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Objective and Subjects: Evidence indicates an impairment of nitric oxide (NO) in obesity. Statins present
pleiotropic effects independently of cholesterol-lowering, including increasing of eNOS expression and
antioxidant effects. We evaluated the effects of simvastatin treatment at 45 days on circulating nitrite
(NO marker) and TBARS-MDA levels in obese women without comorbidities (hypertension, diabetes
and dyslipidemia). Moreover, we verified whether obese women carrying the C variant of T-785C poly-

ﬁgy\{vords: morphism located in eNOS may have increased levels of nitrite after treatment compared to TT genotype.
O:)t:;if Results: After simvastatin treatment, while the plasma nitrite levels increased 42% (P=0.0008), the
eNOS v TBARS-MDA levels reduced 58% (P = 0.0069). We observed increased levels of nitrite in both groups of

Polymorphism genotypes (TT vs. TC + CC); however, rise in C-allele carriers was 60% comparing with 44% in TT.
Statin Conclusion: Our results demonstrated a restoration of nitrite levels in obese women treated with simva-
statin, which is modulated by T~7¢C polymorphism.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Nitric oxide (NO) is a crucial regulator of the cardiovascular sys-
tem, which controls the vasodilator tone and promotes vascular
homeostasis [19]. NO bioavailability is determined by balance be-
tween NO biosynthesis by the endothelial NO synthase (eNOS) and
its degradation by reactions with cell-free hemoglobin and reactive
oxygen species (ROS) [10,32].

Several evidence indicate that diseases characterized by endo-
thelial cell dysfunction, including obesity [33], present unbalanced
circulating levels of NO metabolites due to increased oxidative
stress [4] and decreased NO production [9]. In fact, NADPH oxi-
dases [2] and uncoupled eNOS [7] contribute to a higher generation
of ROS. Additionally, studies have shown that a single nucleotide
polymorphism (SNP) clinically relevant located in promoter region
of the eNOS gene (T-786C, rs2070744) reduces gene promoter
activity by approximately 50% [21], besides it was also associated
with reduced eNOS expression on myocardial tissue [5].

Statins block the conversion of 3-hydroxy-3-methylglutaryl
coenzyme A to mevalonate inhibiting cholesterol synthesis in the
liver. However, it is well documented that the pleiotropic effects
of statins are independent of cholesterol-lowering responses. Some
of these effects include the increase of eNOS expression and activ-
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ity and antioxidant effects [17]. Moreover, statins might increase
the expression of endoglin (CD105), a molecule associated with
eNOS in caveolae, which regulates its activity and local vascular
tone [23]. Other regulator of eNOS is its endogenous inhibitor
ADMA (asymmetric dimethylarginine). Some studies evaluated
the effect of simvastatin on ADMA levels, however, none addressed
this effect in obese women [30,31].

Although these observations provide strong evidence that stat-
ins can increase endogenous NO production and reduce oxidative
stress, no previous study has examined whether these pleiotropic
effects may increase the bioavailability of NO (measured by nitrite
levels) in obese women, especially those that carry the C allele of T-
786C polymorphism.

Material and methods
Subjects

The Institutional Review Board of Santa Casa de Belo Horizonte,
Brazil, approved the use of human subjects, and the subjects gave
informed consent. The procedures followed were in accordance
with institutional guidelines.

We recruited 25 obese women (BMI > 30 kg/m?) aged 19-
58 years from the local community. All women were Caucasians.
Obesity was defined according to the guidelines of the World
Health Organization. The body mass index (BMI) was calculated
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as the weight in kilograms divided by the squared height in meters.
The blood pressure (BP) measurement was taken three times from
all volunteers with subject in the seated position with the use of an
automatic blood pressure device.

The exclusion criteria included hypertension, dyslipidemia,
heart disease, diabetes mellitus, thyroid and renal diseases,
obstructive sleep apnea, pregnancy or breast-feeding, cigarette
smoking and chronic alcohol consumption.

Subjects received simvastatin for 6 weeks, 20 mg/day. Venous
blood samples were collected before and after treatment in
standard Vacutainer tubes (Becton-Dickinson, Brazil) containing
ethylenediaminetetraacetic acid (EDTA), after an overnight fast
(8-12 h). These tubes were immediately centrifuged at 2000g for
10 min at room temperature, and the plasma and serum samples
were stored at —80 °C until assayed.

Laboratory analyses

The glucose concentrations, hepatic enzymes and lipid parame-
ters (total cholesterol, triglycerides, and high-density lipoprotein
cholesterol) in plasma and serum, respectively, were measured
by routine enzymatic methods with commercial kits (Doles, Bra-
zil). The low-density lipoprotein cholesterol (LDL-C) concentration
was calculated according to the Friedewald formula. Insulin and C-
reactive protein (CRP) concentrations were determined with a
commercially available enzyme-linked immunosorbent assay
(ELISA) kit (Invitrogen Corporation). Plasma concentrations of
ADMA were measured with commercially available enzyme-linked
immunosorbent assay kits (DLD Diagnostika GmbH, Hamburg,
Germany) and endoglin levels were measured with commercially
available ELISA kits (R&D Systems) according to the manufacturer’s
instructions.

Measurement of plasma nitrite level and lipid peroxidation

Venous blood samples were collected into standard Vacutainer
tubes (Becton-Dickinson) containing heparin and immediately
centrifuged at 1000g for 3 min. Plasma aliquots were then immedi-
ately removed and stored at —70 °C until analyzed in triplicate for
their nitrite content using an ozone-based chemiluminescence
assay, as previously described [26]. Briefly, 200 pL of plasma
samples were injected into a solution of acidified triiodide, purging
with nitrogen in-line with a gas-phase chemiluminescence NO
analyzer (Sievers Model 280 NO Analyzer). Approximately 8 mL
of triiodide solution (2.0 g of potassium iodide and 1.3 g of iodine
dissolved in 40 mL of water with 140 mL of acetic acid) were
placed in the purge vessel into which plasma samples were
injected. The triiodide solution reduces nitrite to NO gas, which
is detected by the NO analyzer. The lipid peroxidation was assessed
by measurement of thiobarbituric acid-reactive substances
(TBARS), using the method described by Buege and Aust (1978) [3].

Genotype determination for the T-736C polymorphism in the5flanking
region of eNOS

Venous blood samples were collected and genomic DNA was
extracted from the cellular component of 1 ml of whole blood by
a salting-out method and stored at —20 °C until analyzed. Geno-
typing was carried out by high-resolution melting assay with
HRM primers, Type-It HRM PCR kit (Qiagen, Alameda, CA, USA;
cat 206542) and Eco Real-Time PCR System (Illumina, CA, USA).
The following primers were used: 5’AAGTGCCTGGAGAGTGCTG
GTGTA 3'(sense) and 5’ACCCTGTCATTCAGTGACGCACGCTT 3’ (anti-
sense). To validate the HRM genotyping, we performed in a set of
six samples a polymerase chain reaction (PCR) amplification
using the primers 5'-GGAGAGTGCTGGTGTACCCCA-3’ (sense) and

5’-GCCTCCACCCCCACCCTGTC-3’ (antisense) and PCR conditions as
previously described [24,25]. The amplified products were digested
with Mspl for at least 4 h, at 37 °C, producing fragments of 140 and
40 bp for the wild-type allele (“T” allele) or 90, 50, and 40 bp in the
case of a polymorphic variant (“C” allele). Fragments were sepa-
rated by electrophoresis in 12% polyacrylamide gels and visualized
by silver staining. All the genotypes are concordant in both
methods.

Statistical analysis

The clinical characteristics were compared by the Student
paired t test. Pearson’s correlations (r, P) were calculated for asso-
ciations between plasma nitrite, LDL, PCR and TBARS-MDA. The ef-
fects of eNOS polymorphism on nitrite levels were evaluated
comparing the plasma nitrite levels before and after treatment in
TT genotype or TC + CC genotypes using Student paired t test. A
probability value <0.05 was considered the minimum level of sta-
tistical significance.

Results

As expected, the treatment with simvastatin for 6 weeks re-
duced the total and LDL cholesterol significantly (P < 0.05, Table 1).
Importantly, SBP was also decreased with treatment (P < 0.05, Ta-
ble 1). In addition, simvastatin treatment increased significantly
the plasma nitrite levels in these obese women (75 + 28 nM versus
106 £ 31 nM, 42%; P=0.0008, Fig. 1A), and reduced significantly
TBARS levels (about 58%; 16+9.8nM versus 9.5+4.1nM,
P =0.0069, Fig. 1B). Regarding other biomarkers analyzed (hsCRP,
ADMA and endoglin), only hsCRP decreased significantly with
treatment (P < 0.05).

To verify a possible correlation between NO and oxidative
stress, we performed a correlation between nitrite and TBARS
before and after treatment (Fig. 1C and D). Importantly, we ob-
served a significant negative correlation before and after treatment
(r=-0.41,P=0.03 and —0.45, P = 0.03, respectively). Next, we per-
formed correlation among nitrite and those biomarkers that have
changed with treatment (hsCRP and LDL) towards identify possible
mechanism related to NO restoration. We correlated the LDL and
nitrite levels before and after treatment and lack of correlations
were found. Moreover, to evaluate the impact of inflammatory sta-
tus on nitrite levels, we performed a correlation among C-reactive
protein and nitrite levels and none correlation was found.

Finally, we evaluated whether the T-786C polymorphism of
eNOS may modulate the simvastatin effect on nitrite levels

Table 1

Clinical and biochemical parameters of subjects.
Parameters Treatment

Before After

BMI (kg/m?) 34.4+1.0 346+1.0
WC (cm) 104.6 £8.2 102.8+7.0
WHR 0.88 £0.07 0.87 £0.08
TC (mg/dL) 178.4 £36.6 146.5 +47.7*
HDL C (mg/dL) 449+13.2 47.8+14.2
LDL C (mg/dL) 115.2+£35.2 83.63 +44.3*
SBP (mmHg) 1204 +9.8 115.6 £11.9*
DBP (mmHg) 69.2+8.1 66.4+6.4
Triglycerides (mg/dL) 91.3+294 75.2 +28.7¢
Fasting glucose (mg/dL) 86.8+8.9 89.0+£9.0
Insulin (uLU/ml) 144+6.1 155+7.1
hsCRP (mg/dL) 0.16 £ 0.03 0.10 £ 0.06
ADMA (1uM) 1.46 +0.16 1.49+0.15
Endoglin (ng/mL) 193+33 19.1+2.1
BMI (kg/m?) 344+1.0 346+1.0
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Fig. 1. Plasma nitrite (A) and plasma MDA (B) levels in obese women treated with simvastatin before (basal) and after 45 days. Correlation between plasma nitrite and
plasma MDA in simvastatin-treated group before (basal, C) and after treatment (D). The bars indicate the means + SDM. *P < 0.05 vs. basal.

(Fig. 2). We observed increases in the levels in both groups of geno-
types (TT, n =10 and TC/CC, n = 15), however, the raise in C-allele
carrier was 60% while in TT, 44%. Interestingly, this increase was
2.16 folds when only the CC genotype was considered.

Discussion

The main novel findings reported here are: (1) simvastatin
treatment increases 42% the nitrite levels in obese women without
comorbidities; (2) simvastatin treatment decreases 58% the
TBARS-MDA levels in obese women without comorbidities, and
these levels are negatively correlated with nitrite concentrations;
(3) the T-786C polymorphism of eNOS modulates the nitrite levels
in response to simvastatin in these women.

NO is a major player in the regulation of the cardiovascular
system, and reduced NO bioavailability has been linked to
cardiovascular disorders [34]. In obesity, an impairment of NO
endothelium-dependent relaxation is observed and it seems that
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Fig. 2. Plasma nitrite concentrations in TT and TC + CC genotype groups before and
after treatment with simvastatin. The bars indicate the means + SDM. *p < 0.05 vs.
TT.

the association of decreased NO production and increased NO
scavenging might compromise NO bioavailability. In fact, a reduc-
tion of eNOS phosphorylation (ser 1177) via phosphatidylinositol
3-kinase/Akt results in decreased of eNOS activation. Moreover,
in obesity a systemic inflammatory state is found and it has been
demonstrated that some molecules, such as TNF-o, may impair
the endothelial function through inhibition of eNOS gene expres-
sion in endothelial cells [13].

In addition, uncoupled eNOS has been shown to generate super-
oxide anion which rapidly reacts with NO producing peroxynitrite,
a much more powerful oxidant. Indeed, many reports support
the idea that oxidative stress is involved in the pathophysiology
of cardiovascular diseases by reducing NO bioavailability and
consequently the levels of NO [12,18,35].

The correlation with NO bioavailability (nitrite) has never been
evaluated in obese women, and our results indicate an important
restoration of NO availability with simvastatin treatment. We ex-
pected to find correlation among nitrite and LDL or hsCPR. How-
ever, although we have biological mechanisms to support these
associations, as mentioned in introduction, these hypotheses have
failed suggesting that in vivo and in the current experimental
conditions (normolipidemic, normotensive, normoglycemic obese
women, limited number of subjects, method to evaluate the
biomarkers, among other) the effect of simvastatin on nitrite levels
is not related to these mechanisms. On the other hand, the antiox-
idant contribution to increase of nitrite levels is observed through
negative correlation between nitrite and TBARS-MDA, suggesting
that the increase of NO levels after simvastatin treatment may be
related partially with decrease of oxidant environment. Our results
confirm the well-known antioxidant effects of statins which in-
volve an inhibition of ROS-generating enzymes, such as NAD(P)H
oxidase [29].

To our knowledge, this is the first study to quantify nitrite in
adult obesity, and evaluated its response to statin. By the fact that
the NO is rapidly oxidized, a reliable quantification of its basal pro-
duction has been relatively challenging. One alternative to study
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its role on the cardiovascular system is by measuring its oxidation
products, nitrate and nitrite, as index of endogenous NO formation
[6]. The nitrate measurement may suffer the interference of NO
synthase independent factors, such as diet, fasting, clinical condi-
tion and smoking. On the other hand, it was demonstrated that
approximately 70% of plasma nitrite levels reflect NO synthase
activity in the endothelium and that the inhibition of NO synthase
activity was associated with corresponding decreases in circulation
nitrite concentrations [14], indicating the that nitrite might better
reflect NO bioavailability. The values found here indicate lower
bioavailability of NO in obese women compared with concentra-
tions found in healthy subjects (average of 200 nM [20]), support-
ing the correlation among obesity and cardiovascular diseases.

In accordance with our findings, different groups have found an
increase on circulating nitric oxide biomarker levels (nitrite and ni-
trate) after administration of statins to hypertensive patients [16]
and hypercholesterolemic patients [22]. Additionally, timing and
potency of statin treatment during myocardial infarction was
shown to attenuate oxidative stress, inflammatory activity, and
endothelial dysfunction [15]. However, these studies measured
NOx or Nitrite using the conventional Griess method, finding ni-
trite levels approximately 100 fold higher when compared to the
chemiluminescence method used in our study. Additionally, the
limit of detection for nitrite analyzed in plasma and blood by
chemiluminescence is approximately 1nM while the limit of
detection for biological samples in conventional ultraviolet spec-
trophotometry ranges from 1 to 5 mM, depending on the method
used [27]. This difference between methods (sensibility) allows
that small differences, such as polymorphism effect, may be
revealed. For this reason, the conventional Griess method does
not seem adequate for nitrite analyses, unless combined to Flow
Injection Analysis (FIA-Griess) which has a lower nitrite limit of
detection (5 nM), but it is still less sensitive than chemilumines-
cence (1 nM) [8,11].

The biological explanation of how the C-allele carrier respond
differently to simvastatin compared with subjects with the TT
genotype remains to be elucidated. However, a study showed that
fluvastatin inhibited the expression of replication protein Al
(RPA1) more strongly in the CC genotype compared with the TT
genotype [1]. This protein acts as a repressor of the transcriptional
activity of the eNOS gene when the C allele is present, therefore it
is possible that some statins may produce stronger increases in
eNOS gene transcriptional activity by inhibiting the expression of
RPA1 more strongly in the CC genotype compared with the TT
genotype. Moreover, other studies performed with healthy sub-
jects treated with atorvastatin demonstrated the T-786C polymor-
phism modulation on whole blood nitrite and inflammatory
markers [20,28].

In conclusion, our results demonstrated that treatment with
simvastatin in obese women without comorbidities associated in-
crease the plasma nitrite and reduce plasma TBARS-MDA concen-
tration, presenting a negative correlation between these levels.
Moreover, we show that obese women carrying the C-786 variant
of eNOS present higher increases in nitrite levels compared to with
women presenting TT genotype, suggesting that those women
could benefit more with the simvastatin therapy as regards endo-
thelial function.
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