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Within an adiabatic approximation to the three-body Coulomb system, we study the strength of the
leading-order conformaly invariant attractive dipole interaction produced when a slow charged particle q3

�with mass m3� is captured by the first-excited state of a dimer �with individual masses and charges �m1 ,q1�
and �m2 ,q2=−q1��. The approach leads to a universal mass-charge critical condition for the existence of
three-body level condensation, �m1

−1+m2
−1� / ��m1+m2�−1+m3

−1�� �q1 / �24q3��, as well as the ratio between the
geometrically scaled energy levels. The resulting expressions can be relevant in the analysis of recent experi-
mental setups with charged three-body systems, such as the interactions of excitons, or other matter-antimatter
dimers, with a slow charged particle.
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I. INTRODUCTION

In view of the actual experimental possibilities, we recall
some general characteristics of three-body charged systems
with arbitrary masses and two different charges, in order to
derive the charge-mass dependence of the leading-order
strength of the attractive dipole interaction produced by a
bound two-body subsystem �with individual charges q1 and
q2=−q1� in the third particle with charge q3. We start our
investigation by considering the old and well-known case of
the interaction of a positronium �Ps, a bound state of an
electron e−�−e and a positron e+�+e, where e is the abso-
lute value of the electron charge� with a spectator electron.
This is the ionized negative positronium �Ps−�. Early calcu-
lations, by Wheeler in 1946 �1�, have already predicted a
bound state for such system, confirmed by Mills in 1981 �2�.

Further investigations on the properties of e−e+e− system
�3–6�, as well as on other Coulombic three-body systems,
since 1960s up to recent years �7–11�, have also been moti-
vated by the increasing interest in matter-antimatter interac-
tions �12�. Up to 1995, the theoretical and experimental ad-
vances in understanding Coulombic three-body systems and
matter-antimatter interaction can be found, respectively, in
two reviews �10,12�. As emphasized in �12�, small number of
leptons, electrons, muons and their antiparticles, are impor-
tant to test fundamental theories of quantum electrodynam-
ics; and systems with small number of protons and antipro-
tons can also provide relevant tests of the strong interaction.
The actual interest on the properties of few-body charged
systems is evidenced by the recent report on the production
of a molecular dipositronium Ps2 �13�. For a recent review,
particularly concerned on the stability of quantum charged
few-body systems, see �11�. In Ref. �4�, Rost and Wintgen
explored and classified the Ps− dynamics considering the ob-
servation that it has a molecular structure similar to the ion-
ized hydrogen molecule H2

+��pe−�p�. They have also reported
the existence of a 1S resonance pattern unknown in three-
body Coulomb systems. Such results, combined with results
obtained for the hydrogen ion H−��pe−�e−�, lead them to sug-

gest the existence of a similar resonance spectrum for all
ABA Coulomb systems with charge and mass ratios such that
�qA /qB�=1 and mA /mB�1, respectively. More recently, by
considering a molecular adiabatic �MA� treatment for the
Ps−, it was also reported an accumulation of three-body reso-
nances above the two-body threshold �5�.

Surprisingly, besides the number of recent studies con-
cerned with few-charged quantum systems �11�, and the rec-
ognized relevance of a mass-charge universal relation in
view of actual experimental facilities �4�, a particular
straightforward condition relating charges and masses for a
general three-body system �with arbitrary masses� is still
missing in the literature. In the case of exotic molecular
three-body systems, where the subsystem is hydrogenlike
�with e− replaced by �− or �−�, it was shown in �14� that a
relation for the structure of the spectrum can be obtained in
the frame of Born-Oppenheimer approximation, following
spectral properties of long-ranged 1 /R2 interactions �15�,
which are known to be conformally invariant �16,17�.

The study of resonance patterns, which can occur in few-
body interactions, became very relevant in trapped ultracold
atom experiments, as the presence of several resonances at
experimentally accessible magnetic fields can allow precise
tuning of atom-ion interaction �18�. Theoretical predictions
such as the increasing number of three-body bound states
when the two-body scattering length goes to infinity, known
as Efimov effect �19�, can actually be checked experimen-
tally in ultracold atomic laboratories �20�. The spectrum of
Efimov states, exhibiting a geometrical scaling, is generated
by an attractive effective potential proportional to 1 /R2,
where R is the distance of one of the particles to the center of
mass of the remaining pair, considering short-range two-
body interactions �19,21� �on the scaling mechanism and
conformal invariance behind this effect, see �16,17,22��. As it
will be shown, the long-ranged Coulombic interactions, for
certain configurations of three-charged particles, can exhibit
the same kind of effective interaction.

For recent relevant applications in ultracold laboratories,
of a study with three-charged systems, we can mention the
possibility of exciton �23,24� or positronium �25,26� con-
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densed gas interacting with a charged particle. In case of
excitons �electron-hole bound pair in a semiconductor�, the
electron and hole in the interacting pair can acquire effective
individual masses distinct from the free-electron mass �24�.
When interacting with a slow charged particle, a charge-mass
dependent resonance pattern should emerge. So, well-based
simple charge-mass conditions can be very helpful to analyze
the relation between effective masses and the observed spec-
trum.

Motivated by the above discussion we show examples in
atomic physics of charged three-body systems in which ap-
pears an effective long-range 1 /R2 potential, where the
strength is modulated by the arbitrary individual masses and
charges, restricted to the condition that the bound subsystem
is neutral. A robust mass-charge critical condition is derived
for the weakly bound three-body spectrum below the state
n=2 of the subsystem, in case of arbitrary masses. Here, we
should observe that the degeneracy between the 2S and 2P
levels of the chargeless two-body subsystem is broken by the
dipole potential. When it is attractive it rises to the spectrum
below �4� that we consider; the repulsive part is responsible
for a set of resonances above the 2S−2P state �5�. The ap-
proach is strictly valid for the cases where the dimer is made
up with pointlike charged particles. However, it can also be
taken as a first approach when the charged particles are more
complex objects.

The basic equations of our formalism, in the adiabatic
approximation, are given in the next section, which lead to
the effective 1 /R2 long-range interaction and a spectrum
geometrically scaled. In Sec. III, after analyzing the range of
values for the strength of the effective interaction in terms of
the particle masses, we illustrate the main results with ex-
amples. A general discussion on the applicability of the
present approach and a summary of our conclusions are pro-
vided in Sec. IV.

II. FORMALISM

In this section, we present the basic formalism for a gen-
eral charged three-body system, where the masses
�m1 ,m2 ,m3� can be arbitrary, and the charges are such that
we have a bound chargeless two-body subsystem �q2=−q1�
interacting with a slow charged particle q3 �the charges are in
units of the absolute value of the electron charge �e��. The
system Hamiltonian is given by

H = −
�2

2�R
�R

2 −
�2

2�r
�r

2 + V�r�,R� � , �1�

V�r�,R� � �
q1q2

r
+

q2q3

� �r

m2
r� + R�� +

q3q1

� �r

m1
r� − R�� , �2�

where r� is the distance vector between the charges q1

and q2 and R� the distance vector from the center of mass of
the subsystem to the third �spectator� particle. Here, we de-
fine �r as the reduced mass of the subsystem �q1q2�,
�r��12��m1

−1+m2
−1�−1; and �R the corresponding reduced

mass of the subsystem �q1q2� interacting with the third
particle: �R���12�3���m1+m2�−1+m3

−1�−1.

A. Adiabatic approximation for three charges

The adiabatic approximation implies in solving a coupled
equation for the total wave function ��R� ,r��=��R� ,r��	�R� �,
such that we first solve the Schrödinger equation in the vari-
able r� for the wave function ��R� ,r��, using R� as a parameter,
with energy solution U�R� �,

�−
�2

2�r
�r

2 + V�r�,R� �	��R� ,r�� = U�R� ���R� ,r�� . �3�

Next, the total energy E is given by

�−
�2

2�R
�R

2 + U�R� �		�R� � = E	�R� � . �4�

The separation of the Schrödinger equation by means of the
adiabatic approximation is justified in case the energy of the
relative motion of the center of mass of the two-body sub-
system, with respect to the third particle, is small in compari-
son with the subsystem binding energy.

Here, the main interest is the behavior of U�U�R� � as R
goes to infinity. The case where the third particle interacts
with the �q1q2� subsystem. Using the expansion for the Cou-
lomb potential, with �R� �
 �r�� and Pl the usual Legendre poly-
nomials of order l, we have

U��R� ,r�� = 
−
�2

2�r
�r

2 +
q1q2

r
+

q3

R
�
l=0
�q1�− �rr

m1R
	l

+ q2� �rr

m2R
	l
Pl�r̂ . R̂����R� ,r�� . �5�

Assuming a neutral subsystem �q1=−q2�, the leading-order
term �conformally invariant� in the asymptotic expansion
R→� is given by

U��R� ,r�� = 
−
�2

2�r
�r

2 −
q1

2

r
−

q1q3r

R2 P1�cos �����R� ,r�� ,

�6�

where � is the angle between the vectors r� and R� . The next-
to-leading-order contribution to the adiabatic potential
is O�R−4�P3�cos �� if m1=m2, otherwise a term like
O�R−3�P2�cos �� appears, which however does not contribute
due to parity conservation. Note that the higher-order terms
in Eq. �5� break the conformal invariance.

The interaction between the third particle and the sub-
system �q1q2� at large distances is dominated by a dipole
potential, which breaks the degenerated character of the op-
posite parity states. According to Ref. �3�, there is an accu-
mulation of resonances below the threshold of the n=2 ex-
cited state of the positronium negative ion, due to an
attractive dipole interaction, which appears as the leading
asymptotic term of the potential at large hyperspherical ra-
dius. Therefore, it is reasonable to assume that for large val-
ues of R the first low lying levels of the �q1q2�-subsystem,
i.e., the first-excited S and P states are weakly perturbed by
the dipole interaction and the degeneracy is broken. For
R→�, the distorted wave function of the �q1q2� subsystem is
a linear combination of atomic orbitals �LCAOs�, composed
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by ��R� ,r��=a�R�
�20��r�Y00�r̂�+b�R�
�21��r�Y10�r̂�, where
Ylm�r̂� �with lm=00,10� are the usual spherical harmonic
function and 
nl �with nl=20,21� are the two-body hydro-
genic like wave functions for the charges q1 and −q1. Insert-
ing ��R� ,r�� in Eq. �6�, we obtain

U�R� = − E1 �
q1q3

R2 �K� , �7�

K �� d3r
20
� �r�Y00

� �r̂�rP1�cos ��
21�r�Y10�r̂�

= − 3��2/��rq1
2�� , �8�

where E1 is the energy of the first-excited state of the sub-
system �q1q2�. The two possible signs in Eq. �7� come from
the diagonalization of the eigenvalue Eq. �6� in the 2S-2P
subspace.

From Eqs. �4�, �7�, and �8�, we obtain the corresponding
equation for the third particle motion related to the center of
mass of the subsystem,

�−
�2�R

2

2�R
� 3

�2q3

�rq1

1

R2		 = �E + E1�	 �
�2

2�R
E	 . �9�

Here we note how the degeneracy between the 2S and 2P
levels of the chargeless two-body subsystem is broken by the
dipole potential. The motion of the wave function
	�	�R� is given by an attractive type potential. The effect
discussed in Ref. �4� of level condensation near the Nth state
of positronium is analogous to this situation, as the long-
range attractive potential 1 /R2 is responsible for forming
such resonances. The other solution to U�R� gives a long-
range repulsion which means that, asymptotically, no bound
states can be formed. This repulsive 1 /R2 interaction is re-
sponsible for the set of resonances above the 2S-2P states
�5�. Focusing our approach in the weakly bound states of Eq.
�9�, we end up with an attractive dipole interaction, � /R2,
generated by the particles with masses m1 and m2, where the
dimensionless � is given by

� = 6�q3

q1
��R

�r
= 6�q3

q1
� �m1

−1 + m2
−1�

�m1 + m2�−1 + m3
−1 . �10�

Now, to solve Eq. �9�, we employ a well-known result de-
rived for attractive dipole potential �see �15��, which implies
in a spectrum of infinite weakly bound levels E� below
E=−E1, if ��1 /4; otherwise, no other bound state. So, the
following condition emerges for the existence of such spec-
trum:

�m1
−1 + m2

−1�
�m1 + m2�−1 + m3

−1 �
1

24
�q1

q3
� . �11�

In order to examine the condition suggested in �4� for the
occurrence of level condensation, we restrict the above to an
ABA system with �qB�= �qA�: If m3=m1=mA and m2=mB, we
can easily verify that in all the cases we will have ��1 /4,
implying in a level spectrum below the state n=2 of the
subsystem �AB�. The mass ratio mA /mB in this case can
only control the level spacing of the spectrum. However, if

the bound subsystem is of a particle and antiparticle
�mA�m1=m2�, with the captured particle having mass mB,
the condition ��1 /4 will give us mA /mB�47.5. This can be
exemplified with the possible configurations of three-body
systems with protons, electrons and their antiparticles, such
as �e−e+�p, �e−e+�p̄, and �p̄p�e�, where level spectrum is ex-
pected to occur only for �e−e+�p and �e−e+�p̄.

B. Geometrical scaling

Equation �11� gives us a quite general relation which al-
lows infinite number of energy levels that scale geometri-
cally in most of three-body systems involving the usual
stable charged particles and their antiparticles. The number
of states are very dense when �
1 /4, as the ratio
between the levels is shown to be given by �14,15�
E�−1 /E�=exp�2� /��−1 /4�, implying in the geometrically
scaled energy levels

E� = E0 exp�− 2��/�� − 1/4� , �12�

where E0 is a reference energy, solution of Eq. �9�, deter-
mined by nonadiabatic effects. Observe that Eq. �9� is not
well defined for small values of R �of about few Bohr radii�,
leading to the collapse of the reference ground-state energy
�15�. Therefore, the dipole potential must be modified at
some short distance, which in our case corresponds to a re-
gion where nonadiabatic effects start to be relevant.

Two other important remarks related to Eqs. �10� and
�11�: �i� the strength of the dipole interaction, as well as the
corresponding level ratio E�−1 /E� �when the occurrence of
infinite number of levels is possible�, depend only on the
ratio of reduced masses ��12�3 /�12 and ratio of the charges
�q3 /q1�, implying that systems such as �e−e+�e�, �K−K+�K�,
or �pp̄�p have the same � and energy ratios E�−1 /E�. �ii�
Another relevant characteristic of Eq. �10� is its dependence
on the specific three-body configuration and identification of
the spectator particle: Let us consider two possible configu-
rations for the same three-body system, where m3�m1 and
m3�m2 and q3=q2=−q1. With ����ij�k for the configuration
�mimj�mk, we obtain ��12�3��13�2�36. An obvious example is
that of �pe−�p̄ or �p̄e+�p, where ��3�mp /me�
1 /4 should
lead to a dense level spectrum below the n=2 state of the
subsystem. For the counterpart configuration, �pp̄�e�,
�=12�me /mp��1 /4, a similar spectrum is not expected to
occur.

III. RESULTS AND EXAMPLES

Figure 1 illustrates our conclusions for the values of � as
a function of the mass ratios m2 /m1 and m3 /m1, taking
m2�m1 and �q3�= �q1�. The critical value of �=1 /4 is shown
by the dashed straight line. As observed, only in the cases
that 24�m1 /m3�47.5 it is possible to reach the value
�=1 /4 for some ratios of m2 /m1. There is no infinite number
of levels in case that m1 /m3�47.5, independently of m2 /m1.
When m1 /m3=47.5, the only solution is m2=m1; and, when
m1 /m3�24, ��1 /4 for all choices of m2 and m1.

A few examples of three-body charged systems, with the
corresponding values of � and level ratios E�−1 /E� are given
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in Table I. As verified, level condensation below the n=2
state of the subsystem �shown in the first two lines of the
table� is not possible when the mass of the captured particle
is much smaller than the lighter particle of the subsystem. In
this table we also present a few results motivated by the
actual interest in matter-antimatter interaction, and also mo-
tivated by experiments with exotic mesonic atoms �where
protons �p�, deuterons �d� or tritons �t� are combined with

muons ���, kaons �K� or pions ����. Our �p�−�p and �d�−�d
results correspond to the ones given in �14�. Obviously, the

same results apply, respectively, for �p�−�p̄ and �d�−�d̄.
Table I displays the striking difference of such results when

compared with the ones for �pp̄��− and �dd̄��−. Related to
Ps− we should note that our approach gives �=8, to be com-
pared with �=7.06 obtained by Botero �3� in a more in-
volved calculation.

IV. DISCUSSION AND SUMMARY

Before our conclusions, it is relevant a discussion on the
applicability of the Born-Oppenheimer approximation to the
particular configuration of excited states in three-charged
systems. The separation of variables approximation, ex-
pressed in the assumption of a product form for the wave
function of the three-body system, considered in Eq. �4�,
breaks down when the third particle gets close to the neutral
subsystem, with R of the order of the corresponding Bohr
radius. For some three-body systems, as for example systems
with proton and antiproton, nuclear force effects can also be
relevant to be considered in addition to Coulomb effects.
While in the asymptotic region the excited-state three-
charged wave function can be described well by the Born-
Oppenheimer approximation, as the size of the system gets
smaller the magnitude of nonadiabatic effects is enhanced. In
this case, in order to go beyond the adiabatic approximation,
the appropriate description of the wave function will consist
of an expansion with several higher-order terms, such that
one cannot disregard the coupling between them. However,
once one large three-charged state is formed with a size
much larger than the dipole radius, i.e., with the wave func-
tion having major contribution from the asymptotic region,
the nonadiabatic effects can be translated to a boundary con-
dition on the wave function, at a radius characteristic of the
region where nonadiabatic effects start to be important,
which can be roughly estimated to be of the order of few
Bohr radii. Within our present approximation we cannot ob-
tain the first large bound excited state that spreads out in the
asymptotic region of the dipole potential, as its energy is
determined by nonadiabatic contributions. But, once this en-
ergy is known, the energies of the other large excited states
follow the expression derived from the dipole interaction,
emerging the geometrically scaled pattern given in Eq. �12�.

In summary, considering a charged particle captured by a
dimer �bound two-body subsystem�, within an adiabatic ap-
proximation to the Coulombic three-body system with arbi-
trary masses, we derived the strength of the attractive dipole
interaction with the critical condition for level condensation
below the first-excited state of the dimer, as given in Eqs.
�10� and �11�. The adiabatic approach is justified when the
energy of the relative motion of the dimer center of mass,
with respect to the third particle, is small compared to the
subsystem binding energy; and physically reasonable for a
weak dipole potential interacting with the spectator particle.
The particular straightforward charge-mass expression ob-
tained for the leading term of the dipole interaction, as well
as the condition to occur the geometrically scaled energy
spectrum, can be very useful as an insight into the analysis of

1 5 9 13 17 21
m2/ m1

0.1

0.2

0.3

0.4

�

m1/m3= 24, 25, 27, 30, 35, 40, 47.5

24

47.5

40

35

30

27

25

FIG. 1. �Color online� Behavior of � in terms of the ratio
m2 /m1. Each plot refers to a different ratio m1 /m3, as given inside
the figure. ��1 /4 is satisfied for all values of m1�24m3; and
��1 /4 for all values of m1�47.5m3.

TABLE I. Strength � of the attractive dipole interaction �in di-
mensionless units� generated by the charges q1 and q2=−q1, when
capturing a charge q3, for �q3�= �q1� and different mass configura-
tions. In the examples, the estimated value for � is the same for the
cases with the corresponding antiparticle configurations. Estima-
tions of level ratios E�−1 /E� are given when ��1 /4. The masses m
and M are for arbitrary defined particles, with condition M 
m.

System � E�−1 /E� System � E�−1 /E�

�pp̄�e� 0.0065 ��+�−�e� 0.058

�K+K−�e� 0.012 �p�−�e� 0.025

�m−m+�m� 8 9.55 �M�m��m� 6 13.74

�e−e+�p 24 3.63 �e−e+��� 23.75 3.66

�p�−��� 6.06 13.55 �pK−�K� 6.81 11.63

�pe−�p 5508 1.09 �pe−��� 1428 1.18

�pp̄��� 1.66 198.62 �pp̄��� 1.28 488.34

�pp̄�K� 5 17.87 �pp̄�d 12 6.25

�dd̄��� 0.66 1.8�104 �tt̄��� 0.44 1.8�106

�p�−�p 24.77 3.56 �p�−�p 31.22 3.09

�d�−�d 44.89 2.56 �d�−�d 57.82 2.29

�t�−�t 65.04 2.18 �t�−�t 84.45 1.98

�t�−�p 32.13 3.04 �t�−�p 41.84 2.65

�p�−�t 38.49 2.76 �p�−�t 48.11 2.48
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three-body charged systems with different mass relations. Of
particular interest is the use of such approach to study inter-
action properties of matter and antimatter. Another relevant
application can be found in the interaction of excitons with
electrons in semiconductors �23�. As the electron and hole in
the interacting pair of excitons can acquire effective indi-
vidual masses distinct from the free-electron mass �24�, gen-
eral charge-mass conditions can be very helpful to analyze
the relation between effective masses and the observed spec-
trum. We finally note that the present approach can be very
useful to study capture reactions of a charged particle by a
neutral two-body system, in view of possible three-body con-
figurations. From a configuration without spectrum below
the state n=2, one can generate a system with very dense

spectrum by exchanging the spectator particle with the same
charge particle of the neutral system. An exchange mecha-
nism can change drastically the observed spectrum: for
�e−e+�p we have E�−1 /E�=3.63 �levels below the first-excited
state of Ps�, whereas for �e−p�e+ we have E�−1 /E�=13.74
�levels below the first-excited state of the hydrogen atom�.
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