oseen

vortex with viscous core r ¼ 0:02. The time step is set as

Dt ¼ 0:01 and the calculation is run for 200 iterations. One

can see that the solution obtained by the fast algorithm has

an excellent agreement with the Biot–Savart calculation. If

periodic boundary conditions are not enforced, the shear

layer develops a spurious precession and its tips roll

towards the core [20]. In Fig. 14b, one can observe the

RMS error assessment as a function of the time evolution

for a simulation performed by the Biot–Savart law in

double precision and another performed using the fast

algorithm, in quadruple precision. The error is computed

with respect to the quadruple precison Biot–Savart law.

4.3 Error analysis

We perform an error analysis for the evaluation of a ran-

dom periodic velocity field, as in Sect. 4.1. To measure the

error based on the number of vortex particles, an investi-

gation is performed from two up to one million vortex

particles, randomly distributed inside the domain. The

velocity magnitude is evaluated at each vortex location

using the Biot–Savart law, the coupled fast method as well

as a ‘‘brute-force’’ approach which replicates the FMM

domains to simulate the periodic boundary conditions.

Results from the brute-force approach are obtained using

230 FMM replicated boxes. This last method is still faster

than the direct solution of the Biot–Savart law as shown in

Ref. [20]. The results of RMS deviation from a comparison

Fig. 11 Magnitude of the velocity field

Fig. 12 Error in velocity magnitude of the proposed fast algorithm

compared to the Biot–Savart law computed using machine quadruple

precision

X

Y
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0.1

Fig. 13 Sinusoidal initial displacement, with amplitude A ¼ 0:01, of
a shear layer
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of both fast methods to the Biot–Savart law are presented

in Fig. 15. One can see that the cotangent approximation

using the coupled power and exponential series expansions

is more accurate than the replicated FMM solution, called

periodic FMM in the figure, and which has algebraic decay.

Furthermore, this slow rate of decay implies that the usage

of quadruple precision does not lead to better results. On

the other hand, the coupled method benefits from increased

machine precision, since the error drops six orders of

magnitude. Finally, the RMS deviation of both methods

grows proportional to O(N0:5).

4.4 Computational time

The overall computational cost of the algorithm results

from the combination of the solutions of the free-domain

FMM and the Newton binomial expansions or the expo-

nential expansions. This section presents results of com-

putational time for simulations performed in serial using a

single thread in a 2.5 GHz Intel�XeonTM E5-2670v2 CPU.

The results of overall computational cost are shown in

Fig. 16a, b for double and quadruple precision, respec-

tively. The cost behavior is similar as that for the free-

domain FMM, where the increase in the number of parti-

cles requires finer levels of refinement to reduce the

quadratic dependence of near-field Biot–Savart calcula-

tions. This is shown by different curves in the legend,

where the near-field is tested for different refinement levels

in the FMM, which handles the singular term. One must

not forget that the Newton binomial series and the expo-

nential series are solved only at level 3. In the figure, one

can see that for double precision (8 bytes), time savings of

X

Y

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

FMM + cotan
Biot-Savart QP

Dimensionless time t*

R
M

S
d

ev
ia

ti
o

n

0 0.5 1 1.5 2
10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

FMM + cotan
Biot Savart DP

(a) Comparison of solutions for 200

iterations.

(b) RMS error assessment as a function of

the time evolution.

Fig. 14 Simulation of vortex sheet roll-up problem using N ¼ 5120 particles, a viscous core r ¼ 0:02 and Dt ¼ 0:01
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nearly 240 times are obtained for 1 million vortex particles,

while in quadruple precision (16 bytes) the time savings for

the same number of particles is about 100 times. Further-

more, the fast algorithm using 16 bytes can be even faster

than the direct summation in double precision for more

than 200,000 vortex particles.

As discussed, the computational cost from the new

algorithm is a combination of the costs from the free-do-

main FMM, the binomial series as well as the exponential

series calculations. The FMM has a mixed computational

cost depending linearly and quadratically with the number

of particles [20], depending on near and far-field balancing

of the FMM, while the other approaches present a linear

cost, depending on the number of particles. The method

also has a constant fixed cost. Hence, the total cost is given

by

A2N
2 þA1N þA0;

where A0 only depends on the number of non-empty

boxes. For large refinement levels, there are several non-

empty boxes for a small number of particles, which delays

the characterization of a fixed cost.

On the other hand, as shown in Fig. 17, for a low

number of particles in this random cloud case, the coupled

M2L and L2L operations have a delayed plateau and the

cost A0 is no longer independent of the number of parti-

cles. It is now based on the ratio of particles per number of

boxes. If it is smaller than one, there are empty boxes

indicating that fewer cluster operations are performed, so

there is an initial slope on the curves. When there is at least

one particle per box, without empty boxes, the domain

becomes saturated. This way, the cost A0 of box inter-

actions is dumped for a low number of particles. However,

when the domain is saturated, the plateau appears and A0

becomes constant.

The additional operations to solve both exponential and

power-series increase mainly the linear cost A1. These

series are solved only at level ‘ ¼ 3, independently of the

maximum refinement level L of the singular term solved by

the free-domain FMM. In addition, the P2M and L2P

operations in the FMM do not depend on the maximum

refinement level and they are linearly proportional to the

number of vortex particles O(pN). For the exponential

series, the additional cost is O(pN) as well. However, using

the Newton binomial expansion at level ‘ ¼ 3, the addi-

tional cost of O(432p2N) is not only present but also

dominant for a small number of vortices.

It is possible to see in Fig. 18a the most expensive

operations dependent on the number of particles, i.e., both

P2M and M2L operations, as well as the cost for the

exponential and Newton binomial expansions. There, the

computations are performed for double precision. In
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Fig. 18b, one can see the cost of the binomial expansion for

both double and quadruple precision. There, this cost

converges to O(N) when more particles are present in the

domain.

Finally, since neither the exponential nor the power

series have singular terms, particles close to each other

interact exclusively via fast algorithms. This is not the case

for the FMM, which still depends on convolutions among

particles close to each other. Hence, the quadratic depen-

dency A2 is that typical of fast multipole methods [20].

This means that the quadratic cost increases for lower

levels of the FMM when more direct interactions need to

be evaluated.

In Fig. 19 it is possible to see a comparison of the cost of

each individual methodology used by the algorithm. For a

small number of particles, the far-field operations in the

FMM are the most expensive. However, when the domain

becomes saturated, the cost for the binomial series is the

highest. Finally, for a large number of particles, the near-

field cost in the FMM is dominant.

5 Conclusions

A novel fast algorithm is proposed to perform flow simu-

lations using the discrete vortex method including periodic

boundary conditions. The algorithm combines exponential

and power series expansions to accelerate the calculation of

the cotangent kernel used in the Biot–Savart law. A divide

and conquer strategy is employed so clusters of vortex

particles interact with each other instead of the particle–

particle interactions. The exponential series expansion is
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Fig. 18 Computational cost of steps linearly dependent on the number of vortex particles
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Fig. 19 Computational cost of the three approaches employed in the fast summation algorithm
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implemented using a middleman context similar to that

from the fast multipole method. On the other hand, the

power series expansion is implemented using a Newton

binomial expansion for computing regular terms and using

a fast multipole method for the calculation of singular

terms.

An error analysis shows that the current method pro-

vides more accurate solutions than a ‘‘brute-force’’ imple-

mentation of the fast multipole method using image

particles to represent the periodic boundary conditions. An

analysis of the computational cost of the individual steps of

the algorithm is provided and savings of order 240 are

observed for double-precision simulations with one million

particles.
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