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Abstract

A methodology of identification and characterization of coherent structures mostly known as clusters is applied to
hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simu-
lation is performed using the MICEFLOW code, which includes the two-fluids IIT’s hydrodynamic model B. The meth-
odology for cluster characterization that is used is based in the determination of four characteristics, related to average life
time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters
is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather
than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered
experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quanti-
tative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling
procedure regarding the analysis of macroscopic scale coherent structures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In fluidization systems a high quantity of particles forms agglomerates or clusters, defined as regions char-
acterized by high particle concentration in relation to the mean solids concentration in the riser column. These
groups of particles move as a single body with little internal relative movement [1]. According to Horio and
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Nomenclature

CDs drag coefficient for a single particle in an infinite medium
dp particle diameter (m)
g gravity acceleration (m/s2)
G solid elasticity modulus (N/m2)
P gas pressure (Pa)
Res Reynolds number based on particle diameter
Rg ideal gas constant (kJ/kg K)
t time (s)
vg and vs control volume average velocities, (m/s)
b interface drag function (kg/m2s)
l dynamic viscosity (kg/ms)
ag and as volumetric fractions
qg and qs densities (kg/m3)
r standard deviation
sg and ss viscous stress tensors (Pa)
/s particle sphericity

Subscripts

(g) and (s) gas and solid phases
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Clift [2], agglomerates are groups of particles joined together by the action of inter-particle forces, and clusters
are groups of particles joined together as a result of hydrodynamic effects. However, in several articles in the
literature the term ‘‘agglomerate’’ is used to refer to clusters.

Another important aspect is cluster shape. Horio and Kuroki [3] found that clusters are structures with a
parabolic geometrical shape in the down region and a gas wake in the upper part. Hori and Kuroki conducted
a three-dimensional visualization study of the gas–solid flow using a laser sheet technique. On the basis of
some research in the literature, Davidson [4] affirms that clusters are groups of particles in the form of vertical
sheets with a small width/height ratio, which are coherent during a considerable traveling distance. Büssing
and Reh [5] indicate that clusters are non-spherical aggregates with a length/diameter ratio of up to 10, con-
trary to the descriptions of Horio’s group [3,6]; and others).

Regarding this discrepancy, Lackermeier et al. [7] noted that the laser sheet technique used by Horio and
coworkers enables only images external to the flow to be obtained, thereby restricting observations to those of
very small solid volumetric fractions (mass flow rates from about 0.01 to 0.05 kg/(m2s)). Lackermeier et al. [7]
applied Horio’s technique, but took a shot of the internal flow through the use of an endoscope observation
technique. This technique allowed studying gas–solid flows with solid concentrations characteristic of CFB
risers. The clusters they observed were very similar to those described by Davidson [4] and Büssing and
Reh [5] and also to those presented in the results sections of the present paper.

For studying clusters a number of numerical simulations have been developed. Tsuo and Gidaspow [8] used a
traditional two-fluid model of constant viscosity to study the formation of clusters. Various characteristics of the
clusters were described, including density, size and flow pattern, and a discussion of the effect of several para-
meters on processes of cluster formation were presented. The parameters considered were superficial inlet gas
velocity, solid mass velocity, particle size, riser diameter, riser height and mixture of fine particles. It was shown
that a decrease in mass flow rate and particle size and an increase in superficial inlet gas velocity, mixture of fine
particles and column diameter produced a reduction in cluster population. Work similar to that of Tsuo and
Gidaspow was developed by a number of researchers using Eulerian–Lagrangean formulations [9–11,1]; and
others).

In this paper the methodology of identification and characterization of clusters of Sharma et al. [12] is
applied to results of a numerical simulation. The main objective is to characterize the clusters and to better
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analyze the obtained simulation results. Sharma et al. [12] presented three different criteria for cluster defini-
tion and identification, which were derived from the criteria proposed by Soong et al. [13]. They accounted for
four basic cluster characteristics that allow quantifying the influence of flow parameters on these structures.
The parameters considered were particle size and gas superficial velocity. Their analyses were of experimental
measurements obtained with a capacitance probe, which provided instantaneous local volumetric solid frac-
tion in a 15 cm diameter circulating fluidized bed. Despite the fact that the methodology was first applied to
results of experiments [13,14,12], it was also recently applied by Helland et al. [1] and Cabezas-Gómez and
Milioli [15] to numerical simulation results. In the last work the authors studied the influence of the drag func-
tion on cluster dynamics.

2. Formulation and theoretical procedure

2.1. Mathematical model

In the present work the hydrodynamic model B for a gas–solid flow developed at IIT (Illinois Institute of
Technology) and included in the MICEFLOW code [16] is applied. This model, called the traditional two-fluid
model, uses an Eulerian description for each phase, including mass and momentum conservation equations for
the phases. To obtain the present model the following hypotheses are considered: both phases are assumed to
be isothermal at 300 K; no interface mass transfer is assumed; the solid phase is characterized by a mean par-
ticle diameter, density and sphericity factor; both phases are continuous assuming a single gas phase (air) and
a single solid phase (glass beads). A detailed descriptions about the average procedure used to obtain the fol-
lowing two-phase gas–solid model are presented in Gidaspow [17] and Enwald et al. [18]. Other works [19–22];
among others) also present the deduction of gas–solid multiphase mathematical models, commonly used for
simulating gas–solid flows in fluidization. Next is presented the system of governing equations used in simu-
lations obtained after the averaging process and the constitutive equations modeling.

The continuity equations, representing the mass conservation for gas and solid phases, respectively, are
written as
oðqgagÞ
ot

þr � ðqgagvgÞ ¼ 0; ð1Þ

oðqsasÞ
ot

þr � qsasvsÞ ¼ 0: ð2Þ
In Eqs. (1) and (2) vg and vs represent the velocities (m/s), qg and qs stand are densities (kg/m3), and ag and as

stand for the volumetric fractions of gas and solid phases, respectively. In relation to single-phase continuity
equation the above equations differ by the presence of the phases’ volumetric fractions. By definition the fol-
lowing relation holds for the volumetric fractions:
ag þ as ¼ 1: ð3Þ
The momentum equations for gas and solid phases, respectively, are expressed as
oðqgagvgÞ
ot

þr � ðqgagvgvgÞ ¼ �rP þr � ðagsgÞ � bBðvg � vsÞ þ qgg; ð4Þ

oðqsasvsÞ
ot

þr � ðqsasvsvsÞ ¼ �Gras þr � ðasssÞ þ bBðvg � vsÞ þ ðqs � qgÞasg: ð5Þ
In Eqs. (4) and (5), besides the presence of the volumetric fraction of each phase, and the traditional superficial
(pressure and viscous forces) and volumetric (gravitational) forces considered for single-phase momentum
equations, is also included the term related to the interface momentum transfer. This term is modeled consid-
ering the stationary drag function, b, at interface. In the above two equations g is the gravity acceleration
(m/s2), sg and ss stand for the viscous stress tensors (Pa), P represents the thermodynamic gas pressure
(Pa), G is the solid-phase elasticity modulus (N/m2) and the subscript B represents the hydrodynamic model
B. In this model the gas pressure gradient term it is not present in the solid phase momentum equation, and the
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drag function is modified to satisfy the Archimedes’ principle and the usual relation for the minimum fluid-
ization [17].

To model the constitutive equations it is assumed a Newtonian rheology and the Stokes hypothesis for both
phases, expressing the viscous stress tensor as
sg ¼ lg½rvg þ ðrvgÞT �
2

3
ðr � vgÞI�; ð6aÞ

ss ¼ ls½rvs þ ðrvsÞT �
2

3
ðr � vsÞI�: ð6bÞ
For the gas phase the dynamic viscosity lg is assumed constant and equal to 1.8 · 10�5 (kg/(m s)). For the
solid phase it is also assumed a constant dynamic viscosity value, ls = 0.509 (kg/(m s)). This value was ob-
tained from experimental values of axial gas pressure gradients and radial solid volumetric fraction profiles
using a momentum balance of the gas–solid mixture in the axial riser direction, integrated in the radial direc-
tion (c.f. 8].

The solid phase pressure is modeled empirically through the solid elastic modulus, G, using the empirical
correlation of Jayaswal [16] obtained from Mutsers and Rietema [23] data, according to
GðagÞ ¼ 10�8:686agþ6:385: ð7Þ
This correlation computes the solids elasticity modulus in dyn/cm2. This approach considers only the solid
pressure gradient due to particle collisions. In the traditional procedure the kinetic influence is commonly
neglected [18].

The stationary drag force at the interface is calculated using the drag function. This function is computed
considering the procedure of Gidaspow and coworkers [17], where Ergun [24] correlation is used for as P 0.2
and Wen and Yu [25] correlation is used for as < 0.2.
b ¼ 150
a2

s lg

a2
gðdp/sÞ

2
þ 1:75

qgasjvg � vsj
ðagdp/sÞ

for as P 0:2 ð8Þ
and
b ¼ 3

4
CDs

qgasagjvg � vsj
ðagdp/sÞ

a�2:65
g for as < 0:2: ð9Þ
In relation (9) CDs represents the interface drag coefficient for a single particle in an infinite medium, calcu-
lated by
CDs ¼
24

Res

ð1þ 0:15 � Re0:687
s Þ Res < 1000;

0:44 Res P 1000:

8<
: ð10Þ
The Reynolds number, Res, is based on the particle mean diameter dp, and considers the particle sphericity, /s:
Res ¼
agqgjvg � vsjdp/s

lg

: ð11Þ
It should be noted that in the traditional model other forces at the interface like the transverse, added mass,
history and other forces are commonly neglected. Enwald et al. [18], Fan and Zhu [26] and Crowe et al. [27]
present a very detailed review about the formulation of these forces for gas–solids flows modeling.

Finally, the fluidization medium, air, is modeled as an ideal fluid by the ideal gas state equation:
qg ¼ P=ðRgT Þ: ð12Þ
In Eq. (12) Rg is the ideal gas constant (kJ/kg K). The density of the solid phase, qs, is assumed constant and
equal to 2620 kg/m3. In Eqs. ((1)–(12)) the subscripts (g) and (s) respectively stand for gas and solid phases and
t is the time (s).
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2.2. Cluster identification and characterization

Soong et al. [13] rely on the following guidelines to define clusters:

• The concentration of solids in the cluster must be significantly higher than the local time-averaged solid
concentration at a given local position for a particular set of operational conditions.

• A perturbation in the concentration of solids due to clusters must be higher than the random ground fluc-
tuations of the solid fraction.

• This concentration perturbation should be measured in a sample volume with characteristic length one or
two orders of magnitude longer than the particle diameter.

Considering the above, Soong et al. [13] proposed the following criterion: the value of the local instantaneous
volumetric solid fraction for a cluster should be higher than its time-averaged value by two times the standard
deviation (2r). This way the clusters can be identified and considered as such when an instantaneous solid frac-
tion exceeds that limit. This criterion was used by Tuzla et al. [14] to detect clusters in a downer fluidized bed.
Sharma et al. [12] slightly changed the above criterion on the basis of experimental evidence. In addition to the
Soong et al. developments, Sharma et al. [12] proposed the following criteria for cluster life-time:

• The cluster is detected when the instantaneous solid fraction becomes larger than the time-averaged solid
fraction plus two times the standard deviation (2r).

• The starting time of a cluster corresponds to the last time at which the instantaneous solid fraction exceeds
the time-averaged solid fraction before satisfying the 2r criterion.

• The end time of a cluster corresponds to the first time at which the instantaneous solid fraction falls below
the time-averaged solid fraction after falling below the 2r criterion.

The proposition of Sharma et al. [12], denominated as the mean-referenced criterion, renders a cluster dura-
tion longer than that provided by the 2r criterion of Soong et al. Even if the authors recognized that the 2r
criterion is somewhat arbitrary; they observed that the use of a different factor to reduce the influence of back-
ground noise (e.g., 3r) would change results in a quantitative way, but would not change the general dynamic
characteristics of the clusters. The arbitrariness of the criterion adopted by Sharma et al. was recently dis-
cussed in Cabezas-Gómez and Milioli [15].

After a cluster is identified, its four basic characteristics, as defined by Tuzla et al. [14] and Sharma et al.
[12], can be calculated. These characteristics are the mean duration time, the occurrence frequency, the exis-
tence time fraction and the mean solid concentration. They are defined as follows:

• Mean duration time (sc): the mean time of duration of all clusters in a sample volume. (In Sharma et al. the
relevant volume is the volume of the used capacitance probe; when results of simulation are used the rel-
evant volume is that of one computational cell.) Assuming si is the duration time of a single cluster,
sc ¼
Pn

1si

n
; ð13Þ
where n is the total number of clusters detected in the observation period.

• Frequency of occurrence (Nc): the frequency at which the clusters are observed in the sample volume. It is
calculated as the mean number of clusters per second that are observed during the entire observation period.

• Existence time fraction (Fc): the fraction of the observation period in which there are clusters in the sample
volume.
F c ¼
Pn

1si

s
: ð14Þ
• Mean solid concentration (asc): the sum of the time-averaged solid fractions for all the clusters over the total
number of clusters detected in the observation period, i.e.,
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asc ¼
Pn

1�as;i

n
: ð15Þ
The above characteristics can also be calculated for cross-sectional average values, i.e.,
hf i ¼ 1

2R

Z 2R

0

f ðxÞdx; ð16Þ
where x is the horizontal coordinate direction and 2R is the cross-sectional length.

3. Numerical solution strategy

This work uses the MICEFLOW code developed by Jayaswal [16] at the IIT. This program is based on the
Syamlal’s MULTIFIX code [28], which is an extension of the previous K-FIX code, initially developed for
gas–liquid flows [29], and later on adapted to deal with gas–solids flows [30]. K-FIX is based on a numerical
method developed by [31] which is an extension of the implicit continuous-fluid Eulerian technique (ICE)
developed by [32].

The hydrodynamic conservative system is discretized in finite differences equations that are solved using a
point – relaxation technique. The continuity equations are discretized implicitly, while the momentum equa-
tions are discretized over a staggered mesh. In the momentum equations the convective terms are treated
explicitly and all other terms are treated implicitly. The finite-difference equations are solved in a 2D compu-
tational mesh that can be uniform or non-uniform. The scalar variables are set at the center of the cells while
the vector variables are placed at the boundaries of the cells.

The overall iterative calculation procedure is as follows (see 16]). The calculations are started with a guessed
pressure field that is either the specified initial condition or the pressure field computed in the previous time
step. Using this guessed pressure field, the velocities are calculated from the momentum equations. The par-
ticulate phase continuity equation is solved using the updated velocities to compute the particulate phase vol-
ume fraction. The gas phase volume fraction is then computed. Using the gas volume fraction and updated
velocities is computed the gas phase mass residue from continuity equation for gas phase. This residue is used
as a convergence criterion. For convergence, the gas pressure is corrected in each cell at a time until conver-
gence is attained or the number of iterations exceeds an inner iteration limit (a number of iterations for one cell
at a given time). The computations proceed until the entire computational domain is covered. At the end of
such a computational sweep, if a pressure adjustment was necessary in any of the cells, the procedure is
repeated until simultaneous convergence in all the cells is obtained. The number of iterations, however, is
restricted by an outer iteration limit (i.e., a number of iterations for one time step). The pressure is adjusted
in each cell using a combination of Newton’s method and the secant method.

In the present simulations were used 5 and 400 for inner and outer iteration limits, respectively. The dis-
cretization of convective terms is performed using a first order upwind scheme or donor cell discretization
[31,16]. The other terms are discretized with standard centered difference scheme. For temporal integration
was used a fixed time step equal to 5 · 10�5 s and the simulation runs until 100 s of fluidization. The minimum
gas phase mass residue used for convergence was equal to 10�5 (kg/m3). The MICEFLOW code and versions
of this code, as described in this present study, has been widely used in several research works [33,16,34,17];
among others).

4. Simulation setup and initial and boundary conditions

Fig. 1 shows the simulation setup and domain, including the initial, inlet and outlet boundary conditions
for both phases. One-dimensional plug flow is assumed at the inlet cross-section. At the outlet the continuity
condition is assumed for all variables, except for gas pressure. At the walls the no slip condition is assumed for
the gas phase and a partial slip condition is assumed for the solid phase in agreement with Ding and Gidaspow
[35]. The value for solid-phase viscosity was taken from Tsuo and Gidaspow [8].

In this work is used a Cartesian coordinate system considering uniform computational mesh in radial direc-
tion with 22 cells and non-uniform in axial direction with 297 cells (see Fig. 1).



Fig. 1. Geometry and initial and boundary conditions used in the simulations of the IIT installation [42,48] assuming 2D Cartesian
coordinates.
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Recently Agrawal et al. [36] showed that independent mesh solution for a gas–solid flow is very difficult to
be obtained. The cause for this behavior is the meso-scales instabilities that influence and change quantita-
tively the flow, independently of the adopted temporal and spatial discretizations. These authors affirm that
the best form to fully simulate the events taking place at meso and macro scales is the direct numerical inte-
gration of the governing equations. However, this kind of simulation, independent of mesh size, was not
obtained yet.

In other work, Ibsen et al. [37] studied also a criteria defined Zhang and VanderHeyden [38] concerning the
obtainment of grid independent solution. Zhang and VanderHeyden define a grid independent solution as
when the flux in the simulation matches the flux in the experiments. Ibsen et al. using this criterion, however,
do not obtained a grid independent solution. They pointed out that it is difficult to achieve this kind of solu-
tion and that it is questionable whether such a criterion can be satisfied at all when mean volume–length dia-
meter is used.

Considering all the above comments, it seems that the computational mesh used in the present paper leads
to satisfactory results. They present physical coherent behavior and acceptable errors in comparison with the
experimental data. Similar errors are observed in several works from literature which uses computational
meshes similar to the present one [39–41]; among others). The same trends are observed even in works that
use more complex mathematical models and refined numerical meshes than the present work (c.f. 37].
5. Numerical results

Introduced in this section is a comparison of numerical results with experimental data, regarding radial
profiles of the axial velocity of both phases and of the solid volumetric fraction. Afterwards, the numerical
results are analyzed qualitatively applying the clusters’ characterization methodology proposed by Sharma
et al. [12]. The present results of simulation are compared with the experimental results obtained by those
authors.
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5.1. Comparison of the numerical results with mean experimental data

In Fig. 2 time averaged radial profiles of the axial gas and solid velocity are compared with the experimental
data of Luo [42], 3.4 m above the riser inlet. In Fig. 2a it is observed that significant discrepancies occur
between the results of simulation and the experimental data, most significantly in the central region of the col-
umn. These deviations can be a consequence of the hypotheses adopted in the employed mathematical model,
as well as, due to the experimental uncertainties characteristics of local gas phase velocity measurement. One
of the model simplifications is the not consideration of a mathematical model for the gas phase turbulence
simulation. The radial profile of the axial solid velocity shows a much more adequate behavior when com-
pared with the experimental data (see Fig. 2b). In this figure it is seen clearly the existence of an annular solid
layer with negative velocity in the regions close to the walls. This is evidence of the annular flow pattern char-
acteristic of the gas–solid flow in the upper portions of a riser. It seems that the present model predicts a better
solid than gas phase velocity profile, as evidenced in recent publications [43,15,44,45].

The time averaged radial profile of the solid volumetric fraction at 3.4 m above the riser inlet is presented in
Fig. 3. The results are qualitatively correct, observing a good agreement between the experimental volumetric
fraction and the numerical results. The greater quantitative differences are detected in the region closest to the
wall. However, it can be considered that the model produces reasonable qualitative values of the solid volu-
metric fraction, simulating the annular gas–solid flow pattern with a solid concentration larger at the walls and
smaller at the column center. This gas–solid flow pattern is also observed in Fig. 4 where it is shown the instan-
taneous profiles of the volumetric solid fraction in the entire riser domain in the time interval of 90.0 up to
90.3 s of fluidization. In the figure is perceived clearly the descending movement of a cluster of reasonable size
close to the column left wall. This cluster has the form of a vertical sheet with a small width/height ratio, coin-
ciding with the description presented in Davidson [4] and with the structures shown in Lackermeier et al. [7]. It
should be noted that this coherent structure is dissipated during its descending movement, having a relatively
low velocity, as can be deduced from the results presented in the next section. It is observed that the annular
flow pattern is present in almost all the column height.

Others comparisons of the numerical simulation results, obtained with the same mathematical model and
the numerical procedure, can be seen in Cabezas-Gómez and Milioli [46,43,15,44,45]. The results here pre-
sented show that the model simulates adequately the characteristic behavior of the kind of installation being
studied. In spite of this, it is perceived that a more detailed description of the coherent structures’ formation,
dissipation and breaking dynamics contributes to a better comprehension of the studied gas–solid flow. With
this goal, in the following section, simulation results are analyzed using a criterion that allows better quanti-
fication of the dynamical processes that characterize these structures.
Fig. 2. Time averaged radial profiles of the axial velocity for both phases at 3.4 m height compared with the [42] experimental data.



Fig. 3. Comparison of the radial profile of the solid volumetric fraction with the [42] experimental data for the 3.4 m cross section.

Fig. 4. Temporal photographs of the solid volumetric fraction in the riser column.
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5.2. Cluster characteristic analysis from numerical results

The time averaged solid volumetric fraction radial profiles in six bed transversal sections are showed in
Fig. 5. The profiles show a similar behavior to each other and in comparison to the experimental data. The
only discrepant profile is that corresponding to the height of 5.5 m, next to the riser outlet. In this case it is
observed that solids accumulate in the column central region, possible, due to the outlet section geometry
(see Fig. 1). This region imposes an obstacle to the flow propitiating the clusters’ formation. Except in this
riser cross-section, in all the others plotted sections it is seen the gas–solid annular flow pattern. A similar
behavior is noted in Fig. 6, regarding the radial profiles of the mean solid concentration in the clusters, asc.
This parameter also shows a solid concentration larger in the regions close to the riser walls. In Fig. 6 it is
noted that at the height of 4.5 m the asc radial profiles already accuse the agglomeration effect exerted by
the riser outlet region, while in the profiles for �as this effect is only detected at 5.5 m’’.

Fig. 7 shows a comparison between the mean cross-sectional time averaged values of the solid volumetric
fraction h�asi, and clusters’ solid concentration h�asci. Both parameters present a similar behavior, with a small



Fig. 5. Time averaged radial profiles of the solid volumetric fraction in several riser cross-sections in comparison with the [42] data
obtained at the 3.4 height metres.

Fig. 6. Radial profiles of the mean cluster solid concentration, asc, in various riser cross-sections.
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difference at height equal to 5.5 m where it is perceived a slight increase of h�asci and a diminution of the h�asi
parameter. Once again, this reflects the accumulation of solid with cluster formation in the bed outlet region.
Recent works have been show that the inferior region of a CFB behaves as a bubbling fluidized bed (BFB) (e.g
47]. The criteria proposed by Sharma et al. [12] also detect clusters in this region, suggesting the cluster exis-
tence even in BFB. This is an interesting aspect that needs more investigation.

The mean cluster duration time, sc, is shown in Fig. 8. It is noted a high relative variation among the var-
ious radial profiles through the bed, having higher values of sc in the regions closer to the column right wall.
This does not happen in the left wall, where the profiles are practically plane, showing a slightly increase in
some cases. This behavior is caused possibly by the outlet boundary condition and geometry, directing a flow
to the right wall and consequently leading to a larger cluster solid concentration in this region. The present
results can be compared cautiously with those of Sharma et al. [12] even if both the experimental setups
and operating conditions are different and also taking into account that those authors assumed radial symme-
try for their experimental results. The comparison is then qualitatively, showing some significant differences.
In fact Sharma et al. found the highest value of sc equals to 0.15 s at the 4.5 m. In the present work the higher



Fig. 7. Comparison of the mean cross-sectional profiles for the time averaged solid concentration, h �asi, mean cluster solid concentration,
hasci, and cluster duration time, hsci along the riser height.

Fig. 8. Radial profiles of the cluster time duration, sc, in various riser cross-sections.
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value of sc at the same height is equal to 4.0 s, indicating that the clusters in the present study have an smaller
occurrence frequency and velocity. The reason for this significant difference is not clear but can be related to
the different working conditions of the compared installations. More discussion about this fact is presented
later in this section.

The mean cross-sectional average value of sc, hsci, is shown in Fig. 7 as a function or the riser height. The
average time of cluster duration is inversely proportional to the solid time average concentrations. Thus, when
the clusters are denser, smaller is their duration time for the cross-sectional averaged values. In relation to the
properties variation with the riser height it is observed the same behavior show in Figs. 6 and 8. With the
height increase hasci decreases while hsci increases, except at the 5.5 m height where both variables present
the same behavior.

In Fig. 9 is shown the radial profiles of the cluster existence time fraction, Fc, and the cluster occurrence
frequency, Nc, in several bed transversal sections. In Fig. 9a it is observed a maximum difference of about four
times between the obtained Fc values (minimum of 0.06 and maximum of 0.25). However, most of
the obtained values oscillate between 0.12 and 0.20. In this figure no functional radial variation of the Fc



Fig. 9. Radial variation of the clusters’ time existence fraction, Fc, and frequency occurrence, Nc, in various riser cross-sections.
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parameter is observed at the displayed height cross-sections. In Fig. 9b it can be noticed that the larger fre-
quency of clusters occur for the half to upper riser region takes place at the 5.5 height metres being equal
to about 0.30 clusters per second. This value is very low when compared to Sharma et al. data, which is prac-
tically equal to 12 cluster per second.

The mean cross-sectional clusters time existence fraction and occurrence frequency for several riser trans-
versal sections are displayed in Fig. 10. The results for the hFci parameter oscillate in a narrow interval,
between 0.13 and 0.20, around an average value of 0.17. This mean cross-sectional average value of hFci
was also obtained by Sharma et al. [12]. According to these authors this value remains almost constant, even
when the riser gas superficial inlet velocity and the mean particle diameter are considerably varied. It should be
commented that this constancy is, until the present moment, inexplicable. However, considering the definition
of Fc it is physically coherent that both the present results and the Sharma et al. [12] experimental data present
the same average value. In fact the cluster existence time fraction can be computed as
Fig. 10
riser h
F c ¼
scn
s
: ð17Þ
. Cross-sectional mean values of the cluster time existence fraction, hFci, and cluster occurrence frequency, hNci, as a function of
eight.
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Eq. (17) physically means that when the number of cluster is high their duration time should be small (Sharma
et al. results) and vice-versa if the number of cluster is smaller their duration time should be higher (present
simulation). This is because it is not possible, by the adopted cluster definition, to have many clusters with a
high duration time in the same place, for a determined cluster observance period s. In Fig. 10 it is also ob-
served that along the riser column there is a more intense variation of hNci in comparison to hFci. The higher
clusters occurrence frequency is observed at the bottom of the bed, oscillating between 0.13 and 0.41 per sec-
ond. In the half and upper parts of the column this parameter oscillates between 0.07 and 0.15 per second.

To close this section it can be commented that all the above mentioned differences between the present
model results and the experimental data of Sharma et al. [12] can be related to the model assumptions, the
uncertainties in the obtainment of experimental data and the differences between the experimental operational
conditions and those from numerical simulation. However, deeper studies should be performed to elucidate
better the causes of these differences; considering that the clusters’ characterization is crucial for good under-
standing of the complex chemical and hydrodynamics phenomena which take place in a typical CFB
installation.
6. Conclusions

In the present paper it is demonstrated that the use of a cluster identification and characterization method-
ology allows the qualitatively and quantitatively analyze of some hydrodynamics phenomena of the gas–solid
riser flows. It was also shown that the present model caught a smaller cluster quantity with a larger duration
time in comparison to literature experimental data. The main reason for these discrepancies is not yet well
understood, indicating the necessity of more research in this important area. Two possible solutions are the
use of a more sophisticated mathematical model, as that based on the kinetic theory of granular flows; and
also the development of experimental works considering other techniques for the solid volumetric fraction
measurement. Present simulation efforts are under development considering the kinetic theory.
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