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“ Apenas nos pusimos en dos pies
Comenzamos a migrar por la sabana
Siguiendo la manada de bisontes
Más allá del horizonte
A nuevas tierras, lejanas
Los niños a la espalda y expectantes
Los ojos en alerta, todo oídos
Olfateando aquel desconcertante paisaje nuevo, desconocido

Somos una especie en viaje
No tenemos pertenencias sino equipaje
Vamos con el polen en el viento
Estamos vivos porque estamos en movimiento
Nunca estamos quietos, somos trashumantes
Somos padres, hijos, nietos y bisnietos de inmigrantes
Es más mío le que sueño que lo que toco

Yo no soy de aquí
Pero tú tampoco
Yo no soy de aquí
Pero tú tampoco
De ningún lado del todo
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De todos lados un poco

Atravesamos desiertos, glaciares, continentes
El mundo entero de extremo a extremo
Empecinados, supervivientes
El ojo en el viento y en las corrientes
La mano firme en el remo
Cargamos con nuestras guerras
Nuestras canciones de cuna
Nuestro rumbo hecho de versos
De migraciones, de hambrunas
Y así ha sido desde siempre, desde el infinito
Fuimos la gota de agua viajando en el meteorito
Cruzamos galaxias, vacío, milenios
Buscábamos oxígeno, encontramos sueños

Apenas nos pusimos en dos pies
Y nos vimos en la sombra de la hoguera
Escuchamos la voz del desafío
Siempre miramos el río
Pensando en la otra rivera

Somos una especie en viaje
No tenemos pertenencias sino equipaje
Vamos con el polen en el viento
Estamos vivos porque estamos en movimiento
Nunca estamos quietos, somos trashumantes
Somos padres, hijos, nietos y bisnietos de inmigrantes
Es más mío le que sueño que lo que toco

Yo no soy de aquí
Pero tú tampoco
Yo no soy de aquí
Pero tú tampoco
De ningún lado del todo y
De todos lados un poco
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Lo mismo con las canciones, los pájaros, los alfabetos
Si quieres que algo se muera, déjalo quieto

Jorge Drexler, Movimiento ”
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Abstract

Dengue has been a disease present in the Brazilian ecological and epidemiological scenarios
since the mid-twentieth century. From the 1990s, the cases that, before, were sporadic,and
distributed without any clear association to population and territory variables, began to
exhibit a new dynamic. In 2001, by a law that made notification of dengue cases mandatory,
notifications of the disease exploded and dengue began to be seen as a public health problem.
Dengue is a disease transmitted by the mosquito Aedes Aegypti. It has a clear seasonal
component. However, even if it is understood that certain seasonality is derived from climate,
we still lack better quantitative analyses of the effects of climate on dengue epidemics.
In this thesis, time-series of dengue cases and essential climate variables (ECV), such as
temperature and precipitation, are analysed using convergent cross-mapping (CCM). CCM is
based on the result of the Takens theorem which states that the attractor of a dynamical
system can be reconstructed from the time-series of one of the variables of the system, and
the time series of this same variable with time delays. Based on this result, methods for
determining causal relations have been developed. We use these methods and show that, in
the case of the city of Rio de Janeiro, precipitation is the most important ECV relent for
dengue epidemics..
Dengue, in a less common way, can lead to hospitalization according to previous infection
history and weather conditions. Using time-series of hospitalized dengue cases and
temperature series, we explore which are the risks of developing a more severe dengue
condition given temperature exposure. To this end, we use distributed lag non-linear models
(DLNM), which, by using delays of a series of an exposure factor in a generalized linear model
with predictors of the response series, in our case the series of dengue hospitalizations,
provides a statistical association between these factors. This allows us to account for relative
risks for each temperature benchmark. In a further development , starting at the
municipalities level, we perform a meta-analysis of this association, first by macro regions of
Brazil and second for the whole country, from which we derive a functional form for the
relative risk that each temperature percentile has in making a dengue-case a possible
hospitalization for dengue.

Keywords: Time Series Analysis; Causality Criteria; Causility; Causal Inference; Empirical
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Dynamic Modelling; EDM; Cross-Convergent Mapping; CCM; Dengue; Dynamical System;
Complex Systems; Distributed Lag Non-Linear Models; DLNM; Statistical Inference;
Environmental Epidemiology; Statistical Modeling; Mathematical Modeling; Computational
Epidemiology;
.

Knowledge Area: Physics; Non-linear Systems; Complex Systems; Mathematical Modeling;
Statistical Modeling; Mathematical Ecology; Mathematical Epidemiology; Computational
Epidemiology; Environmental Epidemiology.
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Resumo

A dengue tem sido uma doença constante nos cenários ecológico e epidemiológico brasileiros
desde os meados do século XX. A partir da década de 1990 os casos que, antes, eram
esporádicos, e se distribuíam sem qualquer clara associação a variáveis populacionais e do
território, começaram a ter uma nova dinâmica. Em 2001, por uma lei que tornou obrigatória a
notificação de casos de dengue, as notificações da doença explodem e a dengue passa a ser
vista como um problema de saúde pública.
A dengue é uma doença transmitida pela picada do mosquito Aedes Aegypti. Ela tem uma
componente sazonal. Porém, ainda que se entenda que essa sazonalidade seja derivada do
clima, ainda nos faltam melhores análises quantitativas dos efeitos do clima sobre as
epidemias de dengue.
Nesta tese, as séries temporais de casos de dengue e de variáveis climáticas essenciais (VCE),
como temperatura e precipitação, são analisadas através do mapeamento cruzado convergente
(CCM). O CCM se baseia no resultado do teorema de Takens que diz que o atrator de um
sistema dinâmico pode ser reconstruído a partir das séries temporais de uma das variáveis do
sistema, e as séries temporais desta mesma variável com atrasos temporais. A partir deste
resultado desenvolvem-se métodos de determinação de relações causais. Utilizamos este
método e mostramos que, no caso da cidade do Rio de Janeiro, a precipitação é a VCE mais
importante em relação a epidemias de dengue.
A dengue, de forma menos comum, pode levar a uma hospitalização conforme histórico de
infecção anterior e devido às condições climáticas. Lançando mão das séries-temporais de
casos de dengue hospitalizados e de séries de temperatura, exploramos quais são os riscos de
se desenvolver um quadro mais grave de dengue dada a exposição à temperatura. Para tal
utilizamos modelos não-lineares de atrasos distribuídos (DLNM), que ao colocar atrasos de
uma série de um fator de exposição num modelo generalizado linear com preditores da série
resposta, no nosso caso a série de hospitalizações por dengue, fornece uma associação
estatística entre esses fatores com a qual podemos contabilizar riscos relativos para cada
referencial de temperatura. Em um desenvolvimento posterior e com todas as associações
feitas ao nível municipal, fazemos uma meta-análise dessa associação, primeiro por macro
regiões do Brasil e segundo para o país todo, do qual retiramos uma forma funcional para o
risco relativo de cada percentil de temperatura tem em tornar um caso de dengue uma
possível hospitalização por dengue.
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Historical Background and data
sources
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1
Introduction

Dengue Fever, dengue disease or simply dengue is a vector-borne infection caused by four
different serotypes of a Flaviridae know as dengue virus (DENV) and it is transmitted mainly
by Aedes Aegypti & Aedes Albopictus mosquitoes [1, 2, 3]. Dengue epidemics are a result of a
series of very complex phenomena that emerge from an infection caused by a virus and
transmitted by a mosquito, but involves a series of other factors as well. The climate and the
human component on this system plays a major role not yet completely understood and
unveiled. To study and to understand how these factors interact and give rises to dengue
epidemics as a complex phenomenon is the main endeavor of this thesis.
Dengue has been first described since the last years of the 19th century and the first decades
of the 20th century [4]. Before this, a severe, debilitating fever has been documented in Asia
and was probably due to dengue[4]. The Aedes Aegypti mosquito was eradicated in large parts
of the Americas in the 1950s, but was reintroduced in the decade 1970s [4]. Campaigns against
Aedes Aegypti infestation, a common experience for large parts of the Brazilian population.
Globally, the most recent estimates of dengue burden puts it into a level of more than ∼ 390
millions infections per year, with about ∼ 96 millions with some level of severity[5]. This
estimate is probably not updated to the reality of the burden of dengue nowadays. The World
Health Organization (WHO) states that dengue cases have increased 8-fold during the last two
decades. Dengue has been a great problem in Low-Income and Middle-Income countries
(LMIC) during much of the 20th century, [5, 6, 7, 8, 9, 10, 11], particularly, and continues to be
a global health problem demanding specific strategies and guidelines from WHO to enforce its
mitigation [12, 13, 14].
A. Aegypti is the main vector to the dengue disease, specially in Brazil[15]. It is also a vector
of several other viral diseases, (e.g. Chikungunya, Zika, Yellow Fever) commonly called
arbovirus, and it is a widely and globally distributed mosquito [15, 16] and it is the dominant
mosquito species in the Americas[15, 16].
A. Aegypti is known to be a very efficient vector and is well adapted to urban areas. A very
wide range of studies has shown not only that urban adaptation has impact on its efficiency
for transmission but that also climate itself, more specifically temperature and precipitation,
plays an important role in the transmission dynamics [17, 18, 19, 20, 21, 22].
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4 Chapter 1. Introduction

Dengue infections are caused by viruses of the Flaviviridae family[3, 2]. Dengue has four
serotypes which are present in different regions of with different endemicities [3, 23]. In
particular to Brazil, the four serotypes has been present on the last decades [24, 25]. All the
four serotypes of dengue virus can cause infections ranging from asymptomatic to severe
cases, the former requiring, sometimes, complex health care [26].
Dengue symptomatology is characterized by recurrent fever, acute pain on the joints, behind
eye pain and a prolonged lethargy.
Understanding how the mosquito’s cycles, as well as those of the disease itself, are governed is
nowadays a scientific problem which has given rise to a great amount of research on
potentials to account and mitigate the disease spread [27, 28].
A vaccine is still a hope to curb the burden of dengue, specially on LMIC, but none of the
candidates of trial vaccines being tested has been shown to be a feasible and commercial
vaccine in a short-term [27, 29, 30, 31]. Our strategies of mitigation and control of dengue still
rely on strategies of vector control, with regular application of larvicide and mosquitocide
through the territory just before the known dengue season.
This chapter is divided into four sections, a first section with a historical background on
dengue data in Brazil and briefly the history of surveillance built to record these data. A
second section is on the problem of modelling dengue and its relation with climate, and how
and why some climate variables are chosen to understand this problem. A third section is
about the kind of methods used on this thesis to study dengue disease and why they are suited
to each type of problem studied. Finally, the chapter ends with a brief section on the
organization of the thesis and its parts.

1.1 Historical Background
Brazil is one of the most affected countries by dengue [5], encompassing about ∼ 20.8 million
notifications in the last 20 years, from 2001 to 2020. Brazil has a history during the 20th
century in relation with dengue disease. At the beginning of the 20th century, dengue cases
were described over different locations of the country, although it was not immediately
recognized as a public health problem. After this early phase, dengue disease practically
disappeared, with the local elimination of the vector, A. Aegypti [4]. Unfortunately, the disease
has been re-established as an endemic disease[4, 17] as a consequence of the reintroduction of
its vectors in the 1970’s. Dengue is a disease of mandatory notification in Brazil since 2000,
due to a federal decree, and has a specific routine to its notification through a dedicated system
[32]. The national System for Information of Notification of Grievances, or in Portuguese,
Sistema de Informação de Agravos de Notificação (SINAN) is the system where dengue cases
are notified. The module of the SINAN dedicated to the reporting and recording of the dengue
cases is sometimes called SINAN-Dengue. This, guarantees, since 2000, historical records of
dengue cases, that were reported to the notification system, in the Brazilian territory, keeping
the epidemiological surveillance of dengue in pace with the guidelines by the WHO[33].
Since the implementation of the surveillance system, the routines to notification have been
revised to keep the notifications closer to the reality of the disease incidence, as new tools
have been developed to visualize and understand the data generated by the notification
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system [34, 35].

1.1.1 Before 2001

The recorded data can generate historical time-series of dengue cases registered in Brazil
encompassing more than 11.6 million cases confirmed, Table 2.1, with several classifications
to the final diagnostics, with the possibility of being cases closed by diagnostics given by
clinical criteria, laboratory criteria and/or epidemiological criteria[32]. Although it looks like
a huge number of cases registered, this time-series certainly does not include the totality of
infections due to the dengue virus. The disease has different clinical manifestations, going
from totally asymptotically cases to severely debilitating symptomatically cases[2, 2, 36]. In
some periods of low incidence of dengue cases, estimates suggest that only 1 in 40 dengue
infections are reported in SINAN-Dengue and in high incidence periods the reporting relation
to the probable infections occurring is close to 1 reported case for every 20 infections
occurring [37].
Since 2001, Brazil has a surveillance system in line with the WHO guidelines[33] to report
suspected cases and subsequently trigger a clinical investigation that results into a diagnosis
of the case, which is then confirmed on the system. Moreover, there are studies suggesting
that before 2001 we had a greater incidence of dengue than the reported in the historical
registers [1]. The same problem happens for data concerning hospitalization by dengue virus
infections. SINAN-Dengue is a surveillance system suited to report symptomatic cases of
dengue, it captures cases that range from mild to oligosymptomatic cases to cases with some
severity. For the specific case of severe hospitalized cases, the most appropriate reporting
system is the SIH, Sistema de Informação de Hospitalizações [34]. 49% of the suspected severe
cases that are reported on the SIH system and are confirmed as a dengue severe cases are not
reported on the SINAN-Dengue. This is specific to severe cases.
From the publicly available records of dengue cases, we can generate time series since the
beginning of the 20th century. However, with very low confidence on numbers before 2000,
due to the lack of definition of cases symptomatology, mandatory notification and a well
established system.
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Figure 1.1: Time-series of dengue cases recorded before 2001, in Brazil. Extracted from: [1]. A) Cases
reported from 1986 to 1993. B) Cases reported from 1994 to 2002.

As we can see, dengue it is a seasonal phenomenon even before the surveillance system that
can monitor the disease properly was established. From the figure above, as in Siqueira et al.
[1], we note that dengue has a raising presence throughout the two decades before 2001 in
Brazil, more specifically with a clear increase of incidence since 1994. Reasons regarding how
this has happened, after the local elimination of the vector, as well as with the dengue virus in
past times, are not clearly understood [4] and are still a matter of present research [38].
Besides the lack of confidence on those numbers concerning cases before 2001, it is a well
established and well known fact that since mid-years of the 1980s decade dengue has been
increasing its presence in Brazil, with probable imports of propagules from Africa and/or Asia
[37, 1]. Historical epidemics of dengue can be divided in two distinct periods, Siquiera et al.
[1]. From 1986 to 1993, dengue was an episodic disease with localized epidemics, with strict
outbreaks at only some locations. After 1994 and until the end of the period analyzed in the
article (2002) by Siqueira et al. [1], the characteristics of the epidemics has shifted to a
recurrent epidemic, with the new establishment of the disease in Brazil. More recent
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definitions give to dengue in Brazil a status of Hyperendemic, an endemic disease with very
stiff peak right after the rainy season, over large parts of the Brazilian territory, establishing
dengue as a reoccurring health problem of national scale[39, 8, 17].

1.1.2 After 2001

Since 2001, Brazil has established a national surveillance system, allowing for a better
surveillance on dengue cases. The dengue surveillance (SINAN-Dengue) system is part of the
National surveillance system to monitor and survey the mandatory notification diseases.
Sistema de Informação de Agravos de Notificação (SINAN) that counts and keep the
information for more than 48 health grievances, ranging from the most present infectious
disease in Brazil, like, Dengue, Zika, Measles, Yellow Fever, HIV, to grievance like Domestic
Violence, Transit accidents, etc.[40].
Dengue is included on this list of health grievances which are to be reported on the national
system, in a compulsory way, since 2001. This inclusion established, after a decade of
monitoring[1] and the clearly increasing of the presence of the disease, a national surveillance
system, that captures mild and symptomatic cases of the disease[34, 41]. With this inclusion,
and now with a history of the reporting of the disease, we can figure out better on how
dengue has been one of the most incident infectious disease[33, 38] in Brazil.
From 2001, the pattern of dengue epidemics over different regions of the country could be
better observed, with varying incidence for different years on different region, with dengue
expanding over the territory [17, 42]. This can be visualized through the time series of in
Figure 1.2 the dengue cases for each Macro Regions of Brazil (North, Northeast, Center-West,
Southeast and South).
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Figure 1.2: Daily time-series of dengue cases recorded after 2001 by each Macro Region.

A first conclusion that can be drawn from Figure 1.2 is that the peaks of dengue cases appear
to be approximately synchronized over all regions. Works investigating this phenomenon
have been produced [42]. Another conclusion that can be drawn from the above Figure 1.2 is
the clear decrease of the number of cases during the years of 2017 and 2018. It was suggested
by Brito et al.[43] that this decrease is in part explained due to the surge of Zika virus. Zika
virus has been introduced probably in years before 2016 and was in cryptic transmission,
[44, 43], until outbreaks of 2017 and 2018.
Another point worth of attention is the expansion of dengue virus transmission over regions
that had not experienced endemicity of the disease before[38, 21]. The Southern region
presented a relatively low number of cases of dengue before 2010. After that year, the region
has seen a greater number of cases, as shown in Figure 1.2. In a recent work, Lee et al.[21] it
was shown that the increase of temperature, essential for the transmission, over Brazil has
favored conditions for dengue epidemics in Southern Brazil, and more specifically the state of
Rio Grande do Sul, the southernmost state. This agrees with similar studies, although through
different modelling approaches, that have shown that there is a relation between R0 of the
dengue and temperature, with an optima for the transmission[18, 19, 22]. The change on the
average mean temperature to more suitable temperatures for the transmission can be the
explanation to this expansion of the range where dengue epidemics occur. Right after the
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recrudescence of Zika, the Southern region has experienced its record epidemics, even with a
probable sub-notification on the numbers due to the Covid-19 pandemic[38]. From
InfoDengue[35], a national platform for monitoring of dengue activity, the southernmost state,
Rio Grande do Sul, has been experiencing a very high number of cases in 2022.
In order to visually capture these different moments of the dengue epidemiological history
since the establishment of the surveillance system, we calculate the incidence of dengue cases
per 100,000 inhabitants, captured by SINAN-Dengue, over the population of each municipality
of Brazil, by year. In summary, the mathematical formulation takes the form as follows:

Ii,t =
Ct,i

Nt,i
105 (1.1)

Where Ii,t it is the incidence at municipality i at year t, Ci,t is the amount of cases on the
municipality i at year t and Ni,t is the population projection for the municipality for that year.
Here were used the estimates for resident population by municipality along the period of
twenty years (2001-2020) taken from the data service of SUS, dataSUS. Those estimates for the
resident population can be found here
We plot the incidences calculated binned by quantiles to help with the visualization, shades of
red represents greater position in the incidence quantiles, shades of blue represents lower
position in the quantiles distribution:

https://datasus.saude.gov.br/populacao-residente/


10 Chapter 1. Introduction

Figure 1.3: Quantiles of dengue incidence over municipalities, by year, for the period of 2001 to 2020.
Blank parts are municipalities without any registered cases for the year.

A fact that can be assessed straightforwardly from these maps, Figure 1.3, is that dengue has
an incidence varying greatly through geographical and temporal scales. This introduces
complexity issues to any modelling approach which will require integration with data not
captured by the notification system, as would be the case of climatic data.
A consequence of this wide spectrum of dengue in Brazil is the necessity of, at least, two
levels of strategies to control the disease: local and regional. Local strategies have to rely on
understanding the factors that drive and influence dengue at the level of a community. The
surveillance service has to be aware of the potential of the spreading of outbreaks even of
small scales, and should take action to decrease risks. Strategies on the regional level have to
make use of the very capillary nature of the public health system that Brazil relies on, and
scale up to implement strategies that connect effects on a level beyond of the community.
The results shown in Fig.Figure 1.3 raise the question of what drives the spatial variability and
the expansion of dengue in Brazil. Climate change has been invoked, as suitable temperatures
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for dengue transmission are shifting, as pointed out by Lee et al.[21]. However, the combined
effects of variability of precipitation and droughts[20] are factors that might also impact the
dynamics and the patterns of dengue in Brazil.
The societal component to this system can also be a variable influencing this new cycles of the
disease. Brazil has passed through recent transformations in its economic profile, with
particular emphasis in the decades of 00s and 010s[45], and this can have an effect of
accelerating and changing social processes which influences dengue incidence.

1.2 Dengue and Climate

It is well-know that the mosquito life cycle is influenced strongly by the variability of
temperature and by the abundance of water available in the
ambient[3, 2, 18, 41, 19, 20, 21, 46, 47]. Higher temperature make the life cycle of mosquito
shorter and egg-laying time decreases, enhances suitability of off-springs. In turn, this creates
more viable females, which increase the number of bites and contribute to virus circulation
[48]. Temperature modulates also the suitability of viral particles and increases the infectious
bites during the hotter seasons [18, 19]. It can also modify human behaviors, increasing
encounters with the mosquito population, and consequently, the number of humans being
infected [49]. Precipitation has similar impacts on mechanisms that give rise to outbreaks and
epidemics of dengue. With the higher occurrence of rains and its changing intensity, a larger
amount of breeding sites of the mosquito population can be created [50]. This has positive
impacts on mosquito population and can play a role on seasonality as well as on the extent of
dengue outbreaks[18, 22]. In dry regions, where availability of water is season-dependent,
lack of rainfall frequently makes people store clean and drinkable water, which could favor
the increase of the mosquito population[20].
Temperature and precipitation are the climate variables that are most frequently studied
among other possible climate factors that have effects on incidence and variability of dengue.
These factors can possibly play some influence on mosquito life cycle, human behavior or the
interconnected conditions between these two populations, both directly and indirectly [51].
Variables like relative humidity, atmospheric pollution, environmental degradation due to
human exploitation are variables that could have some effect on the Dengue cycle by the
exposing individuals to areas or situations with augmented risk of infection [51] but these
effects are less well understood.
The purpose of this thesis is to understand and assess quantitatively how temperature and
precipitation affect the number of dengue cases in certain circumstances that we will describe
later. We adopt a so-called ecological approach, by working with data aggregated at a
populational level. We have worked with time-structured data - time-series - and employ
methods more commonly used in disease ecology and environmental epidemiology.
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1.3 Methods

Dengue involves a very broad spectrum of scales, from the viral scale up to the planetary one,
since it is influenced by the climate variables through many types of mechanisms[3, 2]. It is
crucial to use adapted methods to obtain results at the required scale of the analysis. We will
work with cases by municipalities of Brazil. In one study, we used the framework of Empirical
Dynamic Modelling (EDM)[52, 53, 22], which comes from the theory of dynamical systems
and from ideas connected to attractor reconstruction. In a second study, we studied dengue in
the prism of epidemiology, and we make use of the framework of Distributed Lag Non-linear
Models (DLNM) to assess dengue hospitalizations and the effects of climate on it, again at the
level of municipalities [54, 55, 56, 57, 58, 59].
The Empirical Dynamic Modelling (EDM) was initially developed for the study of ecological
interactions [60, 53, 61, 62], where it was applied to study causal drivers from time-series data.
EDM assumes that the observed dynamics is generated by a dynamical process described by
differential equations. It uses Taken’s theorem to reconstruct the attractor of the system,
[63, 64, 52]. It has been successfully applied to study climate drivers of dengue, malaria and
influenza [22, 65, 66]. The aim of applying EDM on dengue time-series and climate variables
is primarily inspecting which climate variables are the main drivers of dengue cases from a
perspective that goes beyond purely correlational studies.
Distributed Lag Non-linear Models (DLNM) are used in epidemiology as a framework to study
the effects of a given climate variable on an outcome from epidemiological
interest[54, 55, 56, 57, 58, 59]. DLNM was mostly applied to quantify the effects of temperature
on mortality [67, 68, 69]. Nowadays, DLNM has been widely used in epidemiological studies,
with a larger variety of climate variables being questioned about their relation to outcomes of
interests, for example, density of particulate matter in air, relative humidity, and others. The
idea behind the framework is to give to any statistical model, like GAM, GLM, and some
GNMs, a grid basis of the climate variable whose effects on the outcome are being investigated
[70, 71, 72, 67]. To construct this grid basis, DLNM uses a bi-dimensional combination of
splines, to account for the effects of the climate variable itself, the doses-response structure,
and the lag effects of this climate variable [54, 55]. This grid basis is used to generate
co-variables to be passed to the model, which are now explanatory variables for the outcome.
It is thus possible to compute not only the association of the climate variable with the variable
of epidemiological interest, but also the effects after some time of exposure, a lagged effect. To
understand the association of severe dengue infection with the climate itself, DLNM is the
suited tool for it. When planning public health policies, policymakers can rely on the results
of how temperature can aggravate an ongoing infection of dengue, making it possible to plan
strategies to mitigate the burden and the pressure of the disease on the health system.

1.4 Thesis Organization

This thesis is divided into four parts, and each of them is organized in chapters. After the
conclusions chapter, there are two appendices, Appendix A and Appendix B, each of them
developing the theoretical frameworks used on the core chapters of the thesis. Those two
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appendices are part of the of whole body of the thesis, they were put on the end to help on the
fluidity of the main text and the core of the thesis, which is the chapter 3 and chapter 4. After
these two appendixes, there are another two appendixes with supplementary material to the
chapters 3 and 4.
The first chapter is the present one, an introduction to the subjects of the thesis. The next one,
chapter 2, is divided into two parts, the first one about the historical background of dengue
disease in Brazil and its surveillance system. The second part of this chapter concerns issues
of organizing the databases of dengue cases records and climate databases. A discussion is
presented on how this work has been developed and how relevant it is to the subsequent
research. It refers to the compilation and organization of the databases of dengue cases and
hospitalizations in Brazil during a period of 10 years, from 2010 to 2019. Although we
collected data of dengue that extend to more than 20 years, from 2000 to 2020, we focused on
studying the last 10 years.
The third chapter 3 is dedicated to dengue ecology and its dynamics under climate drivers. We
use data from the city of Rio de Janeiro, both epidemiological and environmental. We
analyzed how the climate variability drives the dengue cases time-series, and which drivers
are more important. The chapter is divided in sections for methods, results and discussion. To
this chapter, we add an appendix with a broader explanation to the Empirical Dynamic
Modelling (EDM) framework, Appendix A. Another appendix, C, contains supplementary
material to this study.
The chapter 4 is dedicated to the study of the association of temperature and the dengue
hospitalizations in the framework of Distributed Lag Non-linear Models (DLNM). As in the
previous chapter, the fourth chapter is divided in sections for methods, results and discussion.
Again, we restricted the study to a period of 10 years, from 2010 to 2019. There is an appendix
to this chapter, Appendix B, where the theoretical development of the DLNM framework is
presented and explanations and references on the DLNM framework are given. The
Appendix D presents more materials relevant to this part of research.
The fifth and last chapter, chapter 5, is dedicated to the conclusions and discussions of the
results, their interpretation in a wider context of dengue as a complex system and the
implications to the public health measures. Finally, the thesis closes with some perspectives,
presenting future avenues of research.





2
Data Wrangling of Epidemiological data and

Climate data

Data are multidimensional objects that partially reflect the dynamics or the state of an object
of interest, whose characteristics may involve unknown factors. For instance, epidemiological
data come from a system which is comprised by medical, societal and environmental factors,
which are not explicitly described. Incidence and prevalence, to cite an example, are common
epidemiological indicators, but they result from a complex set of interactions which are not
usually known quantitatively.
Every time we choose to wrangle data in any direction, aspect, or perform any operation that
reduces the multidimensional nature of data into a more flexible lower dimensional object, as a
graph, a plot or a time-series, we make a choice that poses constraints on what and how much
information can be leveraged through this new object. This process is basically the process of
data wrangling, which can be understood as the process of re-modeling, summarizing, cutting,
selecting, filtering data which, as a result, give a new object as an output, amenable to analysis.
Any conclusion about specific data is always drawn from a reduction of data to a form that
allows evaluations and calculations. This process is now usually called data analytics.
One of the first difficulties when studying dengue epidemics is its data sources. Dengue is an
infection with a wide spectrum of symptoms and levels of severity [36]. Before any study, we
have to select which aspect is being discussed, and choose relevant data accordingly. The
same occurs with climate. Climate is a very complex system, and the science of climatology
produces a wide variety of measurements and estimations [73]. It is important to understand
which are the adequate sources of climate data when studying dengue. Research on climate
drivers of dengue needs careful preparation of data.
In this chapter, we present the sources of dengue data, cases and hospitalizations, and data
sources of climate variables as a part of the work itself.
This chapter is dedicated to this work of preparation of data and has the following
organization: a first section is dedicated to dengue epidemiological data sources, its
particularities and our approach when organizing it for analysis. The second section is about
the climate variables used in this thesis and their compilation, storage and organization. We
made use of publicly available data sources for dengue data and climate variables. Dengue
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data is anonymous and do not keep any identifiers of any individual.

2.1 Epidemiological Data Sources
As mentioned above, dengue has a proper notification system that covers the whole Brazilian
territory. Since 2001, every symptomatic case of dengue which is identified should be notified
to SINAN-Dengue [32, 14, 40]. This creates a surveillance system for the incidence of the
disease and a historical time-series of the case counts. Due to common problems with
notifications systems, not all cases are communicated and the complete extension and burden
of the disease on the Brazilian population [34] remain uncertain.
Dengue can manifest different symptoms that can be confounded with a variety of others
diseases, but it can sometimes show no symptoms - depending on previous exposure. Also, it
can manifest severe symptoms [36].
These are some limitations of the dengue data records in the SINAN-Dengue system, but they
do not invalidate the use of the data when researching dengue. Limitations decrease the
power of conclusions that can be obtained from data, but being aware of them helps to better
gauge the scope of the analysis.

2.1.1 SINAN-Dengue data

We obtained and organized data for dengue from the public accessible official records of
dengue available at SINAN (Sistemas de Informaçaão de Agravos de Notificação). SINAN has
modules for each of the diseases listed on the national mandatory notification grievance list
[40]. These modules are sometimes called as SINAN and the name of disease it is specific for,
like SINAN-Dengue. From here on we will refer to any data on SINAN about dengue cases as
SINAN-Dengue, and sometimes we use only SINAN, being understood that it is about dengue
data, unless it is explicit stated otherwise. The publicly available data for dengue can be
downloaded in several ways: it can be ordered by the national service for information to the
citizen (e-SIC)[74], it can be downloaded directly from the file transfer protocol (FTP) service
from the SUS data service (DATASUS) [75] or can be downloaded through the wrapper
functions present on the R package ’microdataSUS’ [76]. The data used on this thesis are an
equalization between data collected from e-SIC order and data collected from the FTP service,
as well as by the ’micradataSUS’ R package. This work of organizing all this data into an
easily usable form is made available on our repository and can be accessed here:
https://github.com/rafalopespx/Dengue time series
The notification criteria on SINAN-Dengue comprises any person alive and that has traveled
in the last 14 days to areas of dengue transmission and that has/had fever, usually between 2
and 7 days, and presents two or more of the following symptoms; nausea, vomiting, rash,
myalgias, headache, retroorbital pain, petechiae or positive loop test and leukopenia[77]. Any
person who matches this definition and has sought for medical care, is reported as suspected
case of dengue. Afterwards, the case is investigated to give a definitive diagnosis, discarding or
confirming it as a dengue infection case. The investigation is done by several different means.
A case can be investigated through laboratory exams, clinical investigation or epidemiological

https://github.com/rafalopespx/Dengue_time_series
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investigation. At the end of the process, the case has to be discarded or confirmed [78, 32, 78].
This case definition fulfills the definition of cases from WHO [33]. The capillarity of the
universal health system (SUS) in Brazil helps SINAN-Dengue to capture symptomatic cases of
dengue [79]. This does not mean that there is no sub-notification on cases, as big part of
dengue cases can be oligosymptomatic or assymptomatic, which poses a difficulty for the
notification system to capture those cases. Since the establishment of SINAN-Dengue, this has
been an issue to the notification system.
We have accessed the totality of suspected cases notified in SINAN-Dengue. We identified the
case in categories by its final classification, being confirmed as ’Classic Dengue’, ’Dengue
Hemorrhagic Fever’, ’Dengue shock syndrome’, ’Dengue with alarming signals’, ’Discarded’
and ’Severe Dengue’. This is done due to the always revising definition of severe cases and its
symptoms. To better capture those cases, the definition has being changing since the
establishment of the SINAN-Dengue. This encompasses more than 20.8 millions registers
from 2001 until 2020. From those cases, 52% are confirmed cases of dengue infection with any
kind of severity, the rest are classified as ’Discarded’ explicitly or do not have the information
about the final classification, which are considered as ’Discarded’ and are filtered out. The
comparable dengue cases numbers are those classified as ’Classic Dengue’. The cases classified
as ’Dengue Hemorrhagic Fever’, ’Dengue Shock Syndrome’ are classifications that used to
exist in the system until 2011, after this the system only allows classification as ’Dengue’,
’Dengue with alarming signals’ and ’Severe Dengue’[77].
The cases were aggregated by the municipality of residence and by date of first symptoms,
creating time-series for the 5570 municipalities of Brazil over a period of 21 years, from 2001
to 2020. This is the first product of data wrangling over the databases of SINAN-Dengue, and
it is stored in our online repository https://github.com/rafalopespx/Dengue time series. Below,
we show a table characterizing the typical data that is contained in our aggregation of all
these databases.

https://github.com/rafalopespx/Dengue_time_series
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Table 2.1: Characteristics of notified cases of dengue, 2001 to 2020.
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From the table above, 2.1, we have a general view of the typical characteristics of dengue
disease in Brazil over the period studied. From all notified cases in SINAN-Dengue, the
median age of individuals for a dengue case is 30 years old. But this is not homogeneous
throughout Brazil, with lower values in North and North-East regions.
Data about self-reported race are largely affected by lack of reporting. About 4 millions cases
have no self-reported race information, constituting a chronic problem for the notification
system. We can also observe differences due to specific demographics of Brazilian regions. We
can see differences on the cases notified per self-reported race at North, Northeast and
Center-West regions different of the rest of the country, as these regions have a majority of
dengue notified cases on individuals that are self-reported as browns. With about 74%
percentage on North and 71% Northeast regions and 52% percent at Center-West region, this
differs from the whole country status for self-reported race, which is at 45% percent. For the
South and Southeast regions, individuals self-identified as white are majorities in each region
of the notified dengue cases. For the South and Southeast regions, the second most notified
self-reported race on the notifications are individuals self-identified as browns.
Incidence on female individuals is 56% of the notified cases at country level. This pattern
presents little difference between regions.
Notifications always present some delay with respect to the onset of symptoms. We propose a
metric to understand the delay of notification of cases. Knowing the date of onset of first
symptoms and the date of notification at the SINAN-Dengue system, we calculate, in days, the
delay between those dates. This comprises delays coming from the fact that patients seek
health services only after some days of symptoms onset to delays on the inputting process of
the data. We have a delay between date of onset of first symptoms and date of notification of 3
days, in average, with a variance from 1 to 6 days. In all regions, except the North region,
delay in the notification follows almost the same distribution. North region has the greatest
delays for notification, with 4 days for the median of the distribution of days passed between
date of first symptoms until date of notification.
Finally, the last line of 2.1 gives us the cases that resulted in death. All notifications with an
explicit code filled for the outcome of the case as a death are counted as a case that evolved to
deceased. Most cases evolve to a discharged outcome. The whole country has, in general, less
than 0.1% of the total number of dengue cases notified with an outcome of death. There are
some regional differences, but most regions follow the same pattern for the outcome of cases
as in the whole country level. This, however, does not reflect the true mortality or lethality by
dengue infection, necessarily, as the ability of the notification system to capture all the dengue
cases varies greatly over the country. Some studies point to sub-notification of mortality due
to dengue [34].

2.1.2 SIH data

Due to the problem with capturing the severe cases of dengue in databases, when we
investigate other specific outcomes and more severe manifestations of dengue, we have to
look to another notification system. For the results presented in chapter 4 we made use of
Hospital Information System, (SIH). SIH is a system developed initially for administration
purposes, but it can be used for epidemiological interests too. The SIH is a notification system
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which notifies hospitalizations that are covered by the SUS. Any hospital facility can notify a
hospitalization on the system and from it, it can apply to SUS for payment due to this
hospitalization, if the disease is of mandatory notification. Dengue is the case, so from SIH
total notification on all hospitalizations, we can filter out dengue hospitalizations, and we can
get a better view of hospitalizations due to dengue [34].
We present at chapter 4 a table 4.1 of the notification data on SIH which was used to study of
dengue hospitalizations and the temperature effects on it. This table is constructed by the
cumulative hospitalization notifications for each region of Brazil. It is known that SIH is more
sensitive to capture the more severe cases of dengue. From the totality of notifications on the
system, we filter out only those with specified codes for different severe outcomes related to
dengue [34].

2.2 Climate Data Sources
Throughout this thesis, we made use of climate data sources. Here we give a more detailed
view on this type of data sources and how they were managed and compiled in each of the
analysis chapters, 3 and 4. There is a very broad and a very diverse range of products from
climate models and climate automatic stations that collect data about several climatic
measures. The use of these products in another fields of study, out of climatology and
meteorology, has been growing through the recent years. Together with this increasing
interest in other sciences to make use of climate products, there is also a crescent sort of
newer climate data products more suitable for each area of application. In environmental
epidemiology this matters and the use of these products gives momentum to the field in
advancing a better understanding of climate change impacts and its consequences for public
health [80].
We will use ERA5-Land reanalysis products, which is the state-of-the-art in reanalysis
products from the European Center for Medium-Range Weather Forecast (ECMWF)[81].
ERA5-Land has the narrower resolution of (0.1º X 0.1º) among the width used in reanalysis
products from (ECMWF), ERA5 and ERA5-Land [81, 82, 73].
Shortly, reanalysis products are constructed from available data from automatic historical
records throughout the world and with this data the climate model is initialized. The model
produces gridded measures for any essential climate variable (ECV) of interest
[81, 82, 73, 83, 84]. These products have been validated and have been applied beyond
climatology and meteorology. The studies of environmental epidemiology have used these
results extensively [72].
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Figure 2.1: Raw Gridded data for temperature at 2 meters height, ERA5-Land, at January 1st, 2020
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For the purposes of our studies, we construct, from the raw gridded data, aggregated data that
can be related to the time-series of dengue cases. Our studies made use of epidemiological
data aggregated at the municipality level and ERA5-Land dataset for temperature and
precipitation. The reanalysis products are generated at a scale of 0.1º x 0.1º, which is finer
than the typical area of a municipality, as seen in Figure 2.1. By constructing weighted mean
areas on the extent of each municipality, we can build a dataset of the weighted mean area
climate variable over Brazil. The raw data accessed from the ECMWF comes in .nc format,
which is a specific format for geospatial temporal data, as is the case for most climate
variables. The ECMWF publishes data in several formats and aggregations and can be
assessed freely at https://cds.climate.copernicus.eu/.
We choose to use the data at an hourly basis, and we construct weekly weighted mean areas
time-series for all municipalities of Brazil on the period ranging from 2010 to 2019, which is
the analysis period of both studies presented in the chapters 3 and 4. To construct the
time-series of weighted mean areas by municipalities, we made use of the functions presented
on the R package ’exactextractr’ [85]. We created new functions to calculate weighted mean
areas over the extension of each municipality of Brazil according to the 2010 census [86]. To
do so we get the files with the shapes of each municipality of Brazil which are available at the
IBGE FTP server through the R package ’geobr’[87]. The result from this weighted mean areas
for the creation of time series over the extent of municipalities, is an array in daily resolution
by each year over the period used, from 2010 to 2019, for the climate variables. They are
organized and are available on the online GitHub repository:
https://github.com/rafalopespx/climate aggreg/.
The result is a dataset of time-series of climate variables aggregated by each municipality for
the 10 years period of the studies. To give a glimpse and to visualize part of this product, we
plot, for the month of October 2020, the mean temperature above 2 meters from the ground.
This visualization is basic to the work of harmonization produced with the compilation and
aggregation done with the weighted mean areas, ERA5-Land data and ’shapefiles’ from
’geobr’. Below, we present a possible visualization of such files.

https://cds.climate.copernicus.eu/
https://github.com/rafalopespx/climate_aggreg/
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Figure 2.2: Mean temperature at 2 meters height above ground by weighted mean area in Brazil,
October 2020
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In this thesis, we have made use of temperature and precipitation measures that were
aggregated to produce the weighted mean area of interest. The temperature is a typical
meteorological measure for the two-meters above the ground column of air temperature. We
have built the weighted mean area average as described above for each municipality of Brazil
over the period from 2010 until 2019. To the precipitation, which is the measure of any kind of
water precipitation, which could be ice precipitation, water precipitation, namely rainfall, we
produced the weighted mean areas for each municipality. For precipitation, we have only
daily measures and from it, we generate time-series for each municipality of the minimum
amount of rainfall of the week, by taking the minimum value of daily precipitation.
Analogously we generate the weekly maximum precipitation, by considering the maximum
amount of precipitation of the week, and finally we generate the mean precipitation, by
simply taking the arithmetic mean of daily precipitations of the week.
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3
Climate drivers of Dengue at Rio de Janeiro city, 10

years period, from 2010 to 2019, an empirical
dynamic modelling study

In collaboration with: Brenno Caetano Troca Cabella, Renato Mendes Coutinho1, Roberto
André Kraenkel2

3.1 Introduction

Dengue epidemics may present a multi-factors and multivariate combination of explanatory
variables, and it is sometimes seen as related to a complex dynamical system. It has been
considered as a hyper-endemic disease[3, 5, 39, 21, 28, 88, 8, 7, 13, 36], which adds more
dimensions to the dynamical system. Climatic drivers have been connected to dengue
epidemics [19, 22, 47, 50, 89], but still pose challenges in dengue modelling studies. In this
chapter, we will study climatic dengue-epidemics drivers from the point of view of dynamical
systems, along the lines of [60, 53, 90, 66]. This implies that we will consider dengue-cases
times series as emerging from a deterministic dynamical system that can be described by a set
of differential equations, which is subject to noise and external drivers. However, contrary to
the usual approach of postulating a set of equations, we will use the dengue-cases time-series
to reconstruct the attractor of an unknown system via the Taken’s theorem. [63, 52]. For this
study, we choose the city of Rio de Janeiro, the second major city of Brazil, which has a
history of recurrence of tropical diseases, particularly arboviruses, and a high incidence of
dengue cases.
Dengue cases are usually supposed to be, at least partially, driven by climate factors related to
the mosquito life cycle [3, 2, 5, 89, 20, 91, 92]. However, little is known of which specific
climate drivers and their relative importance in explaining the time-series of dengue-cases.
We will use the framework of Empirical Dynamic Modelling (EDM) [53, 52], to provide a

1Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brazil
2Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
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quantification of the effects of climate drivers on the dengue cases curve.
The main idea behind EDM, is that we can reconstruct the attractor of a dynamical system
from only one variable of the system, via Takens theorem, [63, 64], which allows for
state-space Reconstructions (SSR): with only one time series, named as observation or
observation function of the system, and a finite amount of delayed time-series of this
observation of the system, we recover the attractor underlying the original dynamical system
section A.1.
The EDM uses Takens Theorem uses the consequences of Takens theorem: if we can
reconstruct an attractor from a time-series of a single variable, if we have two time-series, and
they pertain to the same dynamical systems, then the attractor obtained by each of the
time-series has to be the same, meaning that there should be a correspondence between them,
a 1-to-1 mapping between both of them. A longer description of EDM framework, from the
theorem itself and how the framework is constructed based on it, is given in the Appendix A.
The city of Rio de Janeiro has a population of over 6.7 millions inhabitants, distributed over
1,200 km2[93].
Rio de Janeiro has been suffering throughout its history with different epidemics[4], many of
them related to the cycle of urbanization of the city[88]. Rio de Janeiro is one of the most
important commercial hubs in Latin America and has a great part of its population in high
incidence areas of dengue [49]. dengue presents seasonal characteristics in the city, but the
number of cases has high variability from year to year C.1.
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Figure 3.1: Time series of weekly cases of dengue notified in the city of Rio de Janeiro, from 2010 to
2019
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We implemented Empirical Dynamic Modelling (EDM) framework to quantify and understand
the effects of Temperature (Minimum, Mean and Maximum) and Total Precipitation
(Minimum, Mean and Maximum) on dengue cases and how these factors can drive the
variability of seasonal outbreaks of dengue. Our analysis spans a ten years period, from 2010
to 2019.

3.2 Materials and Methods

3.2.1 Data Sources and Definitions

Dengue Cases: We accessed the notifications of dengue cases in Rio de Janeiro city by
filtering out the cases from the Brazil national database of for mandatory grievances notified
diseases, SINAN-Dengue[32, 94]. We build weekly time-series by the date of onset of
symptoms, filtering those cases with municipality of residence at Rio de Janeiro city C.1. We
included only those cases classified as having any of the final diagnostics that matches dengue
classification characteristics [14, 36, 88]. This resulted into a time-series of 10 years long for
the period of 2010 to 2019.
Climate variables: The climate variables were assembled from the gridded (0.1º x 0.1º)
reanalysis products presented on the Climate Data Store for the ERA5-Land, which are freely
available by the European Center for Medium Range Weather Forecasts. The data is available
at [73]. The data in its original format were in hourly measure over the extension of the
municipality of Rio de Janeiro. We produced weighted mean areas averages using the R
package exactectractr [85]. A more detailed explanation on how those weighted mean areas
averages are produced can be found in the section 2.2

3.2.2 Data Analysis

We study climate drivers on the dengue time-series of cases through the EDM framework by
dividing the analysis in three parts. The first part sets out to determine the optimal embedding
dimension for the SSRs by using the simplex projection procedure Simplex Projection, which
is the prediction of the time-series on itself for a series of tentative embedding dimensions.
The embedding dimension which reduces the error between prediction and observations is set
as the optimal embedding dimension E∗ and which is chosen for the SSR. For each time-series
analyzed, we calculated this optimal embedding dimensions.
In the second part, we study the significance of the driving relations found in the first part. To
do so, we perform mapping between two different SSRs, called the Convergent Cross Mapping
(CCM) procedure section A.3. CCM is the mapping between each SSR generated by a time
series and an optimal amount of delays, chosen by the simplex projection. After having the
optimal dimension of each time series and its SSRs, we perform cross mappings between this
SSRs to discover driving relations. If the cross-mapping converges to a certain value, as we
increase the number of points in the time-series, we say that this represents a driving relation.
Convergent Cross-Mapping are viewed as a signature of causality, in the sense that the
different time-series come as projections of a same attractor, and therefor have mutual
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influences on each other. We can go further and give a directional sense to these mappings.
CCM has to be interpreted in a kind of inverted direction: the time-series of the number of
dengue cases contains information on the climate variable, and therefore dengue cases
time-series can "predict"the climate time-series through cross-mappings, [63, 53, 60]. The
section section A.3 presents a mathematical discussion of these procedures.
The next part of the analysis is a procedure to determine if the driver/causal relations found
are not just an expression of seasonal drivings - which are known to be important. To do so,
we create surrogates time series that have the same seasonal patterns of the original time
series but different residuals parts. Our surrogates time-series are basically the shuffle of years
in an order that is not chronologically correct. This gives the same seasonal pattern but puts
on different patterns beyond the seasonality. If the driving relation is just because of
seasonality, we expect not to see significance on CCM between the original time-series in
contrast to the surrogates time-series. For those mappings that are statistical significant over
the distribution of surrogates mappings, we attribute causal relation by the variability of the
time-series itself and not only by the seasonality.
The third part implements a model to estimate the strength of the driving relations found in
the previous step. It uses a mapping called S-Map. S-Map is a locally weighting estimate of the
Jacobian elements on a multivariate SSR, constructed with the cases time-series and the
drivers time-series that were attributed significant driving relations. We can infer how much
each of the climate drivers are impacting the dengue cases curve. A more complete
description is given at section A.4.

3.3 Analysis

3.3.1 Empirical Dynamic Analysis

Simplex projection: For each of the time-series of dengue cases at Rio de Janeiro
municipality and the time0series of climate drivers - mean, minimum, maximum of
temperature and precipitation - we performed a simplex projection for predicting a library
part of the time-series on a prediction part of the time-series.The expression for the simplex
projection is:

X̂(t+ n) =

E+1∑
i=1

wiXi(t+ n) , (3.1)

where E is a tentative embedding dimension, up to 10. The embedding dimension that
minimizes error between the observed and prediction is the optimal embedding dimension,
E∗ which is described as a correlation between the observed and predicted, constructed as in
Equation A.9.
Seasonality extraction and Surrogates testing: After defining an optimal embedding
dimension E∗ for each of the drivers time-series being tested and the cases time-series, we
can produce cross-mappings between driver time-series and cases time-series, to seek for
causal relations. To give a statistical significance to this cross-mappings, we first perform this
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cross-mappings between cases time-series and surrogate drivers time-series. The surrogate
time-series were constructed with the same seasonality patterns of the original drivers
time-series, but randomized residuals. We choose to only shuffle the residuals yearly, basically
producing a time series that has the same variability of the original time series but with
chronological order shuffled. If the original time series is statistically significant in the
distribution of prediction skills ρ of all surrogate cross-mappings, we attribute it a status of
causal driver to the cases time-series. On the other hand, if the original time series is not
significant over the distribution of ρ of surrogates cross-mappings, we can not say more than
the driving relation it is due to the seasonality pattern of the climate time-series into the cases
time-series. To extract the seasonality from the drivers, we fit a smooth cubic spline to each
driver time series by year over the whole period. We construct 500 surrogates time series for
each of the six climate drivers being inspected, so that we have produced 3000 cross-mappings
with the 500 surrogates, in total. We summarized the surrogates constructed with the below
figure.

Figure 3.2: Surrogates time series, gray shades, and the original climate time series, in black.
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In this figure, gray shades are the surrogate time-series and the black line is the original
climate driver time-series. We see, by this, that the variability over the seasonality pattern is
not big. This is actually expected, for we are only shuffling the years to produce a series that
has different chronological order on residuals with respect to the original time-series.
Having constructed surrogates for CCM test of the significance of a driver, we look for the
time-lag with the highest ρ. This is done by repeating the CCMs between surrogates
time-series of the climate drivers to cases time-series, with different target of time for
prediction tp. For different time for prediction tp, we produce new cross-mappings, but now
with the target of prediction being different from simultaneous time. We do not go further
than tp = 17 to avoid mixing patterns from one epidemic into another, as 17 is the first 0 of
the auto-correlation function (ACF) for the dengue cases. A compilation of the
auto-correlation for each of the drivers can be found at Figure C.2 and the auto-correlation for
the dengue cases time series can be seen in Fig. 3.3

Figure 3.3: Auto-correlation for dengue Cases time series.
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Instead of only performing the cross-mappings at simultaneous time, i.e., the climate drivers
at time t predicts the cases time series at time t, we test, too, the CCM for climate drivers at
time t− τ predicting the case time series at time t.
For each time for prediction tp we performed 3000 CCMs, in total for all drivers. We have a
total of i×Nsurr ×Ntp, where i is the number of climate drivers being tested, here 6 (i.e.
min., mean, max. of temperature and precipitation), Nsurr is the number of surrogate
time-series created (500) with the same seasonality pattern of the original driver and Ntp until
17 weeks of lag. In total, we perform 6× 500× 17 = 51, 000 CCMs. After performing all of
those CCMs we get a final distribution which is a distribution of ρ per time for prediction tp
for each climate driver tested, which are summarized this in Figure 3.4.
All the CCMs are performed through the same equation, which is the prediction of cases SSR
by the climate drivers SSR, adapting the equation given in the equation A.10, leading to:

Ĉ(t)|Mi =
E+1∑
i=1

wiCi(t) (3.2)

The index i runs over all drivers being tested at their optimal lags tp* and optimal embedding
dimensions E*. For each climate driver, we choose those where the CCM is significant over the
distribution of ρ, which is the CCM with the highest ρ over all time for predictions tested
Figure 3.4. The optimal time-lag is understood as the highest lag effect of a climate driver onto
the cases time-series. We used the time-lag that has the greater forcing on the cases
time-series. The climate drivers with the highest ρ at its optimal lags are
Precipmin(t− 7), P recipmax(t− 2). This means the temperatures do not drive the cases
time series by its variability but probably by the seasonality, as the original CCM were not
significant over the surrogates distributions. For the precipitations, we can attribute that the
highest lags have a significant causal link, so the precipitations, around those lags, drives the
cases time-series by its variability and not only by its seasonality.
S-Map and non-linearity of the dynamics: After having found a set of climate drivers that
drive the cases time-series, we can test quantitatively how these drivers force the dynamics of
dengue cases. A way to test this in the EDM framework is to produce new SSRs that will we
use to predict the cases time-series. The idea is to use S-Map, as described in the section
Sequentially locally weighted Map (S-Map)[60], and perform a sequential locally weighted
estimation in order to estimate the Jacobian elements at each state of SSR[61, 95], but now
instead of only using the cases time-series and its lags, we substitute some of these lags by the
climate drivers that we found as causal factors, in our case, the precipitations,
Precipmin(t− 7), P recipmax(t− 2). As in the equation A.12, we are determining the Ci

which are understood as forces of the interaction of this climate drivers on the dengue cases
time-series. Adapting the equation in the section A.4, we have:

Cases(t) = C0 +
I∑

i=1

Ci(t)xi(t) (3.3)

where the sum is over the significant climate drivers.The xi term is the vector of climate
driver’s time-series at a tp that has the highest ρ. In summary, our S-Map is of the form:
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⟨Precipmin(t− 7), P recipmax(t− 2)⟩. Before inputting the time-series to the S-Map we
have to cut and normalize the time series, this guarantees all the forces of interactions are
measured as relative effects on the dengue cases time-series and are more easily interpreted.
The coefficients Ci have the form of an exponential decaying weight to the distance of the
point we were predicting from its nearest neighbors. As given in the equation Equation A.13,
we determine the θ from this equations by picking the θ that gives the minimum Mean
Absolute Error (MAE) between the predicted and observed time series, predicted by this SSR
of precipitations to predict the cases time-series. In Appendix C we give the plot for θ for this
model of precipitations predicting cases, Figure C.3. S-Map is basically the Singular Value
Decomposition (SVD) solution of the Equation 3.3 of the form B = A ·C, with B as the
weighted future values of the Cases(t) andA the matrix of dimension n× I entries[61]. A
mathematical description of the S-Map is given at Sequentially locally weighted Map (S-Map).
S-Map estimates, at each time point, the locally weighted Jacobian Element for the prediction
of the cases time-series from the climate drivers state-space reconstruction. We can give a
complete model for this prediction that S-Map gives locally estimates, as, for example, in the
following equation:

Cases(t) = C0 +
∂Cases(t)

∂Precipmax(t− 2)
Precipmax(t− 2)

+
∂Cases(t)

∂Precipmin(t− 7)
Precipmin(t− 7) (3.4)

The term C0 is a constant coefficient and all others are coefficients for the effects of each time
series inputted on the S-Map model to predict the target time-series, the cases time-series.
This procedure estimates the effects of the climate driver on the cases time-series, the partial
derivatives elements in the Equation 3.4.

3.4 Results
Cases data description: In Table 3.1 we give a descriptive summary of some characteristics
of dengue incidence in the municipality of Rio de Janeiro. In the "Overall" column, a general
view is presented which is in line with the basic patterns for Brazil given in Table 2.1. We can
notice a higher incidence in women, which can only be partially accounted for by the skewed
sex-raio of the country (52% females). The case-fatality rate is, in general, small, as expected.
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Table 3.1: Characteristics of dengue Cases for Rio de Janeiro city, 2010 to 2020.
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Climate data description: The climate data were aggregated for the entire municipality area
of Rio de Janeiro, and we generated a weighted mean area time-series for each climate
variable of interests. The raw climate data is a product from a global climatological gridded
model, with a pixel definition of (0.1ºX0.1º), covering the whole land surface of the
municipality. From this data, we produced the weighted mean area time-series by taking
inside the municipality extend the area of each pixel and weighting the area it covers on the
extent of the municipality. This was done by the R package ’exactextractr’[85].
Surrogate testing for seasonality forcing

Figure 3.4: Boxplot for the ρ distribution per climate driver by time for prediction tp. The orange
points are the CCM between original climate driver and cases time series.
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The Figure 3.4 gives the cross-mapping skill distribution for the prediction of each climate
driver tested by lag length of the mapping. In other words, at each specific time for prediction
tp, the x-axis, there is a boxplot which is the distribution of the 500 CCMs of each surrogate
time series and the cases time series, the orange points are the CCMs for the original driver, at
each tp tested. The title of each panel identifies the climate driver tested. By examining this
distribution, we can obtain an insight of how the original CCMs compares with the surrogates
CCMs. If the original CCM does not have a clear better cross-mapping skill than the
surrogates ones, this is a sign of the forcing by this climate driver is due to the seasonality of
the driver and not due to its variability. To make a statistical test for this, we assign for the
CCMs of the original climate time-series a significance only if the cross-mapping skill is
outside the 95th percentile of the ρCCM distribution of all other CCMs for the surrogates
time-series. When the CCM passes this significance test, we say that the climate driver has a
forcing on the cases time-series that is not only due to the seasonality but by the variability
itself, and that we have found a lagged relationship between the climate driver and the cases
time series. To make it clearer, we draw the Figure 3.4 now coloring the CCMs for the original
time-series of the climate by the level of significance of the ρCCM . The next figure shows this
result.

Figure 3.5: Boxplot for the ρCCM distribution per climate driver by tp. With significance test.
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From the above figure, we can infer the minimum precipitation with a delay of 7 weeks and
maximum precipitation with a delay of 2 weeks as the climate drivers causally forcing on the
cases time-series. The temperature has no significant forcing for the variability, so probably
the forcing of temperature on the cases is just a seasonality effect.
S-Map Models: After determining the climate drivers and their delays, we can draw S-Map
Models to estimate the force of interaction of these drivers on the cases time-series. As in the
Equation 3.4 we compute the locally weighted Jacobian elements at each point of time of the
SSR constructed to predict the cases time series. As described in the section A.4, an S-Map is a
model to predict a time-series from other time-series that are causally driving the one that is
being predicted. Differently from the CCM, we are not inferring the causal link, but using
those that were found before to build a new state-space, which is mixed, with the cases and
the climate drivers in the same state-space. From this new state-space, we employ a model to
estimate the cases from the climate drivers.
The panel below shows, the results generated by the S-Map algorithm. To help with the
interpretation of the results, we use different colors for each month.
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algorithm
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The results show how important a driver is as a function of its magnitude. Each point is a
week, and the points cover all the time-series extension. With very few exceptions, the
coefficients are positive, meaning that an increase of maximum precipitation at t− 2 and of
the minimum precipitation at t− 7 tend to increase the number of dengue cases. However,
the magnitude of this driving effect is variable. In the panels a and b, the effect of precipitation
on the number of cases is shown. In both cases, we see a saturation effect: for higher values of
the precipitation, the effect on the number of cases is small. On the other hand, for low values
of the precipitation, the effect depend strongly on the season of the year. This can distinctively
be seen in the panel b: in the months of December, January and February, the effect of
Precipmin(t− 7) tends to be small, but in the usually drier months of the middle of the year,
the effect is strong.

3.5 Discussion

We used the Empirical Dynamical Modelling (EDM) framework to find climate drivers of the
number of dengue cases in the municipality of Rio de Janeiro, on a 10-year period, from 2010
to 2019.
First, we determined the climatic drivers that showed causal association with the number of
dengue cases, via CCMs. We also calculated the lag between driver variables and cases that
showed the stronger associations. Finally, we characterized quantitatively these drivers,
calculating their effect of the number of cases as a function of the magnitude of the driver
variable.
Our main findings are that precipitations, (Precipmin and Precipmax), forces dengue cases
time-series through its variability other than only through its seasonality. Time lags between
these two drivers and the number of cases were seven and two weeks respectively.
Temperatures were tested and were not found as significant drivers. This does not mean
temperature has no effect on the number of cases, it means that cases variability are not
causally connected with variability of the temperatures, after taking seasonal effects out of the
analysis. Further analysis, via S-map techniques, estimated the interaction forces of the two
causal drivers and showed that the effect of increasing precipitations increase the number of
dengue cases - a positive effect. This effect is however saturated for high values of
precipitations and is more important in the dry months of the year.
These results are in line with recent work on climate drivers of dengue cases in San Juan,
Puerto Rico [22]. These authors also found that precipitation is a causal driver of cases beyond
seasonal effects, while temperature is not. For diseases that are affected by climate, as is the
case of dengue, climate effects may be context dependent and may have opposing effects
according to environmental factors and geographical locations [50]. It is thus remarkable that
our results and that of Ref.[22] agree on the effects of precipitation and temperature on
dengue cases, even in different locations.
Time-series analysis cannot provide definitive answers about the mechanisms that are
actually linking cause and effect. However, checking if the relations found are biologically
viable is important. It is known that standing water is habitat for larvae of Aedes Aegytpi, the
vector of dengue infections. Rainfall obviously provides water, but the relation to mosquitoes
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population dynamics is complex. While a certain minimum amount of water is necessary, too
heavy rainfall has an effect of flushing, [96]. Our results capture some of these complexities.
Maximum precipitation at (t− 2) has a very small effect on the number of cases if the
maximum precipitation is above 20 mm in a week. These points correspond to the rainy
season, consistent with an effect of flushing. The effect is not immediate, but its impact is in a
short timescale, two weeks. We also found saturation of the impact of the minimum
precipitation with a lag of seven weeks. More interesting is the region of small minimum
precipitations. A clear difference exist between the drier months and usually wetter months.
In dry months, the effect of minimum precipitation, at, (t− 7) is important, but no so in the
wetter months. A possible interpretation of this fact is the importance of the inter-epidemic
period. This has been discussed in [97, 66] and is linked to the maintenance of the mosquito
population at inter-epidemics periods at high enough populational level.

3.5.1 Conclusion

We have shown that, beyond the seasonal effects, dengue cases are driven by maximum and
minimum weekly precipitations, with a delay between the driver and the cases of,
respectively, two and seven weeks. The effect is more important in dry months, indicating the
importance of the inter-epidemic period. For higher precipitations in the rainy season, the
effect of precipitation is saturated, possibly indicating a combination of positive and negative
effect of precipitation.
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4
Ambient Temperature and Dengue Hospitalisation
in Brazil over a 10 years period, 2010-2019: a time

series analysis

In collaboration with: Xavier Basagaña1, Leonardo S. L. Bastos2, Fernando A. Bozza3, Otavio T.
Ranzani4

4.1 Introduction
Dengue fever has been a major global seasonal endemic disease, present largely in the tropics,
with an estimated burden over ∼ 390 million infections per year.[5, 67, 89, 2] Approximately
one-quarter of these infections manifest as clinical or subclinical disease[5]. Brazil is one of
the most affected countries by Dengue, that has caused over 20·9 millions cases of infections
in the last 20 years, since the compulsory universal notification to the Brazilian health systems
was established [98, 20]. Additionally, it is estimated that the Brazilian Universal Health
system (SUS) spent more than USD 159 millions in the treatment and assistance to Dengue
cases and USD 10 million on severe Dengue between 2000 and 2015[98]. The impressive
burden of Dengue in Brazil is also observed in several others low-income and middle-income
countries[6].
Dengue incidence is influenced by climate variables, due to mosquito life cycle and human
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behaviour changes, particularly with rainfall and temperature.[5, 67, 20, 6] However, there is
lacking evidence for the association of ambient temperature and dengue severity. The
pathophysiology of Dengue severity involves dehydration and coagulation disorders, both
conditions that can be aggravated by ambient temperature.[6, 26, 94]
Based on the extensive literature on the association of temperature and all-cause
hospitalisations [67, 89, 98, 20, 6], we hypothesised that high ambient temperatures are
associated with a higher risk of hospitalisation due to Dengue. We aimed to evaluate the
association between ambient temperature and Dengue hospitalisation in Brazil, analysing the
period from 2010 to 2019.

4.2 Methods:

Setting: Brazil has about 211 million inhabitants distributed over 8·5 million km2 area, is
divided into 26 states and the country capital, a federal district.[99] These 27 states are
grouped in 5 administrative macro-regions: North, Northeast, Center-West, Southeast and
South. The country is located in a tropical region and has 3 main Köppen climate types and 12
subtypes.[100] We conducted a time-stratified regression analysis to evaluate the association
between ambient temperature and Dengue hospitalisation in Brazil. The unit of analysis was
municipality (n=5,570) of residence.

4.2.1 Data sources and definitions:

Dengue hospitalizations: We used the Brazilian Hospital Admission System (SIH), a
nationwide database that comprises individual level data of all hospitalizations covered by the
Universal Healthcare System (SUS) in Brazil. We defined a dengue hospitalisation by the
ICD-10 codes ’A90’, ’A91’, ’A97’, ’A970’, ’A971’, ’A972’, ’A979’.[34] We build daily time series
by date of hospitalisation for each municipality of residence. We excluded dengue
hospitalisations from three municipalities that are placed in small islands, because there was
no ambient temperature for them. This filtering resulted in a loss of 153 (0.03%) cases in total,
for the whole period of the 10 years. The final time series aggregation by municipalities
encompasses a total of 579,703 hospital admissions due to Dengue over the 10 years period of
2010 to 2019.
Ambient temperature: We used the gridded (0.1º x 0.1º) 2 metres daily temperature taken
from reanalysis products (ERA5-Land) freely available by the Coppernicus Climate Service
through the Climate date store.[73] The original data was an hourly gridded dataset over the
extension of Brazil and encompassing the whole period of 10 years. We estimated the daily
mean temperature for each municipality by calculating the daily temperature weighted to the
municipality area. All these weighted mean areas were done with the ‘exactextractr’ R[101]
package.[85]
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4.2.2 Data Analysis:

We study the association between dengue hospitalizations counts time-series and ambient
daily temperature using the Distributed Lag Nonlinear Model (DLNM) framework.[54, 55] We
use the two-stage approach, first fitting generalised linear models at Brazilian State levels. In
the second stage, we pooled the estimates using a meta-analysis at the country level and its
five macro-regions.[57, 102, 56] At the first stage, we fitted a Conditional Poisson Model for
the aggregated time series of Dengue hospitalisation counts.[103] The model strata was a
dow-month-city term.[104] We report the overall Relative Risk (RR) compared to the
Minimum Hospitalisation Temperature (MHT) point for each state. MHT is the temperature
with minimum hospitalisations according to the model. We also reported the lagged effects at
the 50th and 95th percentiles. The second-stage was one meta-analysis for the whole country
and another for each of the macro administrative regions. The meta-analysis for the whole
country was conducted, aggregating all the coefficients fitted by each state and their
covariance matrix in a multivariate meta-analysis random effects model[57, 56]. The
meta-analysis for each macro-region used the coefficients and the covariance matrix of the
states within a given region. From the meta-analysis, we estimated the overall cumulative RR
curve, relative to MHT and the lag-effects at 50th and 95th percentile.

4.2.3 Statistical Analysis:

First-stage: In the first-stage, we ran the following model for each state, we suppose the
assumption of the Dengue hospitalisations counts being given by a quasiPoisson distribution,
where the mean of the counts at i-th municipality at day t it is the λi,t and ψ is the parameter
to account for over dispersion[103], the whole model it is then:

Yi,t = quasiPoisson(λi,t, ψ),

g[E(Yi,t)] = log[E(Yi,t)] = ξs,i + f(xi,t, l) +
K∑
k=1

sk(t) (4.1)

Where Yi,t is the daily count of hospitalisations on the i-th municipality, ξs,i the
dow-month-municipality strata term conditioned out. f(xi,t, l) which is the bi-dimensional
exposure-lag-response distributed lag non-linear model for mean temperature by each day of
delay, until 21 days of lags. The cross-basis is parametrized with natural splines, with 2 knots
equally spaced on the exposure-response structure and 3 knots equally spaced on the log
transformed scale for the lag-response structure. The last term is the long-term trend model
choice for temperature trend along the whole period, a natural spline with 7 degrees of
freedom by each year on the whole period. A more detailed description on how to
parametrize and how the DLNM is constructed is given at the Appendix B.
Second-stage: Whole Country and Regions: In the meta-analysis, we did the aggregation
of the data generated by the first-stage analysis on the whole country and by each of the five
macro regions. We ran a multivariate meta-analysis with random effects[56], so from the i-th
state-level study, i, we have the following model:



48 Chapter 4. Dengue Epidemiological Analysis

θ̂i|ui ∼ Nk(θi + ui, Si),

ui ∼ Nk(0, ψ) (4.2)

Where θi is the estimate for the i-th location, ui the random effects for the coefficients of this
study with Sj intra-location covariance matrix of coefficients estimates, and ψ the
between-location covariance matrix. For the whole country meta-analysis, the coefficients i
were taken from the 27 states, while in the macro regions meta-analysis, the coefficients i
were only taken from states pertaining to the macro region. We ran two sensitivity analyses
with different splines parametrization for each of the exposure-response and lag-response
structures. On the first sensitivity analysis, we parameterized the cross-basis with 3 knots
(one extra knot compared to the main analysis) equally spaced on the exposure-response
structure and again 3 knots equally spaced on the log transformed scale for the lag-response
structure. In the second sensitivity analysis we parameterized the cross-basis with 2 knots
equally spaced on the dose-response structure and 4 knots placed on the days 1, 2, 7, 14 for the
lag-response structure. All the results for the sensitivity analysis are compiled at the
Appendix D. All the analyses were run on R statistical Software[101], version 4.1.2.

4.3 Results:
Climate data description: A descriptive table (Table D.1) of the mean daily temperature for
each state, macro regions and the whole country over the ten years period is can be found in
the supplementary material Appendix D. The overall temperature range across locations and
years covered from -0·09º Celsius to 34·8º Celsius. Figure 4.1 gives the distribution of the
mean daily temperature for each state.
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Figure 4.1: Mean temperature density distribution over each state. The colours are given by each
macro administrative region.
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Cases data description: Table 4.1 gives a characterization of the data summarised by each
macro administrative region. In the overall data, the mean age for a hospitalisation by Dengue
was 30 years old. Between regions, it can be seen a difference of 12 years old to the mean age
of hospitalisation, being the mean age of hospitalisation of 37 years old for the South region
and 25 years old for the Northeast region. The sex ratio in overall was typically representative
of the sex ratio estimates from the national statistics. The crude in-hospital mortality in
general is low, with mortality rate of 0·6% of the total hospitalizations, and there are some
discrepancies between regions. The Southeast has a rate of 1·0% of the hospitalizations, with
the highest death outcome rate. The North and Northeast with the lowest rate of mortality
with an average of 0·4% rate of deaths to the total hospitalizations. Figure D.1 gives a visual
description of the time series for Dengue Hospitalisation for each region.
First-stage Results: The cumulative overall lags RR curves to the MHT on each state level,
for the whole period of analysis, 2010 to 2019 are given in the supplementary material
(Figure D.2).
Second-stage Results: Figure 4.2 and Figure 4.3, presents the cumulative overall lags RR
curve derived from the meta-analysis to the association with temperature, for the whole
country and for each macro-region. Figure 4.2B and Figure 4.2C, presents the lag effects for
the 50th (23·96º C) and 95th (28·68º C) percentiles of mean temperature distribution for Brazil.
The lag effects for each macro-region is shown in supplementary material, Figure D.3,
Figure D.4, Figure D.5, Figure D.6 and Figure D.7. A summary of the RR and MHT for Brazil
and each macro-region is shown in Table 4.2.
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Table 4.1: Characteristics of Hospitalised cases of Dengue, 2010 to 2019.
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Figure 4.2: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution. Vertical traced lines mark the 50th (Blue) and 95th (Red) percentile of the
temperature distribution. The grey shade is a 95% confidence interval derived from the meta-analysis.
B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the 50th (23·96º C) percentile
of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on the 95th (28·68º
C) percentile of temperature.
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Figure 4.3: Cumulative overall lags RR to the MHT curves to temperature by region. Each panel is
given by a meta-analysis model run over all the states coefficients and covariance matrices that pertains
to a given macro administrative region. Order by region is given by latitude extent.
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Unit MHT (ºC) RR (IC 95%) at 50th (23·96º C) RR (IC 95%) at 95th (28·68º C)
Brazil 10.8 1.404 (1.274-1.548) 1.491 (1.337-1.664)
North 22.8 1.153 (1.026-1.295) 1.256 (1.039-1.518)
Northeast 19.7 1.196 (1.091-1.312) 1.255 (1.059-1.488)
Center-West 17 1.303 (1.093-1.553) 1.460 (1.198-1.779)
Southeast 13.7 1.353 (1.171-1.563) 1.498 (1.298-1.729)
South 7.4 2.723 (1.447-5.125) 2.508 (1.362-4.618)
* Relative Risk to the Minimum Hospitalisation Temperature of hospitalisation due to Dengue
** Minimum Hospitalisation Temperature, on Celsius degree

Table 4.2: Minimum Hospitalisation Temperature

Sensitivity analyses Overall, the sensitivity analysis results were comparable with the main
analysis. From the meta-analyses, on the 50th percentile for whole Brazil aggregation the RR
was 1·629 (1·276-2·079) and 1·405 (1·274-1·549), for the first and second sensitivity analysis
parametrization, respectively. On the 95th percentile, they were 1·780 (1·354-2·339) and 1·495
(1·344-1·663), respectively. These results are shown on Table D.2 and Figure D.8 and
Figure D.9, in the supplementary material.

4.4 Discussion:
We ran a two-stage time stratified design study to assess the association between
hospitalisation by Dengue disease and ambient temperature. Our main findings are that there
is a higher risk of being hospitalised by Dengue as the temperature gets higher. In a
quantitative way, in general for Brazil, after 20 degrees Celsius, the risk is 1·2x higher than for
the minimum temperature observed, which coincides with the MHT. This is the cumulative
effects of lags up to 21 days before the date of hospitalisation. We found a stronger immediate
effect on the RR to the hospitalisation. We found the same patterns over each macro region of
Brazil for the general association between RR hospitalisation and ambient temperature.
In comparison with the literature, we see that, in general, higher temperature is related to an
augmented RR of mortality and hospitalisation by any causes[67, 89, 105, 106]. There is scarce
literature on the association between temperatures and hospitalisation by an infectious
disease. Our study is the first, to our knowledge, to measure an association between
temperature and hospitalisation by dengue directly.[107, 108] We did not observe a typical
U-shaped or J-shaped curves observed in the majority of studies looking for all-cause and
cause-specific hospitalisations.[107, 108] Some specific features of Dengue could explain this
difference. First, its progression to severe disease is highly linked with factors that would be
aggravated as the temperature increases. Second, the observed days with relatively low
temperature are not frequent in Brazil and the incidence of the Dengue disease, of any severity,
is much lower during cold months, therefore limiting the power to observe a potential effect
of cold temperatures on Dengue hospitalisations. This reflects an additional challenge of
studying climate variables and vector-borne infectious diseases severity, among others.[91]
Overall in the country and in each of the macro regions, the extreme heat had an effect of
increasing the severity of cases, which evolved to a necessity of a hospitalisation.
Quantitatively, the South region had the highest RR to its own MHT overall regions, with 1·5x
higher risk on the 95th percentile of its distribution of temperatures. This might be explained
by the fact that the South region has the lowest MHT and the wider range of temperature in
comparison to all other regions. The difference observed for the South could also reflect
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differences in the mosquito life cycle, human behaviour and Dengue mitigation
strategies[5, 21, 92]. A direct comparison between regions is not straightforward because of
regional disparities. Although Brazil has a universal access health system (SUS), which has
great disparities over geographical distribution[109]. Thus, we might expect that regions with
more hospital beds per population, such as South and Southeast, would hospitalise milder
cases compared with regions with fewer hospital beds. This is also important during massive
Dengue outbreaks, where the threshold for hospitalisation might change according to beds
availability.
Several mechanisms can play a role in the observed overall association and lag effects. The
immediate effect generating the first peak on lag-0 is expected and observed in the majority of
studies evaluating temperature and heat waves and hospitalizations and
deaths.[106, 108, 68, 110, 111, 112] It reflects an immediate worsening of the clinical condition
due to high temperature. This sharp increase on lag-0 reinforces that our results is a direct
effect of ambient temperature on hospitalisation risk, rather than the indirect effect of
temperature on mosquito activity and increased risk of dengue incidence, an association
usually present in the scale of months.[20] Another mechanism is that Dengue has a natural
evolution of 1 to 3 days of incubation period, and more 5 to 7 days to complete clearance.[2, 3]
If an individual is exposed to higher temperatures during the viral infection evolution, this
can lead to more severe infection, as seen in a potential late lag-effect on some regions.
Finally, the decrease on the RR following the immediate effect could be due to a depletion of
susceptible (“harvesting effect”).[110, 111] This mechanism is reported for the lag between
temperature and deaths, but also has been hypothesised in another study evaluating
temperature and other seasonal infectious diseases such as hand, foot and mouth disease.[113]
If harvesting was the only explanation for the observed association, then the increase in
hospitalizations observed on the hot day would just represent an advancement of a few days,
because of heat, of hospitalisations that would have occurred anyway a few days later in the
absence of heat. In that case, the overall RR cumulated over all lags will be close to 1. In our
study, we observe important increases in the RR cumulated over three weeks, suggesting that
these represent extra hospitalisations that would have not occurred in the absence of high
temperatures. Interestingly, the South and Center-West regions present significant
associations at later lags, see Figure D.8 and Figure D.9. When varying points for the knots in
a sensitivity analysis, lag-effects were less prominent, increasing the likelihood of collinearity
explaining this finding.[114, 69, 115]
Our study has some strengths. We evaluated a nationwide database providing a 10 year
time-series of Dengue hospitalizations in a LMIC exposed to a wide temperature range.
Ambient temperature from reanalysis products from ERA5-Land are the state-of-the-art in
climatology[110, 111], as the framework applied for data analysis, accounting for
dose-response and lag-response structures and correlated daily data on temperature[104, 116].
This has great generalizability to many other LMIC countries with great burden of Dengue
and provides support to public health measures.
Our study has limitations to be mentioned. First, we did not evaluate other factors that could
modify the high temperature effects, such as green space, urbanisation and relative humidity.
In the same extension, we did not evaluate individual factors, such as age and sex, that could
show different effects of temperature and risk of Dengue hospitalization in vulnerable
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populations. Second, we obtained estimates for 27 states and pooled them for Brazil and each
corresponding macro-regions. States from the same macro-region will have similar climate as
well as a similar Dengue incidence. This guarantees that they were likely comparing states
with similar conditions for mosquito transmission as well hospitalisations conditions.[21]
Although this analysis respected administrative divisions, it might not be generalizable to
some municipalities. Finally, we considered hospitalisation due to Dengue as a surrogate of
severe Dengue without evaluation of clinical severity using defined clinical criteria.

4.4.1 Conclusion

We found an increased RR to Dengue hospitalisation due to high temperatures in Brazil for a
ten years period, 2010-2019. This RR varies over the whole extension of Brazil and between
macro-regions. With the findings presented here, we hope the climate variability of Brazil can
be taken into account when public health measures are designed to curb and mitigate the
impacts of Dengue on the population.
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5
Final Remarks and Perspectives

In this thesis, after going through an overview of the situation of dengue epidemics in Brazil,
we investigated how these epidemics relate to climate and environment in two distinct
situations. In the first one we focused on dengue cases in the city of Rio de Janeiro and, by
means of Empirical Dynamical Modeling, we examined the possible climatic drivers of dengue
cases, beyond simple seasonal effects. We found that precipitation, minimum and maximum,
are drivers of variability in the numbers of cases. We determined the delay between these
drivers and their effect and finally, analyzed the strength of the effects, which turned out to be
positive - the higher the precipitations, more case occur. Finally, we also found that this
positive effects is saturated, very high precipitations have relatively smaller effects. In our
second study, we addressed the relation between temperature and hospitalizations due to
dengue, which can be viewed as a proxy of severity of the disease. We consistently found that
higher temperature, above 20 degrees Celsius, increase the relative risk of dengue
hospitalization, both considering the entire country (Brazil) and each of its macro-regions.
These results contribute to the general knowledge of the relations between climatic factors
and dengue disease and can be viewed as a contribution to disease-ecology. Although
extrapolation of results obtained in one region to other regions should be considered with
caution, the results presented can shed some light on the possible consequences of climate
change on the range and consequences of dengue epidemics. It is known, for instance, that
dengue is expanding in Brazil, [38]. In particular, in the first three months of 2022, 63
municipalities have presented dengue cases for the first time, half of them in the southern
region. It has been hypothesized that this "migration to the south" is connected with climate
change, and in particular due to the fact that the southern Brazilian region is becoming wetter,
mainly in the spring, [117]. This is coherent with ours findings in a qualitative way, but surely
deserves a more specific examination.
Beyond the basic science implications of the results of this thesis, there is also a point to be
made concerning public health mitigation strategies. Medium term planning and
preparedness should take climate change into account. Our results are part of a larger picture
of influences that drive dengue cases and affects its severity. Incorporating these results, we
can build a better understanding of future perspectives on occurrence regions of dengue.
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The studies presented in this thesis have some limitations. First and foremost, they are based
on data of cases and climate variables. This hinders the establishment of a more mechanistic
interpretation, as no data about mosquito abundance is used. This is due to the fact that
time-series of proxies of mosquito population sizes - infestation indexes - are not generally
available. There is a dataset for the city of Porto Alegre, which is only partially in open
domain. We are unaware of a similar dataset for Rio de Janeiro, for example. We note that
most studies about mosquito-borne diseases suffer the same limitation. However, our study
about temperature and severity is not affected by this limitation.
Further limitations come from the fact that the results are context dependent. Strictly, they
apply to the places where data was collected. Obviously, this is so for almost every study on
climate and diseases incidences and severity. We note, however, that our results about the
importance of precipitation go hand-in with results obtained for dengue cases in San Juan de
Porto Rico, indicating that we could expect, at least to some extent, that the results reveal
some more general traits of the relation between climate and dengue.
When inspecting the relation of incidence and severity with climate variables, we have to
choose beforehand which variables that will be the object of the analysis. This is clearly not a
systematic procedure. Our choices in this thesis were not totally ad hoc as they rely on
knowledge of previous results in other contexts. In chapter chapter 3 we studied each climatic
variable separately. It could be that a conjunction of variables be more important, as in a
cooperative effect. However, we have no clues about which combination could be important,
and there is no literature addressing this point clearly. In the same way, in chapter 4, we could
ask whether other climate factors produce augmented risk of severity due to a dengue
infection. A good candidate would be the near-ground relative humidity, which is known to be
a crucial factor of dehydration, which is a mechanism affecting the severity of dengue cases.
In principle, depletion of susceptible could be an important factor that gauges the sizes of
epidemic outbreaks. The usual view about this point is that the incidence is not so high as to
really affects the pool of susceptible to such an extent that it would, for example, block an
epidemic. As the number of susceptible is not a known or measurable quantity, discussion
about this issue tends to be speculative in nature. Further, dengue has four serotypes with
partial to no cross-immunity, a matter that complicates further the discussion.
The discussion about limitations naturally takes us to consider perspectives for future studies.
A first point is to consider new locations and inspect relations between climate and dengue
cases. However, as comprehensive study across all Brazilian regions might not viable, an
interesting direction is to examine municipalities at the fringes of the regions of dengue
occurrence, similar to what has been studied for malaria [65]. This is specially relevant in
view of the expansion of the region where dengue occurs. An interesting case would be the
city of Porto Alegre, which has some summers with dengue cases and others without.
Therefore, drivers beyond seasonality come into consideration naturally, and the methods
used in this thesis should be useful.
On the DLNM side, the next immediate work is to include relative humidity near ground as
another variable on the modelling strategy, in much the same way we have done with
temperature. If it turns out that relative humidity is related to severity of cases, an analysis
considering both variables, temperature and relative humidity, at the same time, would be in
order. Also, regarding the severity of dengue cases, stratification of the study into
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age-dependent settings and sex-differences setting, are interesting new modelling strategies.
In a broader view, results as the ones obtained in this thesis can be incorporated in systems
providing advice to policymakers. However, this is far from trivial. A first point is that alert
systems do need very recent, if not real-time, data of case counts. These data are not usually
open data, at least in the Brazilian case, and access to it needs to be obtained through special
agreements. Building trust between modelers, epidemiologists and policymakers is also a
challenge, in view of different expectations of the actors.
We hope this thesis can be a piece in the knowledge framework that will help mitigate the
burden of dengue disease, and help create movement and energy in this direction.
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A
Empirical Dynamic Modeling

Empirical Dynamic Modeling (EDM) is a framework developed with the scope of studying and
understanding ecological relations [53]. It was first developed to infer causality relations from
ecological time-series, as, for instance, population dynamics [53, 62]. EDM make uses of a set
of mathematical theorems from dynamical system theory to infer, from time-series only,
causal relations between two variables. The premise is that we can reconstruct the dynamics
generating the variability from the time-series and lagged copies of it.
In this appendix, we give an overview of the theory behind the EDM framework with a more
mathematical formulation. To do so, we first describe the Takens Theorem for state-space
reconstruction (SSR) and its corollary to infer causal relations. We will, however, not give
rigorous definitions and proofs, as this is beyond the scope of this thesis. Rather, we prefer to
explain how empirical dynamics works in practice.

A.1 Takens Theorem
Before formulating the theorem itself, we will review some concepts that will help with the
formulation. We understand any dynamical system as a rule that takes a point in a state space
to another point in the same space. This is known as a succession rule or composition rule,
like:

Xt = Fn(Xt−1), (A.1)

Where Fn is a composition of rules taking the point at time t− 1 to the value on t. Fn can
have the form of non-linear function or rule, and can produce complex dynamics, like chaotic
behaviors. We can decompose this rule into more intermediary steps:

Xt = Fn(Fn−1(Xt−2)) = . . . = Fn(X0), (A.2)

In summary, the above Equation A.2, Fn is in fact a function of the first state, X0. Any
dynamical system that can be defined in this way will bear the proprieties to the
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reconstruction of it’s state-space. As a special case, we can construct systems which are given
by a set of differential equations. This is the first premise to the Takens theorem.
The above definition has a continuous-time version. In this case, of discrete-time mappings,
we have ordinary differential equations. One of the most studied systems that will be of
interest is the Lorenz system, well known to exhibit chaos for a set of parameters. The Lorenz
system [118] has been well-studied, and is a good example to better understand the Takens
theorem and its consequences. The Lorenz system is a kind of minimal system that exhibits
complex dynamics. From this set of equations, we can produce for each of the variables a
time-series, which can exhibit chaotic behavior or not. The Lorenz system is given by:

Ẋ = −σX + σY (A.3)
Ẏ = −XY + rX − Z (A.4)

Ż = XY − bZ , (A.5)

where X , Y and Z are functions of the independent variable, t, which we will call time.
Notice that this a nonlinear, coupled, system of ordinary differential equations.
Let us say we are studying a system whose dynamics is given by a system of ordinary of n
differential equations {Xi}. However, it is often the case that we don’t know this system of
equations, we don’t know which variables are coupled, and we don’t know n. But we have the
knowledge, through observation, of one of the variables, say X1.
Before we explain the Takens theorem in this context, we first have to discuss attractors.
Attractors are a region of the state space such that (i) if the system is on the attractor at time
T , it will continue on the attractor for all times t > T - the attractor is invariant; and (ii) then
exists a neighborhood of the attractor such that any point in this neighborhood will be
infinitesimally close to the attractor for sufficient large times. This neighborhood is called the
basin of attraction. For the Lorenz system, for instance, the basin of attraction is the whole
state space R3. Intuitively, the attractor is the region of the state space towards which the
system tends for large times. It describes, thus, the asymptotic dynamics.
The importance of Takens theorem, in view of applications, is that we can reconstruct an
attractor solely from one of its variables time-series. In the context of the above discussion, it
means that we can use X1 to obtain the attractor of the system that generated the time-series
X1, without any knowledge of the underlying equations. The reconstruction is built
considering an m-dimensional space with time-lagged coordinates,
{X1(t), X1(t+ τ), X1(t+ 2τ), ...X1(t+ (m− 1)τ}. By considering the time-series X1(t)
for all t, we will have a sub-manifold of the m-dimensional space. This sub-manifold has a
one-to-one correspondence with the original attractor of the system. Takens theorem
guarantees that the dimensionm is, at most, 2n+ 1.
Reconstruction of the attractor in state space was an obvious application: given that we know
the time series Xt up to the present, we can use the reconstructed state space to make
projections in the future. This is the topic of the next section.
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A.2 Simplex Projection

The simplex projection can be understood as encapsulating a point by its simplex on a given
embedding dimension. In the definition of simplex, the amount of points that encapsulate a
point in a space of E dimension is E + 1 points. The simplex projection is basically a method
to follow n time steps ahead each of the simplex points encapsulating a single point, the
predictee point, X̂(t+ n). With the simplex points evolved in time n time steps ahead, we can
give a weighted prediction to the future of the predictee point. The correlation between this
prediction, X̂(t+ n) and the observed future of the predictee point is the prediction skill, ρ.
In the previous section we did not discuss how the embedding dimension,m, is to be chosen.
The prediction skill offers a way to determine the best embedding dimension. The optimal
dimension of embedding E∗ is the dimension that maximizes the prediction skill ρ. The
expression for the simplex projection is as follows:

X̂(t+ n) =

E+1∑
i=1

wiXi(t+ n) (A.6)

Where wi are weights that consider how each of the points nearby the predictee point are
pondered to produce a projection for the future of the predictee point. On the simplex
projection, these weights have the following formula:

wi =
ui∑
ui

(A.7)

where ui have the following form:

ui = exp−∥Xc −Xi∥
∥Xc −Xi∥

(A.8)

If we produce simplex projections for a long enough part of the time series, we can compare it
with the observed, and this comparison will give us an estimate of how good are the
predictions produced by the simplex projection. When varying how many delays we put into
the embedding dimension of reconstructed state-space, we can choose the optimal embedding
dimension for the system. This is given by:

ρO,P =
Cov[O,P ]

σOσP
(A.9)

The dimension of embedding that gives the highest correlation between the observed and
predicted from the simplex projection is the optimal embedding dimension. One of the
features of non-linearity is the decay of this correlation as we increase the embedding
dimensions. This is due to the fact that we are putting too much information into the system
to make predictions, we are starting to confound it.
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A.3 Convergent Cross-Mapping and Causality
Criteria

Let us begin by exploring the Lorenz attractor. The upper part of Fig.(A.1) shows the attractor
in the state space with the original coordinates (X,Y, Z). We can reconstruct the attractor
from any of these coordinates through Takens theorem. We call these attractors shadow
manifolds. In the same Fig.(A.1) we show two shadow manifolds, one built fromX(t) and its
delays, the other coming from Y (t) and its delays. Unsurprisingly, they clearly map on
one-to-one to the original attractor.
Let us now assume that we know, from observations, the time-series X(t) and Y (t), but we
do not know the dynamical system that originated them, in the case, the Lorenz system. We
want to answer the following question: are X(t) and Y (t) connected by a causality relation?
Causality here means that both variables participate in a common dynamical system,
therefore influencing one another. If we construct shadow manifolds for both of them, if they
come from the same dynamical system, there must be one-to-one map between both shadow
manifolds. This mapping is called a cross-mapping. Via Takens theorem, we can therefore
establish a causality criterion between two time-series.

Figure A.1: State-space reconstructions from X(t) and Y (t) of the Lorenz system, giv-
ing similar state-spaces topology and dynamics to the original one. Figure taken from
https://ha0ye.github.io/rEDM/articles/rEDM.html

https://ha0ye.github.io/rEDM/articles/rEDM.html
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We can define a cross-mapping skill in the same way as we did before, in the simplex
projection. We call the cross-mapping a convergent if the cross-mapping skill converges to a
fixed value when we increase the time-series size. Instead of doing projections of the future of
the time-series onto the same time-series, as in the simplex projection, we can project the
future of one time-series to the future of the other. The convergence of the cross-mapping skill
indicates causality relations. If we had infinite time-series, we would expect the cross-mapping
skill to be close to one. However, in practical applications, we always have finite time-series.
For this reason, instead of using the actual value of the cross-mapping skill, we use only the
convergence of the mapping as a causality criterion. This has to do with the fact that if both
reconstructed state-spaces (SSR) are part of the same dynamical system, for some long enough
cross-mapping, we will reach the maximum information we can gather from one SSR from
another. Notice that, when considering cross-mappings, it is the effect that keeps information
from its cause, so from effects time-series we can predict the causes time-series. The direction
of causality is in the inverted direction of the cross-mapping. If we are cross-mapping X(t)
into Y (t), we are trying to infer if Y (t) causes X(t), in the inverted direction of the mapping.
As before in the simplex projection A.6, we made weighted projection of the future steps of
the predictee center, but now with the other time-series and its shadow-manifold. From the
effect time-series, say X , we find on the MY , the cause SSR, the points that form the simplex
around the predictee center and give to them a weighed projection based on their distances in
the MX. If we repeat this for all the points on the MX on the MY , we are mapping one SSR
into another. To generate an estimate to Y (t) fromMX, denoted as Ŷ (t)|MX, we seek for
points in theMY by its temporal indexes from points that are forming the simplex inMX.
This is why the estimate is denoted as Ŷ (t)|MX, it is an estimate on Y given by points on
MX. In a formula, we have:

Ŷ (t)|MX =
E+1∑
i=1

wiYi(t) (A.10)

Repeating this mapping for the complete set of points of each time series, we can have a
prediction of Y given the points ofX , and vice-versa. The comparison between the prediction
given by the mapping and the observed points, give us a measure of how good is this
mapping, how causally related these variables are. The CCM skill is the correlation between
the predicted attractor and the observed attractor, given by:

ρ = ρY,Ŷ |MX
= ρCCM (L) = ⟨Cov[Y, Ŷ |MX]

σY σŶ |MX

⟩(L), (A.11)

A.3.1 Surrogate statistical testing

To use the concepts developed in the previous section for systems that are periodically forced,
we need an adaptation. To give a stronger statistical significance to the CCM, we can trick the
algorithm, and test which is the main mechanism by which the driving relation arises. The
surrogate testing asks for the relation found by CCM, if the forcing mechanism is seasonality
or the variability of the series itself that drives the relation. Basically, we construct surrogate
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series of the cause, e.g. the climate factors in our example of a population being driven by
temperature and humidity. The surrogates are constructed in a way that reproduces the
pattern of the seasonality of the climate time-series, but has different residuals. There are
many algorithms to generate such kinds of surrogate time-series, and many of them are
implemented at the ’rEDM’ package [119]. Our algorithm is to take the seasonal component
and subtract it from the time-series, and the rest, which are residuals, shuffle it in a
non-chronological order. This algorithm will generate surrogates time series that have the
same seasonal pattern and residuals in ’wrong’ chronological order.
After creating a reasonable quantity of surrogate time-series (we used 500 surrogates as a
good quantity), we calculate CCM between the time-series we are trying to estimate, which is
the mechanism of forcing. In our example of a population driven by the climate variables, we
will produce surrogate of the temperature and humidity time-series, and proceed to calculate
CCM from each of the surrogate time series and the y(t) population time series. From this, we
obtain a distribution of ρCCM . If the CCM skill between the original time-series of each
climate factor and the population time-series is above the 95th percentile of the distribution of
ρCCM , we say the driving mechanism is by the variability of the climate time-series. This
means that the residuals of the actual climate variable time-series, in the correct chronological
order, are important to predict the population time-series.

A.4 Sequentially locally weighted Map (S-Map)
After discovering which are the causal relations, we can ask quantitatively how strongly a
variable drives another one. On the framework of EDM, this can be done with the use of the
S-Map, or the Sequentially locally weighted multivariate Mappings (S-Map). S-Map makes a
local regression on each point of the SSR to estimate the Jacobian elements of the interaction
on the system. In summary, the algorithm moves along a multivariate SSR, and for each point
on the SSR, calculates the Jacobian element of the interaction between each of the variables
that integrates the multivariate SSR.
In the pipeline of EDM, after inferring from simplex projections the optimal embedding
dimension, and after performing the cross-maps to discover which are the causal relations
between the variables studied, we put into the same SSR those variables that we inferred that
have a causal relation. Given a set of variables, that has some inferred causal relation to
another, as the climate factors driving the dynamics of a time-series, say y(t) for population
and temperature and humidity for the climate variables xi(t). We construct an SSR with all
the climate drivers and the population time series, and try to predict the population by
weighting locally the Jacobian elements of this interaction, as in:

y(t) = C0 +

I∑
i=1

Ci(t)xi(t) , (A.12)

where I is the embedding dimension of this S-Map, which runs over the number of climate
drivers considered significant as defined at subsection A.3.1 plus the population time-series
and some delays until we reach the embedding dimension. The Ci weights and controls how
much each of the drivers considered has influence on the total effect on y(t). The S-Map
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estimates each of the Ci locally, meaning, on each point of the time-series the effect of the
drivers are modulated by the Ci coefficients. To better understand how this is established, we
have the following expression for the Ci:

Ci = exp−θ
∥xk−x(t∗)∥

d (A.13)

Where ∥xk − x(t∗)∥ is simply the Euclidean distance between two vectors in the state-space
and θ is a weighting parameter that gives the shape of decaying of the points considered
relevant to estimate the interaction force. When θ is equal to 1, we are simply calculating the
least squares of the predicted values by the model and the observed. Notice that θ is always
positive, θ > 0. There is a balance between different values of θ. For too small θ we may
underestimate the true variability and influence of the drivers on y(t), however, if θ it is too
big, only the proximal points to the predictor center will influence the prediction, or too
similar states will weight the prediction. We need to define operational criteria to choose the
values of θ, and the typical are Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). d is the normalized Euclidean distance under the form:

d =
1

n

n∑
i=1

∥xk − x(t∗)∥ (A.14)

The solution of equation A.12 is simply the singular value decomposition (SVD) solution of
the equation B = A ·C, with:

B = wky(ti + n) (A.15)

which is an n-dimensional vector for the future values of y(ti) and A is the matrix of
dimension n× E entries given by:

Aij = wkxi(ti) (A.16)

When we solve the SVD problem, we estimate the forces of interaction of the multivariate SSR
of the Equation A.12, the Ci(t) terms. These estimates are time-series showing how the
climate driver is forcing on the y(t) time-series. A way to understand the effect of a driver on
another time-series is to plot the estimate for the force of interaction versus the climate driver
itself.





B
Distributed Lag Non-linear Models

Distributed Lag Non-linear Models (DLNM) is a framework developed in statistics and
epidemiology to account for the effects of climate and environmental variables on an
epidemiological response of interest [54]. The framework has been widely used to infer
associations relations of environmental factors, such as pollution, ambient temperature, or
any other exposure that can be accounted from a time-series. The framework works by
applying the summary of all contributions accounted from the DLNM framework of any
environmental exposure time-series to a time-series of counts of any epidemiological factor,
as disease cases counts, all causes mortality counts, hospitalizations case counts, etc. From
this we can infer the impact of exposure and its delayed effects on the response of interest.
DLNM advanced the field of environmental epidemiology, giving a framework and a tool
capable to deal with the delayed relation of environmental exposures and responses to it.
Studies to account attributable all causes mortality due to exposure to such environmental
factors have been one of the main research interests and uses of the DLNM [71, 70].
The first difficulty when dealing with environmental exposure in epidemiology is its complex
relations with the epidemiological time-series of expected response. Although it is well
known that are diverse mechanisms that can cause or aggravate any disease, or cause an
augmented mortality, these effects have relations that can be delayed and that are nonlinear.
This imposes the necessity, when building models for environmental epidemiology, to
explicitly model this type of relations. If this type of relations are not considered in the
models, it can be a source of overestimating or underestimating the real effect of such factors
on the epidemiological curve of interest, depending on the type of relation [59, 70].
This appendix is dedicated to brief overview of the issues that arise when studying
environmental exposures in epidemiology and how to overcome them with the DLNM
framework. To do so, we start by understanding which are the problems when not counting
for delayed effects when modelling environmental exposure-outcome relationship. After this
we build the framework for Distributed Lag Models (DLM), the first approach attempted to
model environmental exposures. Finally we generalize it to DLNM framework. This chapter
ends with a brief section on interpretation of DLNM results, with an example from the study
in the chapter 4.
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The derivation given here is strongly based on the seminal papers by Gasparrini et al. [54, 55].
The reader is referenced, too, to another paper which gives a slightly different but equivalent
construction for the DLNM framework here [58].

B.1 Issues on environmental exposures

Environmental exposures are complex in its effects on population, and it is not a simple task
to model the effects of temperature, air population, to cite the main environmental exposures
studied, on a population. The first difficulty is how to weight the temperature for a given
location at a given time to a specific population. As discussed in chapter 2, the climate data
itself are products from an entire scientific field, sometimes dedicated not to epidemiological
modelling. The climate data use on environmental epidemiology are always supposed to be
treated and wrangled before any modelling application.
The second issue is that environmental exposures will have different effects in different
locations and/or different time. From an epidemiological point of view, this is a basic premise
when studying any of the possible effects that environment can have on health. Temperature,
air pollution, rainfall, etc., vary across time and geographic location and to illustrate that we
can refer to the curve of weighted mean area temperatures for each state in Brazil 4.1.
Although the distribution of temperature is not used as a component to model effects of
temperature, it can give us insights on how big is the variance of this exposure per geographic
location. Moreover, it is an issue to consider the temporal variation of the same exposure,
which in our case it is the temperature, but any other environmental exposure suffer from this
same issues. The following figure shows the distribution of temperature from 2010 to 2019, for
each of the macro regions of Brazil. This makes the case to consider delayed effects on an
outcome when constructing models for environmental epidemiology. It can be noticed, too,
that some regions have less variance on their temperature distribution than others (see how
the peak of the temperature distribution moves for the same region as we run over the years).
The main difficulty when modelling environmental exposures is to build models that are
capable to capturing nonlinear effects as well as effects of delayed exposure. The main known
effect of this kind is the ’harvesting’ effect. ’Harvesting’ happens when an exposure inflicts
over a population of susceptible or frail to it, and has not only immediate effects but effects of
continued exposing to it[120, 121]. Air pollution is one of the principal environmental
exposures to have this type of effect, as well as temperature. Differently from only a delayed
effect, ’harvesting’ is the augmented risk to a continuous exposure during a certain time. The
idea is that due to this continued exposing to the exposure, the effect will appear after a time
and after a continued period of exposure. Delayed effects and ’harvesting’ effects are normally
strictly linked and maybe can not be untangled. This is why it is necessary to have a
framework capable to model it altogether.
Another issue when modelling environmental exposures is the necessity to consider
adaptation to the exposure. A population that is exposed frequently to the same level of air
pollution or temperature will be, to a certain measure, adapted to it. It is very recently known
how much this kind of adaptation can reduce the effects of exposures on a population, or can
signal an aggravated risk to environmental changes[122, 123, 59, 124]. Taking the example of
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Figure B.1: Temporal variation on temperature over the years in Brazil, from 2010 to 2019.

climate change, more than the risks associated with new levels of exposure to high
temperature, higher concentration of air pollution and/or extreme events, is the problem that
this kind of phenomena can be far from the levels this population is adapted to it.

B.2 Distributed Lag Models (DLM)
One of the first approaches in environmental epidemiology to account for the effects of
environmental variables into epidemiological time-series of interest was the Distributed Lag
Models (DLM)[57]. It is a basic model taken from econometrics where the outcome is
modelled with covariates at the same time of the outcome and with lags of the covariates, all
of this is then modelled together into the model designed. Moreover, for an outcome Yt at time
t, DLM is constructed to model the environmental covariate at time, t, i.e. xt, to account for its
relation on immediate effects to the outcome and xt−j for delayed effects, whose expression is:

log[E[Yt]] = α+ β0xt + β1xt−1 + · · ·+ βjxt−j + Covariates , (B.1)

where j runs over the time-lags considered. This is a model that can give unstable estimates
to the effect of climate covariates on the outcome, because it models in an unconstrained way
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the relation between outcome and exposure association. This first model does not makes use
of smoothing functions.
A first improvement to DLM framework is to constrain the lagged covariate with a smoothing
function, in a compact notation Gasparrrini et al. [54] gives the following expression for a
general DLM model representation:

g(µt) = α+

J∑
j=1

sj(xtj ;βj) + Covariates (B.2)

This model is the same as in Equation B.1, g is a typical monotonic function of link and Yt is
supposed to be given by a distribution from the exponential family [125]. Here sj is a
smoothing function to relate the variable xj and βj . The strategy to construct DLMs is to give
a basis functions for the variables xj , which are entered in the generalized linear model as
basis variables[54]. A possible form for the sj term is to expand the vector of variables xt on
basis functions (i.e., polynomials, Fourier transform, splines, etc.). This approach is the
traditional one when modelling environmental exposures. It is simply given by a smooth form
to the variables and constrained to avoid over and underestimating. sj now can be written in
the following form:

s(xt;β) = zTt ·β , (B.3)

where zt is the t-th row of the matrix Z = f(x) constructed when applying the basis functions
to the vector of exposures x. If instead of inputting the exposure variables we input to the
smoothing function one of the variables and its past values, xt−l, we can build another basis
variables that now model the delayed effects. This is the DLM, a predictor inserted in the
model with the past values of an exposure expanded through a basis function, to model
smoothly the relation between an outcome and an exposure and its past values. We have then:

s(xt;β) = qT
t ·β (B.4)

Here qt is similar to the zt, a matrix row, but qt has the form of qt = [xt, . . . , xt−L]
T . L is

the maximum amount of lags considered. The matrix Q has the dimension of n× (L+ 1). It
is straightforward to note that the first row ofQ is the non-lagged vector of variables x,
q1 ≡ x. A general form to a DLM is to apply the basis functions to the vector of lags l:

s(xt;η) = qT
t ·Cη = wT

t η , (B.5)

where in the last passage we have written the product qT
t ·C in terms of the basis functions

matrix elements, which is basically given by multiplyingQ with C, of the formW = Q ·C.
The basis functions matrix has the dimension of n× (L+ 1) · (L+ 1)× vl =⇒ n× vl. It is
an expansion of the variables through basis functions vl. This is a general case of a DLM. If we
give the expression for wt we define the DLM.
In a final full form we will have, for the complete DLM, the following equation:
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g(µt) = α+
J∑

j=1

wT
t,jη + Covariates (B.6)

We can input any number of other basis functions modelling the relation of an environmental
variable and its lags to an exposure of interest. This new DLM will now sum up over all the
environmental variables as well as sum up over its lags considered.
The η are the unknown parameters that will be estimated. They have the following relation
with the β̂ = Cη̂ and by closure the variance-covariance matrices are related too, by the
expression V (β̂) = CV (η̂)CT

B.3 Distributed Lag Non-linear Models

In the previous section, we defined a DLM as a model which included basis functions of the
lagged exposure variables. We have written it in terms of the elements of a matrix that we
called cross-basis at Equation B.2 and Equation B.5. A cross-basis can be generalized to a form
that include smoothing functions with non-linear form and model altogether the lag-outcome
relation and exposure-outcome relation is the aim of this section.
To have a more general approach while modelling environmental exposures, we want to have
an expression for the second term of equation Equation B.2 that encompasses non-linear
relations to the exposure variables and its lags. When we compute this new basis functions
with simultaneous modelling forms, we build a cross-basis functions and produced a
Distributed Lag Non-linear Model (DLNM). To do so, we basically take the product of the
exposure-response structure, which expands the exposure variables by a basis functions zTt
and the basis functions of the expanding shape for the lag-response structure given by the
basis functions qT

t . This produces an array n× vx × (L+ 1) which gives the lagged effects of
each exposure variables xt on the outcome g(µt):

s(xt;η) =

vx∑
j=1

vl∑
k=1

rTtjckηjk = wT
t η (B.7)

Here rTtj are the delayed effects of the lag exposure at time t expanded on the basis functions j.
As in the Equation B.5 we rewrite the product rtj · ck as a new variable wT

t , again the
cross-basis. The wT

t is obtained by applying the now cross-basis function vx · vl on the
variables xt. It is not straightforward to see on how the

∑vx
j=1

∑vl
k=1 r

T
tjckηjk term transform

into the compact form of the wT
t . To obtain the compact form in the last term of the

Equation B.7, we have to write the inner term as:

At = (1Tvl ⊗Rt)⊙ (C⊗ 1Tvx), (B.8)

The arrayAt can be seen as the Haddamard product, or the element-wise matrices product, ⊙,
between the tensorial products, ⊗, of the Rt matrix and the lag dimension and the C and the
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variables dimension. Each tensorial product is basically producing the expansion of each
matrix on the dimension used for the one matrices.
The term 1Tvl ⊗Rt is the expansion of the variables over the dimension of lags vl. The term
C⊗ 1Tvx is the smoothing function expanded over the dimension considered for the variables
vx. In the end of the day, this produced the expected cross-basis, the expansion of the variables
and each of the lags considered, at the same time, over the basis functions for the lag and the
basis functions for the shape over the variable dimension, this is the so called
exposure-lag-response surface or structure. After summing up over the lag dimension, vl, we
obtain the final cross-basis, W.
The main difference of this cross-basis in the Equation B.7 to the one on Equation B.5 is that
we are expanding the variables and its lags at the same time. This is the innovation introduced
by the DLNMs, by taking into account the effect of the variables and its lags at the same on
the cross-basis function, we can reduce the terms inputted to the model and avoid unnecessary
and time-consuming computations. This equation reduces to one in Equation B.5 if the basis
functions for the variables, vx, is a simple linear case. The innovation presented on DLNM,
that it is of instead including the variables one by one and its structure modelled, we include
them only by one operation and which is generalized, in the sense it can model non-linear
relationship for the exposure-response and lag-response structures, now named
exposure-lag-response.
Equation B.7 provideas a bi-dimensional surface, expanding on lag dimension and variable
dimension, that is then inputted to the model and which for the model can produce estimates.
At Figure B.2 we show how it can be visualized as the final product of the DLNM, which is the
estimate for Relative Risk over two dimensions, lag-response and exposure-response. This is
the result of putting into the model, as in the Equation B.5, a surface that explicitly models the
relation of the exposure, the lag of this exposure through the days and from it can be
associated to the risk.

B.4 Interpretation
This section briefly gives interpretations of the outputs generated from the DLNM framework
for modelling environmental exposures.
DLNM, as mentioned above, builds a bi-dimensional grid to be entered to a model as
predictors for the exposure-lag-response structure. This is done by expanding the exposure
and its lags on cross-basis functions, which models simultaneously the structures of
exposure-response and lag-response.
This grid could be understood as a surface of predictors that is entered to the model. When
this surface is entered to the model it expresses the structure supposed for the data. From the
construction of DLNM it guarantees that this surface only will have the terms that matter for
the prediction and do not overfit the model or impose spurious correlations on the association.
This is because the cross-basis provides a surface that only has the terms that survive the
element-wise matrices product or, if seen by the alternative formulation for the DLNM, only
those terms that have contributions to the dimensions of the bivariate function at the same
time. Procedures for selecting the best shape fitted to the data can be applied. There are some
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new implementations using these matrices products, as in Gasparrini et al. 2017 [126].
To visualize it, we take the surface plot from the output generated by the prediction given
after the fit of a model with a cross-basis as predictor. This is a grid for the modelling relation
between the temperature and its lags to the effects on the relative risk of hospitalizations in
Brazil.
The standard output from the prediction on a cross-basis grid is centered on the 50th
percentile of the distribution, this is a good general assumption, but not all the time an
environmental variable has the assumed shape. In environmental epidemiology, normally, the
effects of any environmental variable are supposed to be modelled by a J-shape or U-shape,
where the center of the distribution is the minimum point of effects of this variable on the
outcome tested. In our study of Dengue hospitalization and temperature effects, chapter 4,
this is not found. We found an increasing relation from the minimum temperature of
hospitalization (MHT), which in our case is the minimum of the distribution of temperature.
The prediction surface for the State of São Paulo (SP) can be visualized below:
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Figure B.2: Surface for the cross-basis prediction to Dengue Hospitalization RR as a function of
temperature and its lags in the state of São Paulo.
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This surface gives the RR to a Dengue hospitalization by temperature degrees and by days of
lags. The prediction has a Credible Interval (CI), but it is not possible to give the CI
representation together with the surface. We can slice this surface by specific temperature
degrees and lags. When sitting on a specific lag day, we are looking for the effect of the range
of temperatures with delayed effect to the amount of day we are sitting. In the contrary way,
if we sit on a specific temperature degree, we are looking how this degree affects the RR
through the length of lags expanded.
To illustrate this, we give a set of different lag specific views of the surface together with the
CI. For the state of São Paulo, we give the lag lasting effects on 50th and 95th percentile of the
temperature distribution and the overall effect, when summing over all the lags on the range
of temperature distribution. We marked the percentiles on the overall cumulative effects plot
as a traced vertical red line for the 95th percentile and as a traced vertical blue line for the
50th percentile.
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Figure B.3: Lag specific effects of temperature for the a) 50th percentile and 95th, and b) cumulative
overall effects for all lags, in the state of São Paulo (SP) prediction.
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The overall cumulative effect curve gives a measure of how much an exposure can affect an
outcome associated to it. In this example, we see that for temperatures higher than the MHT,
which for São Paulo state is 17.5º degrees Celsius, the RR to a Dengue hospitalization
increases as the temperature increases. As said before, this is an expected but non-traditional
environmental effect. After the Dengue infection started, when the exposed to a higher
temperature will give more risk to evolve into a more severe Dengue infection.
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C
Supplementary Material to the Chapter 3

Here we present the supplementary material to chapter 3, with supplementary figures and
tables.
This supplementary material contains several supplementary figures: a figure showing the
Dengue cases curve at Rio de Janeiro city, from 2010 to 2019, a figure of auto-correlation
functions for all drivers tested, a figure for the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) produced when comparing the observed and predicted by the S-Map
model in function of the value for the θ tested and a figure of the seasonality pattern
generated from the spline fitting and yearly shuffle algorithm to produce surrogates.
Codes to reproduce the whole analysis are available at the repository at
https://github.com/rafalopespx/dengue ccm cities

87

https://github.com/rafalopespx/dengue_ccm_cities


88 Appendix C. Supplementary Material to the Chapter 3

Figure C.1: Weekly cases of Dengue notified in the city of Rio de Janeiro, from 2010 to 2019
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Figure C.2: Auto-correlation function for the climate drivers of the city of Rio de Janeiro



90 Appendix C. Supplementary Material to the Chapter 3

Figure C.3: Errors for the MAE and RMSE between predicted and observed on the S-Map model of
precipitations only predicting cases
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Figure C.4: Pattern of seasonality during the year length, for each of climate driver tested, grey shades
are the variability around seasonality realized by year





D
Supplementary Material to the Chapter 4

This supplementary material contains supplementary tables and figures; a table with
descriptive temperature for each state and region of Brazil during the analyzed period, a
figure showing the Dengue hospitalizations curves by each macro region of Brazil, from 2010
to 2019, a figure of each state with the curve of RR for temperature and Dengue
Hospitalisation RR, 5 figures for Dengue RR hospitalization and temperature by each macro
regions, two figures with the Dengue hospitalization RR for the sensitivity analysis and a table
comparing the RR found for the main analysis and the two sensitivity analysis ran.
Codes to reproduce the whole analysis is available at our repository at
https://github.com/rafalopespx/dengue t2m severity paper
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Table S1 Descriptive distribution of 2m height Mean Temperature

State, Region, Brazil Minimum 5th 25th 50th 75th 95th Maximum
Brazil -0.09 15.39 20.92 23.96 26.08 28.68 34.8
North 13.99 3.91 25.15 26.13 27.39 29.32 34.32
AC 13.99 22.81 24.35 25.13 26.01 27.49 31.01
AM 17.98 24.18 25.09 25.81 26.68 28.39 33.06
AP 21.98 23.72 24.73 25.65 27.14 28.59 30.5
PA 21.7 24.24 25.38 26.31 27.53 28.99 32.59
RO 14.11 23.34 24.67 25.52 26.6 28.59 31.61
RR 20.04 22.88 24.29 25.33 26.67 28.82 32.24
TO 19.6 24.17 25.58 26.71 28.03 30.27 34.32
Northeast 14.04 21.49 24.16 25.8 27.24 29.54 34.39
AL 18.6 21.76 23.52 25.02 26.32 27.9 32.78
BA 14.04 19.99 22.31 24.08 25.73 27.8 33.99
CE 19.09 23.82 25.58 26.77 27.81 29.16 32.41
MA 21.75 24.53 25.79 26.84 28.09 29.89 33.29
PB 19.17 22.36 24.19 25.49 26.74 29.15 32.08
PE 17.59 20.77 22.95 24.35 25.76 27.84 32.71
PI 20.71 24.44 26.07 27.55 29.3 31.41 34.39
RN 20.18 24.02 25.56 26.6 27.66 29.29 31.86
SE 19.77 22.17 23.74 25.35 26.53 27.77 32.25
Center-West 6.09 20.68 23.34 24.88 26.41 28.96 34.3
DF 15.96 19.42 21.01 22.23 23.54 25.87 29.58
GO 11.3 20.99 22.97 24.4 26 28.76 34.18
MS 6.09 16.95 22.42 24.71 26.46 28.81 34.26
MT 10.6 22.55 24.46 25.61 26.89 29.31 34.3
Southeast 4.69 16.13 19.7 22.13 24.31 27.03 34.8
ES 10.78 17.22 20.39 22.49 24.66 26.82 31.46
MG 6.71 16.15 19.47 21.76 23.82 26.62 34.54
SP 4.69 15.88 19.96 22.66 24.83 27.45 34.8
RJ 9.78 16.75 19.79 22.12 24.45 27.2 32.25
South -0.09 11.03 16.52 19.92 22.76 26.02 33.03
PR 0.67 13.25 18.19 21.27 23.78 26.78 32.42
RS 0.77 9.99 15.71 19.33 22.35 25.7 33.03
SC -0.09 10.8 15.86 18.98 21.73 24.89 31.13

Table D.1: Descriptive Table of temperature for States and regions
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Figure D.1: Time series of Dengue hospitalisation by macro administrative region of Brazil. Colour by
year, the data covers a period of 10 years, from the whole epidemiological year of 2010 to the whole
epidemiological year of 2019.
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Figure D.2: Cumulative over all the lags RR to the MHT (MHT) on each state level, for the whole period
of analysis, 2010 to 2019. The curve is plotted in red lines and the 95% confidence interval generated
from the fitted model is given by the grey shaded ribbon around it. The title of each subplot is the
abbreviations for the name of each state.
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Figure D.3: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution at the North Region. Vertical traced lines mark the 50th (Blue) and 95th
(Red) percentile of the temperature distribution. The grey shade is 95% confidence interval derived
from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the
50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on
the 95th percentile of temperature
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Figure D.4: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution at the Northeast Region. Vertical traced lines mark the 50th (Blue) and
95th (Red) percentile of the temperature distribution. The grey shade is 95% confidence interval derived
from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the
50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on
the 95th percentile of temperature
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Figure D.5: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution at the Center-West Region. Vertical traced lines mark the 50th (Blue)
and 95th (Red) percentile of the temperature distribution. The grey shade is 95% confidence interval
derived from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue
on the 50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to
Dengue on the 95th percentile of temperature
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Figure D.6: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution at the Southeast Region. Vertical traced lines mark the 50th (Blue) and
95th (Red) percentile of the temperature distribution. The grey shade is 95% confidence interval derived
from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the
50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on
the 95th percentile of temperature



101

Figure D.7: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution at the South Region. Vertical traced lines mark the 50th (Blue) and 95th
(Red) percentile of the temperature distribution. The grey shade is 95% confidence interval derived
from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the
50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on
the 95th percentile of temperature
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Figure D.8: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution for the parametrization on Sensitivity Analysis 1 (dose-response: 3 knots
equally spaced; lag-response: 3 knots equally spaced at the log-scale). Vertical traced lines mark the
50th (Blue) and 95th (Red) percentile of the temperature distribution. The grey shade is 95% confidence
interval derived from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to
Dengue on the 50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation
due to Dengue on the 95th percentile of temperature
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Figure D.9: A) Cumulative overall lags RR for a Dengue hospitalisation to the MHT association to the
mean temperature distribution for the parametrization on Sensitivity Analysis 1 (dose-response: 3 knots
equally spaced; lag-response: 3 knots equally spaced at the log-scale). Vertical traced lines mark the
50th (Blue) and 95th (Red) percentile of the temperature distribution. The grey shade is 95% confidence
interval derived from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to
Dengue on the 50th percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation
due to Dengue on the 95th percentile of temperature
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Main Analysis

Unit MHT (ºC) RR (IC 95%) 50th RR (IC 95%) 95th

Brazil 10.8 1.404 (1.274-1.548) 1.491 (1.337-1.664)

North 22.8 1.153 (1.026-1.295) 1.256 (1.039-1.518)

Northeast 19.7 1.196 (1.091-1.312) 1.255 (1.059-1.488)

Center-West 17 1.303 (1.093-1.553) 1.460 (1.198-1.779)

Southeast 13.7 1.353 (1.171-1.563) 1.498 (1.298-1.729)

South 7.4 2.723 (1.447-5.125) 2.508 (1.362-4.618)

Sensitivity Analysis 1

Unit MHT (ºC) RR (IC 95%) 50th RR (IC 95%) 95th

Brazil 10.8 1.629 (1.276-2.079) 1.780 (1.354-2.339)

North 22.8 1.080 (1.002-1.163) 1.077 (0.871-1.332)

Northeast 19.7 1.199 (1.094-1.315) 1.276 (1.066-1.526)

Center-West 17 1.485 (1.177-1.874) 1.652 (1.251-2.181)

Southeast 13.7 1.456 (1.234-1.717) 1.706 (1.420-2.049)

South 7.4 28.704 (4.719-174.587) 3.152 (5.102-215.429)

Sensitivity Analysis 2

Unit MHT (ºC) RR (IC 95%) 50th RR (IC 95%) 95th

Brazil 10.8 1.405 (1.274-1.549) 1.495 (1.344-1.663)

North 22.8 1.144 (1.021-1.282) 1.251 (1.074-1.456)

Northeast 19.7 1.194 (1.089-1.309) 1.251 (1.060-1.475)

Center-West 17 1.301 (1.097-1.544) 1.454 (1.198-1.765)

Southeast 13.7 1.407 (1.217-1.628) 1.556 (1.342-1.804)

South 7.4 2.994 (1.627-5.510) 2.764 (1.617-4.723)

Table D.2: Dengue hospitalisation relative risk by Brazil and each macro-region: main and sensitivity
analyses, * Relative Risk to the Minimum Hospitalisation Temperature of hospitalisation due to Dengue,
** at 50th (23·96º C) and at 95th (28·68º C)
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