
Available online at www.sciencedirect.com

ScienceDirect

Indagationes Mathematicae 29 (2018) 807–818
www.elsevier.com/locate/indag

Involutions fixing Fn
∪ F3

Evelin M. Barbarescoa, Pedro L.Q. Pergherb,∗

a Departamento de Matemática, Universidade Estadual Paulista - Ibilce, São José do Rio Preto, SP 15054-000, Brazil
b Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos,

SP 13565-905, Brazil

Received 10 October 2017; received in revised form 12 January 2018; accepted 12 January 2018

Communicated by J. van Mill

Abstract

Let Mm be a closed smooth manifold equipped with a smooth involution having fixed point set of the
form Fn

∪F3, where Fn and F3 are submanifolds with dimensions n and 3, respectively, where 3 < n < m
and with the normal bundles over Fn and F3 being nonbounding. The authors of this paper, together with
Patricia E. Desideri, previously showed that, when n is even, then m ≤ n + 4, which we call a small
codimension phenomenon. Further, they showed that this small bound is best possible. In this paper we
study this problem for n odd, which is much more complicated, requiring more sophisticated techniques
involving characteristic numbers. We show in this case that m ≤ M(n − 3) + 6, where M(n) is the Stong–
Pergher number (see the definition of M(n) in Section 1). Further, we show that this bound is almost best
possible, in the sense that there exists an example with m = M(n − 3) + 5, which means that for n odd
the small codimension phenomenon does not occur and the bound in question is meaningful. The existence
of these bounds is guaranteed by the famous Five Halves Theorem of J. Boardman, which establishes that,
under the above hypotheses, m ≤

5
2 n.
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1. Introduction

Let F be a disjoint (finite) union of smooth and closed manifolds and M be a smooth and
closed m-dimensional manifold equipped with a smooth involution T : M → M whose fixed
point set is F . Write F = ∪

n
j=0 F j , where F j denotes the union of those components of F

having dimension j . Up to equivariant cobordism, each F j can be supposed connected; also,
if the normal bundle over some F j bounds as a bundle, then after an equivariant surgery an
appropriate tubular neighborhood over F j can be removed, and thus again, up to equivariant
cobordism, we can suppose that F has not the j-dimensional component (see [4]). Then suppose
that the normal bundle over each F j occurring does not bound. If n is the dimension of the
component of F of maximal dimension, then m ≤

5
2 n; this follows from the famous Five

Halves Theorem of J. Boardman, announced in [2], and its strengthened version of [12]. In
fact, the Five Halves Theorem asserts that this is valid when M is not a boundary, and in [12]
R.E. Stong and C. Kosniowski established the same conclusion under the weaker hypothesis that
(M, T ) is a nonbounding involution. The assertion then follows from the fact that the equivariant
cobordism class of (M, T ) is determined by the cobordism class of the normal bundle of F in
M (see [4]). The generality of this result, which is valid for every n ≥ 1, allows the possibility
that fixed components of all dimensions j, 0 ≤ j ≤ n, occur; in this way, it is natural to ask
whether there exist better bounds for m when we omit some components of F and restrict the
set of the involved maximal dimensions n. This class of problems was introduced by P. Pergher
in [13], with its general formulation and with the following particular result: if F has the form
F = Fn

∪ {point}, where n = 2p with p odd, then m ≤ 3p + 3 (which is better than 5
2 n = 5p).

This case (F = Fn
∪ {point}) was completed by R. Stong and P. Pergher in [17], where they

introduced the mysterious number M(n): writing n = 2pq, where p ≥ 0 and q is odd, then
M(n) = 2n + p − q + 1 if p ≤ q and M(n) = 2n + 2p−q if p > q . They proved that, for every
n ≥ 1, m ≤ M(n) and this bound is best possible.

Remark. In [12], R. Stong and C. Kosniowski proved the following relevant result: if F = Fn

has constant dimension n and m = 2n, then (M, T ) is equivariantly cobordant to the twist
involution (Fn

× Fn, S), S(x, y) = (y, x); further, if m > 2n, then (M, T ) bounds equivariantly.
Thus, if the normal bundle over Fn does not bound, m ≤ 2n (which is better than m ≤

5
2 n),

and for each fixed n, with the exception of the dimensions n = 1 and n = 3, the maximal value
m = 2n is achieved by taking the involution (Fn

× Fn, twist), where Fn is any nonbounding
n-dimensional manifold. This completely solves the Pergher problem when F has one compo-
nent. Note that, if n is odd (that is, p = 0), then M(n) = n+1; this special small bound had been
obtained by D.C. Royster in [18], when classifying, up to equivariant cobordism, involutions
fixing two real projective spaces.

With the cases F = Fn and F = Fn
∪ {point} completed, the next natural step is the

case F = Fn
∪ F j , 0 < j < n. Concerning this more general case, one has the following

results, which show the relevance of M(n): for j = 1, m ≤ M(n − 1) + 1 if n is odd and
m ≤ M(n − 1) + 2 if n is even, the two bounds being best possible (see [10] and [11]). For
j = 2, one has the best possible bound m ≤ M(n − 2) + 4 (see [7,6] and [9]). For j = n − 1,
m ≤ 2n, which is best possible [8]. For every 2 ≤ j < n not of the form j = 2t

− 1, if F j is
indecomposable, then m ≤ M(n− j)+2 j +1, and there is an example with m = M(n− j)+2 j
[16]. Also, in [5,15] and [14], we find related results.

In this paper, we contribute to this problem, dealing with the case j = 3. As mentioned in
the abstract, in [1] it was shown that in this case m ≤ n + 4 if n is even, and this bound is best
possible. We will prove the following
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Theorem 1.1. Let M be a closed smooth m-dimensional manifold equipped with a smooth
involution having fixed point set of the form Fn

∪ F3, where 3 < n < m is odd and with the
normal bundles over Fn and F3 being nonbounding. Then m ≤ M(n − 3) + 6, and there is an
example with m = M(n − 3) + 5.

Remark. For example, take n = 2p
+ 3, where p ≥ 1. Then M(n − 3) + 6 = 2p+1

+ 2p−1
+ 6,

which is equal to one less than the Boardman bound associated to n (= 2p+1
+ 2p−1

+ 7).

To obtain the bound in question, we introduce some special cohomology classes associated
to line bundles over closed smooth manifolds, by using the splitting principle, and mix them
with some special polynomials in the characteristic classes of total spaces of projective space
bundles, introduced by R. Stong and P. Pergher in [17]; the basic theoretical support is the
equivariant cobordism theory of Conner and Floyd of [4]. As will be seen, this will require
more sophisticated computations than the case n even.

2. Preliminaries

If (M, T ) is an involution pair as discussed above, we call η → F the fixed-data of (M, T )
when F is the fixed point set of T and η → F is the normal bundle of F in M . Let η be a
general k-dimensional vector bundle over a closed smooth n-dimensional manifold F . Write
W (η) = 1 + w1(η) + w2(η) + · · · + wk(η) ∈ H∗(F,Z2) for the Stiefel–Whitney class of η, and
W (F) = 1 + w1(F) + w2(F) + · · · + wn(F) for the Stiefel–Whitney class of the tangent bundle
of F . From [4], one has an algebraic scheme to determine the cobordism class of η, given by the
set of Whitney numbers (or characteristic numbers) of η; such modulo 2 numbers are obtained
by evaluating n-dimensional Z2-cohomology classes of the form

wi1 (F)wi2 (F)...wir (F)w j1 (η)w j2 (η)...w js (η) ∈ H n(F,Z2)

(that is, with i1 + i2 + · · · + ir + j1 + j2 + · · · + js = n) on the fundamental homology
class [F] ∈ Hn(F,Z2). For example, suppose F three-dimensional. In this case, we can denote
W (F) = 1+w1 +w2 +w3 and W (η) = 1+v1 +v2 +v3. Then the set of Whitney numbers comes
from the ten three-dimensional cohomology classes w3, w1w2, w3

1 , v3, v1v2, v3
1 , w1v

2
1 , w1v2, w2

1v1
and w2v1. However, this number can be reduced. Indeed, from [1] one has the following

Lemma 2.1. Let η a vector bundle over a three-dimensional manifold as above. Then w3 =

w1w2 = w3
1 = v2

1w1 = 0, w2v1 = w2
1v1 and v2w1 = v1v2 + v3. So any cobordism class

of a bundle over a three-dimensional manifold is determined by the numbers coming from the
three-dimensional classes v3

1 , v3, v2w1 and v1w
2
1 . Further, any nonempty subset of this set of

cohomology classes is realized by a stable cobordism class, in the sense that there is a bundle
over a three-dimensional manifold whose set of nonzero Whitney numbers comes from the subset
in question (which means that one has fifteen nonzero stable cobordism classes of bundles over
closed three-dimensional manifolds).

3. The bound m ≤ M(n − 3) + 6

This section will be devoted to the proof of the part “m ≤ M(n − 3) + 6” of Theorem 1.1.
One then has an involution pair (M, T ) with fixed set of the form Fn

∪ F3, where 3 < n < m
is odd and with the normal bundles over Fn and F3 being nonbounding, and wants to prove the
bound in question, where m = dim(M). Let (µ ↦→ Fn) ∪ (η ↦→ F3) be the fixed-data of (M, T )
and, as in Lemma 2.1, write W (F3) = 1 + w1 + w2 + w3 and W (η) = 1 + v1 + v2 + v3. The
following lemma is crucial:
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Lemma 3.1. If m > M(n − 3) + 6, then v3
1 = v1w

2
1 , v3 = 0 and v2w1 = v1w

2
1 .

Taking into account the nonempty subsets of {v3
1, v3, v2w1, v1w

2
1} mentioned in Lemma 2.1,

we note that the unique nonzero stable cobordism class over a three-manifold which satisfies the
relations of Lemma 3.1 is the one whose nonzero Whitney numbers come from v1w

2
1 , v3

1 and
v2w1; call this class β. Thus this lemma will reduce our task to the following:

Theorem 3.1. In the statement of Theorem 1.1, suppose that η ↦→ F3 represents β. Then
m ≤ M(n − 3) + 6.

The following basic fact, which follows from the Conner and Floyd exact sequence of [4],
will be necessary for the proof of Lemma 3.1 (and Theorem 3.1): if Eµ and Eη denote the
total spaces of the projective space bundles RP(µ) and RP(η), respectively, and λµ ↦→ Eµ

and λη ↦→ Eη denote the line bundles of the double covers S(µ) → Eµ and S(η) → Eη,
S( ) meaning sphere bundles, then λµ ↦→ Eµ and λη ↦→ Eη are cobordant as elements of
the cobordism group Nm−1(BO(1)), that is, the cobordism group of 1-dimensional real vector
bundles over (m − 1)-dimensional closed smooth manifolds. Therefore any cohomology class
of dimension m − 1, given by a product of the classes wi (Eµ) and w1(λµ), evaluated on the
fundamental homology class [Eµ], gives the same characteristic number as the one obtained by
the corresponding product of the classes wi (Eη) and w1(λη), evaluated on [Eη]. With this tool
in hand, our strategy will be: first, we will use a very special class, denoted by X , introduced by
Pergher and Stong in [17]. X is associated to Eµ and, as above required, is a product of the
classes wi (Eµ) and w1(λµ); further, X has dimension M(n − 3). Second, by using the splitting
principle and the partitions of 3, ω1, ω2 and ω3, we introduce three special cohomology classes
of dimension 6 associated to line bundles λ over closed smooth s-dimensional manifolds Bs ,
denoted by fω1 (λ), fω2 (λ) and fω3 (λ), and which are special polynomials in the characteristic
classes of λ and Bs . Write Y for the cohomology class of Eη which corresponds to X . Then, if
m > M(n − 3) + 6, m − 1 ≥ M(n − 3) + 6 and we can form a modulo 2 system of equations⎧⎪⎨⎪⎩

X. fω1 (λµ).w1(λµ)m−(M(n−3)+6)[Eµ] = Y. fω1 (λη).w1(λη)m−(M(n−3)+6)[Eη]
X. fω2 (λµ).w1(λµ)m−(M(n−3)+6)[Eµ] = Y. fω2 (λη).w1(λη)m−(M(n−3)+6)[Eη]
X. fω3 (λµ).w1(λµ)m−(M(n−3)+6)[Eµ] = Y. fω3 (λη).w1(λη)m−(M(n−3)+6)[Eη].

The solution of this system will be given by the relations of Lemma 3.1, thus providing the
proof.

Next, we detail the technical steps regarding this strategy, and the first thing to do is to describe
the class X of Stong and Pergher of [17]. Set k = m−n, and write W (Fn) = 1+θ1+θ2+· · ·+θn ,
W (µ) = 1 + u1 + u2 + · · · + uk and W (λµ) = 1 + w1(λµ) = 1 + c for the Stiefel–Whitney
classes of Fn, µ and λµ, respectively. One has (see [3]):

W (Eµ) = (1 + θ1 + θ2 + · · · + θn){(1 + c)k
+ (1 + c)k−1u1 + · · · + uk},

where here we are suppressing bundle maps. First, for any integer r , Stong and Pergher
introduced the following variant of W (Eµ):

W [r ] =
W (Eµ)

(1 + c)k−r
,

noting that each class W [r ] j is still a polynomial in the classes wi (Eµ) and c. Next, for n ≥ 5,
write n − 3 = 2pq , where p ≥ 1 (n − 3 is even) and q is odd; X is built in terms of p and q .
Specifically, suppose first that p < q + 1. Then, in this case, X is
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X = W [2p
− 1]q+1−p

2p+1−1
· W [r1]2r1 · W [r2]2r2 · · · W [rp]2r p ,

where ri = 2p
− 2p−i for 1 ≤ i ≤ p.

If p ≥ q + 1, X is

X = W [r1]2r1 · W [r2]2r2 · · · W [rq+1]2rq+1 ,

where ri = 2p
− 2p−i for 1 ≤ i ≤ q + 1. Stong and Pergher proved that X has the following two

crucial properties:
(i) dimension(X ) = M(2pq) = M(n − 3);
(ii) X has the form X = At · cM(2pq)−t

+ terms with smaller c powers, where At is a
cohomology class of dimension t ≥ 2pq + 1 and comes from the cohomology of Fn . In our
case, X = At · cM(n−3)−t

+ terms with smaller c powers, where At is a cohomology class of
dimension t ≥ n − 2 coming from the cohomology of Fn .

The next technical step is, as above announced, to introduce the three special 6-dimensional
cohomology classes fωi (λ), i = 1, 2, 3, where λ is a line bundle over a smooth closed
s-dimensional manifold Bs . Using the splitting principle, write W (Bs) = (1+x1)·(1+x2) · · · (1+

xs) and W (λ) = 1 + c. We then consider the following symmetric polynomials in the variables
x1, x2, . . . , xs, c, of degree 6 and related to the partitions of 3, ω1 = (1, 1, 1), ω2 = (2, 1) and
ω3 = (3):

fω1 =

∑
i< j<m

xi (c + xi )x j (c + x j )xm(c + xm),

fω2 =

∑
i ̸= j

xi (c + xi )x2
j (c + x j )2 and

fω3 =

∑
i

x3
i (c + xi )3.

Following the pattern procedure, fω1 , fω2 and fω3 determine polynomials of dimension 6 in
the classes wi (Bs) and w1(λ) = c, which we call fωi (λ), i = 1, 2, 3. Specializing for λµ ↦→ Eµ,
write

W (Fn) = (1 + x1) · (1 + x2) · · · (1 + xn) and

W (µ) = (1 + y1) · (1 + y2) · · · (1 + yk).

Then

W (Eµ) = (1 + x1) · · · (1 + xn) · (1 + c + y1) · · · (1 + c + yk).

It follows that

fω1

(
λµ

)
=

(
(
∑

i< j<m

xi x j xm) + (
∑

i< j<m

yi y j ym) + (
∑
i, j,m
j<m

xi y j ym)

+ (
∑
i, j,m
i< j

xi x j ym)
)

c3
+ terms with smaller c powers,

fω2

(
λµ

)
=

(
(
∑
i ̸= j

xi x2
j ) + (

∑
i ̸= j

yi y2
j ) + (

∑
i, j

x2
i y j )

+ (
∑
i, j

xi y2
j )
)

c3
+ terms with smaller c powers
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and

fω3

(
λµ

)
=

(
(
∑

i

x3
i ) + (

∑
j

y3
j )
)

c3
+ terms with smaller c powers.

Therefore, every term of fω1 (λµ), fω2 (λµ) and fω3 (λµ) has a factor of dimension at least
3 from the cohomology of Fn . On the other hand, as before cited, each term of our previous
class X has a factor of dimension at least n − 2 from the cohomology of Fn , which means
that, for i = 1, 2, 3, X · fωi (λµ) is a class in HM(n−3)+6(Eµ,Z2) with each one of its terms
having a factor of dimension at least n + 1 from Fn . Thus X · fωi (λµ) = 0, which means that
the characteristic number X · fωi (λµ) · cm−1−(M(n−3)+6)[Eµ] is zero. Hence, the left side of our
system of equations is zero, and thus the next task is to analyze the right side of it. To do that,
first we study fωi (λη), i = 1, 2, 3. Set W (λη) = 1 + d. Write W (F3) = (1 + x1)(1 + x2)(1 + x3),
W (η) = (1 + y1)(1 + y2)(1 + y3), and denote by σi the i th elementary symmetric function in the
variables x1, x2, x3, y1, y2 and y3; that is

(1 + x1)(1 + x2)(1 + x3)(1 + y1)(1 + y2)(1 + y3) = 1 + σ1 + σ2 + σ3 + σ4 + σ5 + σ6.

This is the factored form of the Whitney sum τ ⊕ η, where τ is the tangent bundle over F3. One
has

W (Eη) = (1 + w1 + w2 + w3)
(

(1 + d)n+k−3
+ (1 + d)n+k−4v1

+ (1 + d)n+k−5v2 + (1 + d)n+k−6v3

)
.

Rewriting,

W (Eη) = (1 + d)n+k−6
(

(1 + w1 + w2 + w3)
(
(1 + d)3

+ (1 + d)2v1

+ (1 + d)1v2 + v3
))

= (1 + d)n+k−6
· (1 + x1) · (1 + x2) · (1 + x3) · (1 + d + y1) · (1 + d + y2)·

(1 + d + y3).

Since d + d = 0, the part (1 + d)n+k−6 does not contribute to fωi (λη). Then a straightforward
calculation shows that fω1 (λη) = σ3d3

+ terms with smaller c powers, fω2 (λη) = (σ1σ2 + σ3)d3

+ terms with smaller c powers and fω3 (λη) = (σ 3
1 + σ1σ2 + σ3)d3

+ terms with smaller c
powers. In other words, setting W (τ ⊕ η) = 1 + V1 + V2 + V3 and noting that if a term (with
dimension 6) has a power of d less than 3, it necessarily has a factor of dimension greater than
3 from the cohomology of F3, one then has fω1 (λη) = V3d3, fω2 (λη) = (V1V2 + V3)d3 and
fω1 (λη) = (V 3

1 + V1V2 + V3)d3.
Next we analyze the class Y , which is obtained from X by replacing each W [r ]i by

W [n + r − 3]i . Denoting by I the ideal of H∗(Eη,Z2) generated by the classes coming from
F3 and with positive dimension, one has by dimensional reasons that fωi (λη) · A = 0 for each
A ∈ I and i = 1, 2, 3. Thus, in the computation of Y , one needs to consider only that

W (Eη) ≡ (1 + d)n+k−3 mod I

and, for each integer l,

W [l] ≡ (1 + d)l mod I.



E.M. Barbaresco, P.L.Q. Pergher / Indagationes Mathematicae 29 (2018) 807–818 813

For ri = 2p
− 2p−i , i = 1, 2, . . . , p, set li = n + ri − 3 = 2pq + 3 + 2p

− 2p−i
− 3 =

2pq + 2p
− 2p−i . Then

W [li ]2ri ≡

(
2pq + 2p

− 2p−i

2p+1
− 2p−i+1

)
d2ri mod I.

Also, if r = 2p
− 1, l = n + r − 3 = 2pq + 2p

− 1 and

W [l]2r+1 ≡

(
2pq + 2p

− 1
2p+1

− 1

)
d2r+1 mod I.

The lesser term of the 2-adic expansion of 2pq + 2p is 2p+1. Using the fact that a binomial

coefficient
(

a

b

)
is nonzero modulo 2 if and only if the 2-adic expansion of b is a subset of the

2-adic expansion of a, we conclude that the above binomial coefficients are nonzero modulo 2.
It follows that all classes W [r ]i occurring in Y satisfy W [r ]i ≡ d i mod I, which implies that
Y ≡ dM(n−3) mod I. Thus, if b ∈ H 3(Eη,Z2) is a cohomology class coming from H 3(F3,Z2),
since H∗(Eη,Z2) is the free H∗(F3,Z2)-module on 1, d, d2, . . . , dn+k−4 [see 3], we have that

b · d3
· Y · dm−1−(M(n−3)+6)[Eη] = dm−4

· b[Eη] = b[F3],

and b[F3] = 0 if and only if b = 0. So our system of equations becomes the cohomological
system of equations⎧⎪⎨⎪⎩

0 = V3

0 = V1V2 + V3

0 = V 3
1 + V1V2 + V3.

Thus V3 = 0, V1V2 = 0 and V 3
1 = 0. Since V1 = v1 +w1, V 3

1 = v3
1 +v1w

2
1 +v2

1w1 +w3
1 . One

knows that the first Wu class of F3 is u1 = w1. So, if Sq denotes the Steenrod operation, one has
v2

1w1 = Sq1(v2
1) = Sq1(v1)v1 + v1Sq1(v1) = 0. Also, since F3 bounds, w3

1 = 0. We conclude
that v3

1 = v1w
2
1 , the first relation of the lemma. We have Sq(1+u1) = 1+u1 +u2

1 = 1+w1 +w2,
that is, w2

1 = w2. Then 0 = V1V2 = (v1 +w1)(v2 +w2 +v1w1) = v1v2 +v1w2 +v2
1w1 +w1v2 +

w1w2 + v1w
2
1 = v1v2 + w1v2. By the Wu Formula, w1v2 = Sq1(v2) = v1v2 + v3. Hence v3 = 0,

the second relation of the lemma. Finally, 0 = V3 = v3 + w3 + v2w1 + v1w2 = v2w1 + v1w
2
1 ,

the third relation, and Lemma 3.1 is proved.
Now we prove Theorem 3.1. Let RPn be the n-dimensional real projective space, and

ξn ↦→ RPn be the canonical line bundle. If X is a space, jR ↦→ X will denote the j-dimensional
trivial vector bundle over X . An easy calculation shows that η ↦→ F3

= ξ1 ⊕ ξ2 ⊕ (m − 5)R ↦→

RP1
× RP2 is a representative for β, where here we are omitting pullback notations. We

maintain the previous notations for the characteristic classes referring to the component Fn ,
and repeat the notations λη ↦→ Eη and W (λη) = 1 + d on the component F3. Our strategy will
consist in showing that, if m > M(n − 3) + 6, then it is possible to find special polynomials
in the characteristic classes so that the corresponding characteristics numbers are zero on Fn

and nonzero on F3, thus giving the contradiction. Taking into account our previous knowledge
on the behavior of the class X of Stong and Pergher on Fn , the additional key point will
be a subtle (but routine) calculation based on the structure of the cohomology ring of Eη,
described as follows: let α ∈ H 1(RP1,Z2) and β ∈ H 1(RP2,Z2) be the respective generators.
Then H∗(Eη,Z2) is the free H∗(F3,Z2)-module on 1, d, d2, . . . , dm−4, subject to the relation
dm−3

= dm−4(α + β) + dm−5αβ. From this relation, we obtain dm−1
= dm−2(α + β) + dm−3αβ,
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dm−2α = dm−3αβ, dm−2β = dm−3αβ+dm−3β2
+dm−4αβ2, dm−3β2

= dm−4αβ2 and dm−3αβ =

dm−4αβ2. Combining these relations, we obtain dm−1
= dm−2β = dm−3αβ = dm−4αβ2, which

is the (top-dimensional) generator of H m−1(Eη,Z2).
Write n − 3 = 2pq , where p > 0 and q is odd, and first suppose p > 1. On Fn one

takes the same class X considered before; that is, X ∈ HM(n−3)(Eµ,Z2) and each term of X
has a factor of dimension at least n − 2 from the cohomology of Fn . Note that, on Fn , W [0]2 =

u1c+u2+θ1u1+θ2. Hence every term of W [0]3
2 = (u2

1c2
+u2

2+θ2
1 u2

1+θ2
2 )(u1c+u2+θ1u1+θ2) has

a factor of dimension at least 3 from Fn . If m > M(n−3)+6, one then has the zero characteristic
number

X · W [0]3
2 · cm−1−(M(n−3)+6)[Eµ].

Our next task will be to show that, on F3, the corresponding characteristic number

Y · W [n − 3]3
2 · dm−1−(M(n−3)+6)[Eη]

is nonzero.
One has

W (Eη) = (1 + β + β2)
(

(1 + d)n+k−3
+ (1 + d)n+k−4(α + β)

+ (1 + d)n+k−5(αβ)
)
.

Then W [n − 3]2 =

(
n − 3

2

)
d2

+ d(α + β). Since n − 3 = 2pq with p > 1 and q odd, one

has that 2 does not belong to the 2-adic expansion of n − 3, and thus W [n − 3]2 = d(α + β).
Hence, W [n − 3]3

2 = d3αβ2. Concerning the class Y , which is obtained from X by replacing
each W [r ]i by W [n + r − 3]i , we are exactly in the same situation of Lemma 3.1. In fact,
W [n −3]3

2 · A = d3αβ2
· A = 0 for each A ∈ I, the ideal of H∗(Eη,Z2) generated by the classes

coming from F3 and with positive dimension. Then, as in Lemma 3.1, in the computation of Y ,
one needs to consider only that

W (Eη) ≡ (1 + d)n+k−3 mod I

and, for each integer l,

W [l] ≡ (1 + d)l mod I.

In this way, similarly we conclude that Y ≡ dM(n−3) mod I. It follows that Y · W [n − 3]3
2 ·

dm−1−(M(n−3)+6)[Eη] = dm−4
· αβ2[Eη] = αβ2[F3] = 1, which proves Theorem 3.1 when

p > 1.
Now suppose p = 1. On RP(µ) we have

W [1] = (1 + θ1 + · · · + θn)
(

(1 + c) + u1 +
u2

(1 + c)
+ · · · +

uk

(1 + c)k−1

)
.

Then

W [1]3 = u2c + u3 + θ1u2 + θ2c + θ2u1 + θ3.

Hence every term of W [1]2
3 has a factor of dimension at least 4 from H∗(Fn,Z2). Since, as

before, each term of X has a factor of dimension at least n − 2 from the cohomology of Fn , if
m > M(n − 3) + 6, we have the zero characteristic number

X · W [1]2
3 · cm−1−(M(n−3)+6)[RP(µ)].
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So, the next and final task will be to show that, on F3, the corresponding characteristic number

Y · W [n − 2]2
3 · dm−1−(M(n−3)+6)[Eη]

is nonzero. One has

W [n − 2] = (1 + β + β2)
(

(1 + d)n−2
+ (1 + d)n−3(α + β) + (1 + d)n−4αβ

)
.

Thus

W [n − 2]3 =

(
n − 2

3

)
d3

+

(
n − 3

2

)
d2(α + β) +

(
n − 4

1

)
dαβ

+

(
n − 2

2

)
d2β +

(
n − 3

1

)
d(αβ + β2) +

(
n − 4

0

)
αβ2

+

(
n − 2

1

)
dβ2

+

(
n − 3

0

)
αβ2.

An easy inspection of 2-adic expansions shows that 1 and 2 belong to the 2-adic expansion
of n − 2 = 2q + 1, and 2 belongs to the 2-adic expansion of n − 3 = 2q. We conclude that
W [n −2]3 = d3

+d2(α +β)+dαβ +d2β +dβ2
= d3

+d2α +dαβ +dβ2 and W [n −2]2
3 = d6.

Now, since p = 1, the class X (on Eµ) is W [1]2.(W [1]3)q . Therefore Y = W [n −2]2.(W [n −

2]3)q . One has

W [n − 2]2 =

(
n − 2

2

)
d2

+

(
n − 3

1

)
d(α + β) +

(
n − 4

0

)
αβ

+

(
n − 2

1

)
dβ +

(
n − 3

0

)
(αβ + β2) +

(
n − 2

0

)
β2

=

(
n − 2

2

)
d2

+ dβ

= d2
+ dβ,

and, as seen above, W [n − 2]3 = d3
+ d2α + dαβ + dβ2.

Thus,

Y = (d3
+ d2α + d(αβ + β2))q (d2

+ dβ)

=

( q∑
i=0

(
q

i

)
(d3

+ d2α)q−i(d(αβ + β2)
)i
)

(d2
+ dβ)

=

(
(d3

+ d2α)q
+

(
(d3

+ d2α)q−1
)(

c(αβ + β2)
))

(d2
+ dβ),

since
(
d(αβ + β2)

) j
= 0 if j ≥ 2.

But

(d3
+ d2α)q

=

q∑
i=0

(
q

i

)
(d3)q−i

+ (d2α)i

= d3q
+ d3q−1α
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and

(d3
+ d2α)q−1

=

q−1∑
i=0

(
q − 1

i

)
(d3)q−1−i

+ (d2α)i

= d3q−1

because q is odd and α j
= 0 if j > 1.

Therefore,

Y =

(
d3q

+ d3q−1α + d3q−2(αβ + β2)
)

(d2
+ dβ)

= d3q+2
+ d3q+1(α + β) + d3qβ2

+ d3q−1αβ2

= d t
+ d t−1(α + β) + d t−2β2

+ d t−3αβ2,

where t = 3q + 2 = M(n − 3).
Thus

Y · W [n − 2]2
3 · dm−1−(t+6)

=

(
d t

+ d t−1(α + β) + d t−2β2
+ d t−3αβ2

)
· d6

· dm−1−(t+6)

= dm−1
+ dm−2(α + β) + dm−3β2

+ dm−4αβ2.

From the relation dm−3
= dm−4(α+β)+dm−5αβ one obtains dm−1

= dm−2α+dm−2β+dm−3αβ;
replacing in the above expression, we get

Y · W [n − 2]2
3 · dm−1−(t+6)

= dm−3αβ + dm−3β2
+ dm−4αβ2.

Again, from dm−3
= dm−4(α+β)+dm−5αβ, one obtains dm−2β = dm−3αβ+dm−3β2

+dm−4αβ2.
But, as seen before, dm−2β, dm−3αβ and dm−4αβ2 are the top-dimensional generator, which
means that dm−3β2 also is. It follows that

Y · W [n − 2]2
3 · dm−1−(t+6)

= dm−3αβ + dm−3β2
+ dm−4αβ2

= dm−4αβ2,

which ends the proof.

4. An example with m = M(n − 3) + 5

In this section we construct the example announced in the abstract, with m = M(n − 3) + 5.
Consider the vector bundle τ ⊗ ξ1 ↦→ RP2

× RP1, where τ is the tangent bundle over RP2

(again we are omitting pullback notations). Maintaining the notations of the previous section,
one has

W (τ ⊗ ξ1) = (1 + α)2
+ (1 + α)β + β2,

which gives w1(τ ⊗ ξ1) = β and w2(τ ⊗ ξ1) = αβ + β2. Then w1(RP2
× RP1).w2(τ ⊗ ξ1) =

α.β2
̸= 0, which means that τ ⊗ ξ1 does not bound. Let E be the total space of the projective

space bundle RP(τ ⊗ ξ1) and λ ↦→ E the usual line bundle. From the Conner–Floyd exact
sequence of [4], τ ⊗ ξ1 is the fixed-data of some involution (V 5, S) if, and only if, λ ↦→ E
bounds. Set W (λ) = 1 + c. One has

W (E) = (1 + β + β2)((1 + c)2
+ (1 + c)β + αβ + β2),

subject to the relation c2
= cβ + αβ + β2. An easy calculation then shows that W (E) = 1.

Thus the only relevant characteristic number of λ comes from c4. From the relation c2
=

cβ + αβ + β2, we get c4
= c3β + c2αβ + c2β2, c2β2

= 0, c3β = c2β2
+ cαβ2 and
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c2αβ = cαβ2. Since cαβ2
∈ H 4(E, Z2) is the (top-dimensional) generator, c3β and c2αβ

also are. Then c4
= 0 and λ ↦→ E bounds, which then gives an involution (V 5, S) with

nonbounding fixed-data τ ⊗ ξ1 ↦→ RP2
× RP1. For n ≥ 5, now take the maximal involution

(MM(n−3), T ) of Stong and Pergher, with fixed point set of the form Fn−3
∪ {point}. The

product involution (N = MM(n−3)
× V 5, T × S) has dim(N ) = M(n − 3) + 5 and fixes

the disjoint union (Fn−3
× RP2

× RP1) ∪ (RP2
× RP1). The normal bundle of RP2

× RP1

in N is (τ ⊗ ξ1) ⊕ M(n − 3)R, which does not bound. We assert that the normal bundle of
Fn−3

× RP2
× RP1 in N does not bound. Otherwise, after an equivariant surgery, it can be

removed to give an involution (W, L), where dim(W ) = M(n − 3) + 5 and the fixed-data is
(τ ⊗ ξ1) ⊕ M(n − 3)R ↦→ RP2

× RP1. For n ≥ 5 odd, the lesser value of M(n − 3) + 5 is
10, corresponding to n = 5. Then (W, L) has fixed set RP2

×RP1 of constant dimension 3 and
dim(W ) ≥ 10 > 6 = 2dim(RP2

×RP1). From the Kosniowski–Stong theorem cited in the first
remark of Section 1, one then has that (W, L) bounds equivariantly, contradicting the fact that its
fixed-data does not bound. Therefore (N , T × S) is the required example.

Remark. Theorem 1.1 leaves open the question of either to construct a maximal example, that
is, with m = M(n − 3) + 6, or to improve the bound m ≤ M(n − 3) + 6 to m ≤ M(n − 3) + 5.
Regarding to the first alternative, since the desired dimension M(n − 3) + 6 involves the
Stong–Pergher number, it is difficult to try anything other than the procedure used above to
get our almost maximal example, that is, an example of the form (MM(n−3)

× V 6, T × S),
where S is a nonbounding involution defined on a 6-dimensional manifold V 6 fixing a three-
dimensional manifold P3; for example, in the case F = Fn

∪ F2, the best possible bound is
m ≤ M(n − 2) + 4 and a (simpler) maximal example is (MM(n−2), T ) × (RP2

× RP2, twist)
(see [7]). However, any involution (V 6, S) fixing some P3 bounds equivariantly: again, this
follows from the Kosniowski–Stong theorem cited in the first remark of Section 1. In fact, in
this case (V 6, S) is equivariantly cobordant to (P3

× P3, twist), whose fixed-data is the tangent
bundle τ 3

→ P3. Since any three-dimensional manifold bounds, τ 3
→ P3 bounds as a bundle,

and thus (V 6, S) bounds. Therefore, we believe it is more plausible to try the second alternative;
unfortunately, all efforts made in this direction have been unsuccessful so far.

Acknowledgments

We would like to thank the reviewers for suggestions that improved the content of this paper.
The authors were partially supported by CNPq, FAPESP and CAPES.

References
[1] E.M. Barbaresco, P.E. Desideri, P.L.Q. Pergher, Involutions whose fixed set has three or four components: a small

codimension phenomenon, Math. Scand. 110 (2) (2012) 223–234.
[2] J.M. Boardman, On manifolds with involution, Bull. Amer. Math. Soc. 73 (1967) 136–138.
[3] A. Borel, F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458–538.
[4] P.E. Conner, E.E. Floyd, Differentiable Periodic Maps, Springer-Verlag, Berlin, 1964.
[5] P.E. Desideri, P.L.Q. Pergher, Improvements of the Five Halves Theorem of J. Boardman with respect to the

decomposability degree, Asian J. Math. 18 (3) (2014) 427–438.
[6] F.G. Figueira, P.L.Q. Pergher, Dimensions of fixed point sets of involutions, Arch. Math. (Basel) 87 (3) (2006)

280–288.
[7] F.G. Figueira, P.L.Q. Pergher, Involutions fixing Fn

∪ F2, Topology Appl. 153 (14) (2006) 2499–2507.
[8] F.G. Figueira, P.L.Q. Pergher, Two commuting involutions fixing Fn

∪ Fn−1, Geom. Dedicata 117 (2006) 181–193.
[9] F.G. Figueira, P.L.Q. Pergher, Bounds on the dimension of manifolds with involution fixing Fn

∪ F2, Glasg. Math.
J. 50 (2008) 595–604.

http://refhub.elsevier.com/S0019-3577(18)30020-X/sb1
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb1
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb1
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb2
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb3
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb4
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb5
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb5
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb5
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb6
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb6
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb6
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb7
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb8
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb9
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb9
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb9


818 E.M. Barbaresco, P.L.Q. Pergher / Indagationes Mathematicae 29 (2018) 807–818

[10] S.M. Kelton, Involutions fixing RP j
∪ Fn , Topology Appl. 142 (2004) 197–203.

[11] S.M. Kelton, Involutions fixing RP j
∪ Fn , II, Topology Appl. 149 (1–3) (2005) 217–226.

[12] C. Kosniowski, R.E. Stong, Involutions and characteristic numbers, Topology 17 (1978) 309–330.
[13] P.L.Q. Pergher, Bounds on the dimension of manifolds with certain Z2 fixed sets, Mat. Contemp. 13 (1996)

269–275.
[14] P.L.Q. Pergher, Involutions whose top dimensional component of the fixed point set is indecomposable, Geom.

Dedicata 146 (1) (2010) 1–7.
[15] P.L.Q. Pergher, An improvement of the Five Halves Theorem of J. Boardman, Israel J. Math. 11 (2011) 1–8.
[16] P.L.Q. Pergher, Involutions fixing Fn

∪ {I ndecomposable}, Canad. Math. Bull. 55 (1) (2012) 164–171.
[17] P.L.Q. Pergher, R.E. Stong, Involutions fixing {point} ∪ Fn , Transform. Groups 6 (2001) 78–85.
[18] D.C. Royster, Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29 (2) (1980)

267–276.

http://refhub.elsevier.com/S0019-3577(18)30020-X/sb10
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb11
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb12
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb13
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb13
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb13
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb14
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb14
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb14
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb15
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb16
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb17
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb18
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb18
http://refhub.elsevier.com/S0019-3577(18)30020-X/sb18

	Involutions fixing Fn∪F3 
	Introduction
	Preliminaries
	The bound m≤M(n-3)+6
	An example with m=M(n-3)+5 
	Acknowledgments
	References


