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Monte Carlo renormalization group with evolution in the space of parameters
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Using data from a single simulation we obtain Monte Carlo renormalization-group information
in a finite region of parameter space by adapting the Ferrenberg-Swendsen histogram method.
Several quantities are calculated in the two-dimensional N 2 Ashkin-Teller and Ising models to
show the feasibility of the method. We show renormalization-group Hamiltonian flows and
critical-point location by matching of correlations by doing just two simulations at a single tem-
perature in lattices of different sizes to partially eliminate finite-size effects.

The efficiency of Monte Carlo simulations recently
received a boost from the work of Ferrenberg and
Swendsen, ' who have brought to our attention the fact
that data from a single simulation can be used to obtain
thermodynamic information on a region in parameter
space. Applications have been rapidly provided by several
groups.

The method rests on the fact that, in a finite volume,
probability distributions, of any reasonable spin function
of thermodynamic interest, are analytic functions of the
coupling constants. These probability distributions de-
pend mainly on a geometrical part which can be thought
of as an entropic contribution and an energylike part. The
former is quite dii%cult to calculate analytically. Howev-
er, since it does not depend on coupling constants, once in-
formation about it is obtained in a simulation at a point in
parameter space, it can be used to infer the probability
distribution in other points in parameter space, since the
energylike dependence in the couplings is quite simple.

Once again it is clear that much more than simple aver-
ages of the thermodynamic quantities are available from a
single Monte Carlo run. Another instance where this fact
is readily understood is the Monte Carlo renormalization
group (MCRG). Our aim in this Rapid Communication
is to show that these two methods can be coupled to give
the typical information available from the MCRG study
from runs performed at a single temperature.

It could be said that not much is gained from this
method because in order to have accuracy in the extrapo-
lations one needs extremely high statistics so that the tails
of the distributions contain sufficiently accurate informa-
tion. This is somewhat true if one is interested in big ex-
trapolations outside the scaling region, but not so much in
the context of the renormalization group. We will be
looking at the vicinity of a critical point. For tempera-
tures very close but not exactly critical, there already will
be quite large eA'ects in renormalized coupling constants.

We will look at the Bows, in coupling constant space,
of the Hamiltonian, induced by renormalization-group
transformations. For simplicity, the method will be tried
first in the two-dimensional (2D) Ising model. Normal
MCRG Bows and exponent determination use as con-
sistency checks systematic increase of the truncation
basis. We are not able to do that due to our computation-
al constraints, and thus only a base of two operators for
the even sector is used in the calculation. The point we
want to make, nevertheless, is that this type of calculation
is possible, leaving for future applications a more exhaus-
tive treatment. We then turn to the problem of precisely
determining critical couplings by finding the value of the
coupling constant at which correlation functions at
different renormalization stages are equal, thus signaling
a fixed point. In both cases a two lattice method is used to
decrease finite-size efkcts. This means that we really per-
form, instead of one, two simulations. This is comparable
to the amount of work necessary for just a single tempera-
ture using the conventional ways. Critical coupling deter-
mination is a much simpler job than the Hamiltonian
Bow, and so we can easily look at more complicated sys-
tems. The % 2 Ashkin-Teller model will serve as our
case study.

Let the Hamiltonian be written, as usual, as a sum of
operators

'P gKS, ,

where 5, is a sum of the translations of products of spins,
and K, are the coupling constants. We will perform b xb
spin blockings, with a majority rule, and we are interested
in how the K " evolve after n RG transformations. We
look at two lattices of size L xL and bL xbL which we wi11

refer to as the small and large lattices, respectively. We
denote by (S," )z &L& the expected values of the operator
S, after n renormalizations of the small (large) lattices.
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8&s.) (s sp) (s )(sp) .
8Kp

(3)

Of course we are doing an approximation, and we still
have to specify from which system, large or small, the
left-hand sides are to be measured. In principle, it would
be profitable to make an average of large and small sys-
tem quantities. We, however, will use the information
from the small lattice only, because in practice it will
reduce our already very stressed memory requirements.
One also has better statistics for the smaller system.

Consider a quantity F as a function of any reasonable
combination of spins of the lattice at any stage of renor-
malization. Any expected value (F ) can be easily ob-
tained from the moments of Pp(E, F), that is, the joint
probability distribution of the energy of the unrenormal-
ized system and F at a given temperature T I/P. By us-

ing the histogram method, it is also easy to calculate the
moments at another temperature T', since

Pp(E,F),Pp(E, F)e P1

If the temperature is near critical, the evolution of the
coupling constants is very slow since the system is near a
fixed point. The inverse problem in relation to the
MCRG, that is, obtaining the probability distribution
given its moments, has received attention from several
groups; in particular, it can then be solved by looking
at the system of first-order equations

8&S.("'&
&S '"+") —(S '"') -g BE (2)

p ECp

which is solved by inverting the matrix 8(S,(" )/8Kp. The
idea behind this equation is that differences between ex-
pected values of an operator at different stages of renor-
malization can arise from two sources: (i) due to renor-
malization effects and (ii) due to different size lattices
leading to diferent finite-size effects. By subtracting ex-
pectations from different lattices at different renormaliza-
tion stages, one compares objects where presumably
finite-size effects cancel. Eventual differences are thus
thought to be due to renormalization. As usual the
derivatives, which are generalized specific heats, are cal-
culated from the fluctuations
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FIG. 1. Renormalization-group Hamiltonian flow from a sin-

gle simulation, nearest-neighbor vs next-nearest-neighbor cou-
plings.
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which is quite near the infinite volume critical couplings.
To calculate the coupling constant-shifts from the sets of
equations (2) and (3), one needs to store the necessary ex-
pected values. To calculate the renormalization shifts for
an unrenormalized system originally at other values of
(K~, O) one has to store several distributions. Let El. s in-
dicate the value of the unrenormalized system's energy.
We need to store P(EL S," ) for a=1,2 and n 1,2, and
P(Eg, s," ) for a=1,2 and n=0, 1. We can do better
than that if we realize that Eg 5 ~ for the particular
case and basis we chose, and so for n 0, a 1 stores just
P(S ~

). Up to this point we can calculate

&S "+' ) and &S "l&s,

for any initial unrenormalized pure nearest-neighbor in-
teraction system provided, of course, we do not go too far
away. We still have to calculate the crossed terms which
involve Iiroducts of S~ and Sz. We need then to store
P(Eg,s," Sp" ) for n 1 and (a,P) (1,1), (1,2), and
(2,2).

with Z' ensuring normalization.
This is, up to this point, quite general and we turn to the

specific problem of examining the Ising model RG flow.
The truncated basis for the Hamiltonian consists of just
two operators, the nearest-neighbor and next-nearest-
neighbor two-body interactions,

1 fora 1,
G'p CP) ', E'

,J2 for a 2,
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Results will be presented for a simulation of an Ising
model in a 32X32 (large) and a 16&16 (small) pair of
lattices, a scale factor b 2, n 0, 1 and two renormaliza-
tions.

The simulation is performed at (K~,K2) (0.44;0),

K~
FIG 2. F(I-,L') is the truncated nearest-neighbor correlation

function of the Ashkin-Teller model of a system initially of size
L renormalized to size L'. R g«, ,& [K~ (a;cr, +p;p, ) +
K4cr;a~p~p~] from a simulation at K~ 0.4 and K4 0.03.
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The result of solving the system of Eq. (2) for the
evolved (in Kt ) correlations appears in Fig. 1, where one
can clearly use the typical RG Hamiltonian flow trajec-
tories around the fixed point. It can be noticed that this
method has the disadvantage of severely straining mem-
ory requirements. However, it is, to say the least, interest-
ing to be able to obtain so much information just by sit-
ting at a single temperature.

We now turn to the easier problem of determining the
critical coupling of a 2D Ashkin-Teller model. Again look
at two lattices of initial size differing by a factor of b. To
simplify, we will compare the correlation of the once re-
normalized big lattice with that of the unrenormalized
small lattice. One could, of course, compare the (n+ 1 )th
and nth renormalization stages, but as it will be clear from
the results, one is su%ciently close to the fixed point such
that the method can be illustrated.

Let 8 be a truncated correlation of the nth renormal-
ization stage

(cL s - g ((o;a,&
—&rr;&&cr, &),

LS

where AL g is the large or small lattice and a are the
blocked spins.

We show in Fig. 2 the result of evolving PL and 8g.
The crossing of the two curves determines, in a first ap-
proximation, the value of the four spin coupling constant
at which there is a phase transition, with the nearest-
neighbor two-body coupling constant fixed at K& =0.4.
From duality we know exactly the critical value K4 =0.06,
which compares favorably with the matching point K4

0.065. This good agreement is found even when the ac-
tual simulation is performed at the somewhat distant
E4 0.03. The agreement seems quite good when com-
pared to the previously published flow diagram by
Swendsen.

In summary we have shown the feasibility of joining the
very successful MCRG techniques with the histogram
method. Whether this can be used in applications, for
more interesting and realistic models, in a useful manner,
will depend on the ability to keep as small as possible the
memory requirements which grow quite rapidly with the
increase of the system's complexity.
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