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EMISSÃO DE GASES DE EFEITO ESTUFA E MITIGAÇÃO DE N2O NA 

PRODUÇÃO DE BOVINOS DE CORTE EM PASTAGENS TROPICAIS 

 

RESUMO: Metano (CH4) e óxido nitroso (N2O) são dois dos mais importantes gases 

de efeito estufa emitidos pela pecuária. Eles são produzidos pelas excretas dos 

animais e fertilizantes. No Brasil, a quantidade emitida destes gases e opções para 

mitigação foram pouco exploradas. Uma sequência de 4 experimentos foram 

realizados em campo (em duas estações chuvosas e duas secas, 106 dias de 

duração cada) com o objetivo de quantificar as emissões de N2O e CH4, volatilização 

de NH3 e o fator de emissão (FE) quando aplicadas fezes, urina, fezes + urina e 

fertilizante ureia em Latossolo Vermelho cultivado com capim-marandu. Investigou-

se o efeito da umidade do solo e compactação, composição da urina, volume 

urinário, e adição de fezes sobre as emissões de N2O em um Latossolo recebendo 

urina manipulada em condições controladas, bem como nas emissões de CH4. 

Como opção para mitigar as emissões de gases de efeito estufa (GEE) foram 

estudadas as variáveis como as alturas de pastejo que afetam a magnitude das 

emissões de GEE; a influência estacional na produção e consumo dos GEE; quais 

são as variáveis chaves associadas com as emissões de GEE em pastagens de 

capim-marandu. Adicionalmente, investigou se o efeito dietético dos níveis do sal 

mineral na concentração de N na urina, o volume urinário, a proporção dos 

compostos nitrogenados na urina e a concentração de N nas fezes em condições de 

campo. Os FEs de N2O quantificados diferiram de acordo com a excreta e estação 

do ano. O FEs foram 2,34%, 4.26% e 3,95% na estação chuvosa e 3.00%, 1.35% e 

1.59% na estação seca, respectivamente, para fezes, urina e fezes + urina. O FE do 

fertilizante ureia foi 0,37%. As emissões médias do CH4 acumuladas foram 99,72, 

7,82 e 28,64 (mg C-CH4 m2) para fezes, urina e fezes + urina nesta sequência. 

Quando manipuladas as condições do solo como umidade, compactação e adição 

de fezes as emissões de N2O foram influenciadas sendo maiores nos tratamentos 

com adição de fezes. Ao se variar a concentração do N-urinário aplicado (em igual 

volume de urina) afetou a produção de N2O diminuindo as emissões da maior para a 

menor concentração de N aplicada e não foi observado efeito ao se variar o volume 

de urina aplicado (contendo igual concentração de N-urinário). A concentração de 
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KCl adicionada na urina afetou as emissões de N2O de forma curvilínea enquanto o 

tipo de composto nitrogenado não. Ao se estudar as emissões de CH4 estas 

responderam aos fatores do solo como umidade, compactação e adição de fezes e 

não foram afetadas pela variação da concentração de N-urinário e volumes de urina. 

A fonte de nitrogênio aplicada não afetou a produção/oxidação de CH4. A altura do 

pasto, estação e ano afetaram as emissões de N2O e CO2 e a estação as de CH4. 

As maiores emissões ocorreram no verão e as menores no inverno. A altura do 

pasto apresentou efeito linear negativo nas emissões de N2O acumuladas anual e 

linear positivo nas emissões de CO2. O efeito dietético dos níveis de sal mineral 

influenciaram a concentração de N-urinário, volume de urina, N-ureia, N-alantoína e 

N-ácido hipurico. A concentração de N-urinário apresentou efeito negativo linear, o 

volume de urina, N-ureia, N-alantoína e N-ácido hipúrico positivo linear. Enquanto 

que a excreção total de N excretado via urina, N-creatinina e concentração de N nas 

fezes não foram afetadas pelos níveis de sal mineral na dieta. As emissões de CH4, 

N2O e NH3 diferiram dos FEs defaults preconizados pelo IPCC. A umidade e a 

compactação do solo podem ser os principais fatores que regulam as emissões de 

N2O e CH4 e depende da variação sazonal da precipitação pluviométrica.  

 

Palavras-chave: Emissão de CH4 do solo, mudanças climáticas, quantificação de 

N2O, volatilização de NH3  



vi 

 

GREENHOUSE GASES EMISSIONS AND N2O MITIGATION OF BEEF CATTLE 

PRODUCTION ON TROPICAL PASTURES 

 

ABSTRACT: CH4 and N2O are two of the most important greenhouse gas emitted by 

livestock. They are produced from animal excretes and the fertilizer. In Brazil the 

amount and options to mitigate these gases are little explored. We carried out a 

sequence of 4 field-trials (two rainy and two dry season, 106 days each)  aimed to 

quantify the N2O and CH4 emissions, NH3 volatilization and emission factor (EF) after 

application of dung, urine, dung + urine and urea fertilizer on a Ferralsol of a 

marandu palisade-grass pastureland of Brazil. We aimed to investigate the effects of 

soil moisture, soil compaction, urine composition, urine volume, and dung addition on 

N2O emission from a urine-treated tropical Ferralsol under controlled conditions as 

well on CH4 emission. As option to mitigate greenhouse gas (GHG) emissions we 

studied how grazing heights affect the magnitude of GHG emissions; how season 

influence GHG production and consumption; what are the key driving variables 

associated with GHG emissions. Additionally, we investigated the effect of dietary 

mineral salt levels on urine-N concentration, urine volume, the proportion of N 

compounds in the urine and faeces-N concentration under field conditions. The 

emissions factor (EF) calculated differed according excretes and season. The EFs 

were 2.34%, 4.26% and 3.95% in the rainy season and 3.00%, 1.35% and 1.59% in 

the dry season, respectively, for the dung patches, urine patches and dung + urine. 

The N2O EF from urea was 0.37%. The averages of CH4 accumulated emissions 

were 99.72, 7.82 and 28.64 (mg CH4-C m2) for dung, urine and dung + urine in this 

sequence. The manipulated soil conditions moisture content, compaction, and dung 

addition affected N2O emissions when varying quantities of urine-N were applied (in 

equal urine volumes) being higher when added dung and did not affect when varying 

urine volumes were applied (containing equal quantities of urine-N). The urine-N 

concentration influenced N2O emissions decreasing from the lower concentration to 

the higher and the chemical form of urine-N did not. The concentration of KCl added 

to the urine influenced N2O emissions presenting a curvilinear curve. When the CH4 

emissions were influenced by soil factors moisture content, compaction and dung 

addition and did not responded to the variation in the urine-N concentration and 
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volume. The source of N did not influence the CH4 emissions/oxidation. Pasture 

height, season and year affect N2O and CO2 emissions and the season CH4 

releases. The greater emissions occurred in the summer and the lower in the winter. 

Pasture height had negative linear effect on annual cumulative N2O emissions and 

positive linear effect on annual cumulative CO2 emissions. Dietary effects of mineral 

salt level influenced the N concentration in the urine, urine volume, urea-N, allantoin-

N and hyppuric acid. While the total N excreted daily via urine, creatinine-N and N 

concentration in feces were not affected by mineral salt level in the diet. The 

emissions of CH4, N2O and NH3 differs that default EFs preconized by the IPCC. Soil 

moisture and compaction appear to be the main factors regulating N2O and CH4 

emissions and depends of the rainfall seasonality.  

 

Key-words: N2O quantification, NH3 production, CH4 emissions from soil, climate 

change.  
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1. GLOBAL WARMING AND GREENHOUSES GASES  

 

 

Atmosphere has important hole to the life in the Earth. In 1822 Joseph Fourier 

published the book “The Analytical Theory of Heat”, and suggested that the 

atmosphere played a critical role in warming the Earth’s surface. It was 

experimentally verified by John Tyndall in 1861, and quantified by Svant Arrhenius in 

1896 (LACIS et al. 2010). Greenhouse gases such as carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O) and fluorinated gases (CFCs) are capable of absorbing 

infrared radiation, thereby trapping and holding heat which causes the greenhouse 

effect (ROYAL SOCIETY, 2010).  

In 1960 Charles Keeling showed that the level of CO2 in the atmosphere was 

in fact increasing. He plotted year by year along with rise of the atmospheric CO2 of 

Mauna Loa Observatory in Hawaii (KEELING, 1960) starting the “Kelling Curve”. In 

1972 John Sawyer published the study “Man-made Carbon Dioxide and the 

Greenhouse Effect”. His publication influenced the policy maker and accurately 

predicted the rate of global warming between 1972 to 2000 (NICHOLLS, 2007). 

Ramanathan (1980) published an estimate of the contribution to global warming from 

CH4, N2O and O3 produced by industry and by agricultural sources such as fertilizer. 

He calculated that these gases might contribute as much as 40% of total warming 

due to CO2 and all other gases of anthropogenic origin. Then agriculture figured as a 

contributor to greenhouse gas emissions and global warming effect.  

Due to the importance of climate change in 1988 the world meteorological 

association established the Intergovernmental Panel on Climate Change (IPCC). The 

IPCC is constitute by more than 2000 scientists and have the general main to assess 

scientific information relevant to human-induced climate change, the impacts of 

human-induced climate change (IPPC, 2006). In 1997 in the third conference of the 

parties (COP) resulted in the Kyoto Protocol which adopted GHG reduction obligation 

for the signatory countries. Brazil as signatory started to report GHG emissions in 

national inventory.  

In the 2000’s were observed successive records on the atmospheric 

temperature measured in different point of the Earth. The importance of climatic 



3 

 

change increase even more and in 2009 in the COP 15 countries like Brazil adopted 

Nationally Appropriate Mitigation Actions (NAMAs). Brazil assumed voluntary like 

reduction in deforestation, restoration of grassland, adoption of integrated crop-

livestock system and biological N2 fixation aimed to lead to an expected reduction of 

36.1% to 38.9% regarding the projected emissions of Brazil by 2020 (Brazil, 2009).  

November of 2015 was the world’s warmest November in recorded weather 

history. The global average temperature in last November was warmer by 1.05 ºC 

than the overall average global temperature for the years 1880-2015 (NOAA, 2015). 

Finally, in the COP 21 almost 200 countries approved the adoption of the Paris 

Agreement “Recognizing that climate change represents an urgent and potentially 

irreversible threat to human societies and the planet and thus requires the widest 

possible cooperation by all countries, and their participation in an effective and 

appropriate international response, with a view to accelerating the reduction of global 

greenhouse gas emissions”. (UNFCCC, 2015). Despite these consensuses many 

gaps in climatic change knowledge still persist.  

 

2. CARBON DIOXIDE 

 

 

John Tyndall in 1864 studied the ability of CO2 absorb infrared radiation. He 

observed that CO2 and CH4 strongly block the radiation (TYNDALL, 1872). Arrhenius 

(1896) calculated that the surface temperature to be an increase in 5-6ºC doubling 

atmospheric CO2 and because of the relatively low rate of CO2 production in 1896, 

the warming effect would require thousands of years, and he projected  it would be 

beneficial to humanity. However, atmospheric CO2 reached 143% of the pre-

industrial level in 2014. The globally averaged CO2 mole fraction in 2014 was 

397.7±0.1 ppm (WMO, 2015). Based on the average growth rate for the past decade 

the CO2 will be achieving the double of the pre-industrial level in 2095. 

The combustion of fossil fuels and cement production accounted 91% of CO2 

emissions in 2013 and the deforestation and other land-use change responded by 

9%, according to (http://www.globalcarbonproject.org). In the beef cattle system the 

sources of CO2 are from fuel consumption and agricultural inputs like fuels and 
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electricity, fertilizer and lime, pesticides, irrigation, seed production; from tillage 

practice like farm machinery instrumentation (CARDOSO et al., 2016a).  

The biomass of plants and soil organic matter (SOM) could be sink or source 

of CO2. It is a sink when the land use change from crop to forest, for example, when 

the tree growing accumulates C and the SOM stocks increases due crop practices 

like no tillage and mixed systems. In the other side biomass burning and SOM 

oxidation release CO2 to the atmosphere. 

An important concern is about the capacity and contribution of agricultural 

soils and reforestation contributed reducing CO2 emissions. Sauerbeck (2001) 

pointed that, even if most carefully preserved, both forests and soils, with the 

exception of unmanaged wetlands, have a finite capacity to sequester carbon, which 

gets saturated within less than 100 years. He attributed to this reason that many 

scientist disagree with the idea of reforestation and additional incorporation of carbon 

into agricultural soils would partially substitute for the commitment of reducing the 

CO2 emissions from fossil fuels.  

 

3. METHANE 

 

 

Only after 86 years that Tyndall showed that the CH4 block the radiation the 

presence of this gas in the atmosphere was found (MIGEOTTE, 1948). Globally 

averaged CH4 reached 1833 ppb in 2014 and increased 254% since pre-industrial 

level. CH4 contributes with approximately 17% to radioactive forcing (the rate of 

energy change per unit area of the globe as measured at the top of the atmosphere) 

and 60% of the emitted CH4 into the atmospheres comes from anthropogenic source 

(e.g. ruminants, rice agriculture, fossil fuel exploitation, landfills and biomass burning) 

(WMO, 2015).  

Methane is produced in the soil as one of the final compound of the complete 

mineralization of SOM in wetlands. The environmental factors that affect CH4 

emissions by soils are gas diffusion, microbial activities which depends of 

temperature, pH, Eh, substrate availability and methane-mono-oxygenase activity (Le 

MER and ROGER, 2001). The ability of micro-organisms to oxidize methane has 
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been known since 1906, when Söhngen first isolated an organism capable of 

growing on methane as a carbon source and named it Bacillus methanicus 

(SÖHNGE, 1906). It was called methanotrophy. Methanotrophs are obligate aerobes 

and one possible reaction is CH4 + 2 O2 = CO2 + 2 H2O. The rate of CH4 oxidation 

depends of the composition and biodiversity of CH4-oxidizing consortia (MOHNATY 

et al. 2007), temperature (BÖRJESSON et al., 2004) and soil moisture have been 

suggested as a major controlling factor in numerous studies (e.g. ZEISS, 2006; 

JUGNIA et al. 2008; SPOKAS and BOGNER, 2011).  

In the national greenhouse gas inventory CH4 enteric and manure should be 

reported. In grassland soils the main source of CH4 is the dung deposition. The IPPC 

guidelines (2006) preconizes a default emissions factor of 1 kg CH4 head-1 year-1. In 

Brazilian condition a few studies were published and at this time the average 

emissions are 0.31 kg CH4 head-1 year-1 (Table 1).  

 

Table 1 - CH4 emissions factor (kg CH4 head-1 year-1) quantified for dung deposition 

in Brazilian conditions  

Location Season Animal Emissions Reference 

Ariquemes-RO Spring Heifer 0.60 Chiavegato (2010) 

Piracicaba-SP Winter Steers 0.02 Mazzeto et al. (2014) 

Piracicaba-SP Summer Steers 0.05 Mazzeto et al. (2014) 

Ariquemes-RO Winter Steers 0.06 Mazzeto et al. (2014) 

Ariquemes-RO Summer Steers 0.10 Mazzeto et al. (2014) 

Seropédica-RJ Autunm Dairy  0.96 Cardoso et al. 
(2016b) 

Jaboticabal-SP Winter Steers 0.18 This thesis 

Jaboticabal-SP Summer Steers 0.79 This thesis 

Jaboticabal-SP Incubation  Steers 0.25 This thesis 

Jaboticabal-SP Incubation 
compacted 
soil 

Steers 0.33 This thesis 

Average   0.31  
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4. NITROUS OXIDE 

 

 

Adel (1947) showed the existence of N2O in the atmosphere and speculated 

that soil air to be one source, perhaps the principal one, of the atmospheric nitrous 

oxide and Crutzen (1970) confirmed the influence of N2O on the atmospheric ozone 

content. In 2014 N2O concentration in the atmosphere reached 327 ppb and increase 

121% since the pre-industrial level (270 ppb). The anthropogenic sources contributed 

with approximately 40% of N2O emissions, including oceans, soils, biomass burning, 

fertilizer use and various industrial processes (WMO, 2015).  

N2O is produced in soil during the reactions of nitrification and denitrification. 

Nitrification, which requiries aerobic conditions, depends on NH4
+ supply and is 

mediated by autotrophic bacteria, whereas denitrification is executed by anaerobic 

heterotrophic bacteria, which depend on the availability of labile organic C and NO3
-. 

Firestone and Davidson conceived a model called “hole-in-the-pipe” (Figure 1), which 

synthetized the knowledge at that time about the microbiological and ecological 

factors influencing soil emissions of nitric oxide (NO) and N2O. (DAVIDSON et al. 

2000). 

 

Figure 1. Diagram of the hole-in-the-pipe conceptual model (revised from Davidson 
1991). “Soil emissions of NO and N2O are regulated at two levels: First, the 
rate of nitrogen cycling through ecosystems, which is symbolized by the 
amount of nitrogen flowing through the pipes, affects total emissions of NO 
and N2O; second, soil water content and perhaps other factors affect the 
ratio of N2O:NO emissions, symbolized by the relative sizes of the holes 
through which nitric oxide and nitrous oxide leak”(Davidson et al., 2000). 
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There are two categories of factors that control N2O emissions. Oenema and 

Sapek (2000) specified environmental factors and management factors. Soil issues 

such as inorganic-N, aeration, organic matter and soil moisture are the principal 

factors. Precipitation and temperature are the most important climate factors. In this 

group of factors Butterbach-Bahl et al. (2013) argued that soil moisture controls N2O 

emissions because it regulates the oxygen availability to soil microbes. Management 

factors in grassland systems on N2O emission are: nitrogen fertilizer, manure 

application and timing of application; the intensity of grazing, soil compaction and 

liming application (OENEMA and SPEK, 2000). Grazing is important factor because it 

determines how much dung and urine is deposited on grassland from the animals 

(NÚÑEZ et al., 2007). 

Nitrous oxide emission factors (EF) are used to calculate excreta and fertilizer 

contributions for N2O national inventory (IPCC, 2006). They are the ratio of N2O-N 

emitted from a soil that was added an N input, minus the N2O-N emitted from the soil 

that did not receive N, divided by the amount of N applied (BUCKTHOUGHT et al., 

2015). Default emission factors are stipulate by the IPCC guidelines as 0.01 and 0.02 

kg N2O-N kg-1 input for EF1 (N additions from mineral fertilizers) and EF3PRP (excretal 

N inputs to grasslands), respectively (IPCC, 2006). Many countries have determined 

a country specific factor. In 2014 Keliher et al. accounted in a statistical analysis of 

measurements of nitrous oxide emissions from 185 field sites in New Zealand and 

they concluded that the appropriate values of EF3 in that country for dairy cattle urine 

and dung, and sheep urine and dung are 1.16%, 0.23%, 0.55% and 0.08%, 

respectively. The Brazilian Cattle herd is approximately 20 times greater and 

occupies 40 times more land then that country herd cattle and at the present a few 

papers were published reporting N2O emissions. The mean EF3 reported for the 

Brazilian conditions are 2.31%, 0.99% and 1.87% for cattle urine, dung and urine + 

dung (Table 2).  
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Table 2 N2O emissions factor (%) from cattle excreta deposited on pasture in 

Brazilian conditions.  

Location Climate and 
Season 

Excreta 
type 

Emission 
factor  

Reference 

Curitiba-PR Subtropical Urine 0.15% Sordi et al. (2013) 
Curitiba-PR Subtropical Dung 0.26% Sordi et al. (2013) 
Santo Antônio 
de Goiás-GO 

Tropical/ rainy 
season 

Urine 1.93% Lessa et al. (2014) 

Santo Antônio 
de Goiás-GO 

Tropical/ rainy 
season 

Dung 0.14% Lessa et al. (2014) 

Santo Antônio 
de Goiás-GO 

Tropical/ rainy 
season 

Urine 0.1% Lessa et al. (2014) 

Santo Antônio 
de Goiás-GO 

Tropical/ rainy 
season 

Dung 0.0% Lessa et al. (2014) 

Seropédica-RJ Tropical Urine 1L 4.9% Cardoso et al. 
(2016b) 

Seropédica-RJ Tropical Urine 1.5L 3.36% Cardoso et al. 
(2016b) 

Seropédica-RJ Tropical Urine 2L 2.43% Cardoso et al. 
(2016b) 

Seropédica-RJ Tropical Dung 0.18% Cardoso et al. 
(2016b) 

Jaboticabal-SP Tropical/ Rainy 
season 

Urine 4.26% This thesis 

Jaboticabal-SP Tropical/ Rainy 
season 

Dung 2.34% This thesis 

Jaboticabal-SP Tropical/ Rainy 
season 

Urine + 
Dung 

3.95% This thesis 

Jaboticabal-SP Tropical/ Dry 
season 

Urine 1.35% This thesis 

Jaboticabal-SP Tropical/ Dry 
season 

Dung 3.00% This thesis 

Jaboticabal-SP Tropical/ Dry 
season 

Urine + 
Dung 

1.59% This thesis 

Means  Urine 

Dung 

Urine + 
Dung 

2.31% 

0.99% 

 

1.87% 

 

 

Nitrous oxide options of mitigation for livestock production systems includes 

optimum soil and grazing land management, limiting the amount of N fertilizes or 

effluent applied when soil is wet, animals dietary management to decrease the 
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amount of N excreted in animal urine through feeding low-N feed supplements as an 

alternative to fertilizer N boosted grass (USSIRI and LAL, 2013). Adoption of 

legumes that obtains N for biological nitrogen fixation, selection plant and animals to 

improve nitrogen use efficiency, use of inhibitors of N transformations and improve 

the animal performance to reduce the age of slaughter also can contributed for the 

reduction of N2O emissions. 

 

5. GAPS IN KNOWLEDGE 

 

 

The main gap in knowledge in Brazilian conditions is to quantify CH4 and N2O 

to improve the greenhouse gas inventories and determining country-specific 

emission factor. A large variation in soils and climatic factors are observed in Brazil 

as well as peculiarities in the animal production. 

Explore the micro-organism that are involved CH4 and N2O emissions and 

consumption are demanded. Identifying, isolating and exploring how they interact 

with soil and climatic factor.  

Identifying the factors that control emissions and how the different 

environmental combinations influence the magnitude of the greenhouses source.  

The factors regulating N2O consumption in soil are not well understood. More 

studies in soil with different soil textures, mineral N content, porosity and soil 

moisture content are recommend to study the relationships between these soil 

parameters and N2O consumption (MAZZETTO et al., 2014). 

To calculate the impact of pasture restoration, adoption of integrated livestock-

crop and integrated crop-livestock-forest system as well introduction of legumes in 

the GHG emissions. 

Find the better protein to energy ratio to minimize N losses in the animal 

production. Selected and breeding for animals that maximizes N utilizations.  

Study substances like hormones and growing stimulator for plant as strategy 

to mitigate N2O emissions.  

Outline the effect of Biochar application on the soil, improve nitrogen efficiency 

usage and cutting GHG emissions in grasslands. 
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Explore the life cycle assessment as a tool to evaluate different system of 

animal production on GHG emissions. 

Study integrated options to improve animal performance although 

management, genetic and nutrition to reduce the time necessary to rise a beef cattle 

avoid GHG emissions.  
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