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We show that extreme orbits, trajectories that connect local maximum and minimum values of one 
dimensional maps, play a major role in the parameter space of dissipative systems dictating the 
organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve 
three fundamental problems regarding the distribution of these sets and give: (i) their precise localization 
in the parameter space, even for sets of very high periods; (ii) their local and global distributions 
along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme 
orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in 
parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed 
logistic map. The formalism presented here can be extended to many other different nonlinear and 
dissipative systems.

© 2016 Elsevier B.V. All rights reserved.
After the seminal paper of Arnold [1] discussing the organi-
zation of the Arnold tongues, the interest and hence the under-
standing of windows of periodicity surrounded by chaotic regions 
in parameter planes has increased significantly. Thanks to the ad-
vances and contributions of Gallas [2], defining the shrimp-like 
terminology in parameter planes of dissipative systems, the subject 
becomes popular and many different important results were ob-
tained [3–6]. More advances including also spirals structures [7,8], 
these characterized via Lyapunov exponents, were also discussed 
[9,10]. The interest goes beyond the theoretical investigation and a 
recent experimental confirmation of such structures was discussed 
by Stoop et al. [11].

The complexity for a continuous set of periodic structure in pa-
rameter space can be described by using bifurcation theory [12]. 
However, this theory fails to explain the collective scenario, ex-
cluding Shilnikov systems since the spirals observed in the pa-
rameter planes of such systems are produced via homoclinic bi-
furcations [13–15]. There are indeed infinite cascades of complex 
structures scattered over the parameter space [16–18]. In regions 
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of quasiperiodicity, where the system is invertible, the organization 
of the Arnold tongues can be understood by the number theory [1]. 
However, there are few and limited explanations of the periodic-
ity for the majority of shrimps observed inside of chaotic regions. 
A discussion regarding the period-adding cascades can be found in 
Refs. [19–21] while, Lorenz [22], in his last paper, discussed a local 
organization for such structures in the Hénon map. Nevertheless, 
the scenario of the periodic regions is completely different from 
one system to the other, therefore being an open problem. As a 
main goal of given a full explanation of this open problem, a new 
approach and description is necessary to explore the global orga-
nization of complexity of such periodic structures in the parameter 
space. Our approach discussing the role of the extreme orbits fills 
this lack.

To investigate the organization of periodic structures, including 
shrimp-like ones, in the parameter plane, we introduce extreme or-
bits which are limited orbits that eventually compose superstable 
orbits (periodic orbits with very high stability). In such plane, ex-
treme orbits occur along curves that are able to find points where 
complex sets are formed due the crossing between superstable 
curves: Extreme curves are also crossing in these special inter-
ception points. We show that cascades of periodicity sets follow 
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these extreme curves in any scale of the parameter space, bring-
ing to light the full organization of complex sets of periodicity and 
shrimps.

1. Extreme orbits in one dimensional maps

Consider a general map

xn+1 = F (xn), (1)

with 2 or more parameters and x ∈ R. A period k orbit xn =
F (k)(xn) is a superstable orbit if d

dxn
F (k)(xn) = 0, where

d

dxn
F (k)(xn) =

k−1∏
t=0

F ′ (F (t)(xn)
)

, (2)

where F (0)(xn) ≡ xn [23]. Therefore, considering the first term 
F ′(xn) of the sequence of products, given by t = 0 in Eq. (2), we 
conclude that superstable orbits contain, at least, one of the solu-
tions {x∗

1, x
∗
2, . . . , x

∗
i , . . .} of

F ′(xn) = 0. (3)

Equation (3) may lead to classify the fixed point as an inflection 
point if F ′′(xn) = 0, but often corresponds to a local extreme points 
of the map, where F ′′(xn) �= 0. For this reason, we call k-extreme 
orbits, trajectories that connect solutions of Eq. (3) after k iterations 
(even when they are inflection points), i.e., orbits that contain x∗

i
and x∗

j , such that

x∗
i = F (k)(x∗

j ). (4)

If an extreme point is part of a periodic orbit, then it is a su-
perstable periodic orbit. Trivially, if i = j a k-extreme orbit is a 
period k superstable orbit since x∗

i = F (k)(x∗
i ). For i �= j, there is 

a superstable orbit when k1 and k2-extreme orbits, x∗
i = F (k1)(x∗

j )

and x∗
j = F (k2)(x∗

i ), respectively, occur at the same time, since 
x∗

i = F (k1)(x∗
j ) = F (k1)(F (k2)(x∗

i )) = F (k1+k2)(x∗
i ). In this case, the su-

perstable orbit has period k1 + k2.
In planar spaces of parameter, a general extreme orbit de-

scribes curves called extreme curves. According to the later discus-
sion, for x∗

i = x∗
j a k-extreme curve (set of parameters for which a 

k-extreme orbit exists) is a k-superstable curve. It is well known 
that when two superstable curves are crossing each other with 
a same superstable orbit, the parameter space changes drastically 
and a complex set of periodicity takes place in the surrounded 
region [7,11,24]. Our interest is to find how these complex sets 
of periodicity are organized in the parameter space. To do this, 
we follow k1 and k2-extreme curves wherein x∗

i = F (k1)(x∗
j ) and 

x∗
j = F (k2)(x∗

i ) with x∗
i �= x∗

j , respectively. A period k1 + k2 su-
perstable orbit is formed at each crossing point of these curves. 
Note that this superstable orbit is associated to both x∗

i and x∗
j by 

x∗
i = F (k1+k2)(x∗

i ) and x∗
j = F (k1+k2)(x∗

j ), respectively. Therefore, this 
crossing point is also crossing two (k1 + k2)-superstable curves as-
sociated to x∗

i and x∗
j and a complex set of periodicity is identified. 

As an application of the extreme curves theory we present two 
examples, an autonomous and a non-autonomous system, respec-
tively, the circle map and the time perturbed logistic map.

2. The circle map

The circle map is given by [1]

xn+1 = xn + m − l
sin(2πxn), (5)
2π
Fig. 1. (Color online.) Diagrams of l vs. m. In (a) and (c) the pictures are colored 
according to the Lyapunov exponent λ. The dynamic behavior is chaotic in the blue 
region (λ > 0) and quasiperiodic in the gray region (λ = 0). From orange (λ < 0)

to dark orange (λ � 0) the stability of periodic orbits grows to superstable orbits. 
Superstable curves meet in the center of the white rings. The red and the black 
dashed lines correspond to superstable curves associated to x∗+ and x∗− , respectively. 
In (b) and (d) the colors indicate the period of the orbits. Period 9 or greater are 
not distinguished. The colored curves are extreme curves and the solid circles are 
in the same position of the white rings.

where l and m are control parameters of the map. Diagrams of 
l ×m, according to the maximum Lyapunov exponent λ, are shown 
in Figs. 1(a) and (c). The behavior is periodic in the orange region 
(λ < 0) where the superstability is detached by the dark orange 
curves (λ � 0). The gray region in the bottom of picture (a) cor-
responds to quasiperiodic behavior (λ = 0). The periodic regions, 
Arnold tongues, are embedded in the quasiperiodic regime, while 
in the blue region chaos (λ > 0) is dominating, shrimps are ob-
served.

Here, solutions of Eq. (3) are written as

x∗± = ± 1

2π
cos−1

(
1

l

)
+ p, (6)

where p ∈ Z. Given there are infinite solutions, we focus in low 
values of p, starting the study with p = 0. Therefore, the ex-
treme curves are characterized by orbits wherein x∗+ = F (k1)(x∗−)

or x∗− = F (k2)(x∗+). In Figs. 1(b) and (d) there are some extreme 
curves, numerically determined, labeled as (k)± where k indicates 
the number of iterations and the subscript denotes the initial con-
dition of the orbit. Thus (1)+ indicates the extreme curve that 
starts at x∗+ and ends at x∗− after one evolution of Eq. (5). The 
colors indicate the period of the orbits according to the scale in 
the right side of the pictures. For the circle map, periodic orbits 
are found for x mod(1). Periods equal or larger than 9 are not dis-
tinguished of the chaotic region. In this diagram, one can observe 
that the extreme orbits (k1)+ and (k2)− are crossing each other 
where a complex set with period (k1 +k2) is observed. Additionally, 
comparing Figs. 1(c) and (d), we observed that the orange curve 
(1)− crosses the red one (1)+ exactly in the same point where 
the period 2 superstable curves are crossing each other. The ex-
treme curves (1)± and (2)± , which come from the Arnold tongues 
at m = ±1, are determined with p = ±1.

Superstable and extreme curves can be also determined analyt-
ically. The case x∗± = F (x∗±) leads to

m = ±
√

l2 − 1

2π
, (7)

where the positive (negative) solution is the superstable curve re-
lated to x∗ corresponding to the red (black) dashed line in 
+(−)
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Fig. 1(a). According to Eq. (7), both curves join each other at 
(m, l) = (0, 1), identified by the lower white ring in Fig. 1(a). Some 
previous results about superstable curves in the sine map are 
found in [25]. On the other hand, the case where x∗+ = F (x∗−) and 
x∗− = F (x∗+) results in

m = ∓
[

1

π
cos−1

(
1

l

)
−

√
l2 − 1

2π

]
, (8)

where the negative (positive) solution is the extreme curve related 
to x∗

+(−) and corresponds to the red (orange) line (1)+(−) that de-
parts from the central Arnold tongue in Fig. 1(b). These curves, 
according to Eq. (8), intercept each other in (m, l) = (0, 1) and 
(m, l) = (0, 2.5366), which are in the center of the white rings in 
Figs. 1(a) and (c) and the solid circles in Figs. 1(b) and (d). Note 
that, for (m, l) = (0, 1), we obtained the case x∗+ = x∗− [x∗± = 0, 
for p = 0 in Eq. (6)] and, therefore, a period k = 1 superstable 
orbit is formed. We remark that this parameter set is the same 
point where the superstable curves [red and black dashed lines 
in Fig. 1(a)] meet each other. Moreover, for (m, l) = (0, 2.5366), 
it is obtained the case x∗+ �= x∗− (x∗± = ±0.1855), and a period 
k1 +k2 = 2 superstable orbit is formed. Figs. 1(c) and (d) show that, 
in this point, the superstable curves of period 2 are also crossing. 
Both results are in complete agreement with the previous discus-
sion about extreme curves.

3. The time perturbed logistic map

The time perturbed logistic map is written as [26,27]

xn+1 = xn R(1 + bnε)(1 − xn), (9)

where bn can be chosen between bn = (−1)n or bn = (−1)n+1, so 
that it can be set as b0 = 1 or b0 = −1 for a given initial condi-
tion x0. The parameter ε controls the amplitude of the perturba-
tion and R is a control parameter of the system. For R > 0 the 
mapping is dissipative and the system presents attractors. xn is a 
dynamical variable evaluated at the nth iteration of the mapping. 
For ε = 0 the traditional second degree logistic mapping is recov-
ered. Since from May [28], this mapping has been used to move 
forward an avalanche of extremely important results in dynamical 
systems and theory of nonlinear systems.

In the time perturbed logistic map, orbits of period k are ob-
tained for xn+k = xn and bn+k = bn . For odd k, 

∣∣bn+k − bn
∣∣ = 2

whereas for even k we have bn+k −bn = 0. Thereby, Eq. (9) presents 
only periodic orbits with even period. Thus, solutions of Eq. (3) are 
written as

x∗± = 1

2
, (10)

where, here, the subscript indicates the signal of b and x∗− =
F (k1)(x∗+) and x∗+ = F (k2)(x∗−) are mappings of k-extreme orbits. 
Then, a k-extreme curve is a k-superstable curve for even values 
of k.

The 1-extreme curve is obtained substituting x∗± in xn and xn+1
of Eq. (9), yielding in

ε = 1

b

(
2

R
− 1

)
. (11)

These curves are shown in Fig. 2(b) labeled as (1)− (blue curve) 
and (1)+ (cyan curve) for x∗− and x∗+ , respectively. The number 
inside of the parenthesis identifies the 1-extreme orbit.

The 2-extreme curve is a 2-superstable curve, since k is even, 
and can be obtained considering the second iteration of system (9),

xn+2 = uvxn

[
(1 − xn) − xnu(1 − xn)

2
]
, (12)
Fig. 2. (Color online.) Plot of the parameter space ε vs. R where the colors define: 
(a) Lyapunov exponents; (b) Periods. The lines in (b) represent the k-extreme orbits. 
Initial conditions with x0 = 0.4 were used.

with u = R(1 + bε), v = R(1 − bε). Thus,

R = u + v

2
and ε = u − v

b(u + v)
. (13)

Applying the superstability condition xn+2 = xn = x∗± to Eq. (12), 
we get v = 2

u(1− u
4 )

. The 2-superstable curves are obtained vary-

ing u to determine v and taking these values to Eq. (13). Fig. 2(a) 
shows the 2-superstable curves (dashed red lines).

The 3-extreme curves are obtained substituting x∗± in xn and 
xn+3 in the map resulted after the third iteration of system (9). 
The parameters R and ε are determined by Eqs. (13) where now,

u = 1

2q(1 − q)
and v = 4q

u(1 − u
4 )

. (14)

The 3-extreme curves are obtained changing q, to calculate u
and v , and substituting in Eqs. (13). These curves are shown in 
Fig. 2(b) colored in red [(3)+] and in green [(3)−]. The other ex-
treme curves (k)± are obtained numerically.

Computing the analytical results we can verify, by a direct anal-
ysis of Eq. (11), that the 1-extreme curves (1)± intercept each 
other at (R, ε) = (2, 0). This is the same point where the two 
2-superstable curves intersect, as can be verified both analytically, 
for u = 2 (which implies v = 2) in Eqs. (13), and numerically, as 
shown in Fig. 2(b). Finally, considering q = 1

2 in Eqs. (14) to cal-
culate u and v and, substituting in Eqs. (13), we obtain that the 
curves (3)+ and (3)− are also crossing the point (R, ε) = (2, 0). 
Consequently, a superstable orbit of period 6 is formed. Since a pe-
riod 2 orbit is also periodic of 6 iterations, the results are in total 
agreement with the discussion in section 1. For the same reason, 
all extreme orbits cross this point [see Fig. 2(b) for some exam-
ples].

When two extreme orbits (k1)± and (k2)∓ intercept each other, 
a period k = (k1 + k2)-superstable orbit is observed. In Fig. 2(b), 
periodic regions are highlighted in colors and the curves (1)− and 
(3)+ intersect each other in a region of periodicity 4 (1 + 3 of the 
two 1- and 3-extreme curves), exactly in the same point where the 
superstable curves are crossing each other in Fig. 2(a). The same is 
true for the intersections between curves (3)− and (5)− with the 
curve (3)+ . An enlargement of region A shown in Fig. 2(a) pro-
duces Figs. 3(a) and (b). Here, one sees that the curve (3)+ gives 
the organization of the periodic regions in this cascade. The inter-
ception of the curves (3)+ and (5)− happens exactly in the peri-
odic region with period 8 (blue region). The extreme curves (7)−
and (3)+ produce a periodic region with period 10 [green region 
in Fig. 3(b)]. The important result, confirmed in our simulations, 
is that the interception of two extreme curves with different initial 
conditions always produces a periodic region. Such observation can 
be continually confirmed noticing the interception between curve 
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Fig. 3. (Color online.) Plot of the parameter space ε vs. R where the colors define: 
(a) Lyapunov exponents; (b) Periods. The lines in (b) represent the k-extreme or-
bits. Initial conditions with x0 = 0.4 were used for fixed α = ω = 1. (a) and (b) 
correspond to an enlargement of region A of Fig. 2(a).

(3)+ with curves (9)− and (11)− , which show the position of pe-
riodic regions with periods 12 and 14. Many other extreme orbits 
exist in the parameter space, however we decided to show only 
these curves. The remarkable conclusion is that extreme curves are 
not limited to organize cascades, but they introduce the topologi-
cal characteristic of the superstable orbits in the whole cascade. In 
this case, all superstable orbits have incorporated in their trajecto-
ries the 3-extreme orbit.

The curves (3)+ and (3)− in Fig. 2(b) intercept each other in 
the periodic region with period 6. An enlargement of region B 
from Fig. 2(a) shows it in details, as can be seen from Figs. 4(a) 
and (b). At this figure, one sees that (3)+ and (3)− align different 
cascades of periodic regions. (9)+ and (9)− , as expected, intercept 
each other at the same point of (3)+ and (3)− , and also align some 
cascades. These cascades of complicate structures of periodicity are 
largely observed without connection between them [16,17,20,29]. 
Here, the 9-extreme orbits associate clearly these cascades with 
the shrimp characterized by period 6 [brown region in Fig. 4(b)] 
in the same way as the cascades organized by (3)+ are associated 
with the complicate set of periodicity 2 shown in Fig. 2(b).

In Figs. 4(c) and (d), which are an enlargement of the rectan-
gle shown in Fig. 4(a), it is shown with details the cascades that 
curves (3)+ and (9)− create. An important result here is to ob-
serve in Fig. 4(d) that the interception of curves (9)− (blue line) 
and (15)− (orange line) does not generate the center of a pe-
riodic region, it is intercepting only one superstable curve with 
periodicity 6 (15 − 9) (brown region). To explain this, consider that 
x∗+ = F (k1)(x∗−) and x∗+ = F (k2)(x∗−), with k2 > k1. Then, F (k1)(x∗−) =
F (k)(x∗−) = F (k2−k1)+k1 (x∗−) = F (k2)(F (k2−k1)(x∗−)) and we conclude 
that x∗− = F (k2−k1)(x∗−) which is a superstable orbit period k2 − k1.

4. Summary and conclusions

Sets of periodicity that are continuously connected (where the 
periodic orbit changes smoothly) can be identified by the crossing 
of superstable curves as shrimps connected along spirals [10]. This 
is different for discrete (non-connected) sets of periodicity. For this 
case, we have shown that extreme orbits play a major role in the 
organization of periodic structures in the parameter space of one-
dimensional dissipative mappings. Firstly, they localize accurately 
a complex structure of periodicity, even for high period orbits. 
They also highlight where complicate periodic regions exist giving 
the directions of cascades of periodic regions and exposing their
global distribution in the parameter space. The extreme curves 
give the possibility to understand deeper the organization of pe-
riodicity. Here we connect two cascades organized by 9-extreme 
orbits with a shrimp via a crossing the 3-extreme orbits. There-
fore, the presented discussion is an important tool to investigate 
both global and local organizations of complex structures of peri-
Fig. 4. (Color online.) Plot of the parameter space ε vs. R where the colors define 
the Lyapunov exponents in (a) and (c); Periods in (b) and (d). The lines in (b) and 
(d) represent the k-extreme orbits. The parameter spaces in (a) and (b) correspond 
to an enlargement of region B of Fig. 2(a). Plots (c) and (d) correspond to a enlarge-
ment of the rectangle shown in (a). Initial condition was x0 = 0.4.

odicity in parameter space. As applications, the circle map and also 
a time perturbed logistic map were studied. It is worth to com-
ment that there are systems where complicate sets of periodicity 
do not show intersections between superstable curves, commonly 
in higher dimension [5], which is an obstacle in applying the con-
cept of extreme orbits. However, the scenario around these sets 
has several similarities with the ones described here.
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