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We present the first combined measurement of the rapidity and transverse momentum dependence of
dijet azimuthal decorrelations, using the recently proposed quantity R�φ . The variable R�φ measures
the fraction of the inclusive dijet events in which the azimuthal separation of the two jets with the
highest transverse momenta is less than a specified value of the parameter �φmax. The quantity R�φ

is measured in pp̄ collisions at
√

s = 1.96 TeV, as a function of the dijet rapidity interval, the total
scalar transverse momentum, and �φmax. The measurement uses an event sample corresponding to an
integrated luminosity of 0.7 fb−1 collected with the D0 detector at the Fermilab Tevatron Collider. The
results are compared to predictions of a perturbative QCD calculation at next-to-leading order in the
strong coupling with corrections for non-perturbative effects. The theory predictions describe the data
well, except in the kinematic region of large dijet rapidity intervals and small �φmax.

© 2013 Elsevier B.V. Open access under CC BY license.
In high-energy collisions of hadrons, the production rates of
particle jets with large transverse momentum with respect to the
beam direction, pT , are predicted by perturbative Quantum Chro-
modynamics (pQCD). At second order in the strong coupling con-
stant, αs , pQCD predicts only the production of dijet final states.
In the absence of higher-order radiative effects, the jet directions
are correlated in the azimuthal plane and their relative azimuthal
angle �φdijet = |φjet1 − φjet2| is equal to π . Deviations from π
(hereafter referred to as “azimuthal decorrelations”) are caused
by radiative processes in which additional jets are produced. The
amount of the decorrelation is directly related to the jet multi-
plicity and to the pT carried by the additional jets. The transi-
tion from soft to hard higher-order pQCD processes can be stud-
ied by examining the corresponding range of azimuthal decorre-
lations from small to large values. This makes measurements of
dijet azimuthal decorrelations an ideal testing ground for pQCD
predictions of multijet production processes. In pQCD, dijet az-
imuthal decorrelations are predicted to depend not only on the
transverse momentum of the jets, but also on the dijet rapidity in-
terval y∗ = |yjet1 − yjet2|/2, obtained from the rapidity difference
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of the two leading pT jets in an event [1]. In a previous analysis of
dijet azimuthal decorrelations in pp̄ collisions at

√
s = 1.96 TeV,

we measured the dijet differential cross section as a function of
�φdijet, integrated over a fixed jet rapidity range and normalized
by the inclusive dijet cross section for different requirements on
the leading jet pT [2]. The same methodology was later used in
analyses of pp collision data at

√
s = 7 TeV from the CERN Large

Hadron Collider [3,4]. In all cases, dijet azimuthal decorrelations
have been observed to decrease with increasing pT ; however, the
combined rapidity and pT dependence has not yet been measured.

In this Letter, we perform a measurement of the rapidity and
the pT dependence of dijet azimuthal decorrelations in pp̄ colli-
sions at

√
s = 1.96 TeV, based on a data sample corresponding to

an integrated luminosity of 0.7 fb−1 collected with the D0 detector
at the Fermilab Tevatron Collider. The analysis is based on a new
quantity, R�φ , which was recently proposed in Ref. [5] as

R�φ

(
HT , y∗,�φmax

) =
d2σdijet(�φdijet<�φmax)

dHT dy∗
d2σdijet(inclusive)

dHT dy∗
. (1)

The quantity R�φ is defined as the fraction of the inclusive di-
jet cross section with a decorrelation of �φdijet < �φmax, where
�φmax is a parameter and σdijet(inclusive) is the inclusive di-
jet cross section without a �φdijet requirement. It is measured
as a function of �φmax, y∗ , and the total transverse momen-
tum HT in the event, computed as the scalar pT sum from all
jets i with pT i > pT min and |yi − yboost| < y∗

max where yboost =
(yjet1 + yjet2)/2, y∗

max = 2, and pT min = 30 GeV, where jet1 and
jet2 are the jets with the largest pT in the event. For �φmax ≈ π ,

http://creativecommons.org/licenses/by/3.0/
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R�φ is sensitive to soft QCD radiation, while it becomes sen-
sitive to hard higher-order QCD processes for smaller values of
�φmax. Since R�φ is defined as a ratio of cross sections, sev-
eral experimental and theoretical uncertainties cancel. In pQCD, for
2π/3 < �φmax < π (�φmax � 2π/3), the numerator of R�φ is a
three-jet (four-jet) quantity [5]. Therefore, for �φmax > 2π/3, R�φ

is computed as a ratio of three-jet and dijet cross sections which
is (at leading order, LO) proportional to αs . While dependencies on
parton distribution functions (PDFs) largely cancel, R�φ is sensitive
to the pQCD matrix elements and to αs .

The measurement is performed for an inclusive dijet event
sample defined by the Run II midpoint cone jet algorithm [6]
with a cone of radius Rcone = 0.7 in y and φ. The dijet phase
space is defined by the requirements pT 1 > HT /3, pT 2 > pT min,
y∗ < y∗

max, and |yboost| < 0.5. Following the proposal in Ref. [5],
R�φ is measured over the HT range of 180–900 GeV, in three re-
gions of the dijet rapidity interval of 0 < y∗ < 0.5, 0.5 < y∗ < 1,
and 1 < y∗ < 2; and for �φmax = 7π/8, 5π/6, and 3π/4. The
ranges in y∗ and yboost, and the value of pT min ensure that all jets
are always within |y| < 2.5 at pT values where the jet energy cal-
ibration and jet pT resolutions are known with high precision. The
requirement pT 1 > HT /3 provides a lower boundary for the lead-
ing jet pT in each HT bin, which (together with |y| < 2.5) ensures
that the jet triggers are efficient. The data are corrected for ex-
perimental effects and are presented at the “particle level,” which
includes all stable particles as defined in Ref. [7].

A detailed description of the D0 detector is provided in Ref. [8].
The event triggering and selection, jet reconstruction, and jet en-
ergy and momentum correction are identical to those used in re-
cent D0 multijet measurements [9–13]. Jets are reconstructed in
the finely segmented liquid-argon sampling calorimeters that cover
most of the solid angle. The central calorimeter covers polar angles
in the range 3–143◦ and the two endcap calorimeters extend this
coverage to within 1.7◦ of the nominal beamline [8]. The transition
regions between the central and the endcap calorimeters contain
scintillator-based detectors to improve the energy sampling. The
jet transverse momenta are calculated using only calorimeter in-
formation and the location of the pp̄ collision. The position of the
pp̄ interaction is determined from the tracks reconstructed based
on data from the silicon detector and scintillating fiber tracker lo-
cated inside a 2 T solenoidal magnet [8]. The position is required to
be within 50 cm of the detector center in the coordinate along the
beam axis, with at least three tracks pointing to it. These require-
ments discard (7–9)% of the events, depending on the trigger used.
For this measurement, events are triggered by inclusive jet triggers
with prescales of 41.2 (for the lowest pT trigger), 9.70, 1.39, and
1.0 (for the highest pT trigger), respectively. Trigger efficiencies are
studied as a function of HT by comparing the inclusive dijet cross
section in data sets obtained by triggers with different pT thresh-
olds in regions where the trigger with the lower threshold is fully
efficient. The trigger with the lowest pT threshold is shown to be
fully efficient by studying an event sample obtained independently
with a muon trigger. In each HT bin, events are used from the
trigger with the lowest prescale that has an efficiency higher than
98% in the corresponding HT range. Requirements on the char-
acteristics of the shower shapes of calorimeter clusters are used
to suppress the background due to electrons, photons, and detec-
tor noise that would otherwise mimic jets. The signal efficiency
for the shower shape requirements is above 97.5% [14,15]. Contri-
butions from cosmic ray events are suppressed by requiring the
missing transverse momentum in an event to be less than 70%
(50%) of the leading jet pT (before the jet energy calibration is ap-
plied) if the latter is below (above) 100 GeV. The efficiency of this
requirement for signal is found to be > 99.5% [14,15]. After all se-
lection requirements, the fraction of background events is below
0.1% for all H T , as determined from distributions in signal and in
background-enriched event samples.

The jet four-momenta reconstructed from calorimeter energy
depositions are then corrected, on average, for the response of the
calorimeter, the net energy flow through the jet cone, additional
energy from previous beam crossings, and multiple pp̄ interactions
in the same event, but not for the presence of muons and neutri-
nos [14,15]. These corrections adjust the reconstructed jet energy
to the energy of the stable particles that enter the calorimeter
except for muons and neutrinos. The absolute energy calibration
is determined from Z → e+e− events and the pT imbalance in
γ + jet events in the region |y| < 0.4. The extension to larger ra-
pidities is derived from the pT imbalance in dijet events with one
jet at |y| < 0.4 and the other jet at larger |y| [14,15]. In addi-
tion, corrections in the range (2–4)% are applied that take into
account the difference in calorimeter response due to the differ-
ence in the fractional contributions of quark and gluon-initiated
jets in the dijet and the γ + jet event samples. These corrections
are determined using jets simulated with the pythia event gener-
ator [16] that have been passed through a geant-based detector
simulation [17]. The total corrections of the jet four-momenta vary
between 50% and 20% for jet pT between 50 and 400 GeV. An ad-
ditional correction is applied for systematic shifts in rapidity due
to detector effects [14,15].

The procedure that corrects the distributions R�φ(HT , y∗,
�φmax) for experimental effects uses particle-level events, gen-
erated with sherpa 1.1.3 [18] with MSTW2008LO PDFs [19] and
with pythia 6.419 [16] with CTEQ6.6 PDFs [20] and tune QW [21].
The jets from these events are processed by a simulation of the
detector response which is based on parametrizations of jet pT

resolutions and jet reconstruction efficiencies determined from
data and of resolutions of the polar and azimuthal angles of jets,
obtained from a detailed simulation of the detector using geant.

The pT resolution for jets is about 15% at 40 GeV, decreasing
to less than 10% at 400 GeV. To use the simulation to correct
for experimental effects, the simulation must describe all rele-
vant distributions, including the pT and |y| distributions of the
three leading pT jets, and the �φdijet distribution. To achieve this,
the generated events, which are used in the correction procedure,
are weighted, based on the properties of the generated jets, to
match these distributions in data. The bin sizes in the H T distri-
butions are chosen to be approximately twice the HT resolution.
The bin purity, defined as the fraction of all reconstructed events
that were generated in the same bin, is above 50% for all bins
(and only weakly dependent on HT ), therefore it is sufficient to
apply bin-by-bin correction factors to the data. We use the simu-
lation to determine the correction factors for experimental effects
for all bins. The correction factors are computed as the ratio of
R�φ without and with simulation of the detector response. These
also include corrections for the energies of unreconstructed muons
and neutrinos inside the jets. The total correction factors for R�φ

using the weighted pythia and sherpa simulations agree typically
within 1% for �φmax = 7π/8 and 5π/6 and between 1–4% for
�φmax = 3π/4. The total correction factors, defined as the average
values from pythia and sherpa, are 0.98–1.0 for �φmax = 7π/8,
0.95–0.99 for �φmax = 5π/6, and 0.81–0.91 for �φmax = 3π/4,
with little y∗ dependence. The difference between the average and
the individual corrections is taken into account as the uncertainty
attributed to the model dependence.

In total, 69 independent sources of experimental systematic un-
certainties are identified, mostly related to jet energy calibration
and jet pT resolution. The effects of each source are taken as
fully correlated between all data points. The dominant uncertain-
ties for the R�φ distributions are due to the jet energy calibration
(2–5)% and the model dependence of the correction factors (1–4)%.
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Table 1
The results for R�φ with their relative uncertainties for �φmax = 7π/8.

HT

(GeV)
y∗ R�φ Stat. uncert.

(percent)
Syst. uncert.
(percent)

180–205 0.0–0.5 2.216 × 10−1 ±0.9 +2.8 −3.0
205–235 0.0–0.5 2.116 × 10−1 ±1.1 +2.6 −2.6
235–270 0.0–0.5 2.000 × 10−1 ±1.5 +2.5 −2.3
270–310 0.0–0.5 1.811 × 10−1 ±2.2 +2.2 −2.2
310–360 0.0–0.5 1.731 × 10−1 ±1.5 +2.0 −2.1
360–415 0.0–0.5 1.641 × 10−1 ±2.4 +1.9 −1.9
415–470 0.0–0.5 1.491 × 10−1 ±1.5 +1.9 −1.9
470–530 0.0–0.5 1.359 × 10−1 ±2.4 +1.9 −1.9
530–600 0.0–0.5 1.206 × 10−1 ±3.2 +2.0 −2.0
600–680 0.0–0.5 1.204 × 10−1 ±5.0 +2.2 −2.1
680–770 0.0–0.5 1.114 × 10−1 ±8.8 +2.4 −2.3
770–900 0.0–0.5 9.699 × 10−2 ±15.4 +2.5 −2.3

180–205 0.5–1.0 2.311 × 10−1 ±0.9 +2.9 −3.3
205–235 0.5–1.0 2.252 × 10−1 ±1.2 +2.8 −2.9
235–270 0.5–1.0 2.115 × 10−1 ±1.6 +2.6 −2.5
270–310 0.5–1.0 2.085 × 10−1 ±2.3 +2.4 −2.3
310–360 0.5–1.0 1.888 × 10−1 ±1.7 +2.2 −2.2
360–415 0.5–1.0 1.808 × 10−1 ±2.8 +2.1 −2.1
415–470 0.5–1.0 1.686 × 10−1 ±1.8 +2.1 −2.0
470–530 0.5–1.0 1.662 × 10−1 ±2.8 +2.1 −2.1
530–600 0.5–1.0 1.517 × 10−1 ±3.9 +2.2 −2.1
600–680 0.5–1.0 1.318 × 10−1 ±7.3 +2.4 −2.1
680–770 0.5–1.0 1.356 × 10−1 ±13.0 +2.5 −2.2

180–205 1.0–2.0 2.934 × 10−1 ±1.0 +3.8 −4.4
205–235 1.0–2.0 2.850 × 10−1 ±1.3 +3.7 −4.0
235–270 1.0–2.0 2.634 × 10−1 ±2.0 +3.6 −3.4
270–310 1.0–2.0 2.667 × 10−1 ±2.9 +3.3 −2.9
310–360 1.0–2.0 2.502 × 10−1 ±2.3 +3.1 −2.6
360–415 1.0–2.0 2.468 × 10−1 ±4.0 +3.1 −2.6
415–470 1.0–2.0 2.317 × 10−1 ±3.0 +3.1 −2.7
470–530 1.0–2.0 2.320 × 10−1 ±5.2 +3.0 −2.7
530–600 1.0–2.0 2.116 × 10−1 ±8.6 +2.8 −2.8
600–680 1.0–2.0 2.875 × 10−1 ±13.7 +2.7 −2.8

Smaller contributions come from the jet φ resolution (0.5–2)%,
from the uncertainties in systematic shifts in y (< 2%), and the
jet pT resolution (< 1%). All other sources are negligible. The sys-
tematic uncertainties are 2–3% for �φmax = 7π/8 and 5π/6 and
3–5% for �φmax = 3π/4. A detailed documentation of the results,
including the individual contributions to the uncertainties, is pro-
vided in the supplementary material [22].

The results for R�φ(HT , y∗,�φmax) are listed in Tables 1–3 and
displayed in Fig. 1 as a function of HT , in different regions of y∗
and for different �φmax. A subset of the data points from selected
HT regions is also shown in Fig. 2, where R�φ is displayed as a
function of y∗ for different choices of �φmax. The values of HT

and y∗ at which the data points are presented correspond to the
arithmetic centers of the bins. Fig. 1 shows that for all choices of
�φmax and in all y∗ regions, R�φ decreases with HT . In all y∗ re-
gions, the HT dependence increases towards lower �φmax, and for
all �φmax requirements the HT dependence becomes stronger for
smaller y∗ . This implies that the y∗ dependence of R�φ increases
with increasing HT , as shown in Fig. 2.

The theoretical predictions for R�φ are obtained from a pQCD
calculation in next-to-leading order (NLO) in αs with corrections
for non-perturbative effects. The latter include contributions from
hadronization and the underlying event. The non-perturbative cor-
rections are determined using pythia 6.426 with tunes AMBT1 [23]
and DW [21], which use different parton shower and underlying
event models. The hadronization correction is obtained from the
ratio of R�φ on the parton level after the parton shower and the
particle level including all stable particles, both without the un-
derlying event. The underlying-event correction is computed from
the ratio of R�φ computed at the particle level with and without
Table 2
The results for R�φ with their relative uncertainties for �φmax = 5π/6.

HT

(GeV)
y∗ R�φ Stat. uncert.

(percent)
Syst. uncert.
(percent)

180–205 0.0–0.5 1.439 × 10−1 ±1.1 +2.8 −2.6
205–235 0.0–0.5 1.325 × 10−1 ±1.4 +2.5 −2.5
235–270 0.0–0.5 1.223 × 10−1 ±2.0 +2.3 −2.3
270–310 0.0–0.5 1.097 × 10−1 ±3.0 +2.1 −2.1
310–360 0.0–0.5 1.007 × 10−1 ±2.1 +2.0 −2.0
360–415 0.0–0.5 9.851 × 10−2 ±3.3 +2.0 −1.9
415–470 0.0–0.5 8.635 × 10−2 ±2.1 +2.0 −2.0
470–530 0.0–0.5 7.821 × 10−2 ±3.2 +2.0 −2.0
530–600 0.0–0.5 6.832 × 10−2 ±4.3 +2.1 −2.1
600–680 0.0–0.5 7.262 × 10−2 ±6.6 +2.2 −2.3
680–770 0.0–0.5 5.760 × 10−2 ±12.5 +2.3 −2.4
770–900 0.0–0.5 5.600 × 10−2 ±20.7 +2.6 −2.7

180–205 0.5–1.0 1.463 × 10−1 ±1.4 +3.2 −2.9
205–235 0.5–1.0 1.396 × 10−1 ±1.6 +2.6 −2.6
235–270 0.5–1.0 1.317 × 10−1 ±2.2 +2.4 −2.5
270–310 0.5–1.0 1.263 × 10−1 ±3.1 +2.2 −2.3
310–360 0.5–1.0 1.139 × 10−1 ±2.3 +2.2 −2.2
360–415 0.5–1.0 1.117 × 10−1 ±3.6 +2.1 −2.1
415–470 0.5–1.0 1.016 × 10−1 ±2.4 +2.1 −2.1
470–530 0.5–1.0 9.993 × 10−2 ±3.8 +2.1 −2.1
530–600 0.5–1.0 9.414 × 10−2 ±5.1 +2.2 −2.2
600–680 0.5–1.0 8.566 × 10−2 ±9.2 +2.2 −2.3
680–770 0.5–1.0 7.369 × 10−2 ±18.2 +2.3 −2.5

180–205 1.0–2.0 1.926 × 10−1 ±1.3 +4.0 −3.5
205–235 1.0–2.0 1.840 × 10−1 ±1.8 +3.7 −3.5
235–270 1.0–2.0 1.709 × 10−1 ±2.6 +3.3 −3.4
270–310 1.0–2.0 1.716 × 10−1 ±3.9 +3.0 −3.2
310–360 1.0–2.0 1.611 × 10−1 ±3.0 +3.0 −3.1
360–415 1.0–2.0 1.600 × 10−1 ±5.2 +3.0 −3.1
415–470 1.0–2.0 1.436 × 10−1 ±4.0 +3.0 −3.0
470–530 1.0–2.0 1.518 × 10−1 ±6.7 +2.9 −3.1
530–600 1.0–2.0 1.391 × 10−1 ±11.0 +2.8 −3.1
600–680 1.0–2.0 2.034 × 10−1 ±17.2 +2.9 −3.2

underlying event. The total correction is given by the product of
the two individual correction factors for hadronization and the un-
derlying event. The total corrections vary between +1% and −1%
for tune AMBT1 and between +1% and −3% for tune DW. The re-
sults obtained with the two tunes agree typically within 1% and
always within 3% [5]. The central results are taken to be the aver-
age values, and the uncertainty is taken to be half of the difference.
As a cross-check, the non-perturbative corrections are also derived
with herwig 6.520 [24,25], using default settings. The herwig and
pythia results agree typically within 0.5%, and always within 1%
(3%) for �φmax = 7π/8 and 5π/6 (for �φmax = 3π/4) [5].

The NLO (LO) pQCD prediction for R�φ is computed as the
ratio of the NLO (LO) predictions for the numerator and the de-
nominator. The NLO prediction for the numerator (denominator) is
obtained from an O(α4

s ) (O(α3
s )) cross section calculation. These

results are computed using fastnlo [26,27] based on nlojet++ [28,
29], in the MS scheme [30] for five active quark flavors. The calcu-
lations use the next-to-leading logarithmic (two-loop) approxima-
tion of the renormalization group equation and αs(M Z ) = 0.118 in
the matrix elements and the PDFs, which is close to the current
world average value of 0.1184 ± 0.0007 [31]. The MSTW2008NLO
PDFs [19] are used, and the central choice μ0 for the renormal-
ization and factorization scales is μR = μF = μ0 = HT /2, which
is identical to μ0 = pT for inclusive jet and dijet production at
LO. The theoretical predictions are overlaid on the data in Figs. 1
and 2, and some properties are displayed in Fig. 3. The PDF un-
certainties are computed using the up and down variations of
the 20 orthogonal PDF uncertainty eigenvectors, corresponding to
the 68% C.L., as provided by MSTW2008NLO. The PDF uncertain-
ties are typically 1%, and never larger than 2%. The R�φ results



D0 Collaboration / Physics Letters B 721 (2013) 212–219 217
Table 3
The results for R�φ with their relative uncertainties for �φmax = 3π/4.

HT

(GeV)
y∗ R�φ Stat. uncert.

(percent)
Syst. uncert.
(percent)

180–205 0.0–0.5 4.659 × 10−2 ±2.0 +2.8 −2.7
205–235 0.0–0.5 4.339 × 10−2 ±2.6 +2.7 −2.5
235–270 0.0–0.5 4.055 × 10−2 ±3.5 +2.3 −2.2
270–310 0.0–0.5 3.405 × 10−2 ±5.4 +2.2 −2.2
310–360 0.0–0.5 2.913 × 10−2 ±4.0 +2.2 −2.2
360–415 0.0–0.5 2.733 × 10−2 ±6.2 +2.2 −2.3
415–470 0.0–0.5 2.419 × 10−2 ±4.0 +2.2 −2.4
470–530 0.0–0.5 2.008 × 10−2 ±6.3 +2.1 −2.6
530–600 0.0–0.5 1.780 × 10−2 ±8.4 +2.3 −2.8
600–680 0.0–0.5 1.953 × 10−2 ±12.6 +2.7 −3.1
680–770 0.0–0.5 2.241 × 10−2 ±19.8 +3.8 −3.5

180–205 0.5–1.0 4.620 × 10−2 ±2.6 +3.9 −3.9
205–235 0.5–1.0 4.261 × 10−2 ±3.0 +3.2 −3.1
235–270 0.5–1.0 4.152 × 10−2 ±3.9 +2.7 −2.7
270–310 0.5–1.0 3.510 × 10−2 ±6.0 +2.6 −2.8
310–360 0.5–1.0 3.578 × 10−2 ±4.1 +2.6 −2.9
360–415 0.5–1.0 2.962 × 10−2 ±7.1 +2.7 −2.9
415–470 0.5–1.0 3.107 × 10−2 ±4.3 +2.7 −2.9
470–530 0.5–1.0 2.984 × 10−2 ±6.9 +2.6 −2.9
530–600 0.5–1.0 2.532 × 10−2 ±9.8 +2.6 −3.2
600–680 0.5–1.0 2.587 × 10−2 ±16.7 +3.1 −3.4

180–205 1.0–2.0 6.873 × 10−2 ±2.5 +4.8 −3.9
205–235 1.0–2.0 6.402 × 10−2 ±3.3 +4.5 −4.1
235–270 1.0–2.0 6.169 × 10−2 ±4.6 +4.3 −4.5
270–310 1.0–2.0 6.741 × 10−2 ±6.4 +4.1 −4.8
310–360 1.0–2.0 5.218 × 10−2 ±5.5 +4.2 −4.7
360–415 1.0–2.0 5.049 × 10−2 ±9.5 +4.3 −4.5
415–470 1.0–2.0 4.505 × 10−2 ±7.2 +4.3 −4.4
470–530 1.0–2.0 4.899 × 10−2 ±11.9 +4.1 −4.7
530–600 1.0–2.0 3.504 × 10−2 ±22.0 +3.6 −5.6

obtained with the CT10 [32] and NNPDFv2.1 [33] PDF parametriza-
tions agree with those for MSTW2008NLO within 2%. The theoret-
ical uncertainties are dominated by the uncertainties of the pQCD
calculations due to the μR and μF dependencies. These are com-
puted as the relative changes of the results due to independent
variations of both scales between μ0/2 and 2μ0, with the re-
striction of 0.5 � μR/μF � 2.0. The uncertainties from the scale
dependence are 4–6% for �φmax = 7π/8 and 5π/6, and 6–20%
for �φmax = 3π/4, decreasing with H T . In addition to the scale
Table 4
The χ2 values between data and theory for MSTW2008PDFs and αs(M Z ) = 0.118
and for different choices of μR and μF . The results are shown for each of the nine
kinematic regions, defined by the y∗ and �φmax requirements, combining all HT

bins inside those regions.

y∗
range

�φmax Ndof χ2 for μR = μF =
HT /4 HT /2 HT

0.0–0.5 7π /8 12 15.1 7.1 12.7
0.0–0.5 5π /6 12 15.7 10.9 20.9
0.0–0.5 3π /4 11 13.1 44.2 104.5

0.5–1.0 7π /8 11 11.8 6.9 8.6
0.5–1.0 5π /6 11 5.6 4.0 12.6
0.5–1.0 3π /4 10 15.4 26.9 60.2

1.0–2.0 7π /8 10 29.7 24.4 19.8
1.0–2.0 5π /6 10 9.3 10.8 10.7
1.0–2.0 3π /4 9 10.3 23.1 45.5

dependence, the NLO k-factors provide additional information on
the convergence of the perturbative expansion, and therefore on
the possible size of missing higher-order contributions. The NLO
k-factors are computed as the ratio of the NLO and the LO predic-
tions for R�φ (k = RNLO

�φ /RLO
�φ ). Fig. 3 shows the inverse of the NLO

k-factors and their dependence on y∗ and �φmax.
Ratios of data and the theoretical predictions are displayed in

Fig. 3 as a function of HT in all regions of y∗ and �φmax. To quan-
tify the agreement, χ2 values are determined that compare data
and theory, taking into account the correlations between all un-
certainties. The χ2 definition is the same that was used in our
recent αs determinations [12,34]. Table 4 displays the χ2 values
for all H T bins within each of the nine kinematic regions in y∗
and �φmax. The results are shown for three different choices of
μR and μF , including the central choice μR = μF = HT /2 and the
combined lower and upper variations, H T /4 and HT . The following
discussion distinguishes between the three different kinematic re-
gions, which are given by �φmax = 3π/4, by y∗ > 1, and by y∗ < 1
with �φmax = 7π/8 or 5π/6.

The region of large azimuthal decorrelations, �φmax = 3π/4, is
challenging for the theoretical predictions since it receives large
contributions from four-jet final states. These are only modeled
at LO by the O(α4

s ) calculation for the numerator of R�φ , which
causes the large NLO k-factors (up to 1.5) and the large scale
Fig. 1. (Color online.) The results for R�φ as a function of HT in three different regions of y∗ and for three different �φmax requirements. The error bars indicate the
statistical and systematic uncertainties summed in quadrature. The theoretical predictions are shown with their uncertainties.
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Fig. 2. (Color online.) The results for R�φ as a function of y∗ in four different regions of HT and for three different �φmax requirements. The error bars indicate the statistical
and systematic uncertainties summed in quadrature. The theoretical predictions are shown with their uncertainties.

Fig. 3. (Color online.) Ratios of the results of R�φ and the theoretical predictions obtained for MSTW2008NLO PDFs and αs(M Z ) = 0.118. The ratios are shown as a function
of HT in different regions of y∗ and for different �φmax. The inner error bars indicate the statistical uncertainties, and the outer error bars the statistical and systematic
uncertainties summed in quadrature. The theoretical uncertainty is the PDF and scale uncertainty summed in quadrature. Also shown is the ratio of the LO and NLO pQCD
predictions which is the inverse of the NLO k-factor.
dependence (up to 21%), seen in Fig. 3. In this kinematic region,
the central theoretical predictions are consistently below the data
(often by 15–25%). Within the large scale uncertainty, however,
they agree with the data, as the χ2 values for the lower scale
choice HT /4 are all consistent with the expectations based on the
number of degrees of freedom (Ndof, which corresponds here to
the number of data points), of χ2 = Ndof ± √

2Ndof.
In the kinematic region y∗ > 1, the theoretical predictions ex-

hibit a different HT dependence as compared to lower y∗ , as seen
in Fig. 1. While at lower y∗ the predicted HT dependence of the
R�φ distributions is monotonically decreasing, the H T distribu-
tions for y∗ > 1 have a local minimum around ≈ 0.5 TeV above
which R�φ increases. For �φmax = 5π/6, the theoretical predic-
tions give an adequate description of the data. For �φmax = 7π/8,
however, the predicted H T dependence differs from that of the
measured R�φ distribution, as quantified by the large χ2 re-
gardless of the scale choice. This is the only kinematic region in
(�φmax, y∗) for which the NLO k-factor is consistently below unity
(0.89–0.81) over the entire H T range. This may indicate a poor
convergence of the perturbative expansion.

The perturbative expansion works best in the kinematic regions
of 0 < y∗ < 0.5 and 0.5 < y∗ < 1.0, where the scale dependence
is small (< 6%) and the NLO k-factors are above unity but small
(1.00 < k < 1.06). In all of those regions, the theoretical predictions
give a good description of the data.

In summary, the first measurement of the combined rapidity
and pT dependence of dijet azimuthal decorrelations is presented.
The measurement is based on the recently proposed quantity R�φ ,
which probes dijet azimuthal decorrelations in a novel way. It is
measured in pp̄ collisions at

√
s = 1.96 TeV as a function of the

total transverse momentum HT , the dijet rapidity interval y∗ , and
the parameter �φmax. For all values of �φmax and at fixed HT , di-
jet azimuthal decorrelations increase with y∗ , while they decrease
with HT over most of the HT range at fixed y∗ . Predictions of



D0 Collaboration / Physics Letters B 721 (2013) 212–219 219
NLO pQCD, corrected for non-perturbative effects, give a good de-
scription of the data, except in the kinematic region of large dijet
rapidity intervals y∗ > 1 and small decorrelations �φmax = 7π/8.
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