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Abstract. In this paper, some new results on the existence and unique-
ness of anti-periodic solution for a first-order impulsive functional differ-
ential equation with delay are obtained. The main tool to be employed
here is the coincidence degree theory.
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1. Introduction

Anti-periodic problems arise naturally from the mathematical models of a
variety of physical processes (see [1,2,11,17]) and also appear in the study
of differential equations (see [4,5,7,14]). For this reason, solutions to anti-
periodic problems have been investigated by many authors in the last years.
For instance, Chen et al. in [6] studied an anti-periodic problem for a nonlin-
ear evolution equation, where the nonlinear part is an odd maximal monotone
mapping. Liu and Migorski in [12] constructed a new and important exis-
tence result and analyzed the controllability for differential inclusions with
anti-periodic conditions in Banach spaces, which was a major development
in anti-periodic problems. Okochi [15] studied the existence of anti-periodic
solutions to evolution equations of subdifferential type in Hilbert space.

Recently, Afonso and Furtado [3] applied the coincidence degree theory
to analyze the existence and uniqueness of anti-periodic solution for the nth-
order functional differential equation with infinite delay:

x(n)(t) = f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′

t, xt

)
, t ∈ R.
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The present work deals with a first-order impulsive retarded functional differ-
ential equation. To find sufficient conditions for the existence and uniqueness
of anti-periodic solution for such equation, we make use of a non-impulsive
equation conveniently associate with this. The same strategy was utilized in
[13], by Meili et al., to guarantee the existence of periodic solution for an
impulsive differential equation with discrete delay.

To exhibit the problem, we begin by recalling the concept of regulated
functions. According to [8], we say that a function φ : I → R, defined in a
interval I ⊂ R, is regulated when the following assertions holds:

if τ is a left limit point, then lim
t→τ−

φ(t) ∈ R

and

if τ is a right limit point, then lim
t→τ+

φ(t) ∈ R.

In this work, G−(I,R) denotes the set of the regulated functions φ : I → R

which are continuous from the left.
We will adopt the following notations: given a non-negative constant r,

then for each t ≥ 0 and each function x : I → R defined on a interval I ⊂ R

which contains [t − r, t], the symbol xt denotes the function xt : [−r, 0] → R

given by xt(w) = x(t + w) for every w ∈ [−r, 0].
Given a positive number T , we say that a continuous function x : I → R

is T -anti-periodic on I ⊂ R if

x(t + T ) = x(t) and x
(
t +

T

2

)
= −x(t)

for all t ∈ R, such that t + T ∈ I.
Let T, r > 0 and f : [0,+∞)×G−([−r, 0],R) → R a continuous function

T -periodic in the first argument, such that
(H) f

(
t+ T

2 ,−ϕ
)

= −f (t, ϕ) , for ϕ ∈ G−([−r, 0],R) and t ∈ [0,+∞).
Consider the following impulsive retarded differential equation:{

x′(t) = f(t, xt), t ≥ 0, t �= tk, k = 1, 2, 3, . . .
x(t+k ) = (1 + bk)x(tk), k = 1, 2, 3, . . . ,

(1.1)

where the numbers bk satisfy
(−1, T

2

) ∩ {bk; k = 1, 2, 3, . . .} = {b1, . . . , bi},
b1 < b2 < . . . < bi and bi+k = T

2 + bk, k = 1, 2, 3, . . .. The numbers tk
are called instants (or moments) of impulse and satisfy

(
0, T

2

) ∩ {tk; k =
1, 2, . . .} = {t1, . . . , tm}, t1 < t2 < . . . < tm and tm+k = T

2 +tk, k = 1, 2, 3, . . ..
Finally, x(t+k ) denotes the right limit limt→t+k

x(t).

Definition 1.1. A function x : [−r,+∞) → R is said to be solution of problem
(1.1) on [0,+∞) if the following conditions are satisfied:

(i) x is absolutely continuous on each interval [0, t1], (tk, tk+1], k = 1, 2, . . ..
(ii) x satisfies the first equality in (1.1) on [0,+∞)\{tk; k = 1, 2, . . .}.
(iii) x(t+k ) = (1 + bk)x(tk), for k = 1, 2, . . ..
A solution of (1.1) is said to be T -anti-periodic if its restriction to the interval
[0,+∞) is T -anti-periodic.
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Let us consider the following assumption:

(A) There is a positive constant a, such that
aT

2
< 1 and

|f(t, ϕ) − f(t, ψ)| ≤ a|ϕ(0) − ψ(0)|,
for each t ∈ [0,+∞) and ϕ,ψ ∈ G−([−r, 0],R).
The text is organized as follows. In Sect. 1, we show that the analysis of

the question of existence of a T -anti-periodic solution for problem (1.1) can be
reduced to the study of the same question concerning a certain non-impulsive
equation conveniently associated to it. In Sect. 2, we give sufficient conditions
for the existence of a T -anti-periodic solution of class C1 on [0, t1], (tk, tk+1],
k = 1, 2, 3, . . . for impulsive problem (1.1). The uniqueness of such T -anti-
periodic solution for that problem is proved in Sect. 3. Finally, in Sect. 4, an
example is given to demonstrate the effectiveness of the obtained results.

2. Preliminaries

Let β : [−r,+∞) → R be a function defined by

β(t) =

⎧
⎪⎪⎨
⎪⎪⎩

1, t ∈ [−r, t1]∏
tk<t

(1 + bk) t ∈ (
t1,

T
2

]

β
(
t − T

2

)
, t ∈ (

T
2 ,+∞)

.

Define a function h : [0,+∞) × G−([−r, 0],R) → R by

h(t, ϕ) =
f(t, βtϕ)

β(t)
and consider the non-impulsive retarded equation:

x′(t) = h(t, xt), t ≥ 0. (2.1)

Definition 2.1. A function x : [−r,+∞) → R is said to be solution of Eq.
(2.1) if the following conditions are satisfied:

(i) x is absolutely continuous on [0,+∞).
(ii) x satisfies the equality in (2.1) for almost everywhere t ∈ [0,+∞).

A solution of (2.1) is said to be T -anti-periodic if its restriction to the interval
[0,+∞) is T -anti-periodic.

We claim that hypothesis (H) and assumption (A) on the function f
imply similar conditions on the function h. In fact, by (H), we have

h

(
t +

T

2
,−ϕ

)
=

f
(
t + T

2 ,−βt+T
2
ϕ
)

β(t + T
2 )

=
f

(
t + T

2 ,−βtϕ
)

β(t)

= −f(t, βtϕ)
β(t)

= −h(t, ϕ),
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and from assumption (A), it follows that

|h(t, ϕ) − h(t, ψ)| =
∣∣∣∣
f(t, βtϕ)

β(t)
− f(t, βtψ)

β(t)

∣∣∣∣

≤ a

∣∣∣∣
βt(0)ϕ(0)

β(t)
− βt(0)ψ(0)

β(t)

∣∣∣∣
= a|ϕ(0) − ψ(0)|.

The following result establishes the relation between T -anti-periodic solu-
tions of impulsive problem (1.1) and non-impulsive equation (2.1), under the
hypothesis that one of them has a T -anti-periodic solution. The importance
of this result lies in the fact that it is possible to conclude that the impulsive
problem (1.1) has a unique T -anti-periodic solution if non-impulsive equation
(2.1) has this property.

Theorem 2.2. Problem (1.1) has a unique T -anti-periodic solution if, and
only if, the same occurs with Eq. (2.1).

Proof. Suppose that x : [−r,+∞) → R is a T -anti-periodic solution of prob-
lem (1.1). Define a function u : [−r,+∞) → R by u(t) = x(t)/β(t). Note
that, for t ∈ [0,+∞)

u(t + T ) =
x(t + T )
β(t + T )

=
x(t)
β(t)

= u(t) and

u

(
t +

T

2

)
=

x
(
t + T

2

)

β
(
t + T

2

) = −x(t)
β(t)

= −u(t),

since x is T -anti-periodic and β is T
2 -periodic on [0,+∞). Therefore, u is

T -anti-periodic on [0,+∞).
Moreover, since x and β are continuous on each interval [0, t1], (tk, tk+1],

k = 1, 2, 3, . . ., then the function u has the same property. To conclude that u
is continuous on [0,+∞), it is enough to prove that it is continuous from the
right at each impulsive moment tk. In fact, this occurs, because x satisfies
the first equality of (1.1), and then, for each k = 1, 2, . . ., we have

lim
t→t+k

u(t) = lim
t→t+k

x(t)/β(t) = lim
t→t+k

x(t)

⎡
⎣∏

tj<t

(1 + bj)−1

⎤
⎦

= x(t+k )
∏

tj≤tk

(1 + bj)−1 = (1 + bk)x(tk)(1 + bk)−1
∏

tj<tk

(1 + bj)−1

=
x(tk)
β(tk)

= u(tk).

Let us verify that the function u satisfies the equality given in (2.1) for
almost everywhere t ∈ [0,+∞). Using the hypothesis that x is solution of
problem (1.1) and the definition of function h, we obtain
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u′(t) =
x′(t)
β(t)

=
f(t, xt)

β(t)
=

f(t, βtut)
β(t)

= h(t, ut),

for almost every t ∈ [0,+∞). This completes the proof that u is a T -anti-
periodic solution of problem (2.1).

We have to prove that the uniqueness of T -anti-periodic solution for non-
impulsive equation (2.1) implies the uniqueness of T -anti-periodic solution
to impulsive problem (1.1). In fact, assume that Eq. (2.1) has at most one
T -anti-periodic solution. If problem (1.1) had two distinct T -anti-periodic
solutions, x(t) and x̂(t), then, by what we have proved above, the functions
u(t) = x(t)/β(t) and û(t) = x̂(t)/β(t) would be two distinct T -anti-periodic
solutions for Eq. (2.1), which contradicts the assumption. Therefore, if Eq.
(2.1) has at most one T -anti-periodic solution, the same occurs with problem
(1.1).

Now, suppose that u is a T -anti-periodic solution of non-impulsive
equation (2.1). Let us show that the function x : [−r,+∞) → R given by
x(t) = β(t)u(t) is a T -anti-periodic solution of problem (1.1). The T -anti-
periodicity of function x on [0,+∞) follows immediately from the fact that u
has such property and β is T

2 -periodic. Note that function x satisfies the con-
ditions from Definition 1.1. Indeed, since u and β are absolutely continuous
on each interval [0, t1], (tk, tk+1], k = 1, 2, 3, . . ., then the function x is also
absolutely continuous on these intervals. Furthermore, since u is solution of
Eq. (2.1), we have

x′(t) − f(t, xt) = β(t)u′(t) − f(t, βtut) = β(t)
[
u′(t) − f(t, βtut)

β(t)

]

= β(t)[u′(t) − h(t, ut)] = 0,

for almost every t ∈ [0,+∞)\{t1, t2 . . .}.
We claim that x(t+k ) = (1+ bk)x(tk), for k = 1, 2, 3, . . .. In fact, for each

k = 1, 2, 3 . . ., we have

x(t+k ) = lim
t→t+k

β(t)u(t) = lim
t→t+k

[∏
ti<t

(1 + bi)u(t)

]

=
∏

ti≤tk

(1 + bi)u(tk) = (1 + bk)β(tk)u(tk)

= (1 + bk)x(tk).

Thus, if u is a T -anti-periodic solution of non-impulsive equation (2.1), the
function x : t 
→ u(t)β(t), t ∈ [−r,+∞), is a T -anti-periodic solution of
impulsive problem (1.1).

To finalize the proof of this lemma, assume that problem (1.1) has at
most one T -anti-periodic solution. By what we have seen above, if Eq. (2.1)
had two distinct T -anti-periodic solutions, u(t) and û(t), then problem (1.1)
would have also two distinct T -anti-periodic solutions x(t) = u(t)β(t) and
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x̂(t) = û(t)β(t), which contradicts our assumption. Therefore, if problem
(1.1) has at most one T -anti-periodic solution, the same occurs with Eq.
(2.1).

Remark 2.3. Note that of the demonstration of Theorem 2.2, we can infer
that if non-impulsive equation (2.1) has a solution of class C1 on [0,+∞),
then the impulsive problem (1.1) has a solution of class C1 on the intervals
[0, t1], (tk, tk+1], k = 1, 2, 3, . . ..

For the sake of overcoming the difficulties arising from impulsive effects
present in problem (1.1), we will use Theorem 2.2 to obtain sufficient condi-
tions for existence and uniqueness of a T -anti-periodic solution for it through
of analysis of problem of existence and uniqueness of a T -anti-periodic solu-
tion for non-impulsive equation (2.1). In the next section, we will study the
existence of a such solution.

3. Existence of Anti-periodic Solution

Our purpose in this section is to prove the following result:

Theorem 3.1. If assertion (A) is fulfilled, then problem (1.1) has at least one
T -anti-periodic solution which is of class C1 on each interval [0, t1], (tk, tk+1],
k = 1, 2, 3, . . ..

Our strategy to prove Theorem 3.1 demonstrates that if condition (A)
is fulfilled, then Eq. (2.1) has at least one T -anti-periodic solution which is
of class C1 on [0,+∞). By Theorem 2.2 and Remark 2.3, we can verify the
validity of Theorem 3.1.

Theorem 3.2. If condition (A) is fulfilled, then Eq. (2.1) has at least one
T -anti-periodic solution which is of class C1 on [0,+∞).

To prove Theorem 3.2, we start by recalling some concepts concerning
at the next lemma, which is crucial in the arguments of this section.

Let X and Y be Banach spaces. We say that a linear operator L :
DomL ⊂ X → Y is a Fredholm operator if KerL= {x ∈ X; Lx = 0} is finite-
dimensional and ImL= {L(x) ∈ Y ; x ∈ X} is closed in Y and is of finite
codimension on Y . The index of L is defined by dim KerL − codim ImL. It
is possible to prove (see [9]) that if L is a Fredholm operator of index zero,
then there exist continuous linear and idempotent operators P : X → X and
Q : Y → Y , such that

Ker L = Im P and Im L = Ker Q. (3.1)

The first equality in (3.1) implies that the restriction of L to DomL ∩ KerP ,
which we will denote by LP , is an isomorphism onto its image. Indeed, by
supposing KerL = ImP and taking x ∈ DomL ∩ KerP , such that LP (x) = 0,
we have that x ∈ ImP , that is, there exists y ∈ X, such that Py = x. Since
P is idempotent and x ∈ KerP , the last equality implies x = Py = Px = 0.

By assuming that L : DomL ⊂ X → Y is a Fredholm operator of
index zero and P and Q are the aforementioned operators, we say that a
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continuous operator N : X → Y is L-compact on Ω, where Ω ⊂ X is open
and bounded and Ω is its closure if QN(Ω) is bounded and the operator
(LP )−1(I − Q)N : Ω → X is compact.

The proof of the following lemma can be found in [16].

Lemma 3.3. Let X,Y be Banach spaces, Ω ⊂ X a bounded open set symmet-
ric with 0 ∈ Ω. Suppose L : DomL ⊂ X → Y is a Fredholm operator of index
zero with DomL ∩ Ω �= ∅ and N : X → Y is a L-compact operator on Ω.
Assume, moreover, that

Lx − Nx �= −λ(Lx + N(−x)),

for all x ∈ DomL∩∂Ω and all λ ∈ (0, 1], where ∂Ω is the boundary of Ω with
respect to X. Under these conditions, the equation Lx = Nx has at least one
solution on Dom L ∩ Ω.

In the sequel, we will construct an equation Lx = Nx that appropriately
mirror equation (2.1), so that all the conditions of Lemma 3.3 are fulfilled.

We will adopt the following notations:

Ck
T = {x ∈ Ck([0,+∞),R);x is T -periodic}, k ∈ {0, 1},

‖x‖2 =

(∫ T

0

|x(t)|2dt

)1/2

, ‖x‖∞ = max
t∈[0,T ]

|x(t)|, for x ∈ C0
T ,

‖x′‖∞ = max
t∈[0,T ]

|x′(t)|, for x ∈ C1
T .

Define the sets

X =
{

x ∈ C1
T ;x

(
t +

T

2

)
= −x(t), t ∈ [0,+∞)

}

and

Y =
{

x ∈ C0
T ;x

(
t +

T

2

)
= −x(t), t ∈ [0,+∞)

}
.

By equipping X and Y , respectively, with the norms ‖ · ‖X and ‖ · ‖Y , given
by

‖x‖X = max {‖x‖∞ , ‖x′‖∞}, ‖x‖Y = ‖x‖∞ ,

we obtain two Banach spaces that, for simplicity of notation, we will denote
them by X and Y , respectively.

Define the operators L : X → Y and N : X → Y by

Lx(t) = x′(t), t ∈ [0,+∞), (3.2)

and
Nx(t) = h (t, xt) , t ∈ [0,+∞). (3.3)
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Remark 3.4. Note that, if the equation

Lx(t) = Nx(t), [0, T ] (3.4)

has a solution, then problem (2.1) has a T -anti-periodic solution which is of
class C1 on [0,+∞). Indeed, if x̂ is a solution of (3.4) on [0, T ], it is enough
to define x : [0,+∞) → R by x(t) = x̂(t) if t ∈ (0, T ] and x(t) = x(t − T ) if
t ∈ (T,+∞).

To prove Theorem 3.2, we will show that if condition (A) is fulfilled,
then the hypotheses of Lemma 3.3 are satisfied for L and N defined above,
and consequently, the result will follow from Theorem 2.2 and Remark 3.4.

Now, we can prove the following result.

Proposition 3.5. The operator L defined in (3.2) is a Fredholm operator of
index zero.

Proof. We claim that ImL = Y . Indeed, given y ∈ Y , let

x(t) = −1
2

∫ t+T
2

t

y(s)ds.

Clearly, x ∈ X and Lx(t) = y(t). Furthermore, it is easy to see that KerL = 0.
Then, the proof is complete.

Proposition 3.6. The operator N is L-compact on any bounded open set Ω ⊂
X.

Proof. Let us consider the operators P and Q given by

Px =
1
T

∫ T

0

x(t)dt, x ∈ X and Qy =
1
T

∫ T

0

y(t)dt, y ∈ Y.

Thus, ImP = KerL and KerQ = ImL. Denote by L−1
P : ImL → X ∩ KerP ,

the inverse of L|X∩KerP . Then

(L−1
P z)(t) =

∫ t

0

z(s)ds − 1
T

∫ T

0

(∫ t

0

z(s)ds

)
dτ.

One can observe that L−1
P is a compact operator. Furthermore, it is not

difficult to show that, for any open bounded set Ω ⊂ X, the set QN(Ω) is
bounded, and using the Arzelà-Ascoli’s Theorem, the operator L−1

P (I−Q)N :
Ω → X is compact. Therefore, N is L-compact on Ω. �

The next lemma will be useful in the sequence. Its demonstration can
be found in [10].

Lemma 3.7. If v : R → R is a T -periodic absolutely continuous function, such

that
∫ T

0

v(t)dt = 0 and
∫ T

0

v′(t)2dt ∈ R, then

∫ T

0

v(t)2dt ≤ T 2

4π2

∫ T

0

v′(t)2dt.
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Proposition 3.8. If condition (A) holds, then there exist a positive number D,
which does not depend on λ, such that if

Lx − Nx = −λ[Lx + N(−x)], λ ∈ (0, 1], (3.5)

then ‖x‖X ≤ D.

Proof. Assume that condition (A) is satisfied and that x ∈ X satisfies (3.5).
Then, using the definitions of operators L and N , given in (3.2) and (3.3),
respectively, we obtain

x′(t) =
1

1 + λ
h (t, xt) − λ

1 + λ
h (t,−xt) .

Thereby, considering H(t, x) = h (t, xt), we have

x′(t) =
1

1 + λ
H(t, x) − λ

1 + λ
H(t,−x). (3.6)

Multiplying both sides of this equality by x′(t) and subsequently inte-
grating it from 0 to T and using the triangle inequality, we get

‖x′‖22 ≤ 1
1 + λ

∫ T

0

|H(t, x)||x′(t)|dt +
λ

1 + λ

∫ T

0

|H(t,−x)||x′(t)|dt

≤ 1
1 + λ

[∫ T

0

|H(t, x) − H(t, 0)||x′(t)|dt +
∫ T

0

|H(t, 0)||x′(t)|dt

]

+
λ

1 + λ

[∫ T

0

|H(t,−x) − H(t, 0)||x′(t)|dt +
∫ T

0

|H(t, 0)||x′(t)|dt

]
.

Therefore

‖x′‖22 ≤
∫ T

0

max{|H(t, x) − H(t, 0)|, |H(t,−x) − H(t, 0)|}|x′(t)|dt

+
∫ T

0

|H(t, 0)||x′(t)|dt.

This, assumption (A), Hölder inequality and Lemma 3.7, imply

‖x′‖22 ≤ a‖x′‖2‖x‖2 + R
√

T‖x′‖2,
≤ aT

2π
‖x′‖22 + R

√
T‖x′‖2,

where R = max
t∈[0,T ]

|H(t, 0)|. Thus, we obtain

‖x′‖2 ≤ K, (3.7)

where K =
R

√
T

1 − aT
2π

, since aT
2π < 1 by assumption (A).

By mean value theorem for integrals, we conclude that there exists τj ∈
[0, T ], such that x′(τj) = 0, since

∫ T

0

x′(t)dt = 0. Hence, by Hölder inequality,

we have
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|x(t)| =

∣∣∣∣∣
∫ t

τj

x′(s)ds

∣∣∣∣∣ ≤
∫ T

0

|x′(s)ds| ≤
√

T‖x′‖2, t ∈ [0, T ]. (3.8)

Consequently, ‖x‖∞ ≤ √
T‖x′‖2. Now, inequality (3.7) implies

‖x‖∞ ≤ K
√

T (3.9)

Now note that, by (3.6), assumption (A) and (3.9), we have

|x′(t)| ≤ max{|H(t, x) − H(t, 0)|, |H(t,−x) − H(t, 0)|} + max
t∈[0,T ]

|H(t, 0)|
≤ a|x(t)| + R

≤ S,

for all t ∈ [0, T ], where S = aK
√

T + R. Consequently

‖x′‖∞ ≤ S. (3.10)

Finally, by (3.9) and (3.10), we conclude that

‖x‖X ≤ D,

where D = max{K
√

T , S}. �

Proposition 3.9. If condition (A) is satisfied, then there is a bounded open
set Ω ⊂ X, such that

Lx − Nx �= −λ(Lx + N(−x)),

for all x ∈ ∂Ω and all λ ∈ (0, 1].

Proof. Assume that condition (A) is satisfied. By Proposition 3.8, there exists
a positive constant D, which does not depend on λ, such that if x satisfies
the equality Lx − Nx = −λ(Lx + N(−x)), λ ∈ (0, 1], then ‖x‖X ≤ D. Thus,
if

Ω = {x ∈ X; ‖x‖X < M}, (3.11)
where M > D, we conclude that

Lx − Nx �= −λ(Lx − N(−x)),

for every x ∈ ∂Ω = {x ∈ X; ‖x‖X = M} and λ ∈ (0, 1]. �

In this moment, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Suppose (A) holds. Clearly, the set Ω defined in (3.11)
is symmetric, 0 ∈ Ω and X ∩ Ω = Ω �= ∅. Furthermore, it follows from
Proposition 3.9 that

Lx − Nx �= −λ[Lx − N(−x)],

for all x ∈ X ∩ ∂Ω = ∂Ω and all λ ∈ (0, 1]. This, together with Lemma 3.3,
implies that Eq. (2.1) has at least one T -anti-periodic solution.

To finish this section, we will prove Theorem 3.1.

Proof of Theorem 3.1. It follows immediately from Theorems 2.2, 3.2 and
Remark 2.3.
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4. Uniqueness of T -anti-periodic Solution

Our goal in this section is to prove the following result:

Theorem 4.1. If condition (A) is fulfilled, then problem (1.1) has at most one
T -anti-periodic solution.

To demonstrate Theorem 4.1, we will show that if condition (A) is ful-
filled, then Eq. (2.1) has at most one T -anti-periodic solution. By Theorem
2.2, this implies that problem (1.1) has at most one T -anti-periodic solution.

Theorem 4.2. If (A) holds, then Eq. (2.1) has at most one T -anti-periodic
solution.

Proof. Assume that condition (A) is satisfied and that x and y are T -anti-
periodic solutions of Eq. (2.1). To get the result, we have to show that the
function z = x − y is identically zero. Then, whereas x and y are T -periodic,
it is sufficient to prove that z(t) = 0 for all t ∈ [0, T ].

Since x and y are solutions of Eq. (2.1), then

z′(t) = h(t, xt) − h(t, yt). (4.1)

Multiplying both sides of (4.1) by z′(t), integrating it from 0 to T , using
hypothesis (A) and Hölder inequality, we get

‖z′‖22 =
∫ T

0

|z′(t)||h(t, xt) − h(t, yt)|dt

≤ a

∫ T

0

|z′(t)||z(t)|dt

≤ a‖z′‖2‖z‖2. (4.2)

On the other hand, by Lemma 3.7

‖z‖2 ≤ T

2π
‖z′‖2.

From this and (4.2), we obtain

‖z′‖22 ≤ aT

2π
‖z′‖22.

Then, since aT
2π < 1, we have ‖z′‖2 = 0. Besides, since ‖z‖∞ ≤ √

T‖z′‖2 (see
(3.8)), we conclude that z ≡ 0 and the proof is complete. �

Now, we can prove Theorem 4.1.

Proof. (of Theorem 4.1) It follows immediately from Theorems 2.2 and 4.2.

We complete our section with the following result.

Theorem 4.3. If assertion (A) is fulfilled, then problem (1.1) has a unique
T -anti-periodic solution of class C1 on each interval [0, t1], (tk, tk+1], k =
1, 2, 3, . . ..

Proof. The result follows straightaway from Theorems 3.1 and 4.2.
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5. Example

Suppose that, in problem (1.1), r = 1, T = 2π, the numbers bk are given by

b1 = 2, b2 = 3, b2+k = π + bk, k = 1, 2, 3, . . .

and the moments of impulse are

t1 = 1, t2 = 3/2, t3 = 5/2, t3+k = π + tk, k = 1, 2, 3, . . . .

With such data, consider the problem{
x′(t) = f(t, xt), t ≥ 0, t �= tk, k = 1, 2, 3, . . .
x(t+k ) = (1 + bk)x(tk), (5.1)

where the function f : [0,+∞) × G−([−1, 0],R) → R is given by f(t, ϕ) =
sin t

15
ϕ(0), for t ∈ [0,+∞) and ϕ ∈ G−([−1, 0],R).

Note that if ϕ ∈ G−([−1, 0],R), then

f(t + π, ϕ) = −f(t, ϕ), for each t ∈ [0,+∞).

Let us see that, in this case, condition (A) is satisfied. Indeed
(A) If ϕ,ψ ∈ G−([−1, 0],R), we have

|f(t, ϕ) − f(t, ψ)| ≤ a|ϕ(0) − ψ(0)|,
for each t ∈ [0,+∞), where a = 1

15 .
By Theorem 4.3, problem (5.1) has a unique 2π-anti-periodic solution

of class C1 on each interval [0, t1], (tk, tk+1], k = 1, 2, 3, . . ..
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