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Abstract
Background/Aims: This study aimed to discern whether the cardiac alterations caused by 
retinoic acid (RA) in normal adult rats are physiologic or pathologic. Methods and Results: 
Wistar rats were assigned into four groups: control animals (C, n = 20) received a standard rat 
chow; animals fed a diet supplemented with 0.3 mg/kg/day all-trans-RA (AR1, n = 20); animals 
fed a diet supplemented with 5 mg/kg/day all-trans-RA (AR2, n = 20); and animals fed a diet 
supplemented with 10 mg/kg/day all-trans-RA (AR3, n = 20). After 2 months, the animals 
were submitted to echocardiogram, isolated heart study, histology, energy metabolism status, 
oxidative stress condition, and the signaling pathway involved in the cardiac remodeling induced 
by RA. RA increased myocyte cross-sectional area in a dose-dependent manner. The treatment 
did not change the morphological and functional variables, assessed by echocardiogram and 
isolated heart study. In contrast, RA changed catalases, superoxide dismutase, and glutathione 
peroxidases and was associated with increased values of lipid hydroperoxide, suggesting 
oxidative stress. RA also reduced citrate synthase, enzymatic mitochondrial complex II, ATP 
synthase, and enzymes of fatty acid metabolism and was associated with increased enzymes 
involved in glucose use. In addition, RA increased JNK 1/2 expression, without changes 
in TGF-β, PI3K, AKT, NFκB, S6K, and ERK. Conclusion:  In normal rats, RA induces cardiac 
hypertrophy in a dose-dependent manner. The non-participation of the PI3K/Akt pathway, 
associated with the participation of the JNK pathway, oxidative stress, and changes in energy 
metabolism, suggests that cardiac remodeling induced by RA supplementation is deleterious.
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Introduction

Retinoic acid (RA), an active metabolite of vitamin A that acts through nuclear retinoid 
receptors, influences gene expression, alters the synthesis of proteins in the heart, and 
regulates embryonic development, tissue homeostasis, and cellular differentiation and 
proliferation [1-3].

Experimental studies suggest that RA plays a critical role in regulating cardiac structure 
and function throughout life [4]. During early stages of cardiogenesis, RA excess produces 
congenital defects related to abnormal folding and septation of the outflow tract and cardiac 
chambers [5]. Likewise, excess of RA signaling (overexpression of RA receptor or retinoid X 
receptor) results in cardiomyocyte abnormalities and dilated cardiomyopathy [6-8]. In con-
trast, vitamin A-deficient animals and receptor knockout models have thin myocardial walls, 
and the embryos develop a generalized edema associated with heart failure [9].

The effects of RA in the adult period are still poorly understood. All-trans-RA (ATRA) 
attenuated hypoxia-induced injury in renal cells [10]. RA may modulates collagen synthesis 
via TGF-β [11].  During cardiac injuries, experimental studies have shown that ATRA inhibits 
hypertrophy and fibrosis in spontaneously hypertensive rats [12], during exposure to 
tobacco smoke [13], after myocardial infarction [14, 15], in aortic-banded rats [16], and after 
carotid injury [17]. Therefore, RA attenuates cardiac remodeling following different insults.

Our research group studied the effects of RA supplementation in normal rats. RA 
supplemented at a physiologic dose, in rats without any type of cardiovascular aggression, 
caused cardiac remodeling with left ventricular hypertrophy, without interstitial fibrosis, 
and maintenance of cardiac geometry and function [18]. Importantly, this pattern is found 
in both physiologic (isotonic exercise) and pathologic (compensated volume overload) 
conditions. We also studied patients using 13-cys-RA for acne treatment [19]. These patients 
showed increase in relative wall thickness and in left ventricle (LV) mass, without changes in 
cardiac function after 10 weeks of treatment. Thus, the doubt about physiologic or pathologic 
remodeling induced by RA supplementation still remains. In this manner, this study aimed to 
discern whether the cardiac alterations caused by RA in normal adult rats are physiologic or 
pathologic. Therefore, we analyzed the energy metabolism status, oxidative stress condition, 
and the signaling pathway involved in the cardiac remodeling induced by RA.

Materials and Methods

All experiments and procedures were performed in accordance with the National Institute of Health’s 
Guide for the Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of 
Botucatu Medical School.

Wistar rats, weighing approximately 250 g, were randomly assigned into four groups: control animals 
(C, n = 20) received a standard rat chow; animals fed a diet supplemented with 0.3 mg/kg/day all-trans-RA 
(AR1, n = 20); animals fed a diet supplemented with 5 mg/kg/day all-trans-RA (AR2, n = 20); and animals fed 
a diet supplemented with 10 mg/kg/day all-trans-RA (AR3, n = 20). All animals were housed in individual 
cages in a room maintained at 23°C on a 12:12-h light–dark cycle. The planned observation period was 2 
months.

Echocardiographic study
Before death, all animals were weighed and evaluated with the use of transthoracic echocardiography. 

The exams were performed with the use of a commercially available echocardiogram (General Eletric 
Medical System modelo Vivid S6 - Tirat Carml, Israel) equipped with a 5.0–11.5-MHz phased-array 
transducer. Imaging was performed with the use of a 60° sector angle and 3-cm imaging depth. Rats were 
lightly anesthetized by intramuscular injection with a mixture of ketamine (50 mg/kg) and xylazine (1 mg/
kg). After the chest was shaved, the rats were placed in left lateral recumbency.

Targeted two-dimensional M-mode echocardiograms were obtained from short-axis views of the LV at 
or just below the tip of the mitral-valve leaflets and at the level of aortic valve and left atrium. M-mode images 
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of the LV, left atrium, and aorta were recorded on a black-and-white thermal printer (model Up-890MD, Sony) 
at a sweep speed of 100 mm/s. All tracings were manually measured with a caliper by the same observer, 
according to the leading-edge method recommended by the American Society of Echocardiography [20]. 
Measurements represented the mean of at least five consecutive cardiac cycles. LV end-diastolic dimension 
(LVEDD) and posterior wall thickness were measured at maximal diastolic dimension, and the LV end-
systolic dimension (LVSD) was measured at the point of maximal anterior motion of posterior wall. LV 
systolic function was assessed by calculation of the fractional shortening index [(LVEDD–LVSD)/LVEDD × 
100]. Left atrium was measured at its maximal diameter and aorta at end of diastole. Echocardiographic LV 
mass was calculated by using the standard cube function formula. The velocity of diastolic flow through the 
mitral valve (E and A wave velocities) was obtained in the apical four-chamber view. The E/A ratio was used 
as an index of LV diastolic function [21].

Isolated heart study
After the echocardiographic study, rats were anesthetized with thiopental sodium (50 mg/kg, 

intraperitoneally i.p.) and given heparin (2000 UI, i.p.). The chest was opened by median sternotomy 
under artificial ventilation. The ascending aorta was isolated and cannulated for retrograde perfusion. The 
heart was quickly removed and transferred to a perfusion apparatus (model 830 Hugo Sachs Eletronick-
Green-Strasse). Retrograde perfusion was established with filtered oxygenated Krebs–Henseleit solution 
(composition, in mmol/L: NaCl 118.5; KCl 4.69; CaCl2 2.52; MgSO4 1.16; KH2 PO4 1.18; glicose 5.50; 
NaHCO3 25.88; and mannitol), maintained at constant temperature (37 °C) and perfusion pressure (75 
mmHg). All hearts were paced at 200 to 250 beats/min. Latex balloon was inserted in LV, and the volume 
inside the balloon was increased progressively. Pressure values, maximum LV pressure decrease rate, and 
maximum LV pressure development rate were recorded. Procedures and measurements were performed 
according to a previously described method [22-24].

Morphometric analysis
At the completion of the functional study, the right ventricle (RV) and LV (including the interventricular 

septum) were dissected, separated, and weighed.
Morphometric analysis of the myocardium was performed as described previously [25]. Myocyte cross-

sectional area (CSA) was determined for at least 50 myocytes per slide stained with hematoxylin-eosin. The 
measurements were performed using a Leica microscope (×400 magnification) attached to a video camera 
and connected to a personal computer equipped with image analyzer software (Image-Pro Plus 3.0, Media 
Cybernetics, Silver Spring, MD, USA). CSA was measured with a digitizing pad, and the selected cells were 
transversely cut with the nucleus clearly identified in the center of the myocyte. Interstitial collagen volume 
fraction (IC) was determined for the entire picrosirius-red-stained cardiac section using an automated 
image analyzer (Image-Pro Plus 3.0, Media Cybernetics). On average, 35 microscopic fields were analyzed 
with ×40 magnification. Perivascular collagen was excluded from this analysis. All measurements were 
performed by the same observer who was blinded to treatment assignment.

Energy metabolism and oxidative stress
The LV samples of 100 mg from eight animals in each group were used for the measurements of the 

amount of total protein and lipid hydroperoxide (LH) and for the enzyme determinations. Glutathione 
peroxidase (GSHPx, E.C.1.11.1.9), superoxide dismutase (SOD, E.C.1.15.1.1), and catalase (CAT, E.C.1.11.1.6) 
activity was assessed as previously specified [26]. The cardiac energy metabolism was assessed with 
3-hydroxyacyl coenzyme-A dehydrogenase (OHADH, E.C.1.1.1.35.) and lactate dehydrogenase (LDH, 
E.C.1.1.1.27) and citrate synthase (CS; E.C.4.1.3.7.) activities, as previously described [27]. Enzyme activities 
were determined with a temperature-controlled microplate reader (Eon with Gen5 2.0 software connected 
to computer system control, BioTek Instruments, Winooski, VT, USA). All of the reagents were from Sigma 
(St. Louis, MO, USA).

Western Blot analysis
LV samples were extracted using Tris-Triton buffer (10 mM Tris (pH 7.4), 100 mM NaCl, 1 mM EDTA, 

1 mM EGTA, 1% Triton X-100, 10% glycerol, 0.1% SDS, 0.5% deoxycholate, 1 nM EDTA, 1 mM EGTA, and 
a mixture of protease inhibitors, 1 mM sodium orthovanadate, 1 mM sodium fluoride, and 1% leupeptin, 
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aprotinin, pepstatin) to detect total and phospho NFκB, total and phospho Akt, total and phospho  PI3K, 
total and phospho S6K, ERK, and JNK 1/2. The samples were then centrifuged at 12, 000 rtm at 4 °C for 20 
min, and the supernatant was collected. The supernatant protein content was quantified using the Bradford 
method. The samples were separated on a 10% SDS-polyacrylamide gel, and the proteins were transferred 
to a nitrocellulose membrane. The membrane was blocked with 5% nonfat dry milk in Tris-buffered saline 
containing Tris 1 M (pH 8.0), NaCl 5 M, and Tween 20 at room temperature for 2 h. The membrane was 
then incubated with the following antibodies: primary antibody anti-NFκB, mouse monoclonal (Santa Cruz 
Biotechnology, Inc, Europe, sc-8008); anti-phospho-NFκB, rabbit polyclonal (Santa Cruz Biotechnology, sc-
33020); anti-Akt rabbit polyclonal (Cell Signaling Technology, #9272); anti-phospho-Akt rabbit monoclonal 
(Cell Signaling Technology, #4060);  anti-PI3K, mouse monoclonal (Santa Cruz Biotechnology, sc-1637); 
anti-phospho-PI3K, goat polyclonal (Santa Cruz Biotechnology, sc-12929); anti-S6K1, rabbit monoclonal 
(Abcam, ab32529); anti-phospho-S6K1, rabbit polyclonal (Abcam, ab5231); anti-ERK, rabbit policlonal 
(Santa Cruz Biotechnology, sc-93); and anti-JNK1/2, mouse monoclonal (Santa Cruz Biotechnology, sc-
137019). The membrane was washed with TBS and Tween 20 and incubated with the appropriate secondary 
peroxidase-conjugated antibody. A Super Signal West Pico Chemiluminescent Substrate (Pierce Protein 
Research Products, Rockford, IL, USA) was used to detect bound antibodies. GAPDH (GAPDH (6C5), mouse 
monoclonal IgG1 (Santa Cruz Biotechnology, sc 32233), was used for normalization.

Statistical analysis
The comparisons between groups were made by one-way analysis of variance (ANOVA) test 

complemented by the Tukey test, when the data were normally distributed. When the data presented an 
abnormal distribution, the Kruskal–Wallis test was complemented by the Dunn test. The Spearman test was 
used to evaluate whether the effect of RA is dose-dependent. Data were expressed as mean ± SD or medians 
(including the lower quartile and upper quartile). Data analysis was performed with SigmaStat for Windows 
v3.5 (SPSS Inc, Chicago, IL, USA). The significance level used was 5%.

Results

The echocardiographic data are shown in Table 1. RA did not change morphological 
or functional variables. However, there is a trend to increased LV mass with the treatment. 
Likewise, in the isolated heart study, there are no functional differences among the groups. 
(Table 2).

Table 1. Echocardiographic data, LV: left ventricle; LVDD: LV end-diastolic dimension; BW: body weight; 
LVSD: LV end-systolic dimension; LVMI: LV mass index; E/A: ratio between early (E) and late (atrial-A) 
ventricular filling velocity; EF: ejection fraction; HR: heart rate. Data are expressed as mean ± SD or medians 
(including the lower quartile and upper quartile)

1 

Table 1. Echocardiographic data, LV: left ventricle; LVDD: LV end-diastolic dimension; BW: body weight; 
LVSD: LV end-systolic dimension; LVMI: LV mass index; E/A: ratio between early (E) and late (atrial-A) 
ventricular filling velocity; EF: ejection fraction; HR: heart rate. Data are expressed as mean ± SD or medians 
(including the lower quartile and upper quartile). 
 

Variables 

 

Control 

(n = 15) 

AR1 (0.3mg/kg/day) 

(n = 15) 

AR2 

(5mg/kg/day) 

(n = 15) 

AR3 

(10mg/kg/day) 

(n = 15) 

p pTrend 

LVDD (mm) 7.12 ± 0.51 7.51 ± 0.63 7.33 ± 0.76 7.46 ± 0.67 0.422 0.312 

LVDD/BW (mm/kg) 16.8 ± 1.63 17.8 ± 1.67 17.3 ± 1.7 17.7 ± 1.45 0.434 0.289 

LVSD (mm) 3.35 ± 0.63 3.56 ± 0.64 3.47 ± 0.54 3.57 ± 0.48 0.432 0.291 

LVMI (g/kg) 2.10 ± 0.1 1.99 ± 0.1 2.09 ± 0.1 2.11 ± 0.10 0.115 0.073 

E/A 1.67 ± 0.31 1.73 ± 0.24 1.66 ± 0.27 1.69 ± 0.40 0.684 0.312 

EF (%) 0.97 ± 0.03 0.95 ± 0.03 0.98 ± 0.03 0.95 ± 0.02 0.770 0.441 

HR (beats/min) 298 ± 45.4 288 ± 60.4 284 ± 33.7 293 ± 44.0 0.856 0.722 
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The results of the morphometric 
study are shown in Table 3. There are no 
differences among the groups considering 
BW, LVW, LVW/BW ratio, RVW, and IC. On the 
other hand, RA induced increased CSA, in a 
dose-response manner (Fig. 1).

The energy metabolism data are shown 
in Fig. 2. RA decreased ATP synthase (Fig. 
2-A), PI-DH (Fig. 2-C), CS (Fig. 2-D), β-OH-
acil CoA-DH (Fig. 2-E), and enzymatic 
mitochondrial complex II (Fig. 2-F), in a 
dose-response manner. On the other hand, 
the treatment with RA was associated with 
increase in PKF values (Fig. 2-B), in a dose-
response manner.

Table 2. Isolated heart data, +dP/dt : maximum LV pressure development rate; –dP/dt : maximum LV 
pressure decrease rate. SP: systolic pressure. Data are expressed as mean ± SD or medians (including the 
lower quartile and upper quartile)

Table 2. Isolated heart data, +dP/dt : maximum LV pressure development rate; –dP/dt 
: maximum LV pressure decrease rate. SP: systolic pressure. Data are expressed as 
mean ± SD or medians (including the lower quartile and upper quartile). 
 
 

Variables 
Control 

(n = 8) 

AR1 

(0.3mg/kg/day) 

(n = 8) 

AR2 

(5mg/kg/day) 

(n = 8) 

AR3 

(10mg/kg/day) 

(n = 8) 

p pTrend 

+dP/dt (mmHg/s) 2910 ± 543 2839 ± 652 2541 ± 595 2910 ± 619 0.667 0.774 

–dP/dt (mmHg/s) 2428 ± 509 2160 ± 373 1875 ± 379 2339 ± 607 0.207 0.504 

SP (mmHg) 134 ± 15.3 125 ± 13.3 110 ± 15.4 131 ± 18.9 0.065 0.392 

 

 

 
Table 3. Morphologic data, BW: body weight; LVW: left ventricular weight; RVW: right ventricular weight; 
CSA: cross-sectional area; IC: interstitial collagen volume fraction. Data are expressed as mean ± SD or 
medians (including the lower quartile and upper quartile). * p<0.05 vs control. # p<0.05 vs AR1. & p<0.05 
vs AR2

Table 3. Morphologic data, BW: body weight; LVW: left ventricular weight; RVW: right ventricular weight; 
CSA: cross-sectional area; IC: interstitial collagen volume fraction. Data are expressed as mean ± SD or medians 
(including the lower quartile and upper quartile). * p<0.05 vs control. # p<0.05 vs AR1. & p<0.05 vs AR2 
 
 

Variables 
Control 

(n = 12) 

AR1 

(0.3mg/kg/day) 

(n = 14) 

AR2 

(5mg/kg/day) 

(n = 13) 

AR3 

(10mg/kg/day) 

(n = 13) 

p pTrend 

BW (g) 425 ± 11 423 ± 13 423 ± 13 422 ± 13 0.929 0.531 

LVW (g) 0.82 ± 0.06 0.83 ± 0.06 0.82 ± 0.06 0.87 ± 0.05 0.172 0.090 

LVW/BW (g/kg) 1.98 ± 0.08 1.95 ± 0.13 1.98 ± 0.13 2.07 ± 0.15 0.115 0.070 

RVW (g) 0.21 ± 0.03 0.22 ± 0.04 0.20 ± 0.03 0.22 ± 0.02 0.331 0.599 

CSA (µm2) 137 ± 3.27 152 ± 5.38 161 ± 7.71* 216 ± 6.68*#& <0.001 < 0.0001 

IC (%) 5.2 ± 0.4 4.8 ± 0.3 5.0 ± 0.4 5.0 ± 0.6 0.254 0.425 

 

 

 

1 

 

 

 

 

 

 

 

Fig. 1. CSA: cross-sectional area. * indicate 
statistically significant difference (p<0.05).
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The results of oxidative stress are shown in Table 4. RA decreased the antioxidant 
enzymes SOD and GSH-Px, associated with an increase in CAT. In consequence, the treatment 
induced oxidative stress, demonstrated by the high values of LH.

The hypertrophy signaling pathway data are shown in Table 5. RA increased JNK 
expression (Fig. 3). In contrast, there are no differences in the other variables.

Discussion

The aim of this study was to discern whether the cardiac alterations caused by RA 
in normal adult rats are physiologic or pathologic. Our results showed that RA induced 

Fig. 2. Energy metabolism variables. * indicate statistically significant difference (p<0.05).
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Table 4.  Oxidative stress, SOD: superoxide dismutase; GSH-PX: glutathione peroxidases; LH: lipid 
hydroperoxide. Data are expressed as mean ± SD or medians (including the lower quartile and upper 
quartile). * p<0.05 vs control. # p<0.05 vs AR1

 

Table 4.  Oxidative stress, SOD: superoxide dismutase; GSH-PX: glutathione peroxidases; LH: lipid 
hydroperoxide. Data are expressed as mean ± SD or medians (including the lower quartile and upper 
quartile). * p<0.05 vs control. # p<0.05 vs AR1. 
 
 
 

Variables 
Control 

(n = 8) 

AR1 

(0.3mg/kg/day) 

(n = 8) 

AR2 

(5.0mg/kg/day) 

(n = 8) 

AR3 

(10mg/kg/day) 

(n = 8) 

p pTrend 

SOD (nmol/mg 

protein) 
12. ± 1.46 9.90 ± 0.97* 8.88 ± 0.81* 9.81 ± 1.19* <0.001 <0.0001 

GSH-Px (nmol/mg 

tissue) 

45.0 ± 

4.88 
33.5 ± 4.53* 32.9 ± 5.75* 26.3 ± 4.21*# <0.001 <0.0001 

Catalase (µmoL/g 

tissue) 

71.3 ± 

8.29 
128 ± 15.8* 129 ± 27.2* 

125.18 ± 

15.45* 
<0.001 <0.0001 

LH (nmoL/g tissue) 
183 ± 

19.2 
211 ± 30.8 214 ± 28.9 229 ± 11.3*# 0.006 0.0008 
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myocardial hypertrophy with changes in energy 
metabolism, increased oxidative stress, and 
produced alterations in pathologic pathways 
of hypertrophy, characteristic of deleterious 
cardiac remodeling.

The effects of RA in normal heart have 
been previously studied. In an animal model, 
our group [18] studied the cardiac effects of 
RA in normal rats for 90 days. The animals 
treated with RA developed an increase in LV 
mass, assessed by myocyte CSA, without change 
in the myocardial collagen volume fraction. 
Importantly, our results produced still two 
questions: Is the remodeling process induced by 
RA physiologic or pathologic? And does this comportment occur in humans? Therefore, our 
next step was to analyze the effects of RA in humans. For more than 25 years, RA has been 
used for the treatment of acne. Thus, we studied the cardiac effects of patients with acne 
receiving 13-cys-RA [19]. After 10 weeks of therapy, patients showed reductions in right 
atrium diameter and LV diastolic diameter, associated with increases in interventricular 
septum diastolic thickness, relative wall thickness, and LV mass. The cardiac function did not 
change with the treatment. Therefore, we concluded that RA induced cardiac remodeling in 
humans. However, it was unknown whether remodeling induced by RA was physiologic or 
pathologic in this scenario.

For the purpose of removing doubt of whether the cardiac effects of RA are characteristic 
of physiologic or pathologic adaptations, we conducted this study, analyzing the consequences 
of RA supplementation on morphological and functional variables, energy metabolism, 
oxidative stress, and signaling pathways. Our results demonstrated that RA, added to a 

Fig. 3. JNK expression in myocardial tissue, values 
presented as mean ± SD. Protein levels were normalized 
to GAPDH levels. * indicate statistically significant 
difference (p<0.05).

3 

 

 

 

Table 5. Western blot proteins, Data are expressed as mean ± SD or medians (including the lower quartile 
and upper quartile). * p<0.05 vs control. # p<0.05 vs AR1

Table 5. Western blot proteins, Data are expressed as mean ± SD or medians (including the lower quartile 
and upper quartile). * p<0.05 vs control. # p<0.05 vs AR1. 
 
 
 

Variable  
C 

(n = 13) 

AR1 

(0.3mg/kg/day) 

(n = 12) 

AR2 

(5mg/kg/day) 

(n = 12) 

AR3 

(10mg/kg/day) 

(n = 12) 

p pTrend 

pNkfb/Nfkb 1.06 (0.68-1.65) 0.73 (0.07-1.05) 0.77 (0.13-0.92) 0.86 (0.18-1.21) 0.223 0.518 

pAkt/Akt 0.86 (0.53-1.46) 0.84 (0.49-1.33) 0.70 (0.53-0.98) 1.10 (0.79-1.38) 0.246 0.804 

pS6k/S6k 1.14 (0.74-1.50) 0.86 (0.698-1.8) 0.97 (0.56-1.38) 0.68 (0.30-1.07) 0.255 0.081 

ERK 0.92 (0.74-1.16) 1.09 (0.67-1.31) 0.73 (0.52-1.31) 1.15 (0.72-1.71) 0.449 0.270 

pPI3K/PI3K 0.96 (0.68-1.36) 0.98 (0.56-1.70) 0.84 (0.77-1.16) 1.23 (0.41-1.81) 0.968 0.646 

TGF-β 1.94 ± 0.48 2.07 ± 1.01 2.01 ± 0.47 2.89 ± 1.15 0.836 0.415 

JNK 1.00 ± 0.50 0.99 ± 0.49 1.29 ± 0.54 1.59 ± 0.52*# 0.024 0.004 
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normal rat chow diet, induced myocardial hypertrophy, as assessed by CSA. Regardless of the 
complexity of the remodeling process, it is well established that myocardium hypertrophy 
plays a key role on cardiac remodeling [28]. Interestingly, LV function was preserved with 
the treatment. Thus, morphological and functional variables did not help to distinguish 
the process as adaptative or deleterious. However, in different models of remodeling, it is 
accepted that biochemical, molecular and cellular alterations precede the morphological 
and functional alterations. Therefore, we hypothesized that, with longer follow-up, exposure 
to retinoic acid would induce functional alterations.

Thus, the first variable used to differentiate the process of remodeling as physiologic 
or pathologic was the cardiac energy metabolism. Under normal conditions, fatty acids 
are the main substrates used by mitochondria to provide myocardial energy. During heart 
remodeling, however, the fuel preference switches to glucose [29-31]. Our study showed 
that supplementation with RA was associated with a reduction of the enzymes of fatty acid 
metabolism associated with an increase of enzymes involved in glucose use. In addition, 
a reduction of citrate synthase and ATP synthase was observed in animals that were 
supplemented with RA, suggesting reduction in the use of energy substrate. Therefore, the 
changes found in energy metabolism are characteristic of deleterious remodeling situations.

The second variable used to discern remodeling induced by RA as physiologic or 
pathologic was oxidative stress. Oxidative stress may act in cell membranes, causing lipid 
peroxidation, as in the nucleus as well as interfering with DNA and RNA synthesis, leading 
to cell damage that alters the functional and structural cardiac variables. At normal 
situations, cells have antioxidant systems to hold the accumulation of ROS [32]. Our results 
demonstrated that the rats supplemented with RA showed changes in antioxidant enzyme 
values. Importantly, we infer that the treatment induces oxidative stress because the LH 
levels were increased in the supplemented animals in a dose-dependent manner. Therefore, 
cardiac remodeling induced by RA supplementation resulted in oxidative stress, suggesting 
deleterious adaptation.

Another important finding of the present investigation was that RA activated signaling 
pathways involved in pathologic cardiac remodeling. Several pathways that promote cell 
growth converge to the activation of mammalian target of rapamycin (mTOR) [33]. In fact, 
mTOR/S6K seems to be involved in pathologic remodeling [34-36] and mTOR/ PI3K/Akt 
seem to have a protective role [37-40]. Cardiac hypertrophy may be associated with the 
activation of other factors, including members of MAPKs [41-43], mainly associated with a 
pathologic pathway [44, 45]. Our results showed the non-participation of complex mTOR and 
PI3K/Akt pathway in the heart supplemented by RA, suggesting that the remodeling process 
induced by RA has the characteristics observed in cases of pathologic cardiac hypertrophy.

The role of JNK pathway as a modulator of cardiac remodeling is less clear. Indeed, 
in different models, deleterious cardiac remodeling was associated with JNK activation. 
Likewise, transgenic activation of the JNK pathway in the heart resulted in pathologic 
remodeling associated with extracellular matrix alterations. On the other hand, deletion of 
JNK in the heart resulted in an increase in fibrosis following pressure overload. Similarly, 
chronic treatment with a JNK inhibitor led to increased apoptosis and cardiac fibrosis in the 
cardiomyopathic hamster model [45]. Taken together, these findings indicate that, although 
usually involved in pathological processes, JNK activation is most likely a dynamic signaling 
event that can be influenced by the nature of the stimuli [45].

Finally, our study should be interpreted taking into account some important aspects. 
As discussed previously, upregulation of JNK1/2 by itself does not indicate a pathological 
remodeling response. JNK1/2 is involved in a number of cardiac remodeling pathways and 
has different downstream effectors dependent on the upregulating signal involved. Therefore, 
it is important to emphasize that our conclusion is not based solely on JNK findings. Our 
interpretation is based on upregulation of JNK, associated with normal values of different 
physiological pathways, along with changes in oxidative stress and energy metabolism 
suggesting pathologic remodeling.
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In conclusion, in normal rats, RA induces cardiac hypertrophy, in a dose-response 
manner. The non-participation of the PI3K/Akt pathway, associated with the participation of 
the JNK pathway, oxidative stress, and changes in energy metabolism, suggests that cardiac 
remodeling induced by RA supplementation is deleterious.
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